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Background. Immortal time bias is a spurious or exaggerated protective association that commonly arises in naive analyses of 

observational data. It occurs when people receive the intervention because they survive, rather than survive because they received 

the intervention. Studies in conditions with substantial early mortality, such as acute severe infections, are particularly vulnerable.

Methods. We developed IMMORTOOL, an R package accessible via a user-friendly web interface (https://petedodd.github.io/ 

IMMORTOOL-live/). This tool will estimate the potential for immortal time bias using empiric or assumed data on the 

distributions of time to intervention and time to event. Assumptions are that no other biases are present and that the 

intervention does not affect the outcome. The tool was benchmarked using studies presenting both naive analyses and analyses 

with the intervention fit as a time-varying exposure. We applied IMMORTOOL to a set of influential observational studies that 

used naive analyses when estimating the impact of polyclonal intravenous immunoglobulin (IVIG) on survival in streptococcal 

toxic shock syndrome (STSS).

Results. IMMORTOOL demonstrated that published estimates suggesting a survival advantage from giving IVIG in STSS are 

explained, at least in part, by immortal time bias.

Conclusions. IMMORTOOL can quantify the potential for immortal time bias in observational analyses. Importantly, it 

simulates only bias resulting from misallocation of person-time, not other related selection biases. The tool may help readers 

interrogate published studies. We do not advocate IMMORTOOL being used to justify naive analyses where robust analyses are 

possible. To what extent giving IVIG in STSS improves survival remains uncertain.
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Ethical and logistical considerations, including the regulatory 

burden placed on clinical trialists, mean that randomized con-

trolled trials (RCTs) cannot address all important questions re-

garding the efficacy and safety of medical interventions. This is 

particularly true when the outcomes of interest are infrequent. 

Well-conducted observational studies, therefore, play an im-

portant role in informing clinical practice.

Patients may succumb to their disease before a treatment is 

initiated. In this scenario, observational studies that simply 

count deaths in the treated and untreated groups will overesti-

mate the benefits of the intervention because patients need to 

survive long enough to receive treatment. Here, some of any 

“protective” association will result from people having received 

the intervention because they survived, as opposed to surviving 

because they received the intervention.

This phenomenon is immortal time bias (ITB), a problem re-

portedly first described by William Farr in 1843 [1] and then 

rediscovered in the 1970s [2]. Pretreatment time in the treated 

group is misclassified because patients are yet to receive treat-

ment (Figure 1). This time period is “immortal” because it is 

not possible to die prior to treatment and then receive treat-

ment. Other terms for this type of survival bias include time- 

dependent bias and survivor treatment selection bias.

Naive analyses of this sort are commonly conducted and 

published despite there being methods available that result in 

person-time being properly allocated (Table 1) [3]. The 2 best 

approaches to avoiding misassignment of person-time are an-

alyzing the intervention as a time-varying exposure and design-

ing the study so that follow-up time in treated and untreated 

individuals is aligned.

Another approach, landmark analysis, is widely used [4]. 

Here, follow-up in the treated and untreated groups starts at 

a time by which most treatment has been administered (land-

mark time), with treatment status fixed at that point. This 

means that individuals who are subsequently treated will be 

counted among the untreated group. If an appropriate 
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landmark time is chosen, misallocation of person-time is large-

ly avoided. However, the approach is inefficient, disregarding 

information on events occurring prior to landmark time [4]. 

Furthermore, it generates estimates conditional on survival to 

landmark time. These estimates may not be generalizable to 

the overall population being considered for treatment, because 

the treatment decision is mostly taken at an earlier point in the 

disease process. For example, antibiotics may be less effective if 

administered late.

Various other, mostly problematic, “fixes” to address ITB are 

commonly applied (Table 1). Rather than being a consequence 

of ITB itself, the shortcomings of these approaches principally 

reflect the different treatment of exposed and unexposed 

groups. For example, time zero may not be aligned, or early 

deaths may be discounted in only 1 of the 2 groups. Such deci-

sions mean that investigators are not comparing like with like 

—for example, comparing people at different stages of their ill-

ness or comparing survivors with an unselected group.

