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ABSTRACT

Geometric morphometric methods can be employed in numerous archaeological 

subfields. Their application is, however, complicated by practical considerations. 

Notable challenges include determining the density of coordinate points and the 

reconstruction of damaged objects. To explore these issues, a three-dimensional 

template of the human os coxae was created. This paper presents that template and 

details reproducible procedures to estimate appropriate coordinate point number 

and placement as well as impute missing data. It emerges that three-dimensional 

scans can be conveniently produced and optimal coordinate point density will vary 

depending upon the hypotheses being tested. Similarly, following a simulation study, 

it was found the best approach to imputing missing points will depend upon the 

level of missingness and can have important implications for the identification of 

statistical signals, such as structural modularity. In summary, in addition to an open-

access digitisation template, a flexible protocol is presented which can be adapted to 

define, capture and reconstruct shape variation to investigate a diverse spectrum of 

hypotheses in archaeological materials (e.g., bones, lithics, sediments).
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BACKGROUND

PROCRUSTEAN METHODS AND THEIR 
CHALLENGES
Investigating complex structures has been facilitated 

by the development of geometric morphometric 

(GM) approaches (e.g., Klingenberg and McIntyre 

1998; Weisensee and Jantz 2011; Wigley et al. 2024). 

Coordinate-based approaches are especially attractive 

when dealing with sets of structures possessing a shared 

suite of homologous landmarks, curves or surfaces as 

these can be defined through matrix configurations of 

Cartesian points (Dryden and Mardia 2016: 3–5).

When objects are represented by coordinate 

configurations which summarise the positions of 

homologous points, it is possible to capture shape 

variation through Procrustean methods. To do this, 

configurations are superimposed and Procrustes aligned 

through an iterative least-squares optimisation process. 

During alignment, differences between objects due 

to location are initially removed by shifting the centre 

of each shape configuration to a common origin. Size 

differences are then reduced through rescaling before 

matrices are finally rotated to remove differences due 

to orientation (Dryden and Mardia 2016: 134; Bookstein 

1991: 258–269). This process leaves the newly aligned 

coordinate configurations registered in Kendall’s shape 

space. As this is a non-Euclidean morphospace, generally 

shapes are projected into tangent linear space where, 

despite a degree of distortion, the Euclidean distances 

between them can be decomposed through standard 

statistical methods with acceptable accuracy (Bookstein 

1991: 269; Dryden and Mardia 2016: 88–95; Kendall 

1984). As subtle patterns of variation are often more 

apparent in shape differences, complex patterns can 

be discerned with much greater clarity in Procrustes-

aligned data and summarised both visually and in 

easily understood metrics (Bookstein 1991; Klingenberg 

2015). Consequently, GM approaches broadly and 

Procrustean techniques specifically permit a diverse and 

more nuanced range of hypotheses to be explored than 

previously possible (e.g., Thulman et al. 2023; Weisensee 

and Jantz 2011; Wigley et al. 2024).

The application of Procrustean techniques can, however, 

be complicated by several frequently encountered 

challenges. Often the first among these is the need to 

estimate an appropriate density of coordinate points and 

the potential this creates to either under- or over-sample 

an object. Determining the optimal number and location of 

points through which to represent shape is essential as, if a 

structure is defined by too few or poorly situated points, not 

enough morphological data will be captured, limiting an 

investigator’s ability to visually and statistically appreciate 

differences in shape. Meanwhile, over-sampling increases 

the length of time spent collecting data, decreases 

computational efficiency, and reduces statistical power 

in the final analysis due to the introduction of extraneous 

information (Dryden and Mardia 2016: 369; Macleod 1999; 

Wasiljew et al. 2020). Missing data is frequently the second 

complication encountered. In circumstances where only 

a few cases contain missing data, it may be convenient 

to remove them from the analysis, while a specific subset 

of points may be deleted if missing data more frequently 

occur in the same region throughout a sample. Both 

solutions, however, reduce analytical sensitivity and 

filling gaps in data through imputation is often a better 

approach (Dryden and Mardia 2016: 338–339). Parametric 

‘statistical’ methods of imputation (e.g., linear regression 

procedures) are, however, constrained in the amount of 

missing data that they can reliably handle (Adams et al. 

2023: 41–43; Bucchi et al. 2022; Gunz et al. 2009: 58; Little 

and Rubin 2019; van Buuren 2018). For example, while 

Partial Least Squares regression is popular, to effectively 

model relationships between variables it requires that m × 

d + m objects are included in the analysis, where m is the 

dimensionality of the data and d the number of missing 

coordinate points (Adams et al. 2023: 41–43; Gunz et al. 

2009: 50). This inhibits its application to larger samples 

composed of objects with only slight or minimal damage, 

imposing real constraints in an archaeological setting.

In short, GM methods represent an interrogatively 

attractive option for many research projects. The 

techniques are theoretically well established and 

permit the visual and statistical exploration of complex 

structures. Practical challenges, however, restrict their 

wider application.

