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The Structure of Online Social Networks and Social Movements:

Evidence from the Black Lives Matter Protests
∗

Matthias Flückiger² Markus Ludwig³

March 28, 2025

Abstract

This paper documents that online social networksÐFacebook in particularÐcan facilitate

the spread of social movements across space and time. Focusing on the largest protest

movement in recent history, the wave of Black Lives Matter protests sparked by the killing

of George Floyd on 25 May 2020, we show that protests are more likely to spill over be-

tween US counties when they are more closely connected within the Facebook network.

To identify causal effects, we develop an instrumental variable approach that exploits local

Facebook outages as a source of exogenous variation in the structure of the online network.
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1 Introduction

Social movements are key drivers of economic, political, and cultural change. Online social

networks are increasingly thought to be a key facilitator of such movements. These networks

allow for easy coordination and the sharing of information between regions, regardless of

geographic distance. This suggests that the spatial structure of online networks inŕuences the

diffusion of social movements across space and time. In this paper, we address this question,

focusing on the largest protest movement in recent years.

The killing of George Floyd on the evening of 25 May 2020 by a Minneapolis police officer

triggered a wave of protests that was unprecedented in US history, both in terms of its spatial

spread and the number of participants (e.g. Buchanan et al., 2020). The protests were part of

the wider Black Lives Matter (BLM) movement, which demands an end to racially motivated

police brutality against Black people, a lack of police accountability, and, more generally,

discrimination.1 Online social networks are widely viewed as having played a central role in

the rapid diffusion of protests across the country, facilitating the sharing of information and

sentiments as well as helping to organise and coordinate collective action (e.g. Pew Research

Center, 2020b; Buchanan et al., 2020; Hamzelou, 2020; Ovide, 2020; Tillery, 2019; Anderson

and Hitlin, 2016; Freelon et al., 2016). This paper’s contribution is to document that the

spatial structure of online networks plays a crucial role in explaining when and where protests

occur in democracies.

To analyse whether protests in the wake of George Floyd’s murder spread across regions

that are highly connected within online networksÐFacebook in particularÐwe compile a

county×day-level dataset on protest incidence for the period MayśAugust 2020. Data on

BLM protests are drawn from the Crowd Counting Consortium (CCC). To measure the ex-

tent to which a given county is exposed to these protests within its online social network, we

average protest incidence across all other counties, using the number of bilateral Facebook

friendships as weights (Bailey et al., 2018a). Because people in the US typically connect on

Facebook only with those they know personally (i.e., real-world friends and contacts), Face-

book data are uniquely suited to providing a large-scale representation of the US friendship

network (see Bailey et al., 2018a).

The resulting index captures the online network-proximity-weighted average protest incidence.

The intuition behind this measure is as follows: Protests that occur in counties well-connected

1The Black Lives Matter (BLM) movement is a global activist movement that aims to end systemic racism
and violence towards Black individuals. The movement was founded in 2013 in response to the acquittal
of George Zimmerman, a white neighbourhood watch volunteer who was charged with the murder of a 17-
year-old Black teenager (Black Lives Matter, 2023). It gained signiőcant attention in 2014 after the killing
of Michael Brown, an unarmed Black man, by a white police officer in Ferguson, Missouri. This event led to
large-scale protests in Ferguson and beyond. Within a month of Brown’s death, around 200 BLM protests had
been recorded nationwide (elephrame.com). BLM has since grown into a global movement, with protests and
demonstrations sporadically taking place in several countries before 2020 (Mazumder, 2019).
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to the home county increase the visibility and awareness of, as well as engagement with, the

movement more than protests occurring in areas to which (online) ties are weak. Greater

exposure to the movement, in turn, raises the probability that protests will occur in the home

county.

The main empirical challenge in testing whether exposure to protests within the online network

inŕuences the spatiotemporal diffusion of the protest movement is the existence of unobserved

factors that are correlated with our protest exposure measure. Of particular concern are latent

networks. To address this issue, we leverage local Facebook outages as a source of exogenous

variation. We argue that outages reduce the intensity of online interaction between counties,

implying that a home county is less exposed to the protests in locations where Facebook is

down. The closer two counties are connected, the stronger the information-disrupting effect

of the outage. Based on this reasoning, we use the network-proximity-weighted outages as

an instrument for the online exposure to the protest movement. Variation in this measure is

solely driven by the timing of Facebook outages in network neighbours and the (predetermined)

strength of their Facebook link to the home county.

Our benchmark 2SLS-IV panel regression model accounts for county and date őxed effects.

The latter absorb general time-varying factors that inŕuence the protest probability, such

as changing news coverage or weekday effects. The former control for differences in county-

level characteristics that could inŕuence the baseline risk of collective action (e.g., socio-

economic factors). The resulting estimates show that greater exposure to protests within a

county’s online network raises the likelihood of collective action. Speciőcally, we őnd that

the probability that a protest takes place in the home county rises on the őrst and second

day after an increase in protest exposure within the online social network. For both lags, the

point effects are very similar. A one percentage point increase in network-proximity-weighted

average protest incidence raises the protest risk by around one percentage point. This implies

that the risk of protest surges on average by around 15 percentage points in our sample if the

closest neighbour experiences a protest. Evaluated at the baseline risk of 3.26, this constitutes

almost a tripling. An alternative way of quantifying our results is to look at the effects of

Facebook outages in the network neighbours directly. The likelihood that a BLM march

occurs in the home county decreases by 0.7 percentage points in the two days after its closest

neighbour experienced a Facebook outage. This corresponds to a drop of 21% when evaluated

at the mean. While the magnitude of the effect is large, it aligns well with those found in

other studies that investigate the effects of online networks on protest activity (e.g. Qin et

al., 2024; Enikolopov et al., 2020). These sizeable effects illustrate that the structure of the

Facebook network strongly inŕuenced the spread of the BLM protests over space and time.

Given that the protests have led to local legal and cultural reforms (e.g. Ebbinghaus et al.,

2021), our őndings imply that online social networks can play an important role in shaping

the geography of social change.
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There are two main threats to the validity of our identiőcation strategy. The őrst worry is

that Facebook outages in the network neighbours are not exogenous with respect to protest

activity in the home county. For example, outages in the home county and network neighbours

could be correlated andÐat the same timeÐdirectly inŕuence the protest risk in the home

county. In this case, our estimates would conŕate spillover effects that are due to changes in

the connectivity within the Facebook network and effects that are driven by Facebook outages

in the home county. We show that such effects are unlikely to bias our results. Controlling for

outages in the home county or dropping counties that themselves experience outages at any

point in time leaves our estimates unaffected. A second natural worry is that our estimates

are picking up (correlated) latent spatial networks. To mitigate this risk, we condition our

regressions on exposure within the distance network throughout. Reassuringly, including this

control has little effect on the size of our main point estimate. Relating to the validity of the

exclusion restriction, the primary concern is that network-proximity-weighted outages may

inŕuence the local protest risk through mechanisms other than the exposure channel that we

have in mind. For example, it is conceivable that outages in important network neighbours

reduce the relevance of the Facebook feed in the home county and consequently reduce Face-

book usage. This, in turn, could change the protest risk. While we cannot directly test for

the relevance of alternative mechanisms, we provide some suggestive evidence indicating that

they are unlikely to be of primary importance.

We run a range of robustness checks to document the stability of our results. Inter alia, we

show that our őndings remain unaltered when we include additional county-level controls,

vary the sample period, manipulate parameters in the construction of our main instrumental

variable, and employ an alternative instrumental variable approach. Finally, we also run a

falsiőcation exercise in which we show that randomly assigning outages across space and time

produces point estimates that are centred around zero and orders of magnitude smaller than

our main coefficients.

Our paper builds on and contributes to several strands of literature. Most directly linked

to our study are papers that investigate the effects of online social networks on political

protests. Ample qualitative evidence indicates that online networks play an important role in

the emergence and diffusion of protest movements (e.g., The Economist, 2021; Mortensen et al.,

2018; Mundt et al., 2018). However, there is a relative scarcity of studies that quantitatively

evaluate the impacts. Closely related to our work are the recent studies by Qin et al. (2024)

and Enikolopov et al. (2020) which document that online social networks inŕuence the spatio-

temporal spread of protest movements in China and Russia, respectively. Our paper expands

the literature by looking at the dynamics of spillover effects within the largest online social

network and a democratic setting.

Also directly related to our study is the branch of literature that investigates how the struc-

ture and the content of social networks (mostly in-person) inŕuence political participation and
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polarisation (Azzimonti and Fernandes, 2022; Caprettini et al., 2021; Fujiwara et al., 2023;

González, 2020; Zhuravskaya et al., 2020; Cantoni et al., 2019; Campante et al., 2017; Halber-

stam and Knight, 2016), the diffusion of hate crimes (Cao et al., 2023; Müller and Schwarz,

2023; Bursztyn et al., 2024), the intensity of economic ties and investment decisions (Bailey

et al., 2021, 2018b), as well as the spread of diseases (e.g. Kuchler et al., 2022). In historical

settings, García-Jimeno et al. (2022) and Aidt et al. (2022) show that railway and trade net-

works inŕuenced the diffusion of political movements in the more distant 19th century. Our

results highlight that the structure of digital networks can inŕuence the location and timing

of protests and, consequently, the dynamics of mobilisation.

This paper also contributes to the literature on the effects of media and technology on collective

action. There is ample evidence that traditional mediaÐnewspapers, radio, and televisionÐ

can inŕuence attitudes and shape collective action (e.g. Adena et al., 2015; Yanagizawa-Drott,

2014; DellaVigna and Kaplan, 2007). Similarly, a range of studies document that new types

of technologies and media, the internet and social media in particular, inŕuence the risk of

protests (e.g. Manacorda and Tesei, 2020; Bursztyn et al., 2024; Larson et al., 2019; Barberá

et al., 2016).2 In that respect, the papers by Fergusson and Molina (2021) and Müller and

Schwarz (2021) are most closely related to our study. They show that the availability and

content of Facebook increase the risk of protests and hate crimes. We complement these

őndings by illustrating that the risk of protests not only varies with local accessibility of the

Facebook platform, but also changes depending on how regions are interconnected within the

network.