The extent to which ITB affects estimates of treatment effect 

will vary. If patients typically receive the intervention at a time 

point that is earlier than most observed deaths, then the bias 

will be small. While our focus here is mortality, ITB can also oc-

cur where other endpoints preclude receiving the intervention.

Here, we describe the design and validation of a simple tool 

that can be used to assess the extent to which misallocation of 

person-time might bias the results of observational studies that 

(1)  do not use methods to account for immortal time or (2) use 

commonly applied but problematic methods, such as landmark 

analysis. While the tool can be applied to any observational 

study, the studies that motivated this work were observational 

analyses of interventions in acute severe infections where early 

mortality is high. Such analyses are particularly vulnerable to 

ITB, with naive analyses often generating results that suggest 

that interventions have implausibly large benefits [5].

Importantly, our tool addresses only bias resulting from mis-

classification of person-time. In our Conclusions section, we 

mention a set of related forms of selection bias that can occur 

despite the intervention being fit as a time-varying exposure.

METHODS

Description of the Tool

We developed an R package called IMMORTOOL, including a 

web browser interface, which will assess the potential for mis-

allocation of person-time to affect study results. The tool can fit 

Weibull [6] mortality and exposure hazards using the data on 

cumulative outcomes by time that are typically reported in 

studies. The tool accounts for competition between mortality 

and exposure. Plots allow assessment of the plausibility of fits 

obtained. Under the assumption that the intervention has no 

effect, fitted hazards are then used to simulate a cohort with a 

default size of 100 000.

Apparent effect sizes are calculated as mortality rate ratios 

according to 4 commonly applied analytic approaches:

(a) Person-time from time zero: Pretreatment time in the 

treated group misclassified as “exposed” (our default and the 

most commonly applied naive approach).

(b) Exclude early events and do not reset clock: As above, 

but discounting deaths in both the treated and untreated 

groups that occur before a prespecified follow-up time, leaving 

time zero unchanged.

(c) Exclude early events and reset clock: As above, but dis-

counting deaths in both the treated and untreated groups that 

occur before a prespecified follow-up time, and also resetting 

time zero to be that same time point.

(d) Landmark analysis: As above, but defining exposure sta-

tus at the landmark time—that is, individuals treated after land-

mark time are retained in the untreated group.

These are defined formally in the supplementary appendix, 

with a graphic depicting all 4 approaches provided on the 

IMMORTOOL web interface. Some advantages and disadvan-

tages of each are given in Table 1. For all approaches, the rate 

ratio is calculated as the ratio of total deaths over total person- 

time for those exposed vs unexposed. Finally, approximate con-

fidence intervals are calculated by using the observed number 

of deaths and the expected fraction of deaths occurring in the 

exposed vs unexposed groups (see supplementary appendix).

Figure 1. A schematic depicting the attribution of pre- and post-treatment time in 

the exposed and unexposed groups (A) applying a naive analysis and (B) with the 

intervention fit as a time-varying exposure.
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Benchmarking

To assess the performance of our tool, we used a set of 

infection-related observational studies that reported the same 

treatment effects using a naive approach and methods 

that properly allocate person-time [5, 7, 8]. Detailed descrip-

tions of these studies can be found in the supplementary 

appendix.

Two of these studies undertook naive analyses but also 

fitted the intervention as a time-varying exposure. The first 

described mortality in people with Staphylococcus aureus 

bacteremia who had survived for 48 hours after the date 

of the first positive blood culture [5]. The analysis 

compared mortality in patients who did or did not receive 

a computed tomography–positron emission tomography 

(CT-PET) scan to screen for deep foci of infection. The sec-

ond study described mortality in people admitted to intensive 

care beds with severe H1N1 influenza, comparing mortality 

in people who received or did not receive oseltamivir, an an-

tiviral drug [7, 8]. The authors of this influenza study also 

provided a landmark analysis.

In both these studies, correct allocation of person-time sub-

stantially attenuated the protective association reported. It is 

important to note that observational analyses that properly al-

locate person-time may not estimate the true effects of the in-

tervention, as confounding by indication and other biases may 

result in either an underestimate or an overestimate of the true 

association [9]. RCTs of both interventions are ongoing 

(NCT04381936, NCT02735707, NCT05137119).