THE OS COXAE: AN INSEPARABLE BUT DIVIDED 
WHOLE?
The human os coxae (also known as the hip bone or 

innominate bone) provides an ideal opportunity to 

explore, and hopefully provide some solutions to, the 

aforementioned challenges. Ossa coxae initially develop 

as three distinct skeletal modules – the ilium, ischium and 

pubis – which eventually fuse to form a single integrated 

osteological structure over the course of adolescence 

(Schaefer et al. 2009: 230–255; White et al. 2012: 

227–240) (Figure 1). Even after union, they contribute 

variably to the different functions associated with the 

pelvis. In locomotor activity, for instance, muscles key 

to abduction of the thigh take their origin from the ilium 

while antagonistic adductors are associated with the 

pubis (Gosling et al. 2002; Standring 2016: 1337–1348). 

Meanwhile, ischial and pubic shape are influenced by 

obstetric demands to a greater degree than the ilium 

which may be impacted more by thermoregulatory 

requirements (Candelas González et al. 2017; Kurki 

2007; Ruff 1993; Warrener 2023). As such, it can be 

hypothesised that complex patterns of variation and 

covariation, which reflect idiosyncrasies of development 

and function, exist within this skeletal structure and that 

modules may exhibit significant levels of independence – 
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i.e., the structure could be ‘modular’ (Adams 2016: 565; 

Adams and Collyer 2019: 2352; Zelditch and Swiderski 

2023: 147). Currently, however, there exists no ready-

made, open-access GM protocol amenable to capturing 

os coxae morphology. The development of such a 

Procrustean protocol therefore offers the opportunity 

to illustrate how coordinate density can be estimated, 

missing data handled in archaeologically-recovered 

remains and statistical patterns explored.

MATERIALS
To develop a GM protocol, 29 well-preserved, 

unfragmented and fully-fused ossa coxae were analysed. 

These originated from two archaeologically-recovered 

skeletal assemblages, with 17 ossa coxae drawn from 

the early-medieval Black Gate, Newcastle-upon-Tyne 

collection and 12 from post-medieval Coronation Street, 

South Shields collection (Mahoney Swales 2019: 202; 

Raynor et al. 2011: 76). Both collections are curated by 

the University of Sheffield’s Archaeology and Heritage 

Science Facility.

METHODS

SCANNING AND DIGITISATION
Each os coxae was scanned with an Artec Eva, a portable, 

non-contact structured-light scanner to produce 

high-resolution three-dimensional scans. Scans were 

processed in Artec Studio to create meshes which were 

saved in Polygon File Format (Artec 2023; Marić et al. 

2022). Left side ossa coxae were preferentially assessed, 

but where this was not possible, the right side was 

scanned and the scan flipped about a vertical axis so that 

it would be comparable with the left side. As the human 

skeleton is bilaterally symmetric (White et al. 2012: 11) 

and directional and fluctuating asymmetry account for 

a small proportion of overall morphological variation 

(e.g., Wigley et al. 2024), this and similar approaches 

have been employed in studies of human remains, 

including the os coxae (e.g., Betti et al. 2013; Fischer and 

Mitteroecker 2017: 699). Digitisation protocols (discussed 

below) were created in Viewbox 4 (version 4.1.0.12, dHAL 

Software), enabling os coxae structure to be defined with 

a template of coordinate points representing homologous 

landmarks and semi-landmarks (e.g., Betti et al. 2013; 

Rissech et al. 2001; Standring 2016: 1337–1348; White 

et al. 2012: 227–240). At the end of digitisation, os coxae 

were summarised by a k × m matrix configuration (X), 

where k was the number of points and m = 3 as points 

along the x, y and z axes were digitised. Thus,

1 1 1

2 2 2 .

k k k

x y z

x y z
X

x y z

 
 
   
  
 

  

Point order corresponded exactly between configurations 

which were saved as comma delimited files so that 

they could be loaded into the R environment for further 

analyses (R Core Team 2023). To enable morphological 

exploration via Procrustean techniques in R, matrices X
1
, 

… , X
n 
were combined into a k × m × n array.

COORDINATE DENSITY, ALIGNMENT AND 
STRUCTURAL MODULARITY
To estimate optimal coordinate point density, a 

preliminary template was designed to substantially 

over-sample the element’s structure (Figure 2a); the 

assumption that the structure had been over-sampled 

was based on the volume of points used in past research 

(e.g., Betti et al. 2013; Fischer and Mitteroecker 2017: 699). 

Figure 1 Modules of the os coxae (lateral view of the left side). 

The ilium, ischium and pubis are illustrated and, in light blue, 

their secondary ossification centres and the joints which fuse in 

maturity (Gray 1918: 238).

Figure 2 Os coxae digitisation templates created in Viewbox 4. 

The first template (a) substantially over-sampled the os coxae 

with coordinate points located at landmarks (dark blue), semi-

landmarks along curves (light blue at extremal borders and 

red at borders between modules) and surface semi-landmarks 

(green). The revised template (b) contained fewer coordinate 

points and included landmarks (dark blue) and semi-landmarks 

along extremal borders (light blue). The final template is 

available at: https://doi.org/10.15131/shef.data.25498276) 

(Wigley and Blackwell 2024).
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This comprised 25 fixed landmarks, 159 semi-landmarks 

along curves, and 425 surface semi-landmarks and 

was applied to a subsample of five randomly selected 

ossa coxae from the Black Gate collection. Thus, in this 

preliminary analysis k = 609 and n = 5.