Speciőc to the causes of BLM protests, narrative evidence suggests that online networks have

played an important role in the coordination of activism, pushing the BLM agenda, and

growing the movement (Pew Research Center, 2020b; Buchanan et al., 2020; Ovide, 2020;

Tillery, 2019; Anderson and Hitlin, 2016; Freelon et al., 2016). Furthermore, qualitative and

quantitative evidence indicates that the movement, and protests in particular, can shift the

public discourse towards the movement’s agenda (Dunivin et al., 2022), increase the salience of

racial inequalities (Drakulich and Denver, 2022; Mutz, 2022), reduce racial prejudice (Boehmke

et al., 2023; Mazumder, 2019), and change policing approaches (Campbell, 2024; Wang, 2022;

Ebbinghaus et al., 2021; The Economist, 2022).3

The remainder of this paper is structured as follows: We begin by presenting our data in

Section 2. In Section 3, we outline the regression methodology. The resulting estimates, along

with threats to identiőcation, are discussed in Section 4. Finally, we offer some conclusions in

Section 5.

2See Aridor et al. (2024) and Zhuravskaya et al. (2020, chapter 3) for more extensive reviews of the literature
on internet, social media and protests.

3However, Engist and Schafmeister (2022) őnd no evidence that the BLM protests increased political
mobilisation in the U.S., as measured by voter registration.
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2 Data

Three types of data form the basis of our empirical analysis: (i) the location and timing

of BLM protests, (ii) online social connectedness between counties, and (iii) local Facebook

outages. We combine these data sources into a county×day-level dataset that links protest

activity in the home county to exposure to protests in counties within its online social network.

The data sources and construction processes are described below.

Protests

Data on BLM protests come from the Crowd Counting Consortium (CCC) which collates pub-

licly available information on political protests from a range of sources, including newspapers,

television sites, and law enforcement.4 We restrict our analysis to protests that are clearly

assignable to the Black Lives Matter movement.5 We geocode these protests and aggregate

them at the county×day level. Our main outcome variable is a dummy variable that takes

the value of one if at least one protest takes place in a given county and day.6

The solid black line in Panel (a) of Figure 1 illustrates the temporal dynamics of the BLM

protest movement across the US in 2020. During the őrst őve months of the year, protest

activity remained extremely limited.7 This changed dramatically with the killing of George

Floyd on 25 May 2020. After the őrst protest march in Minneapolis on 26 May 2020, protests

quickly spread to other locations. Just őve days later, 478 counties reported at least one

manifestation. Protest intensity culminated on the 6th of June, when a total of 721 BLM

protests were reported. An estimated 500,000 individuals took to the streets on this day

(Buchanan et al., 2020). After this peak, the number of protests declined continuously, with

surges periodically observable. Spikes typically coincide with weekends.

Given the rapidly dissipating nature of the protest movement, we restrict our analysis to the

time period 26 May 2020 ś 25 July 2020. This cut-off represents the last date on which more

than 50 BLM protests were staged on a single day in the US.8 The dotted line in Figure 1,

Panel (a), represents the cumulative share of total protests during 2020 and illustrates that

more than 80% of all BLM marches occurred within our two-month sample period. During

this period, 44% of counties saw at least one protest. The location of these counties is shown

in Panel (b) of Figure 1.

4sites.google.com/view/crowdcountingconsortium, last accessed 17 March 2022.
5The CCC assigns claims to each protest. We retain all protests where the claims contain at least one of the

following keywords: ‘Black Lives Matter’, ‘antiracism’, ‘against police brutality’, and ‘against police shooting’.
6Unfortunately, detailed descriptions of many protests are unavailable. This prevents us from stratifying

them by characteristics such as protest size or whether they were peaceful or violent.
7Between 1 January 2020 and 25 May 2020, only 45 protests occurred on 43 different days. Most of these

took place in Los Angeles as regular demonstrations against police brutality by the LAPD, held in front of the
Hall of Justice in downtown LA.

8The choice of time period is somewhat arbitrary. In robustness checks we show that our results remain
stable when we manipulate the cut-off date.
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(a) (b)

(c) (d)

Figure 1: Protests and outages over space and time
Panel (a) depicts the number of BLM protests (solid line) and cumulative share of total protests (dotted line) in 2020. The grey shading delineates our sample period (26
May 2020ś25 July 2020). Panel (b) llustrates the spatial distribution of BLM protests. Darker shadings indicate a higher number of protests. Panel (c) illustrates the
spatial distribution of Facebook outages. Darker shadings indicate a higher number of outages. Panel (d) depicts the number of Facebook outages (solid line) and Google
web searches for Facebook connection issues (dashed line).
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Facebook stability

We construct a county×day level indicator variable that captures local stability in access to

the Facebook platform. Data on Facebook connection issues comes from Downdetector.com,

which collects status reports from a range of sources (e.g., Twitter and reports submitted via

their online and mobile apps). These reports are analysed and validated in real-time.

Information on the daily number of reported outages are commercially available at the city/town

level. We geocode these data and aggregate the number of reports at the county×day level.9,10

We then create a dummy variable that represents the local stability of the Facebook platform.

This dummy is equal to one if there are no major Facebook accessibility issues, and zero if

there is a serious outage.11 We deőne outages as days on which the number of reports is

two standard deviations or more above the county-level mean.12,13 In total, we observe 2,285

county×day outages over the course of our sample period; the average likelihood of an outage

is 1.193%. The frequency of Facebook outages is very similar to that observed in Müller and

Schwarz (2021).14 Panel (c) of Figure 1 shows which counties were affected by outages while

the solid line in Panel (d) represents the daily number of counties that experience a Facebook

outage. The locations of outages are scattered across space and occur throughout the period

of our analysis. Both the spatial and temporal correlations of outages are low.15

To validate our outage measure, we draw on Google Trends data which provide information

on the daily number of search requests made to Google. The dashed line in Panel (d) of

Figure 1 traces out the number of Google searches related to Facebook outages over time.16

Reassuringly, there is a very high degree of co-movement between the number of outages

9For larger cities and metropolitan areas, the geographical information is typically granular enough to
assign the outage reports to one speciőc county. For example, information for New York City is available
at the borough level. Similarly, information for the Los Angeles metro area is provided at the level of the
individual cities. When a location is not clearly assignable to a county, we assume that the outage occurs in
the county that encompasses the centroid of the named city or town.

10Within our sample period, Downdetector recorded 126,261 validated reports on Facebook connection issues.
Aggregated at the county×day level, the average number of reports is 10.05 (conditional on any report being
recorded).

11See Müller and Schwarz (2021) for a similar use of Facebook outages in the context of Germany.
12Formally, the Facebook stability indicator sFacebook

j,d for county j on day d is given by:

sFacebook

j,d = I (rj,d ≤ µr,j + 2× σr,j)

where rj,d represents the number of outage reports, µr,j the average number of outages, and σr,j the local
standard deviation.

13In robustness checks, we illustrate that our results remain stable when we manipulate the outage threshold
or employ structurally different outage deőnitions.

14Müller and Schwarz (2021) construct a week×municipality-level dataset for Germany and őnd that the
average weekly risk of outages is around 7.2 percent. When we collapse our data at the county×week level,
the mean likelihood of an outage is 6.99 percent.

15The raw correlation between outages in the home county and the network-weighted outages is 0.143 (see
equation (3)). The raw autocorrelation between today’s outage and yesterday’s outage is 0.079.

16Speciőcally, we focus on web searches containing the following keywords: ‘Facebook down’, ‘Facebook
issues’, ‘Facebook problems’, ‘Facebook connection’, ‘Facebook access’, and ‘Facebook outage’.
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and Google searches.17 The daily search volumes can be further stratiőed by regions. This

allows us to test if local Facebook outages lead to a surge in outage-related searches by

conditioning on region and date őxed effects. The result document a strong and statistically

signiőcant relationship (see Appendix C for more details). To further illustrate that our

measure captures Facebook-speciőc connection issues, we examine search requests related to

outages of other online social media networks. Speciőcally, we look at the őve most popular

platforms in addition to Facebook: YouTube, Instagram, TikTok, Snapchat, and Twitter

(see dooőnder.com). We do not observe any statistically signiőcant relationship between our

Facebook outage measure and outage-related searches for other platforms. The exception is

Instagram, where we őnd a positive, albeit weaker, effect. This is not surprising, given that

Facebook acquired Instagram in April 2012. It is therefore plausible that Instagram is also

affected when Facebook experiences issues.

Exposure to protests in online social network

We map online social connectedness across space using the Social Connectedness Index (SCI).18

The SCIśdeveloped and described in detail in Bailey et al. (2018a)Ðcaptures the link strength

between two counties within the Facebook network.19,20 The SCI is constructed using the uni-

verse of friendship links between all Facebook users and is available for all US county pairs. In

the United States, Facebook mainly serves as a platform for connecting with real-world friends

and acquaintances online. Since people tend to add only those they know personally, Facebook

data provides a representation of US friendship networks (p. 261 Bailey et al., 2018a). For the

purposes of our study, our interpretation of the SCI is that more socially connected counties

ultimately exchange more information, as individuals in these counties are more likely to en-

gage with and share content from their network ties. Furthermore, the information shared is

potentially more relevant and trusted, as it originates from friends and personal connections.