The third study described the rate at which people admitted 

to the hospital with COVID-19 progressed to mechanical ven-

tilation or death [10]. The analysis compared the incidence of 

this composite endpoint in people who did or did not receive 

the drug hydroxychloroquine. The authors presented a naive 

analysis and a landmark analysis. They did not include an anal-

ysis with the intervention analyzed as a time-varying exposure, 

but the true effects of the intervention are known from RCTs. 

This observational analysis and subsequent RCTs suggested 

that the intervention—hydroxychloroquine as a treatment for 

COVID-19—offered no benefit or was harmful [11].

It is important to be clear what should be expected from this 

benchmarking exercise. IMMORTOOL should identify the po-

tential for substantial ITB where we know that it exists because 

the same data have been analyzed using naive methods and fit-

ting the intervention as a time-varying exposure. This was the 

case with the CT-PET and influenza studies. However, naive re-

sults will not necessarily agree with IMMORTOOL predictions. 

IMMORTOOL assumes that the intervention has no impact 

on the outcome. It also assumes that no other biases are affect-

ing results. Clearly, both assumptions may be unreasonable. 

Particularly in small data sets, the play of chance may also gen-

erate discrepancies.

Application to a Clinical Problem: Intravenous Immunoglobulin in 

Streptococcal Toxic Shock Syndrome

We next used our tool to assess the likely impact of misalloca-

tion of person-time on observational studies in acute infection 

Table 1. Methods Used to Address Misallocation of Person-Time

Solution Advantages Disadvantages

Optimal solutions

Fit intervention as a time-varying 

exposure

Addresses misallocation of person-time • Requires granular data on both time to intervention and time 

to event

• Requires authors to have some statistical modeling skills

• Does not address related biases, such as prevalent user bias

Design study or analysis so that  

follow-up time in treated and  

untreated group are aligned [21, 25]

Addresses misallocation of person-time and related 

biases

Not always possible or straight forward

Occasionally reasonable solutions

Landmark analysis (see text) • Computationally easy

• Can often be applied in data sets lacking granular 

data on time to intervention or time to event

• Addresses misallocation of person-time if 

appropriate landmark time chosen

• Throws away data

• Produces estimates conditional on survival to landmark time, 

which may not be generalizable to individuals treated early

• Does not address related biases, such as prevalent user bias

Problematic fixes

Exclude early events • Computationally easy

• Can often be applied in data sets lacking granular 

data on time to intervention or time to event

• May attenuate ITB

• Some residual ITB is likely

• Throws away data

• Produces estimates conditional on survival to the time point 

chosen, which may not be generalizable to individuals treated 

early

• Does not address related biases, such as prevalent user bias

Exclude untreated individuals  

who die early

• Computationally easy

• Can often be applied in data sets lacking granular 

data on time to intervention or time to event

• May attenuate ITB

• Throws away data

• Does not compare like with like, as treated patients who die 

early will be counted among the deaths—results may be hard 

to interpret

• Does not address related biases, such as prevalent user bias

Abbreviation: ITB, immortal time bias.
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that did not model the intervention as a time-varying exposure. 

Here, our focus was on observational studies of polyspecific in-

travenous immunoglobulin (IVIG) in patients with streptococ-

cal toxic shock syndrome (STSS).

We selected this example because STSS carries very high ear-

ly mortality. IVIG is an expensive pooled blood product and, in 

many settings, not immediately available. As such, the risk of 

meaningful ITB seemed high. The only RCT of IVIG in STSS 

enrolled 18 patients and so cannot exclude either substantial 

benefit or substantial harm [12].

We took our data from a systematic review of observational 

studies describing mortality in patients with STSS who did or 

did not receive IVIG [13]. The review reported 30-day mortal-

ity in patients, all of whom had received adjunctive clindamy-

cin. Data in this subgroup were not reported in all of the 

primary articles.