Following digitisation, to determine the optimal 

number of points needed to capture shape variation, 

configurations were subjected to Watanabe’s (2018) 

Landmark Sampling Evaluation Curve (LaSEC) procedure, 

as implemented in R (Watanabe 2018; R Core Team 

2023). Configurations were initially Procrustes-aligned. 

Coordinate points from ‘parent’ configurations (i.e., 

the complete originals), were then iteratively and 

randomly subsampled to create ‘new’ subsampled 

configurations; point selection order corresponded 

between configurations and was automated through 

the LaSEC package (Watanabe 2018). The first round 

selected three points from each parent configuration 

(the minimum number required to form a shape) and 

continued until all coordinates were included in the last 

round. New subsampled shapes generated in each round 

were aligned to their parent configuration through an 

Ordinary Procrustes Analysis (OPA) (i.e., between two 

objects rather than multiple as occurs in a Generalised 

Procrustes Analysis) (Dryden and Mardia 2016: 126–136; 

Watanabe 2018: 5). As new and parent configurations 

contained a differing number of coordinate points in 

all but the last round, vectors of zeros were added 

to subsampled configurations so that they matched 

the dimensionality of their parent configurations; by 

adding zeros, this equivalence was achieved without the 

creation and addition of artificial variation. To assess the 

‘fit’ of the new subsampled coordinate configurations 

(i.e., how accurately they summarised their parent 

configurations), first the sum of squared differences 

between new and parent configurations was calculated. 

The result was then subtracted from one; an outcome 

value of one would suggest a perfect match and that 

all morphological variation had been captured in the 

subsampled configuration, while a result closer to zero 

would imply a poorer fit with the parent configuration. 

Median fit values were plotted to produce a sampling 

curve (Bardua et al. 2019: 18–19: Watanabe 2018: 4–5). 

This process was repeated ten times. As potentially subtle 

patterns of variation between separate regions of the os 

coxae were to be investigated, the above process was 

also applied to the ilium, ischium and pubis in isolation. 

Results were used to determine coordinate number in 

a revised template which aimed to balance the need 

to contain sufficient points to effectively capture shape 

without over-sampling and constraining analytical power 

(Figure 2b).

Additionally, Principal Components Analysis (PCA) was 

employed to investigate where semi-landmarks were 

best placed. In brief, PCA generates Principal Components 

(PCs) which sum to the same total variance contained 

in the original input variables, but are independent 

linear combinations of them (e.g., Zelditch et al. 2012: 

136–146). Thus, PCA simplifies complex data, facilitating 

exploration. Here, using plots of vector displacements to 

compare the coordinate configurations that contributed 

the greatest and least variation to the first four PCs (e.g., 

Wigley et al. 2024: 1412), it was possible to identify 

the areas of the ox coxae where variation was most 

prevalent. A greater density of semi-landmarks could 

therefore be allocated to regions of highest variability 

and/or complexity.

Once all os coxae had been digitised (n = 29), 

configurations were registered in shape space through 

a Generalised Procrustes Analysis (GPA) and projected 

into tangent linear space. So that semi-landmarks 

retained their structural relationships to points within 

the same configuration during this process, differences 

between semi-landmarks in separate configurations 

were reduced by minimising bending energy (Bookstein 

1997; Gunz and Mitteroecker 2013; Perez et al. 2006: 

770). To identify factors affecting shape, a Procrustes 

Analysis of Variance (ANOVA) procedure was employed 

to decompose tangent space distances, found as the 

root sum of squared differences between coordinate 

configurations (e.g., to quantify the impact of sexual 

dimorphism the distances between the mean female 

and male configuration and the grand mean was 

totalled). Significance was determined through a residual 

randomisation permutation procedure (RRPP) (Adams et 

al. 2023: 118–126; Collyer et al. 2015; Collyer and Adams 

2018; Goodall 1991; Zelditch et al. 2012: 228–240).

Modularity, or the independence of morphological 

features between modules, was quantified through the 

decomposition of the covariance matrix (S). S summarises 

the covariances of all the coordinate points and, in a 

structure composed of two modules, is separated into four 

blocks. The first of these, S
11

 and S
22

, contain the covariances 

among the coordinate points located in the first module 

and second module respectively. Meanwhile, S
12

 contains 

the covariances of coordinates between the first and 

second module, while S
21

 is the transpose of the latter block 

(Zelditch and Swiderski 2023: 149). A covariance ratio (CR) 

coefficient expressing the total covariance between the 

two modules in relation to the within-module covariance – 

less the variance found in each individual coordinate point 

– can therefore be found as

 
   

12 21

* * * *
11 11 22 22

trace

trace trace

S S
CR

S S S S


where *
11S  and *

22S  are the covariances of the two modules 

with the diagonals replaced by zeros (Adams 2016: 

568; Zelditch and Swiderski 2023: 149). Under the null 

hypothesis, CR = 1. Thus, if CR > 1, it is implied that 

covariation between modules is higher than expected 
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under the null hypothesis and the structure exhibits 

morphological integration. Conversely, when CR < 1, 

covariation between modules is less than that found 

within modules, suggesting the object is composed of 

parts which are more distinct and independent than 

would be expected under the null (i.e., it is ‘modular’) 

(Adams 2016: 565–568; Adams and Collyer 2019: 2352; 

Zelditch and Swiderski 2023: 147).