Based on the SCI, we construct a measure for protest exposure within a county’s social network

in two steps: For each county c, we őrst compute the proportion of total Facebook links it

shares with county j:

ωc,j =
SCIc,j∑K
k=1 SCIc,k

, (1)

where SCIc,j is the SCI between county c and j. The weight ωc,j lies between zero and

one, where higher values indicate greater social connectedness.21 For our analysis it is im-

17The raw correlation is 0.784.
18This data is publicly accessible at data.humdata.org/dataset/social-connectedness-index.
19User locations are determined based on their information and activity on Facebook, which include the city

listed on their proőle, as well as device and connection data.
20Note that the data released by Facebook are scaled by an (unknown) factor. Therefore, the absolute values

of the SCI are not meaningful, as they cannot be directly interpreted as the number of Facebook user links
between counties.

21The normalisation to one facilitates interpretation and also implies that the size of the county does not
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portant to note that the structure of the networkÐand therefore ωc,jÐis time-invariant and

predetermined.22

In the second step, we use the connectedness between individual county pairs (ωc,j) and

compute the social-network-proximity-weighted average protest incidence, PN
c,d, for county c

on day d as:

PN
c,d =

J∑

j /∈c

ωc,j pj,d sj,d, (2)

where pj,d is an indicator equal to one if a BLM protest takes place in county j on day d.

Local Facebook stability for county j on day d is represented by sj,d. The intuition behind this

measure is that a protest occurring in another county is more likely to spark demonstrations

in the home county, the more closely the two counties are connected within the online social

network. However, the extent to which protest activity is visible varies with Facebook outages.

Connection stability within the online social network

Analogous to the social-network-proximity-weighted protest incidence, we compute a measure

of connection stability within a county’s online network. The only difference from equation

(2) is that the protest indicator is omitted (see García-Jimeno et al. (2022) for a similar IV

approach). Consequently, the measure contains no information on protest activity, but simply

captures the network-proximity-weighted Facebook connection stability in the other counties

(j ̸= c). Formally, the measure for county c on day d, SN
c,d, is given by:

SN
c,d =

J∑

j /∈c

ωc,j sj,d, (3)

Analogous to the protest exposure measure, higher values of SN
c,d imply better online connection

to other counties.

Our őnal estimation dataset consists of 192,758 observations, covers the period 26 May 2020ś

25 July 2020 and includes 3,109 counties, all located within the contiguous United States or

Hawaii. Summary statistics of key variables are presented in Table A.1.

3 Empirical Strategy

To investigate if the probability of BLM marches increases with online-social-network exposure

to protests, we use the following linear probability model:

pc,d =
∑

k

γd−k P
N
c,d−k + πc + τd + θs,w +

∑

k

βd−k Xc,d−k + εc,d, (4)

matter; the weights capture the relative importance of link intensity.
22The SCI captures the structure of the network as of March 2020.
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where outcome pc,d is an indicator variable that takes the value of one if a BLM protest occurs

in county c on day d. The main regressors of interest are PN
c,d−k, the network-proximity-

weighted average protest incidence in counties j ̸= c on days d − k. As outlined above, we

expect γ to be positive: An increase in protest activity in socially closely connected counties

raises the likelihood that a protest takes place in the home county. However, we do not have

a prior regarding the appropriate lag structure. In the őrst, preliminary, step of our empirical

analysis, we will therefore take a hands-off approach to identifying the relevant lag(s), by

running regression model (4) separately for each day within the 10-day time window centred

around day d.

All regressions control for county őxed effects πc. These absorb any time-invariant charac-

teristics that inŕuence the likelihood of protests. Such aspects include population density,

demographic makeup, or past prevalence of police brutality.23 General time-varying shocks

are absorbed by date őxed effects τd. We further include state×weekend őxed effects (θs,w) to

allow for the possibility that spikes in protest activity observed during the weekend differ by

state (cf. Panel (a) of Figure 1). The vector Xc,d−k represents a varying set of county-level

characteristics, and the idiosyncratic error term is symbolised by εc,d. Throughout, we cluster

standard errors at the county level.

The validity of the regression model (4) hinges on the assumption that PN
c,d−k only picks up

the effects on collective action that are due to changes in exposure to protest activity within

a county’s online social network. A main worry is that there are omitted variables, and in

particular, latent (and correlated) networks through which protest activity in other counties

inŕuences local collective action. A natural concern, for instance, is that PN
c,d−k simply captures

the effects of geographic proximity. As an initial step to mitigate this concern, we compute

a network exposure measure in analogy to equation (2), using the (inverse) geodesic distance

between counties as weights.24 In the regressions below, we include this distance-based network

exposure measure as a control.

To more rigorously account for the possibility that omitted variables bias our estimates and to

isolate effects that operate via the Facebook network, we implement an instrumental variable

strategy akin to García-Jimeno et al. (2022). Speciőcally, we predict PN
c,d using network-

proximity-weighted Facebook connection stability (cf. equation (3)). Variation in this in-

strument is only generated by (network-proximity-weighted) local Facebook outages, which

23The panel structure of our analysis also implies that the reŕection problem associated with the estimation
of social interactions is not a concern (García-Jimeno et al., 2022; Manski, 1993).

24We compute the weights of the geographical distance network in analogy to our SCI weights. Speciőcally,

the distance weight is given by: ζc,j =
1/distc,j

∑K
k=1

1/distc,k
, where dist represents the geodesic distance between

county c and j. The correlation between the SCI and the distance weights is 0.585. Table A.3 illustrates that
this correlation is higher than alternative deőnitions of the distance weights (e.g., inverse distance or inverse
log distance). However, robustness tests show that our results are robust to the inclusion of distance exposure
measures constructed using alternative weights.

11



are exogenous with respect to changes in protest activity.25 Formally, the őrst stage of the

instrumental variable approach is represented by:

PN
c,d =

∑

k

λd−k S
N
c,d + µc + ηd + χs,w +

∑

k

ΩXc,d−k + ψc,d. (5)

As before, PN
c,d represents the network-proximity-weighted average protest incidence. The

outage-based instrument is given by SN
c,d, while county and time effects are captured by µc,

ηd, and χs,w. Finally, Xc,d represents a set of controls. In analogy to the OLS setup, this

set includes the (geodesic) distance-weighted connection stability to account for effects of the

outages working through latent networks. The error term is denoted by ψc,d.

The main identiőcation assumptions underlying our 2SLS-IV approach are that Facebook

outages in network neighbours are exogenous with respect to protest activity in the home

county and only inŕuence the latter via reduced interaction within the Facebook network. We

discuss the plausibility of these assumptions in more detail in Section 4.3. Furthermore, we

conduct a number of robustness checks to show that our őndings are not driven by speciőc

assumptions or choices made during data construction. Among other things, we show that

our estimates remain unchanged if we condition on Facebook outages in the home county.

Furthermore, we obtain qualitatively equivalent results if we disregard Facebook outages in

the construction of the endogenous variable, i.e. in equation (2). This addresses the concern

that the strength of the (őrst-stage) results may be driven by a mechanical link between our

endogenous and instrumental variables.

4 Results

In this section, we őrst identify the relevant lag(s) to be included in our regression analysis.

We then document that increased exposure to the BLM movement in the Facebook network

raises the local protest risk. In the őnal part, we illustrate that our estimation strategy is

unlikely to produce biased results.

4.1 Temporal dynamics: Identifying relevant lags

We use a hands-off approach to investigate the temporal dynamics of the relationship between

network exposure and protest activity. The main aim is to identify the relevant lags to be

included in the subsequent analysis. To this end, we estimate the 2SLS-IV regression model

(4) separately for all leads and lags of network-proximity-weighted protest incidence within a

10-day time window centred around day d, i.e., for each day d−k, where k = [−5, 5]. Figure 2

shows the resulting point estimates along with the 95% conődence intervals. The grey squares

25We provide empirical evidence for this claim in the subsequent sections.
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represent the values of the őrst-stage F-statistics for the excluded instrument; these are very

high throughout.26

Figure 2 reveals two important őndings. First, the spread of the BLM protests is inŕuenced

by the spatial structure of the Facebook network. The likelihood of a protest taking place in

the home county statistically signiőcantly increases in the őrst and second day after a surge in

online network protest exposure to the BLM movement.27 After the second day, the protest

risk returns to its baseline. This implies that the relevant lag structure is 1ś2 days.

The identiőed lag structure aligns well with the results of other studies that investigative the

effects of online networks on protest activity. For example, Qin et al. (2024) őnd that protests

in China spread from city to city 1ś2 days after exposure within social media network Sina

Weibo. Similarly, Müller and Schwarz (2021) show that anti-refugee Facebook posts trigger

hate crime in the same week of the posts.

Figure 2: Temporal dynamics of network exposure
Figure depicts 2SLS point estimates and 95% conődence intervals of the effect of network exposure on protest probability.
Point estimates obtained by separately estimating regression model (4) for each day within the 10-day time period centred
around day d. Standard errors are clustered at the county level. Dependent variable equals 100 if a protest takes place
in a given county and day, and zero otherwise. ‘Network exposure to BLM protests’ is the online network-proximity-
weighted average protest incidence as deőned in equation (2). The grey squares represent the values of the őrst-stage
Kleibergen Paap F-statistics for the excluded instrument (right axis).

Second, the őgure documents the absence of pre-trends. That is, variation in future network-

weighted protest incidence does not inŕuence today’s protest risk. This provides a őrst piece

of evidence that our estimates speciőcally capture the effects of increased exposure to the

BLM movement in the online social network. We discuss the validity of our estimates in more

detail below.

26Table B.1 presents the estimates shown in Figure 2 in tabular format.
27We observe the same pattern of results when we look at the reduced-form estimates (see Figure B.1) or

estimate the coefficients jointly in one single regression (see Figure B.2).
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4.2 Main analysis

Based on the temporal dynamics revealed in Figure 2, we subsequently focus on analysing the

effects of the őrst and second lag of online network exposure. As a reference point, we start

by estimating a parsimonious OLS version of regression equation (4), which only accounts for

county and date őxed effects. Column (1) of Table 1 documents that there is a strong positive

relationship between exposure to protests within the social network and collective action in

the home county. The higher the proximity-weighted incidence of protests during the previous

two days, the greater the likelihood of BLM protests. The point estimates indicate that the

probability of observing a protest in the home county rises by 0.65 percentage points on

the őrst day after a one percentage point increase in exposure to protests within the online

network, and by 0.34 percentage points in the second day after the increase.