Three of these studies applied a naive analysis [14–16]. One 

study excluded untreated (but not treated) individuals who 

died within the first 12 hours [17]. We applied IMMORTOOL 

to the first 3 studies but not to the study excluding early deaths 

in the untreated. While excluding early deaths in the untreated 

might be expected to attenuate ITB, it comes at the cost of cre-

ating groups that are not directly comparable—that is, all treat-

ed individuals compared with untreated individuals who had 

survived for at least 12 hours. The net impact of this strategy 

is not something that IMMORTOOL is able to predict.

Only 1 of the remaining studies reported time to receipt of 

IVIG, stating that this was mostly initiated “during the first 

day of onset of illness” [16]. In our primary analysis, for all 

studies, we assumed that, in the treated group, 50% received 

the intervention within 12 hours. With only 1 time point— 

30-day mortality—provided in the clindamycin-treated STSS 

population, we used external data to parameterize the distribu-

tion of time to death [18]. In our primary analysis, we assumed 

that all deaths occurred within 8 days and that half of all deaths 

occurred within the first 48 hours. To emulate the original re-

view, we pooled results using random effects meta-analysis.

In sensitivity analysis, we varied these assumptions to gener-

ate a “low ITB scenario” (50% of all IVIG given within 6 hours 

and 33% of all deaths occurring within the first 48 hours) and a 

“high ITB scenario” (50% of all IVIG given within 24 hours and 

66% of all deaths occurring within the first 48 hours).

Code and Tool Availability

We have made IMMORTOOL available as an R package, with a 

ShinyApp interface, so that readers can undertake their own 

analyses. The underlying code, including code to reproduce 

all results reported in this article, is available at https://github. 

com/petedodd/IMMORTOOL. Online access to the 

ShinyApp is available at https://petedodd.github.io/IMMOR 

TOOL-live/. Note that, in some browsers, the interface will 

take a few minutes to load.

Ethical Approvals

All analyses presented here used data in the public domain. 

Ethical approval to undertake these analyses was, therefore, 

not required.

RESULTS

Benchmarking

Results from the 3 articles that we used for benchmarking are 

presented in Table 2. Where possible, we present the results 

from the naive analysis as well as results treating the interven-

tion as a time-varying exposure. Where articles presented crude 

and adjusted estimates, we present their primary adjusted esti-

mates. These are presented alongside the estimates provided by 

IMMORTOOL. The IMMORTOOL results are an estimate of 

the intervention effect that might be expected purely as a result 

of misallocation of person-time, under the assumption that the 

intervention had no effect and that no other biases were at play.

In the same table, we present the results of landmark analyses 

by Jones and Fowler [7] and Geleris et al [10] alongside esti-

mates, applying the same landmark time, provided by 

IMMORTOOL. The IMMORTOOL results, again, represent 

an estimate of the intervention effect that might be expected 

purely as a result of residual misallocation of person-time, 

Table 2. Published Results From the 3 Benchmarking Studies Alongside Estimates From IMMORTOOL

Published Estimates (95% CI) IMMORTOOL Estimates (95% CI)

Study Naive Approach Landmark Approach Intervention as Time-Dependent Variable Naive Approach Landmark Approach

van der Vaart [5] aHR, 0.50 (.34–.74) Not provided aHR, 1.00 (.68–1.48) RR, 0.60 (.42–.85)a Not provided

Jones and Fowler [7] HR, 0.52 (.29–.95) OR, 0.39 (.23–.66) HR, 0.87 (.48–1.61) RR, 0.25 (.13–.47)b RR, 1.00 (.66–1.5)c

Geleris [10] aHR, 1.04 (.82–1.32) aHR, 0.81 (.63–1.04) Not providedd RR, 0.49 (.40–.61)b RR, 1.00 (.81–1.20)c

Abbreviations: aHR, adjusted hazard ratio; HR, hazard ratio; OR, odds ratio; RR, rate ratio.

aThis used the IMMORTOOL approach (b) “Exclude early events and do not reset clock,” as van der Vaart excluded treated and untreated participants who died in the first 48 hours.

bThis used the IMMORTOOL approach (a) “Person-time from time zero.”

cThis used the IMMORTOOL approach (d) “Landmark analysis.”

dIn randomized controlled trials, the RR is 1.09 (95% CI, .99–1.19) for all-cause mortality and 1.11 (95% CI, .91–1.37) for mechanical ventilation [11].
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under the assumption that the intervention had no effect and 

that no other biases were at play.