Because there were more than two modules (i.e., 

the ilium, ischium and pubis), the CR coefficient was 

computed for each possible combination of modules; 

the mean of these pairwise comparisons gave CR
ν
, an 

estimate of overall structural modularity (Adams 2016: 

568; Adams et al. 2023: 68–70; Klingenberg 2009: 410). 

Significance was determined through a permutation 

procedure. To do this, coordinate points were arbitrarily 

assigned to modules, disassociating relationships 

between them so that covariation within and between 

modules was randomised, producing a distribution of 

CR values centred around 1, as expected under a null 

hypothesis. Thus, when CR
ν
 coefficients were compared 

to this distribution, the percentage of permuted values 

below that point functioned as a p-value (Adams 2016: 

568; Adams et al. 2023: 69). In addition, configurations 

were resampled with replacement and tested for 

modularity to produce a bootstrapped range of plausible 

CR
ν
 coefficients (Adams et al. 2023: 68–69).

SIMULATING AND IMPUTING MISSING DATA
To address the issue of how to deal with missing data, 

it was firstly decided to replicate the full k × m × n data 

array and introduce varying levels of simulated missing 

data (i.e., deleting x-y-z coordinate points and defining 

these missing entries as absent by coding them NA). 

Although the ‘missingness’ within the replicated data 

was artificial, the volume and distribution of missing 

points was designed to reflect real-world patterns that 

may be encountered when recovering archaeological 

skeletal materials (e.g., McKinley 2004; White et al. 

2012: 319–328). Thus, arrays were organised so that 

the sequence of points reflected the anatomical 

relationships of the structures they represented (i.e., 

the arrangement of coordinates mimicked the physical 

proximity of landmarks). Missing data was then 

introduced in two stages. Initially, NAs were seeded 

randomly. Then, to create blocks of missing data that 

simulated the tendency for destructive factors to affect 

adjacent regions, the second stage added further NAs 

but increased the likelihood of these occurring next 

to existing missing points. This created ‘patches’ of 

NAs whose size was constrained by controlling the 

probabilities associated with NA introduction at each 

stage of the process. Specifically, three degrees of 

missingness were introduced into a hundred replicate 

arrays each (Table 1). Missing data introduced in this 

way was ‘missing at random’ in that the presence of NAs 

was not completely random, but the systemic patterns 

in missingness were related to observed rather than 

unobserved data (Azur et al. 2011: 41; Mack et al. 2018: 

7; Rubin 1976). 

In GM contexts, imputation of missing data is often 

carried out prior to alignment as Procrustean procedures 

ordinarily require complete configurations (Adams et 

al. 2023: 41–43; Arbour and Brown 2014: 18). However, 

configurations of differing sizes can be compared 

(e.g., Watanabe 2018: 5). There are thus two stages at 

which imputation can occur: before or after Procrustes 

alignment. To explore these two options, each replicated 

array containing missing data was duplicated (so that 

the simulation study contained six hundred datasets). 

For the latter approach (i.e., pre-imputation alignment), 

in duplicated arrays all complete configurations 

were superimposed and aligned through a GPA and 

a consensus shape computed. Following this, each 

incomplete configuration was superimposed and OPA-

aligned with the matching points from the previously 

determined consensus shape (Arbour and Brown 2014: 

17–18; Arbour and Brown 2022). Once missing data 

had been filled, GPA-alignment registered complete 

and formerly incomplete configurations in the same 

shape space (Arbour and Brown 2014: 17–18; Dryden 

and Mardia 2016: 126–136). Obviously, the process of 

obtaining a consensus configuration from complete 

cases was not possible in the data arrays with ‘diffuse’ 

missing data. To investigate the viability of one potential 

solution, two os coxae casts produced by France Casting 

(https://www.francecasts.com/) were digitised and their 

configurations employed to create a consensus shape. 

‘MISSINGNESS’ CONFIGURATIONS 
AFFECTED

VOLUME OF NAS 
IN DATASET

SIMULATED SCENARIO

Low 25% 10% Small patches of NAs simulating a reasonably complete assemblage with 

minor cortical erosion

High 75% 30% Large patches of NAs mimicking assemblages affected by post-mortem 

disturbance and severe fragmentation

Diffuse 100% 20% Patches of NAs reflecting an assemblage deposited in a substrate 

incompatible with cortical preservation and affected by factors promoting 

moderate fragmentation

Table 1 The levels of ‘missingness’ introduced into simulated datasets.
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As ossa coxae are sexually dimorphic (Ferembach et al. 

1980; White et al. 2012: 415–418; Buikstra and Ubelaker 

1994: 15–20), a female (RI002) and male (RI003) cast 

were used in the hope that the consensus configuration 

represented a population ‘average’. By imputing lost data 

in arrays of both unaligned and aligned configurations, 

which contained identical volumes and distributions of 

missing data, it was possible to discern which approach 

was optimal.