As outlined in previous sections, the OLS estimates are potentially biased due to unobservable

factors. As a őrst step in addressing this issue, we control for exposure to protests within the

distance network. This represents a catch-all variable for latent spatial networks. Column

(2) shows that the inclusion of the additional control reduces the size of the point estimates

slightly.

To isolate Facebook-speciőc diffusion effects, we turn to our 2SLS-IV strategy in column (3).

In this approach, we use variation in proximity-weighted Facebook stability across network

nodes as the instrument. Looking őrst at Panel B, we see that the instrument successfully

predicts network-proximity-weighted protest incidence. For both, lag 1 and lag 2 the őrst-stage

F-statistic is very high. The joint őrst-stage F-statistic for the validity of the instruments is

45. As expected, the sign of the coefficients is positive. Greater Facebook stability within

a county’s social network increases corresponding protest activity.28 The results of the őrst-

stage regressions further document that we can separate the effects of the őrst and second

lag. That is, the two instruments only have predictive power for their respective endogenous

counterparts.

We next focus on the second-stage estimates reported in Panel A. The point estimates in

column (3) are larger than their OLS counterparts.29 The difference may stem from correlated

latent networks or from unobserved spatial and temporal factors that inŕuence protest risk.

The downward bias in the OLS estimates is consistent with patterns found in other studies

(e.g., García-Jimeno et al., 2022). The magnitude of our 2SLS-IV coefficients implies that a one

percentage point increase in protest exposure within the online network raises the likelihood

of a BLM protest occurring in the home county by approximately one percentage point in

both subsequent days. Relative to the average protest probability of 3.261, this corresponds

to a 31% increase for both lags. As an alternative way of quantifying the results, we can look

28Table B.2 reports the reduced-form estimates.
29Statistically, however, the OLS and IV estimates are indistinguishable. The p-values for the tests of

coefficient equality are 0.199 (lag 1) and 0.131 (lag 2).
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Table 1: Effects of exposure to BLM protests in online social network

Any BLM Protest

(1) (2) (3) (4)

Panel A: Second stage

Lag 1 network exposure to 0.651∗∗∗ 0.502∗∗∗ 1.045∗∗ 0.978∗∗

BLM protests (0.035) (0.043) (0.421) (0.414)

Lag 2 network exposure to 0.339∗∗∗ 0.374∗∗∗ 1.003∗∗ 0.891∗∗

BLM protests (0.025) (0.032) (0.415) (0.419)

Lag protest incidence 0.124∗∗∗

(0.012)

Panel B: First stages

Lag 1 network exposure to BLM protests

Lag 1 Facebook connection 0.049∗∗∗ 0.048∗∗∗

stability (0.003) (0.003)

Lag 2 Facebook connection 0.005 0.004
stability (0.004) (0.004)

Lag 2 network exposure to BLM protests

Lag 1 Facebook connection -0.006 -0.006
stability (0.005) (0.005)

Lag 2 Facebook connection 0.049∗∗∗ 0.048∗∗∗

stability (0.004) (0.003)

County őxed effects Yes Yes Yes Yes
Date őxed effects Yes Yes Yes Yes
State × weekend őxed effects Yes Yes Yes Yes
Distance-weighted exposures No Yes Yes Yes
Observations 192,758 192,758 192,758 192,758
Mean dependent variable 3.261 3.261 3.261 3.261
First-stage F-statistic lag 1 101.899 101.494
First-stage F-statistic lag 2 96.712 96.516
Joint őrst-stage F-statistic 45.141 44.625

Notes: Panel A reports the second-stage estimates of equation(4) using 2SLS-IV. Panel B reports the corresponding
őrst-stage estimates (equation (5)). Standard errors clustered at the county level are reported in parentheses. ‘Any
BLM Protest’ is a dummy equal to one if at least one BLM protest takes place in a given county and day. ‘Network
exposure to BLM protests’ is the online network-proximity-weighted average protest incidence as deőned in equation
(2). ‘Facebook connection stability’ is the online network-proximity-weighted average Facebook connection stability.
Variable is deőned according to equation (3). All variables multiplied by hundred to facilitate interpretation. Values of
the Kleibergen-Paap F-statistics are reported. * p < 0.10, ** p < 0.05, *** p < 0.01.

at the effects of Facebook outages in the network neighbours directly (i.e. the reduced-form).

In the two days after the closest neighbour experienced a Facebook outage, the likelihood of

a BLM march occurring in the home county decreases by 0.7 percentage points.

In column (4), we additionally include lagged protest incidence (in the home county) as a

control. This addresses worries related to the possibility that our regression model may not

accurately capture potential persistence of protest activity. The lagged protest indicator is

statistically signiőcant and positive, indicating that current protest activity increases the

probability of future protests. Crucially, however, the main coefficients of interest remain

stable, increasing conődence in the validity of our estimates.
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The magnitude of the estimates presented in Table 1 is large. However, as summarised in

Table B.3, it aligns well with the results from other studies that investigate the role of online

networks in the propagation of protests. Qin et al. (2024), whose study is very closely related

to ours in terms of research question and methodology, őnd that a one percentage point

increase in protest exposure within the Chinese Sina Weibo network raises the local protest

riskÐevaluated at the sample meanÐby 34%. This is remarkably similar to our estimate of

a 31% increase. This shows that online social networks are similarly powerful in facilitating

protest movements in two very different institutional contexts.Effect sizes are also comparable

when we juxtapose our estimates with studies that focus on the effects of local penetration of

online networks rather than on spatio-temporal spillovers. For Russia, Enikolopov et al. (2020)

őnd that, evaluated at their sample mean, a 10% increase in VKontakte user numbers raises

protest risk by 35%. Similarly, our estimates imply a 21% increase in protest risk relative to

the baseline when protest exposure increases by 10%. Fergusson and Molina (2021) őnd that a

one-standard-deviation increase in a country’s share of people for whom Facebook is available

in their mother tongue increases protest counts by up to 0.11 standard deviations. Our data

suggest that a one-standard-deviation increase in online exposure to protests raises the number

of protests by 0.26 standard deviations in the two subsequent days. While Fergusson and

Molina (2021)’s estimates are half the size of ours, our 95% conődence interval comfortably

includes their point estimate.

A study that explicitly incorporates the structure of the networkÐanalogue rather than

onlineÐis García-Jimeno et al. (2022). Focussing on spillover effects within the railway net-

work during the Temperance movement in the late 1800s, they őnd that protests in the two

closest railway neighbours increase the probability of local collective action by a factor of

around 5.6 relative to the baseline risk. In our setting, the likelihood of collective action

multiplies by 7.3 when the two closest network neighbours experience protests. One possi-

ble reason for the larger effects in our study is that information and sentiment diffuse more

efficiently within online networks compared to analogue technologies. This is likely a key ex-

planation for the important role of social networks in spreading collective action documented

in our and other papers.

In the context of our study, an additional factor may contribute towards explaining the large

effect sizes: There is a strong demographic overlap between BLM protest participants and

Facebook users. Notably, Blacks and Hispanic individuals, individuals aged 18ś49, and college-

educated individuals were signiőcantly over-represented among BLM protesters (Pew Research

Center, 2020a). Among these over-represented groups, Facebook usage was particularly preva-

lent. In the year 2021, Facebook was the most popular social networking platform, with around

74% of 18 to 49-year-olds using it (Pew Research Center, 2021). This share was similarly high

among Blacks (74%) and Hispanics (72%). College-educated individuals had the highest usage

rate at 73%. Furthermore, social mediaÐFacebook among othersÐplayed a crucial role in
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sharing information and mobilising support for the George Floyd protests, especially among

Black users, who actively used the platform to raise awareness and encourage action (Pew

Research Center, 2020b). Together, this suggests that changes in exposure to BLM protests

within the Facebook network may have particularly amplifying effects because they inŕuence

groups that were already highly engaged with the movement.

Overall, the results presented above document that online social networksÐand Facebook

in particularÐplay an important role in explaining the spread of one of the largest social

movements in recent history. This implies that the structure of online networks shapes the

geography of social change. We next discuss the internal validity of our analysis.

4.3 Threats to identiőcation and robustness

Threats to identiőcation

Our identifying variation is generated by local Facebook outages, weighted by the connected-

ness of the county in which the outage occurs. In order for our 2SLS-IV estimates to capture

the effects of protest exposure within the online social network, we require that an outage in

a network neighbour is exogenous with respect to protest risk in the home county and only

inŕuences this risk by changing the degree of visibility within the online network. One imme-

diate worry is that outages are correlated across space and directly inŕuence the protest risk.

In this case, our instrument would not only change the degree of online interaction between

counties, but also change the likelihood of protest in the home county. As a consequence, our

estimates would conŕate effects transmitted through the online network with ‘direct’ effects.

In Table 2, we investigate to what extent such effects are present and, consequently, bias our

results.

We start by adding contemporaneous and lagged Facebook outages in the home county to

our preferred 2SLS-IV speciőcation. Column (1) shows that contemporaneous outages are

negatively associated with protest risk, while past outages are not statistically signiőcant. This

outage-induced reduction in the protest risk is consistent with the narrative that Facebook may

play an important role in coordinating local protests (Karduni and Sauda, 2020). Location

and timing of gatherings, for example, are often disseminated via online platforms. The size

of the point estimate implies that an outage in the own county decreases the likelihood of

collective action by 1.8 percentage points. Crucially, however, controlling for own outages

barely changes the size of our main coefficients of interest. In columns (2)ś(4), we provide

additional evidence against (spatially) correlated outages inŕuencing our estimates. First,

we drop observations when a home county experiences an outage. Second, we exclude all

counties that ever experience an outage over our sample period. Third, we construct our

instrument using only counties that are at least 500 kilometres away from a given home county.