IMMORTOOL was clearly able to identify the potential for 

substantial bias in naive analyses of the CT-PET and influenza 

studies, providing reassurance that the tool functions as intend-

ed. Further discussion of benchmarking results is provided 

below.

IVIG in STSS

Estimates of the effects of IVIG on mortality in STSS are pre-

sented in Figure 2. All 3 observational studies [14–16] applied 

a naive analysis, and the data presented here are unadjusted for 

potential confounders. Also presented in Figure 2 are estimates 

from IMMORTOOL, under various assumptions about the dis-

tributions of time to event and time to intervention, plus the es-

timate from the single underpowered RCT [12]. These results 

suggest that misallocation of person-time in these analyses 

will have biased estimates of the benefits of IVIG in STSS 

away from the null. In a post hoc sensitivity analysis, findings 

were unchanged if the time-to-event distribution allowed for 

a small number of deaths after day 8.

CONCLUSIONS

Inappropriate analyses of observational studies that fail to ac-

count for immortal time can result in the protective effects of 

interventions being overestimated. This is a particular risk in 

conditions with substantial early mortality, such as acute severe 

infections. By fitting to reported data and simulating a study 

with a true null effect, IMMORTOOL can calculate the likely 

extent of bias resulting from this misallocation of person- 

time. In doing so, it makes 2 key assumptions. The first—that 

the intervention has no effect on the outcome—is often true. 

The second—that no other biases are at play—is rarely true.

Figure 2. A forest plot containing the results reported by 3 observational studies estimating a risk ratio for 30-day mortality in patients with streptococcal toxic shock 

syndrome according to whether they received intravenous immunoglobulin; the results of 3 sets of IMMORTOOL simulations estimating the results expected as a result 

of misallocation of person-time, if the intervention has no effect on the outcome; and the results of the small randomized controlled trial (RCT). The standard simulation 

assumptions had 50% of those receiving the intervention receiving it within 12 hours and half of all deaths occurring within 48 hours. (Note: IMMORTOOL calculates a 

rate ratio rather than a risk ratio but, here, these measures should be broadly comparable.) The low immortal time bias (ITB) assumptions had 50% of those receiving 

the intervention receiving it within 6 hours and 33% of all deaths occurring within 48 hours. The high ITB assumptions had 50% of those receiving the intervention receiving 

it within 24 hours and 66% of all deaths occurring within 48 hours. DL, DerSimonian and Laird.
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In the CT-PET and influenza studies [5], IMMORTOOL 

identified the potential for substantial ITB in the naive analyses, 

which was apparent when comparing these with the results fitting 

the intervention as a time-varying exposure. IMMORTOOL also 

suggested the potential for significant ITB in the hydroxychloro-

quine study [10]. That the naive estimate in that study suggested 

no benefit—in keeping with data from RCTs—may suggest that a 

second bias, most likely residual confounding by indication, off-

set the ITB. Here, we did not have results fitting the intervention 

as a time-varying exposure to directly compare with results from 

the naive analysis.

Clearly, other biases may attenuate or exaggerate naive effect 

estimates. In smaller studies, the play of chance will also result 

in naive estimates that do not align with those predicted by 

IMMORTOOL. Our benchmarking exercise does, however, 

suggest that the tool will highlight situations in which substan-

tial ITB is likely.

The landmark analysis performed by the authors of the influ-

enza study is instructive [8], as it resulted in an estimate of the 

treatment effect that was further from the estimate with the in-

tervention fit as a time-varying exposure than the estimate from 

the naive analysis. This likely occurred because the approach 

throws away data, resulting in imprecision.

We used IMMORTOOL to interrogate 3 influential studies of 

the association between receipt of IVIG and 30-day mortality in 

STSS [14–16]. IMMORTOOL suggested that ITB was leading to 

exaggerated estimates of the benefits associated with IVIG treat-

ment. Even where conservative assumptions were made regard-

ing the distribution of time to intervention and time to event, 

IMMORTOOL estimated that misallocation of person-time 

might result in a rate ratio of 0.61 (95% CI, .26–1.47). While 

our results suggest that published estimates of the effects of 

IVIG on mortality in STSS overstate the survival advantage be-

cause of ITB, we caution against concluding that the interven-

tion has no benefit. There are reasons that observational 

studies might underestimate the benefits of this intervention. 