The volume of simulated missing data and sample 

size (i.e., frequent missingness combined with small 

sample) made the use of standard ‘statistical’ methods 

inadvisable (see Background). This assumption appeared 

justifiable when various techniques (e.g., predictive mean 

and regression modelling) were employed in preliminary 

tests. Therefore, missing coordinate points were filled 

using one ‘geometric’ and one non-parametric ‘statistical’ 

method (Gunz et al. 2009: 50). The geometric approach 

involved firstly computing a reference shape, which 

was generally found as the consensus configuration of 

all complete cases. Following this, incomplete target 

configurations were aligned to the reference and missing 

points mapped from the former to the latter via a Thin-

Plate Spline (TPS) interpolation (Adams et al. 2023: 41–43; 

Gunz et al. 2009: 50–51). As before, in arrays containing 

‘diffuse’ missing data, the two previously described 

casts were employed to create a reference. The second 

method tested was Random Forest (RF) imputation 

using Stekhoven and Bühlmann’s (2012) missForest 

algorithm. RF is a non-parametric machine learning 

procedure in which an ensemble of decision/regression 

trees are employed for classification/predictive purposes 

(Breiman 2001; Stekhoven and Bühlmann 2012). To 

estimate missing data, the missForest procedure initially 

fills missing observations with a synthetic value (e.g., 

the mean). Variables are then ordered according to the 

volume of missing data and values imputed for each 

absent variable sequentially through a trained random 

forest of t trees constructed from observed data. The 

process is repeated for i iterations and results aggregated 

to improve predictions (Stekhoven and Bühlmann 2012; 

Tang and Ishwaran 2017: 2–3). For efficiency, here 

t = 100 and i = 10 (Stekhoven 2022: 2–6). These two 

methodologies were chosen as they represent effective, 

flexible and distinct approaches which, to the author’s 

knowledge, have not previously been tested in an 

archaeological context.

Finally, the efficacy of each approach (alignment 

pre- and post-imputation) and method (TPS and RF) was 

evaluated. To do this, firstly all datasets were registered 

in the same shape space. To access the accuracy 

and consistency of imputation in reconstructing 

morphological patterns, the tangent space distance 

between the consensus configuration for the observed 

data (i.e., the original data without any missing coordinate 

points) and each array containing filled missing data was 

found as the root sum of squared differences between 

configurations (Adams et al. 2023: 51–57; Bookstein 

1991: 268–269; Senck et al. 2015: 829). To investigate 

how faithfully statistical properties relating to patterns 

of variation and covariation had been reconstructed, the 

CR
ν
 coefficient was calculated for each simulated dataset 

and contrasted to the bootstrapped range computed 

from resampling of the observed dataset (Adams et al. 

2023: 68–69). This enabled the impact of each method 

on CR
ν
 coefficient estimation and hypothesis testing to 

be clearly illustrated. Distances between consensus 

configurations and differences in coefficient values 

were tested through standard univariate methods. Code 

for the implementation of all statistical procedures 

described here can be found at https://doi.org/10.15131/

shef.data.25498276.

RESULTS

COORDINATE POINT DENSITY AND 
STRUCTURAL MODULARITY
As expected, the LaSEC procedure revealed that the 

template containing 609 coordinate points substantially 

over-sampled os coxae morphology (Watanabe 2018). 

Following the calculation of distances between parent 

and subsampled configurations, median fit values 

implied that eight coordinate points summarised circa 

95% of variation while 30 captured in the region of 

99%. However, when individual modules were analysed, 

between 9 and 33 points were necessary to summarise 

95–99% of iliac morphological variation, while the same 

percentage of variation was captured by 9–35 points for 

the ischium and 7–16 points for the pubis (Figure 3a-d). 

This implied that os coxae morphology can be coarsely 

explored with as few as eight coordinate points, but 

closer to one hundred is more appropriate to explore finer 

variation dispersed in several regions of the structure. 

Interestingly, when the coordinate configurations which 

contributed the greatest and least variation to PCs were 

compared, semi-landmarks on surfaces (e.g., the iliac 

blade) varied relatively little between individuals. In 

contrast, more pronounced differences were observable 

between semi-landmarks located on curves at extremal 

borders (e.g., along the posterior iliac crest). Thus, when a 

refined, lower-density coordinate template was created 

in which k = 107, surface semi-landmarks were omitted 

but 84 semi-landmarks along curves were retained along 

with the 23 fixed landmarks used to anchor them. The 

density of points per curve was varied to ensure an even 

dispersal. Along with the final template, the locations of 

these points are described at https://doi.org/10.15131/

shef.data.25498276.

Following the above procedures, the refined template 

was applied to the complete sample (n = 29). A Procrustes 

ANOVA found that significant factors in morphological 
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variation included sex (p = 0.001) and site (p = 0.004) 

(Table 2). The decomposition of the covariation matrix 

and subsequent permutation procedure implied 

significant modularity (CR
ν
 = 0.746, p = 0.001). The 95% 

confidence intervals (CI) generated through bootstrap 

resampling produced a range of plausible CR
ν
 coefficients 

from 0.728 to 0.896, supporting the supposition that 

os coxae structure exhibits modularity and providing a 

benchmark for assessing the impact of data imputation 

methods.