Reassuringly, these three modiőcations produce results that are very similar compared to our
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Table 2: Effects of exposure to BLM protests in online social network

Any BLM Protest

(1) (2) (3) (4) (5) (6)

Panel A: Second stage

Lag 1 network exposure to 1.054∗∗ 0.957∗∗ 0.636∗∗ 1.048∗∗ 0.969∗∗ 2.143∗∗∗

BLM protests (0.422) (0.425) (0.314) (0.496) (0.433) (0.504)

Lag 2 network exposure to 1.009∗∗ 1.090∗∗∗ 0.599∗ 0.908∗ 1.048∗∗

BLM protests (0.415) (0.410) (0.305) (0.491) (0.425)

Own Facebook outage -0.018∗∗∗

(0.005)

Lag 1 own Facebook outage -0.001
(0.005)

Lag 2 own Facebook outage 0.004
(0.005)

Panel B: First stage

Lag 1

Lag 1 Facebook connection 0.048∗∗∗ 0.048∗∗∗ 0.038∗∗∗ 0.048∗∗∗ 0.047∗∗∗

stability (0.003) (0.003) (0.004) (0.004) (0.003)

Lag 2 Facebook connection 0.005 0.005 -0.001 0.004 0.004
stability (0.004) (0.004) (0.005) (0.004) (0.004)

Lag 1 internet connection 0.031∗∗∗

stability (0.006)

Lag 2

Lag 1 Facebook connection -0.006 -0.005 -0.003 -0.004 -0.007
stability (0.005) (0.005) (0.007) (0.006) (0.005)

Lag 2 Facebook connection 0.049∗∗∗ 0.048∗∗∗ 0.040∗∗∗ 0.049∗∗∗ 0.047∗∗∗

stability (0.004) (0.004) (0.004) (0.004) (0.003)

Instrumental variable Main Main Main 500km Main Internet
outages

Sample
Full No Never Full Full Full

outage outage
Similarity-weighted exposure No No No No Yes No
State × weekend őxed effects Yes Yes Yes Yes Yes Yes
County őxed effects Yes Yes Yes Yes Yes Yes
Date őxed effects Yes Yes Yes Yes Yes Yes
Distance-weighted exposures Yes Yes Yes Yes Yes Yes
Observations 192,758 190,458 124,434 192,758 192,758 192,758
Mean dependent variable 3.261 3.224 0.643 3.261 3.261 3.261
First-stage F statistic lag 1 101.575 99.509 50.395 83.350 99.080 31.385
First-stage F statistic lag 2 96.526 95.335 56.896 82.170 95.688
Joint őrst-stage F-statistic 44.890 44.270 18.335 37.158 43.928

Notes: Panel A of this table reports the second-stage estimates of equation(4) using 2SLS-IV. Panel B reports the
corresponding őrst-stage estimates (equation (5)). Standard errors clustered at the county level are reported in
parentheses. ‘Any BLM Protest’ is a dummy equal to one if at least one BLM protest takes place in a given county
and day. ‘Network exposure to BLM protests’ is the online network-proximity-weighted average protest incidence as
deőned in equation (2). ‘Own Facebook connection stability’ is a dummy equal to one if there are no outages in a given
county and day. ‘Facebook connection stability’ is the online network-proximity-weighted average Facebook connection
stability. ‘Internet connection stability’ is the online network-proximity-weighted average internet connection stability.
Variables are deőned according to equation (3). See Appendix D.1 for more details. All variables multiplied by hundred
to facilitate interpretation. ‘Similarity-weighted exposure’ represents the similarity-weighted measures of exposure to
protest activity. Included are measure of similarity along the following county characteristics: share of population with
a graduate degree, share of population aged 15ś25, share of black population, income per capita, and Democratic vote
share. Values of the Kleibergen-Paap F-statistics are reported. * p < 0.10, ** p < 0.05, *** p < 0.01.
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main estimates.

Another threat to our identiőcation strategy is that our connectedness measureÐi.e., the

relative frequency of Facebook friendshipsÐmay reŕect the degree of overlap in the socio-

demographic proőles of counties. For example, more similar counties in terms of age, political

attitudes, and ethnicity are likely to be more connected. This raises the concern that our

estimates could capture the diffusion of the protest movement across socio-economically similar

counties rather than diffusion driven by frequency of individual connections. To address this,

we construct a range of socio-economic similarity measures at the bilateral county level and use

these to compute similarity-weighted protest exposure, following the procedure described in

equation (2). Speciőcally, we construct similarity measures using the share of the population

with a graduate degree, the share of Black residents, the share of population aged 15ś25,

income per capita, and the Democratic vote share. Appendix D.2 provides further details on

the construction of these measures. It also shows that correlation is low across all measures,

indicating that similarities in county characteristics alone are not particularly predictive of

the Facebook connectedness. Reŕecting this, column (5) shows that the point estimates for

both lags of our Facebook exposure measure change only marginally when accounting for

similarity-weighted exposure to the BLM movement.

A further concern is that outages are endogenous to protest activity. For example, more

people could be trying to access Facebook on protest days. This could increase the number

of reports sent to Downdetector, thereby biasing our estimates. The fact that outages are

negatively correlated with local protest activity makes this unlikely (see column (1) of Table

2). To additionally mitigate worries, we construct an alternative instrument which is based on

internet outages. Compared to our main instrument, the only difference being that we exploit

local internet outages rather than Facebook outages as the source of variation. The outage

measure does not rely on reported issues, but rather on measured internet stability. However,

in the context of our analysis, this alternative instrument is associated with two drawbacks.

First, the internet-based instrument captures the effects of online networks generally. This

includes Facebook and other (correlated) online networks. Second, there is a substantial

degree of autocorrelation in the internet outages.30 As a consequence, the various lags of the

instrument are considerably correlated. This implies that we are no longer able to cleanly

separate the effects of different lags. In column (6) we therefore restrict our regression setup

to only include the őrst lag.31 The internet-outage-driven approach produces estimates that

30The correlation between the contemporaneous and lagged internet outage is 0.79, while the corresponding
correlation for Facebook outages is 0.06.

31We describe the construction of this instrument in more detail in Appendix D.1. Empirically, the cor-
relation between the őrst lag of the internet and Facebook outage driven instruments is very limited: the
unconditional correlation is -0.069 while the correlation is 0.010 after partialling out county and date őxed
effects. Table D.1 cross-tabulates the Facebook and internet stability indicators. The overlap in outages is
minimal: A county simultaneously experiences a Facebook and internet outage in only 0.003 percent of all
cases (i.e. observations).

19



are qualitatively equivalent to our main results, providing further evidence that online social

networks have played an important role in the spread of the BLM protests.

The őnding that Facebook outages reduce the local protest risk (cf. column (1) of Table

2) raises a concern related to the plausibility and interpretation of the exclusion restriction.

Speciőcally, the dominant mechanism linking variation in our instrument to local BLM ac-

tivity could simply be an outage-induced reduction in protest incidence among the network

neighbours. Rather than reducing the visibility of protests that take place in neighbouring

counties, outages could reduce the probability that they occur in the őrst place. While we

cannot directly test for the relevance of this mechanism, we do not believe it is the primary

driver underlying our results. Even when Facebook outages in neighbouring counties reduce

the protest risk there, they still induce a Facebook-connectedness-speciőc shock in the home

county due to the SCI-based weighting. General effects of lower protest activity and Face-

book outages in neighbouring counties should be absorbed by the distance-weighted exposure

controls.

Another worryÐalso pertaining to the validity of the exclusion restrictionÐis that Facebook

outages in network neighbours could reduce the relevance of the Facebook feed for users in

the home county. This could lead them to spend less time on Facebook which, in turn, could

impact protest organisation and participation. In this case, the mechanism linking outages

to protest activity would operate via reduced Facebook usage rather than reduced exposure

to BLM protests. Unfortunately, we do not have data with sufficient granularity to test the

relevance of this alternative channel. However, the fact that outages in the network neighbours

impact protest activity in the home county with a one- to two-day lag provides some (limited)

evidence against the usage mechanism being of central importance. As documented in column

(1) of Table 2, an outage in the home countyÐwhich directly reduces Facebook usageÐreduces

the protest risk on only the day of the outage. This suggests that effects driven by reduced

usage would likely materialise contemporaneously.

A őnal, more nuanced question relating to the mechanisms underlying our results is the extent

to which the diffusion of protest between counties is driven by person-to-person exchange of

content or by the Facebook algorithm serving individuals more content from more closely con-

nected counties (i.e. without individuals interacting directly). While we lack data that would

allow us to disentangle different channels of diffusion, our estimates will capture Facebook-

speciőc effects as long as the diffusion processÐwhether inter-personal or algorithm-drivenÐis

dependent on the connectedness of the counties.

Taken together, the results presented in Table 2 provide support for the validity of our identi-

fying assumption, i.e., that connection issues reduce the degree of online interaction between

counties and thereby the exposure to protests within the online network. As a őnal way

of substantiating this interpretation, we use Google search data to show that online search

behaviour depends on exposure to protests within the online network. The volume of web
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searches for BLM-related keywords in a county surges when exposure to protest within the

online network increases. This suggests that awareness and interest in the social movement

increases. This, in turn, helps explain the rise in protest probability. Appendix C provides

more details on the Google search data and the results.

Robustness

A number of robustness checks show that our őndings are not driven by speciőc assumptions

or data construction choices. The results of the subsequently discussed exercises are presented

in Appendix D.

Table D.3, column (1) shows that estimates are very similar if we drop counties in the bot-

tom 10 percent of the population size distribution. When we drop the top 10 percent of

counties in column (2), we also obtain qualitatively equivalent results. However, due to the

fact that around 57% of all protests take place in these counties, we lose statistical power.