For example, if IVIG were offered to the sickest patients with 

STSS, then a modest benefit might be masked by confounding 

by indication. Confounding by indication could also operate 

in the other direction. For example, IVIG administration might 

be associated with prompt STSS diagnosis and proactive man-

agement, and IVIG might be withheld from patients with a 

very poor prognosis, who are expected to do poorly regardless.

The most robust means of answering this important clinical 

question would be to undertake a large pragmatic multicenter 

RCT. The acuity of the situation, the potential harms associated 

with administering a blood product, and the significant limita-

tions of the existing evidence base could argue in favor of de-

ferred consent, as used in other recent trials in acute severe 

infection [19]. Deferred consent would likely improve enroll-

ment. However, if the true benefits of IVIG are more modest 

than previously assumed, then this RCT would need to be large 

[20]. The only previous trial ceased recruitment after random-

izing 18 participants because enrollment was too slow [12].

Our tool can assess the likely extent of bias due to misalloca-

tion of person-time in specific cases and includes the impact of 

sample size on precision. In smaller samples, exaggerated point 

estimates—in both directions—will be seen more commonly 

regardless of the extent of any bias. IMMORTOOL can also ex-

plore the impact of landmark analysis and of crude approaches 

to limit ITB, such as not counting deaths that occur early.

Importantly, ITB is related to other forms of selection bias, 

such as prevalent user bias, that are not fully addressed by fit-

ting the intervention as a time-varying exposure (this only ad-

dresses misallocation of person-time). These biases occur 

where the intervention is harmful or protective—contrary to 

the assumption made by IMMORTOOL—and where treatment 

assignment and follow-up time are not aligned. Here, the most 

vulnerable individuals may be selectively depleted from the ex-

posed or unexposed group such that, when follow-up begins, 

the 2 populations are not comparable. These issues and meth-

ods that can address selection problems beyond misallocation 

of person-time are discussed elsewhere [21].

A challenge in applying IMMORTOOL is that study authors 

often do not provide full data on the timings of the intervention 

or endpoints. However, readers will often have some idea of the 

expected distribution of time to death and can test a number of 

plausible time-to-intervention distributions.

It is noteworthy that reporting guidelines do not explicitly 

mandate reporting of the distribution of time to treatment or 

time to event in observational studies of health interventions. 

STROBE [22] requires authors to “report numbers of outcome 

events or summary measures over time,” but there is nothing 

further in the relevant STROBE extensions: RECORD [23] or 

RECORD-PE [24]. Updating these reporting guidelines to en-

courage the reporting of these distributions should be consid-

ered so that readers have the data required to assess risk of ITB.

It is not our intention that the tool be used to justify naive 

analyses where better analyses are possible. However, some-

times data do not allow for the intervention to be fit as a 

time-varying exposure. For example, to avoid misallocation 

of person-time in observational analyses, sufficiently granular 

data on time to intervention and time to event are required. 

Where interventions and outcomes occur over minutes or 

hours, analyses fitting time-to-intervention or time-to-event 

data in days or weeks may suffer from bias resulting from 

the misallocation of person-time. Here, investigators may 

find IMMORTOOL helpful in deciding whether to proceed 

with a naive analysis.

IMMORTOOL enables quantitative assessments of the likely 

extent of bias resulting from misallocation of person-time in 

published observational studies. This may flag studies where 

the published intervention effect is likely to be over optimistic. 

Alternatively, it may provide reassurance that such bias is 
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unlikely, meaning that published results are not automatically 

disregarded, although clearly other forms of bias may still ex-

plain results. Where possible, important questions regarding 

the relative efficacy and safety of interventions should be an-

swered in RCTs.

Supplementary Data

Supplementary materials are available at Open Forum Infectious Diseases 

online. Consisting of data provided by the authors to benefit the reader, the 

posted materials are not copyedited and are the sole responsibility of the 

authors, so questions or comments should be addressed to the correspond-

ing author.
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