INCOMPLETE CASES AND DATA IMPUTATION
After collating the results from arrays containing a 

‘low’ density of NAs, it was clear that in unaligned 

configurations RF imputation was less accurate and 

consistent at reconstructing data than TPS. That is, a t-test 

with Welch’s correction found the distances of consensus 

shapes containing RF filled values from the observed 

average were significantly greater (t = 52.97, df = 99.95, 

p < 0.001) with large effect size (Cohen’s d = 7.5) than 

those calculated after TPS imputation. A Levene’s test 

also revealed significant differences in variance between 

groups (F(1,198) = 129, p < 0.001). Moreover, when CR
ν
 

values were contrasted, although medians appeared 

comparable, the range for RF filled datasets was broader, 

with a substantial proportion falling below the point that 

bootstrapping suggested was plausible. In contrast, the 

CR
ν
 coefficients generated in TPS filled datasets were 

congruent with the bootstrapped range. This pattern 

changed, however, when RF and TPS imputation were 

employed to fill gaps in Procrustes-aligned data arrays. 

While TPS imputation performed near-equally under 

these conditions and the distances between the observed 

and simulated consensus configurations for RF imputed 

datasets were still significantly greater (t = 27.40, df 

= 171.38, p < 0.001, Cohen’s d = 3.9), the disparity in 

distances had lessened. Crucially, CR
ν
 values associated 

with both TPS and RF imputation on Procrustes-aligned 

data fell within the bootstrapped range (Table 3 and 

Figure 4a).

A subtly different pattern emerged in simulated 

datasets with a ‘high’ density of NAs. As before, when 

compared to TPS imputation, the distances between 

the observed shape and the consensus shapes of RF 

filled datasets remained significantly and substantially 

greater in unaligned configurations (t = 59.32, df = 99.98, 

p < 0.001, Cohen’s d = 8.4) and the associated range of 

CR
ν
 coefficients was comparatively broad. However, even 

though still significant (t = 7.62, df = 198.0, p < 0.001) 

with large effect size (Cohen’s d = 1.1), the differences 

between methods in distances between the observed and 

aligned configurations were much reduced. Importantly, 

however, RF imputation on aligned data produced CR
ν
 

values that resampling procedures suggested were 

plausible. Meanwhile, although TPS generated imputed 

coordinates still minimised the distance between 

simulated and observed consensus configurations, a 

proportion of CR
ν
 coefficients from arrays with ‘high’ 

frequencies of missing data fell below the bootstrapped 

range established in the observed data (Figure 4b).

More pronounced differences emerged in datasets 

with ‘diffuse’ missingness. While RF imputation in 

unaligned datasets performed as before, previous trends 

were reversed for aligned datasets. In these, distances 

between simulated and the observed consensus 

configuration were smaller for aligned datasets filled 

through the machine learning procedure. A Welch’s 

t-test revealed these differences were significant (t = 

–3.49, df = 195.67, p < 0.001) with moderate effect size 

(Cohen’s d = 0.5). Differences in the variance in distances 

between methods was also no longer significant 

(F(1,198) = 0.34, p = 0.850). Moreover, the full spectrum 

of CR
ν
 values associated with RF imputation fell within 

the 95% CI values suggested was plausible. In contrast, 

in addition to being less accurate in aligned datasets, TPS 

Figure 3 LaSEC sampling results. Plots illustrate the ‘fit’ 

between full and sampled configurations achieved by each of 

the ten iterations of sampling (grey lines) as well as the overall 

median fit (black line) for the whole os coxae (a), ilium (b), 
ischium (c) and pubis (d).

EFFECTS DF SS MS R2 F P

site 1 0.0135 0.0135 0.0699 2.1756 0.004

sex 1 0.0183 0.0183 0.0947 2.9475 0.001

residuals 26 0.1612 0.0062 0.8354

Total 28 0.1929

Table 2 Procrustes ANOVA to investigate factors affecting os 

coxae morphology. Significance determined through RRPP with 

1000 permutations.
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MISSING 
VALUES

ALIGNMENT METHOD MINIMA 1ST QUARTILE MEDIAN MEAN 3RD QUARTILE MAXIMA

Low unaligned RF 0.009452 0.012047 0.013577 0.013664 0.014965 0.021430

TPS 0.001209 0.001387 0.001498 0.001519 0.001642 0.001906

aligned RF 0.001593 0.002149 0.002320 0.002307 0.002465 0.002744

TPS 0.001214 0.001390 0.001503 0.001521 0.001639 0.001909

High unaligned RF 0.050420 0.066490 0.073960 0.074880 0.083280 0.100650

TPS 0.005311 0.006565 0.007005 0.007046 0.007520 0.009426

aligned RF 0.005585 0.007205 0.007787 0.007798 0.008345 0.009446

TPS 0.005228 0.006464 0.006908 0.006940 0.007365 0.009446

Diffuse unaligned RF 0.047070 0.062250 0.066290 0.067840 0.073940 0.087280

TPS 0.006112 0.006854 0.007383 0.007320 0.007717 0.008631

aligned RF 0.005973 0.006655 0.006973 0.007091 0.007364 0.009446

TPS 0.006196 0.006921 0.007506 0.007442 0.007839 0.008845

Table 3 Numerical summary of the distances between consensus configurations from datasets with imputed coordinate points and 

the consensus of the observed data.