As a consequence, the őrst lag no longer is statistically signiőcant at conventional conődence

levels, the second lag is borderline statistically signiőcant at the 95% level. It is worthwhile

noting, though, that evaluated at the mean of the outcome variable, the size of the point

estimates is extremely similar compared to our main estimates. Columns 3ś4 of Table D.3

show that results remain qualitatively unchanged if we shorten or extend our sample period by

one week. To provide further evidence that our coefficients are not biased due to unobserved

time-varying factors, we illustrate that our results remain stable if we control for a range of

(time-interacted) county-level characteristics (column 5).32 This is also the case when we ac-

count for state×week effect to account for the possibility that (Covid-19-induced) gatherings

allowance was varying by state over time (column 6). Our main coefficients of interest are

also left virtually unchanged if we control for contemporaneous and lagged internet outages

in the home county in column (7). Our estimates further remain unaffected if we control for

a wide range of alternative geodesic distance-based protest exposure measures (column 8).33

The last three columns illustrate that our results are not dependent on a particular clustering

approach. In column (9), we employ a two-way clustering approach that allows for correla-

tion along the county and state×week dimension to account for potential correlation across

counties within the same state and time period (e.g., due to state-level COVID-19 measures).

In column (10), we adjust standard errors to account for spatial (Conley, 1999) and temporal

(Newey and West, 1994) autocorrelation.34 In the last column, we adapt the Conley (1999)

approach to the structure of the Facebook social network and allow for correlation to decay

in network distance (see Acemoglu et al., 2015 for a similar approach).35

32These include demographic, economic and political county-level characteristics.
33Table A.3 lists the different weighting approaches we control for.
34We allow for spatial autocorrelation within a radius of up to 1,000 km and temporal correlation within a

window of up to 5 days. Results are stable when varying these cut-off values.
35Speciőcally, we use the bilateral connectedness weights (as deőned in equation (1)) as weighting kernel
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Table D.4 directly speaks to the worry that the results may be speciőc to the construction of

our main explanatory variable and the instrument. Columns (1)ś(2) indicate that our őndings

are not contingent on the precise choice of the threshold value when deőning Facebook out-

ages. We obtain similar coefficients when varying the threshold between 1.5 and 2.5 standard

deviations. As documented in column (3), this is also the case when we use the number of

reports relative to the county population to identify severe connection issues. Akin to Müller

and Schwarz (2021), we deőne an outage as a situation in which the ratio of reported Facebook

problems to population lies in the top decile.

Another concern related to the construction of our main explanatory variables is that the

insights might depend on the (relative) weighting of the bilateral Facebook connections, ωc,j

(see equation 1). To mitigate this, we use the absolute (log) SCI indexÐwithout normalising

it by the county’s total number of connectionsÐin the construction of the protest exposure

measure and the instrumental variable.36 The resulting 2SLS-IV estimates are reported in

column (4). Consistent with our main results, we őnd that past exposure to protests within

the Facebook network statistically signiőcantly increases the protest risk in the home county.

However, the log transformation results in a higher degree of cross-correlation between the

variables, implying that we can no longer cleanly separate the effects of the two lags.

A further concern is that the strength of our (őrst-stage) results may be driven by a mechanical

link between our endogenous and instrumental variables. For both variables, part of the

variation is driven by Facebook outages. To alleviate this worry, we document that we obtain

qualitatively equivalent results when we disregard Facebook outages in the construction of the

endogenous variable. In this case, variation is only driven by the (time-invariant) structure

of the Facebook network and changing protest incidence in neighbouring counties.37 The

last column of Table D.4 shows that our őrst-stage relationship is not due to a mechanical

relationship. The resulting őrst-stage as well as the second-stage point estimate of the 2SLS-IV

procedure is positive and highly statistically signiőcant.

As a őnal exercise, we illustrate that our őndings are not the result of chance. To this end, we

randomly permutate the Facebook outages across counties (where, for each day, the number of

randomly assigned outages corresponds to the actual number of outages observed in the data).

We then construct our instrument as described in Section 2 and estimate the reduced-form

model (4). We repeat this exercise 1,000 times and present the results in Figure D.1. Point

estimates for both lags are centred around zero and orders of magnitude smaller than the true

size of the reduced-form coefficient.

and additionally allow for temporal correlation within a window of up to 5 days.
36Again, it is worth noting that absolute values of the SCI are not meaningful in the sense that they cannot

be directly interpreted as the number of Facebook user links between counties.

37Formally, the network exposure measure becomes: PN
c,d =

J∑

j /∈c

ωc,j pj,d, where ωc,j is the time-invariant

connectedness between individual county-pairs and pj,d is an indicator taking the value one if a BLM protest
takes place in county j on day d.
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5 Conclusion

This paper empirically assesses the role of online social networksÐFacebook in particularÐin

explaining the diffusion of social movements. In the context of the largest wave of protests in

recent yearsÐthe BLM protests triggered by George Floyd’s deathÐwe show that exposure

within the online network inŕuences the spatio-temporal dynamics of the movement. Protests

are more likely to spill over between counties the closer they are connected within the Facebook

network. This implies that online social networks play an important role in shaping the

geography of social change.
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Appendices

A Data sources and construction

Table A.1: Descriptive Statistics key variables

Variable Mean Std. Dev. Min. Max. Obs.

Any BLM Protest 3.261 17.760 0 100 192,758
Lag network exposure to BLM protests 2.071 4.384 0 63.254 192,758
Lag Facebook connection stability 99.131 1.948 57.111 99.996 192,758
Own Facebook outage 1.193 10.858 0 100 192,758

Table A.2: Additional variables: deőnition and sources

Variable Deőnition Sources

Share black population Percent of total population US Census Bureau

Police violence Police shootings of non-white indi-
viduals 2016ś2019 (normalised by
population)

mappingpoliceviolence.us

Poverty rate Percent of total population DataUSA

Population size Total population US Census Bureau

Covid cases per capita Cumulative cases up to 25 May 2020
(normalised by population)

New York Times

Economic impact County Economic Impact Index Smith et al. (2021)

Vote share Dem vs Rep Vote share Democrats vs vote share
Republicans in 2016 presidential
election

MIT Election Data and Science Lab (2018)

Share graduates Percent of population with graduate
degree

American Community Survey

Share population aged 15ś25 Percent of population aged 15ś25 American Community Survey

Income per capita Income per capita Census Quick Facts

Table A.3: Alternative distance weights

Measure Correlation with SCI

Normalised inverse distance 0.585
Inverse distance 0.566
Inverse log(distance) 0.332

e−distance 0.029
Population-weighted inverse distance 0.016

Notes: Table reports bilateral correlation between various geographic
distance measures and Facebook connectedness weight, as deőned in
equation (1).
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B Additional results

Table B.1: 2SLS-IV regressions separate by lag

Lag Point estimate γd−k First-stage F-statistic Observations

d− 5
-0.083 152.157 192,758

(-0.540)

d− 4
-0.480 178.351 192,758
(0.508)

d− 3
-0.486 198.840 192,758
(0.471)

d− 2
0.267 181.732 192,758

(0.442)

d− 1
0.102 204.585 192,758

(0.437)

d
0.674 197.782 192,758

(0.457)

d+ 1
1.052** 175.333 192,758
(0.423)

d+ 2
1.402*** 171.796 192,758
(0.441)

d+ 3
0.282 177.920 192,758

(0.563)

d+ 4
-0.513 186.232 192,758
(0.499)

d+ 5
-0.224 179.678 192,758
(0.481)

Notes: Table reports the 2SLS-IV estimates of regression equation
(4). Each row represents a separate regression for each day within the
10-day time period centred around day d, i.e., for each day d − k, where
k = [−5, 5]. The dependent variable is a dummy equal to 100 if at
least one BLM protest takes place in a given county and day, and zero
otherwise. The coefficient reported (γd−k) is the second-stage point
estimate of online network-proximity-weighted average protest incidence,
as deőned in equation (2). Standard errors clustered at the county level
are reported in parentheses. Values of the Kleibergen-Paap F-statistics
are reported. All regressions account for county őxed effects, date őxed
effects, state × weekend őxed effects, and distance-weighted exposure. *
p < 0.10, ** p < 0.05, *** p < 0.01.
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Figure B.1: Temporal dynamics of network connection stability
Figure depicts reduced-form point estimates and 95% conődence intervals of the effect of Facebook connection stability
on protest probability. Point estimates obtained by separately estimating the reduced-form version of regression model
(4) for each day within the 10-day time period centred around day d. Standard errors are clustered at the county
level. Dependent variable equals 100 if a protest takes place in a given county and day, and zero otherwise. ‘Facebook
connection stability’ is the online network-proximity-weighted connection stability, as deőned in equation (3).

Figure B.2: Temporal dynamics of network exposure
Figure depicts 2SLS point estimates and 95% conődence intervals of the effect of network exposure on protest probability.
Point estimates obtained by estimating regression model (4) and simultaneously include all leads and lags within the
10-day time period centred around day d. Standard errors are clustered at the county level. Dependent variable equals
100 if a protest takes place in a given county and day, and zero otherwise. ‘Network exposure to BLM protests’ is the
online network-proximity-weighted average protest incidence as deőned in equation (2).
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Table B.2: Reduced-form effects of exposure to BLM protests in online social network

Any BLM Protest

(1) (2) (3) (4)

Reduced form corresponding to Table 1

Lag 1 Facebook connection 0.045∗∗ 0.042∗∗

stability (0.020) (0.020)

Lag 2 Facebook connection 0.054∗∗∗ 0.047∗∗

stability (0.020) (0.019)

County őxed effects Yes Yes Yes Yes
Date őxed effects Yes Yes Yes Yes
State × weekend őxed effects Yes Yes Yes Yes
Distance-weighted exposures No Yes Yes Yes
Observations 192,758 192,758 192,758 192,758
Mean dependent variable 3.261 3.261 3.261 3.261

Notes: Table reports the reduced-form estimates corresponding to the 2SLS-IV estimates presented in Panel A
of Table 1. Standard errors clustered at the county level are reported in parentheses. ‘Any BLM Protest’ is a
dummy equal to one if at least one BLM protest takes place in a given county and day. ‘Facebook connection
stability’ is the online network-proximity-weighted average Facebook connection stability. Variable is deőned accord-
ing to equation (3). All variables multiplied by hundred to facilitate interpretation. * p < 0.10, ** p < 0.05, *** p < 0.01.

Table B.3: Comparison of effect sizes across studies

Study Effect Size What We Find

Qin et al. (2024)
China - Sina Weibo

One percentage point increase in protest
exposure → 34% increase in protest incidence
relative to the mean.

Our results closely align: one percentage
point increase in protest exposure → 31%
increase in protest incidence relative to the
mean. The conődence intervals from both
studies overlap.

Fergusson and Molina (2021)
Worldwide - Facebook

1 SD increase in Facebook availability → 0.11
SD increase in protest counts.

Our estimated effect is about two times
larger, suggesting a stronger inŕuence of
network exposure. However, conődence
intervals from both studies overlap.

Enikolopov et al. (2020)
Russia - VKontakte

10% increase in VK users → 4.5 percentage
points increase in protest likelihood
equivalent to 6% evaluated at the mean.

Our estimated effect is similar in size: 10%
increase in network exposure → 0.2
percentage points increase in protest activity
equivalent to 6% evaluated at the mean.

García-Jimeno et al. (2022)
U.S. - Temperance Movement

Protests in two closest railway network
neighbours → 5.6× increase in local protest
likelihood

Our estimate is slightly larger (7.3×),
indicating stronger network effects within
modern digital networks.
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C Google trends

We use Google Trends data to (a) validate our outage measure and (b) investigate if network

exposure to protests increases the volume of BLM-related web searches. The Google trends

database provides information on the daily number of search requests made to Google, which

can be stratiőed by keywords and regions. Google does not report search volumes at the

county level but rather for Designated Market Areas (DMA), a higher level of aggregation.

We therefore conduct the subsequent analysis at the DMA×day level. The data construction

process, empirical methodology, and results are described below.

Data

For our sample period, we extract daily search volumes for each of the 204 DMAs located in

the contiguous US.38 We use the following keywords to proxy for searches related to Facebook

outages: ‘Facebook down’, ‘Facebook issues’, ‘Facebook problems’, ‘Facebook connection’,

‘Facebook access’, and ‘Facebook outage’. We follow the same procedure to identify searches

related to outages on the őve other most popular social media platforms in the US: YouTube,

Instagram, TikTok, Snapchat, and Twitter (see dooőnder.com).

To check for changes in the volume of BLM-related searches, we focus on the following key-

words: ‘Black Lives Matter’, ‘George Floyd’, ‘antiracism’, ‘decolonization’, and ‘defund the

police’. The search volumes represent a largely unőltered sample of actual search requests,

where Google normalises search volumes for each query such that the highest value is equal

to 100 and the lowest value is zero. To make the data consistent across queries and reduce

sampling noise, we apply the procedure developed in Eichenauer et al. (2022). The result is a

DMA×day-level index that consistently captures changes in searches for the BLM keywords.

Because the DMAs are larger spatial units than the counties, we need to aggregate the bi-

lateral SCI index to the DMA-pair level. We use the DMA-county matching provided by

Jacob Schneider to map counties into DMAs.39 We then aggregate the SCI (i.e., Facebook

connectedness) to the DMA-pair level. In analogy to the procedure described in Section 2,

we subsequently compute the social-network-proximity-weighted average protest incidence as

well as the outage-based instrumental variable for each county and day.

The őnal datasetÐcombining the Google trends, Facebook outages, and protest exposure

dataÐconsists of 12,648 observations.

38On average, a DMA encompasses 15 counties.
39See https://sites.google.com/view/jacob-schneider/resources.
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Empirical framework

To validate our main outage measure, we analyse if local Facebook outages trigger correspond-

ing web searches using the following OLS model:

GF
a,d = θ Oa,d + δa + ζd + χa,d, (C.1)

where GF

a,d is the Google trends search index for outage keywords for a given online social

network platform F in Designated Market Areas a on day d. The variable Oa,d represents

the share of counties located within a given DMA a that experience a Facebook outage on

day d. DMA őxed effects are symbolised by δa, date őxed effects by ζd. Error terms χa,d are

clustered at the DMA level.

Turning to the investigation of spillover effects, we test if searches for BLM keywords vary

with online network exposure to protest employing our usual 2SLS-IV approach. The second

stage can be formally written as:

GBLM

a,d = γ PN
a,d−1 + πa + τd + εa,d, (C.2)

where GBLM

a,d is the Google trends search volume index for BLM keywords in DMAs a on day

d. The main regressor of interest is PN
a,d−1, the network-proximity-weighted average protest

incidence in DMAs j ̸= a on the previous day d− 1.40 All regressions control for DMA őxed

effects, πa, and date őxed effects, τd.

The őrst-stage regression is given by:

PN
a,d = λSN

a,d + µa + ηd +ΩXa,d + ψa,d. (C.3)

In analogy to the main part, SN
a,d is the network-proximity-weighted Facebook access stability.

Results

Column (1) of Table C.1 reports the results of regression equation (C.1) using the search

volume for Facebook outages as dependent variable. The estimate suggests that the searches

related to Facebook outages increase by around 19.8 index points when moving from a day

on which no outages occur within a DMA to a day on which the entire DMA experiences

disruptions in access to the Facebook platform. In columns (2)ś(6), we run the same regression,

now using the search volumes related to outages of other popular social media platforms

as outcomes. We do not observe that Facebook outages trigger searches about outages for

connection issues of other platforms. Point estimates are statistically non-signiőcant and small

in size. The exception is Instagram, where we do őnd a positive effect, though weaker compared

40In keeping with the main analysis, we lag the explanatory variable. However, using contemporaneous
values results in very similar estimates.
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to column (1). This is not surprising, given that Facebook acquired Instagram in April 2012.

It is therefore plausible that Instagram is also affected when Facebook experiences issues.

Together, columns (1)ś(6) suggest that our outage measure speciőcally captures connection

issues of the Facebook platform.

In the last column of Table C.1, we investigate the relationship between exposure to protests

in the online network and BLM-related web searches. The point estimate implies that a one

percentage point increase in online exposure to protests raises the volume of BLM-related web

searches by around 1.993 index points. This translates to an increase of around 42.45 points

when the closest network neighbour experiences a protest.41

41On average, the proportion of total Facebook links a DMA shares with its closest network neighbour
amounts to 21.3 percent.
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Table C.1: Facebook outages and web searches

Search volume Search volume Search volume Search volume Search volume Search volume Search volume
Facebook outage YouTube outage Instagram outage TikTok outage Snapchat outage Twitter outage BLM

(1) (2) (3) (4) (5) (6) (7)

Panel A: Second stage

Share Facebook outage 0.198∗∗∗ -0.040 0.136∗ 0.033 0.042 0.018
(0.063) (0.063) (0.070) (0.031) (0.047) (0.035)

Lag network exposure to 1.993∗∗∗

BLM protests (0.752)

Panel B: First stage

Lag Facebook connection 0.355∗∗∗

stability (0.077)

DMA őxed effects Yes Yes Yes Yes Yes Yes Yes
Date őxed effects Yes Yes Yes Yes Yes Yes Yes
Observations 12,648 12,648 12,648 12,648 12,648 12,648 12,648
Mean dependent variable 29.442 24.147 17.967 6.085 13.068 11.082 53.661
First-stage F-statistic 21.224

Notes: Panel A of this table reports the OLS estimates of equation (C.1) in column (1) and the second-stage estimates of equation (C.2) using 2SLS-IV in column
(2). Panel B reports the corresponding őrst-stage estimate. Standard errors clustered at the DMA level are reported in parentheses. ‘Search volume Facebook
outage’ is the Google search volume index for Facebook outage keywords in a given DMA and day. ‘Search volume Instagram outage’ is the Google search volume
index for Instagram outage keywords in a given DMA and day. ‘Search volume YouTube outage’ is the Google search volume index for Youtube outage keywords
in a given DMA and day. ‘Search volume TikTok outage’ is the Google search volume index for TikTok outage keywords in a given DMA and day. ‘Search volume
Snapchat outage’ is the Google search volume index for Snapchat outage keywords in a given DMA and day. ‘Search volume Twitter outage’ is the Google search
volume index for Twitter outage keywords in a given DMA and day. ‘Search volume BLM’ is the Google search volume index for BLM keywords in a given DMA
and day. ‘Share Facebook outage’ represents the share of counties located within a given DMA that experience a Facebook outage. Variable is multiplied by 100
to facilitate interpretation. ‘Network exposure to BLM protests’ is the online network-proximity-weighted average protest incidence as deőned in equation (2).
Variable is multiplied by 100 to facilitate interpretation. ‘Facebook connection stability’ is the online network-proximity-weighted average Facebook connection
stability. Variable is deőned according to equation (3) and multiplied by 100 to facilitate interpretation. * p < 0.10, ** p < 0.05, *** p < 0.01.
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D Robustness

D.1 Alternative instrumental variable

We construct our internet-outage-based instrument analogously to our main instrument (see

Section 2). The only difference is that we use local internet outages (rather than Facebook

outages) as a source of variation. Data on internet connection stability comes from the Center

for Applied Internet Data Analysis (CAIDA). Speciőcally, we draw on hourly county-level data

on internet connectivity. CAIDA derives this measure using active probing and the trinocular

measurement and inference technique (Quan et al., 2013).42 Trinocular (the outage detection

system) sends pings to # /24 IPv4 network blocks to determine their activity. The system

then measures if a block is either up, down, or uncertain. We observe the share of active blocks

within a county. We aggregate the hourly data to the day level and create a dummy variable

that equals one if there are no major internet connection issues, and zero if there is a serious

outage. In analogy to Facebook stability, we deőne major issues as situations where values of

the metric drop at least two standard deviations below the local (i.e., county) average.43

Using the internet stability indicator, we then construct the alternative IV as deőned in

equation (3). The only difference is that we exchange local Facebook stability in equation (2)

with local internet outages (i.e., sCAIDA

j,d ).