Figure 4 Boxplots evaluating the performanace of imputation methods. These represent the distance between the observed 

consensus configuration and the consensus configurations of unaligned and Procrustes-aligned simulated datasets with ‘low’ (a), 
‘high’ (b) and ‘diffuse’ (c) missing data after NAs had been filled by either RF or TPS imputation. On the righthand, the CR

ν
 coefficients 

associated with unaligned RF (1), aligned RF (2), unaligned TPS (3) and aligned TPS datasets (4) are also contrasted to the observed 

coefficient (blue line) and the upper and lower 95% CIs suggested by boostrapping (red lines).
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imputation was again associated with CR
ν
 coefficients 

which fell beyond the benchmarks established through 

bootstrapping (Figure 4c). Plots of the first two PCs also 

highlighted differences between methods and implied 

that although TPS imputation was generally more 

accurate and consistent, when ‘diffuse’ NAs were dealt 

with, reconstructed configurations likely occupied a 

different location in tangent linear space (Figure 5).

DISCUSSION

This project explored solutions to commonly encountered 

challenges in GM investigations and developed a 

three-dimensional digitisation template (available at: 

https://doi.org/10.15131/shef.data.25498276) (Wigley 

and Blackwell 2024). The model of the os coxae was 

sufficiently sensitive to detect significant modularity 

and differences in morphology associated with sex 

and site, even with a relatively modest sample size. 

Narrowly, it can be surmised the template can be 

employed to generate further insights concerning 

os coxae shape, possibly relating to the impact that 

relatively independent development in specific regions of 

the structure has on final morphology. Future research 

may, however, find that the template presented here 

is not suitable for testing other hypotheses and, even if 

usable, further reliability testing would be necessary as 

Figure 5 PCA visualisations. Plots illustrate the relationship between the observed consensus configuration (green) and consensus 

configurations associated with aligned and unaligned datasets with ‘low’ (a), ‘high’ (b) and ‘diffuse’ (c) levels of missing values filled 

by RF (blue) and TPS (red) imputation.
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previous work has demonstrated that while well-trained, 

individual observers may be highly consistent in their 

application of GM methods, inter-observer reliability can 

be low (e.g., Kenyhercz et al. 2014; Robinson et al. 2002). 

More broadly, the general approach (i.e., determining 

coordinate point density, reconstruction of missing 

values, and statistical procedures) could be employed 

to develop morphometric protocols suitable to many 

situations. The extent to which the structural properties 

of separate components of a putatively integrated 

object vary independently is, for example, of interest in 

various archaeological subfields, especially those which 

deal with how objects change over time. Thulman et 

al. (2023), for instance, found that covariation between 

‘haft’ and ‘point’ modules in Clovis stone tools was 

less than that found within modules and implied that 

the lithics were composed of distinct segments whose 

shape was defined by technological rather than arbitrary 

factors. Moreover, the equipment and software utilised 

here to create scans and digitisation templates are highly 

compatible with other archaeological subdisciplines (i.e., 

due to portability, free access, etc) (e.g., Marić et al. 

2022; Marcy et al. 2018; Shott and Trail 2010; Thulman 

et al. 2023). Meanwhile, the analytical process, though 

sensitive, is sufficiently streamlined that it can be 

conducted without the need of specialist computing 

equipment and is manageable within the freely available 

R environment (R Core Team 2023).

The balancing of statistical sensitivity and practical 

convenience was possible in large part through 

consideration of coordinate point density. Specifically, 

the LaSEC procedure in which the distance between 

a configuration and a sampling of its coordinates 

is calculated to gauge when the addition of further 

points to capture morphological variation becomes 

redundant was critical in preventing over-sampling 

(Watanabe 2018). This ensured the data collection and 

analytical processes were efficient and not unnecessarily 

cumbersome. A degree of caution should, however, be 

exercised with this procedure. When evaluated as a single 

structure, it appeared as though os coxae morphology 

could be summarised with very few coordinate points – 

potentially only eight. However, when the ilium, ischium 

and pubis were assessed in isolation it became apparent 

that this initial estimate would severely under-sample 

shape and likely confound many types of analysis. In 

short, the number of coordinates needed to capture a 

shape coarsely will differ greatly from that required for 

an exploration of potentially subtle patterns and, while 

quantitative procedures may mitigate against over-

sampling, consideration must also be given to the specific 

hypotheses in question. Moreover, while LaSEC is useful 

for exploring how many coordinate points are necessary 

to define shape, it does not indicate which landmarks/

semi-landmarks vary the most/least between shapes 

and therefore should be retained/omitted. Here this was 

determined empirically through the comparison of os 

coxae which contributed the most and least variation 

to each PC and with reference to past research (e.g., 

Betti et al. 2013; Candelas Gonzalez et al. 2017; Rissech 

et al. 2001; Standring 2016: 1337–1348; White et al. 

2012: 227–240). The identification that certain semi-

landmarks varied either more (i.e., semi-landmarks on 

curves at extremal borders) or less (i.e., surface semi-

landmarks) between individuals is congruent with past 

research. Macleod (1999: 110), for example, posited that 

morphologically complex regions required more points to 

adequately capture shape variation, highlighting that it is 

not just the volume of points that need to be considered 

but also their placement.

The investigation of imputation methods and 

approaches generated useful as well as unexpected 

insights. The first salient point was the generally 

significantly smaller differences between the consensus 

configurations of simulated datasets containing TPS 

filled NAs and the observed consensus configuration. TPS 

imputed datasets also exhibited clustering along the first 

and second PCs in all permutations of the simulation study. 

Together, this implies that TPS interpolation accurately 

and consistently reconstructs coordinate matrices. Given 

past research, this was unanticipated. In a comparative 

GM study, Arbour and Brown (2014), for example, found 

that standard statistical techniques performed better 

(i.e., achieved greater accuracy). Similarly, Neeser et 

al. (2009) reported large error rates for TPS imputation, 

especially when estimating coordinate points over large 

areas, and suggested that configuration reconstruction 

was best accomplished in anatomical structures through 

linear regression models, even when those models were 

developed on distantly related species. Other work has, 

however, proposed that TPS imputation can be successful, 

if reference configurations are chosen carefully (e.g., 

Gunz et al. 2009; Senck et al. 2015). The outcomes of this 

study not only reiterate the latter point, but also highlight 

how difficult the selection of an appropriate reference 

shape may be. While TPS generally performed well here 

by using the consensus of all complete configurations 

as a reference, in the simulated dataset in which all 

configurations contained NAs and two casts were used to 

construct a reference, PC plots show that while imputed 

consensus configurations still cluster (i.e., imputation 

had been consistent) they do so away from the observed 

consensus shape. Moreover, distances between these 

configurations proved to be significantly greater than for 

RF imputation. This suggests that the use of reference 

shapes from outside of the study sample has the capacity 

to skew results. From a bioarchaeological perspective, at 

least, this may mean that intra-specific variation may be 

sufficiently pronounced in certain skeletal elements that 

it may not be appropriate to use even reference shapes 

derived from the same species if they occupy a different 

sociocultural or environmental niche. This supposition 
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is supported by the Procrustes ANOVA which indicated 

significant differences in shape between ossa coxae from 

the Black Gate and South Shields assemblages.

Moreover, it was discovered that TPS imputation may 

interfere with patterns of covariation. This is evidenced 

in the simulated datasets containing ‘high’ and ‘diffuse’ 

NAs in which a portion of CR
ν
 coefficients fell outside the 

CIs generated from bootstrap resampling of the observed 

data. Covariation was thus either elevated within modules 

or reduced between them as a result of TPS imputation. It 

is speculated that when the interpolation function maps 

coordinate points observed in the reference shape onto 

regions of missing data in the target, the local morphology 

of the reference configuration distorts overall patterns of 

covariation in the target shape; this could substantially 

decrease covariation between modules in configurations 

with large patches of missing data and account for the 

increase in modular signal. In contrast, the regression trees 

that are used to fill missing values in RF imputation consider 

relationships between points throughout configurations. 

Thus, in Procrustes-aligned arrays in which extraneous 

data had been removed, due to the more holistic frame 

of reference this method generally appeared to preserve 

patterns of covariation within and between modules 

reasonably well – even when shapes from outside the 

sample were used to facilitate the initial configuration 

alignment in morphospace. Therefore, when determining 

how to deal with missing data, the volume and distribution 

of missing values as well as the hypotheses being tested 

must be considered. For example, if working with a small 

number of missing values, TPS imputation will likely be 

optimal. However, when missing data is more extensive or 

the primary focus of the investigation is the exploration of 

statistical patterns, machine learning approaches can be 

used as an effective way of reconstructing morphological 

data (Stekhoven and Bühlmann 2012; Stekhoven 2022). 

Future work may wish to consider the use of out-of-

bag error estimates, a measure of prediction accuracy 

in machine learning applications, as well as number of 

trees and iterations used in the implementation of this 

procedure and the interplay of imputation accuracy 

and computational efficiency in order to achieve best 

results. One caveat regarding the RF approach from a 

GM perspective is that configurations should be aligned 

beforehand, removing redundant information relating 

to location, size and orientation so that algorithm can 

assess morphological relationships between points more 

effectively (Arbour and Brown 2014: 17–18; Arbour and 

Brown 2022).

CONCLUSION

This paper presents an open-access, three-dimensional 

template of the human os coxae as well as the 

Procrustean protocols used in model design (Wigley 

and Blackwell 2024). Regarding the protocol’s wider 

application, the equipment, software and procedures 

employed in template creation and the data collection 

process are accessible and can be used effectively 

without specialist training. Specifically documented were 

techniques to estimate optimal coordinate point density 

(Bardua et al. 2019; Watanabe 2018); their use led to 

consideration of the differences between the number 

of points needed to define shape broadly compared 

to the number required to reveal subtle patterns of 

variation/covariation. Furthermore, two methods of 

data imputation were contrasted through a simulation 

study (Gunz et al. 2009; Stekhoven and Bühlmann 2012). 

It emerged, that while both are capable of effectively 

handling missing values when parametric statistical 

methods cannot, their use is associated with caveats. 

While imputation through a geometric method may 

produce more consistent results, reference selection 

impacts accuracy. Moreover, where large patches or 

high volumes of data are missing (as may be expected in 

archaeological investigations), this method may distort 

statistical patterns. In contrast, non-parametric machine 

learning approaches provide a robust and flexible means 

of imputing missing data which better preserve inherent 

patterns of morphological covariation. In summary, the 

findings discussed here can be utilised to guide future 

research design and the methodologies adapted to 

diverse archaeological subfields (e.g., bioarchaeology, 

lithics analysis, geoarchaeology).
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