Table D.1 below cross-tabulates Facebook and internet outages. There is extremely limited

overlap between the two.

Table D.1: Facebook and Internet Outages (%)

Internet Outage

0 1

Facebook Outage
0 98.511 0.296
1 0.003 1.190

42See https://www.caida.org/projects/ioda/ for more information.
43Formally, the internet connection stability index sCAIDA

j,d is deőned as:

sCAIDA

j,d = I (mj,d ≥ µm,j + 2× σm,j) ,

where mj,d is the internet connection metric for county j on day d. The county-speciőc mean and standard
deviations are represented by µm,j and σm,j
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D.2 Similarity weights

We construct a range of socio-economic similarity measures at the bilateral county level and use

these to compute similarity-weighted protest exposure, analogously to the procedure described

in equation (2). Speciőcally, we construct similarity measures using the share of the population

with a graduate degree, the share of Black residents, the share of population aged 15ś25, the

Democratic vote share, and income per capita. For all but income per capita, we compute the

similarity between county c and j in characteristic Γ as 1−|∆Γc,j |. For income per capita, we

use the absolute difference as the measure of (dis-)similarity, i.e. |∆Γc,j |. Table D.2 below lists

the correlations between our Facebook-connectedness weight (as deőned in equation (1)) and

the respective similarity weight. Generally speaking, the correlations are low, documenting

that similarities in county characteristics alone are not particularly predictive of the Facebook

connectedness.

Table D.2: Similarity measures

Measure Correlation with SCI

Share graduates 0.027
Share black 0.030
Vote share Democrats 0.031
Share population aged 15ś25 0.004
Income per capita -0.024

Notes: Table reports the bilateral correlations between the
similarity measures and the Facebook connectedness weight
(as deőned in equation (1)). Data sources are listed in Table
A.2.
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Table D.3: Robustness effects of exposure to BLM protests in online social network (1)

Any BLM Protest

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)

Panel A: Second stage

Lag 1 network exposure to 1.013∗∗ 0.435 1.230∗∗∗ 0.949∗∗ 0.861∗ 0.917∗∗ 1.045∗∗ 0.890∗∗ 1.045∗∗ 1.045∗∗ 1.045∗∗

BLM protests (0.433) (0.386) (0.415) (0.458) (0.452) (0.453) (0.421) (0.452) (0.469) (0.474) (0.426)

Lag 2 network exposure to 1.041∗∗ 0.742∗ 1.056∗∗∗ 0.812∗ 1.113∗∗ 0.911∗∗ 1.003∗∗ 0.951∗∗ 1.003∗∗ 1.003∗∗ 1.003∗∗

BLM protests (0.436) (0.380) (0.395) (0.442) (0.433) (0.428) (0.415) (0.449) (0.464) (0.455) (0.420)

Panel B: First stages

Lag 1 network exposure to BLM protests

Lag 1 Facebook 0.049∗∗∗ 0.044∗∗∗ 0.056∗∗∗ 0.041∗∗∗ 0.046∗∗∗ 0.046∗∗∗ 0.049∗∗∗ 0.045∗∗∗ 0.049∗∗∗ 0.049∗∗∗ 0.049∗∗∗

stability (0.004) (0.003) (0.004) (0.003) (0.003) (0.003) (0.003) (0.003) (0.008) (0.008) (0.004)

Lag 2 Facebook 0.005 -0.002 0.011∗∗ 0.003 0.004 0.004 0.005 0.004 0.005 0.005 0.005
stability (0.004) (0.004) (0.005) (0.004) (0.004) (0.004) (0.004) (0.004) (0.008) (0.009) (0.004)

Lag 2 network exposure to BLM protests

Lag 1 Facebook -0.003 -0.007 -0.004 -0.008∗ -0.007 -0.008 -0.006 -0.008 -0.006 -0.006 -0.006
stability (0.004) (0.005) (0.006) (0.004) (0.005) (0.005) (0.005) (0.005) (0.009) (0.009) (0.005)

Lag 2 Facebook 0.049∗∗∗ 0.044∗∗∗ 0.057∗∗∗ 0.041∗∗∗ 0.047∗∗∗ 0.047∗∗∗ 0.049∗∗∗ 0.044∗∗∗ 0.049∗∗∗ 0.049∗∗∗ 0.049∗∗∗

stability (0.004) (0.003) (0.004) (0.003) (0.004) (0.004) (0.004) (0.003) (0.008) (0.008) (0.004)

County őxed effects Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
Date őxed effects Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
Distance-weighted exposures Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
Observations 173,538 173,538 170,995 214,521 192,758 192,758 192,758 192,758 192,758 192,758 192,758
Mean dependent variable 3.617 1.552 3.556 3.008 3.261 3.261 3.261 3.261 3.261 3.261 3.261
First-stage F statistic lag 1 96.358 83.310 108.955 91.974 89.828 90.294 101.910 22.030 101.899
First-stage F statistic lag 2 91.647 82.326 109.431 89.426 86.644 91.641 96.739 20.500 96.712
Joint őrst-stage F-statistic 46.537 29.109 53.486 36.612 39.856 39.239 45.166 40.204 9.485 8.853 41.842

Robustness
Drop bottom Drop top −7 days +7 days County State×Week Internet Distance Double Conley Conley

10% population 10% population characteristics FE outage controls clustering distance network

Notes: Panel A reports the second-stage estimates of equation(4) using 2SLS-IV. Panel B reports the corresponding őrst-stage estimates (equation (5)). Standard errors clustered at the
county level are reported in parentheses. ‘Any BLM Protest’ is a dummy equal to one if at least one BLM protest takes place in a given county and day. ‘Network exposure to BLM
protests’ is the online network-proximity-weighted average protest incidence as deőned in equation (2). ‘Facebook connection stability’ is the online network-proximity-weighted average
Facebook connection stability. Variable is deőned according to equation (3). All variables multiplied by hundred to facilitate interpretation. Values of the Kleibergen-Paap F-statistics
are reported. * p < 0.10, ** p < 0.05, *** p < 0.01.
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Table D.4: Robustness effects of exposure to BLM protests in online social network (2)

Any BLM Protest

(1) (2) (3) (4) (5)

Panel A: Second stage

Lag 1 network exposure 0.691∗ 1.235∗∗∗ 1.338∗∗ 0.039∗∗∗ 2.040∗∗

BLM protests (0.389) (0.419) (0.645) (0.012) (0.894)

Lag 2 2etwork exposure 0.743∗ 1.090∗∗∗ 0.367 -0.009 1.688∗∗

BLM protests (0.404) (0.407) (0.512) (0.012) (0.840)

Panel B: First stages

Lag 1 network exposure to BLM protests

Lag 1 Facebook connection 0.050∗∗∗ 0.051∗∗∗ 0.039∗∗∗ 0.301∗∗∗ 0.025∗∗∗

stability (0.003) (0.003) (0.004) (0.020) (0.004)

Lag 2 Facebook connection 0.007 0.014∗∗∗ 0.008∗ 0.296∗∗∗ 0.005
stability (0.004) (0.004) (0.005) (0.014) (0.004)

Lag 2 network exposure to BLM protests

Lag 1 Facebook connection -0.009∗ 0.051∗∗∗ -0.006 0.041∗∗ -0.004
stability (0.005) (0.003) (0.006) (0.017) (0.005)

Lag 2 Facebook connection 0.049∗∗∗ 0.014∗∗∗ 0.044∗∗∗ 0.388∗∗∗ 0.026∗∗∗

(0.003) (0.004) (0.004) (0.017) (0.004)

County őxed effects Yes Yes Yes Yes Yes
Date őxed effects Yes Yes Yes Yes Yes
Distance-weighted exposures Yes Yes Yes Yes Yes
Observations 192,758 192,758 192,758 192,758 192,758
Mean dependent variable 3.261 3.261 3.261 3.261 3.261
First-stage F statistic lag 1 113.498 107.263 45.309 603.87 22.224
First-stage F statistic lag 2 104.813 100.152 52.669 1632.62 23.072
Joint őrst-stage F-statistic 51.887 98.367 28.501 729.058 11.562
Robustness 1.5SD outage 2.5SD outage Top decile Log absolute No outages

threshold threshold reports/population SCI weights endogenous variable

Notes: Panel A reports the second-stage estimates of equation(4) using 2SLS-IV. Panel B reports the corresponding őrst-stage
estimates (equation (5)). Standard errors clustered at the county level are reported in parentheses. ‘Any BLM Protest’ is a
dummy equal to one if at least one BLM protest takes place in a given county and day. ‘Network exposure to BLM protests’
is the online network-proximity-weighted average protest incidence as deőned in equation (2). ‘Facebook connection stability’
is the online network-proximity-weighted average Facebook connection stability. Variable is deőned according to equation (3).
All variables multiplied by hundred to facilitate interpretation. Values of the Kleibergen-Paap F-statistics are reported. *
p < 0.10, ** p < 0.05, *** p < 0.01.
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(A) (B)

Figure D.1: Random outages
Figure depicts the distribution of the reduced-point estimates obtained from 1,000 random permutation of Facebook outages across counties. Panel A reports
the estimates for lag 1 of Facebook stability. Panel B reports the estimates for lag 2 of Facebook stability. The dashed black vertical lines represent the point
estimates obtained using the actual outage data (see Table B.2, column (3)).
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