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Wetland fragmentation associatedwith large
populations across Africa

Sani Idris Garba 1 , Susanna K. Ebmeier 2, Jean-François Bastin 3,
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Wetlands provide essential ecosystem services in Africa, yet their extent and
fragmentation remain poorly understood. Here we classify African wetlands at
10m resolution, using seasonal composite imagery and a random forest
algorithm. We estimate a total wetland area of 947,750 km² (10% of global
wetlands), comprising 46% marshes, 25% swamps, 22% peatlands, 5% seasonal
wetlands, and 2% mangroves. Wetland fragmentation is strongly associated
with high population densities in countries such as Nigeria, Liberia, Guinea,
Egypt, Algeria, and Kenya. African wetlands store an estimated 54 ± 11 Gt of
carbon, surpassing Europe’s 12–31 Gt. If drained, they could release 260 MtC
yr−¹, nearly ten times the carbon sequestration of pristine wetlands (27 MtC
yr−¹). These findings provide a crucial foundation for sustainable wetland
management and policy development.

African wetlands are among the most productive ecosystems in the
world1, providing a wide range of services that contribute to human
wellbeing, such as the provision ofwater, food, dry season grazing, and
fuel wood. They can support a wide range of flora and fauna and serve
as an important carbon pool, sequestrating large amounts of carbon
from the atmosphere, thereby regulating climate2. Depending on
topographic context, wetlands can also play a significant function in
flood attenuation and shoreline protection3–5 and also play a key role in
the hydrological cycle6.

Wetlands are dynamic ecosystems that can be categorized based
on their hydrology, soil composition, and vegetation types, each
supporting unique ecological functions and biodiversity. Marshes, for
instance, are wetlands dominated by herbaceous (non-woody) plants,
characterized by periodic or continuous flooding. They can be found
in both freshwater and saline environments, where nutrient-rich soils
foster diverse flora and fauna. Swamps are wetlands with mineral
soils (although some classifications also distinguish organic soil peat
swamps), dominated by woody vegetation such as trees and
shrubs. These ecosystems experience seasonal or permanent
flooding and include coastal mangrove swamps, which are crucial for
coastal protection, carbon sequestration, and biodiversity
conservation.

Peatlands represent a distinct wetland category, defined by the
accumulation of partially decomposed organic matter (peat) due to
water saturation. Peatlands are further classified into bogs and fens.
Bogs are rain-fed (ombrotrophic) systems that are typically acidic and
nutrient-poor, often supporting mosses, shrubs, and sometimes trees.
Fens, by contrast, are groundwater-fed (minerotrophic) and more
nutrient-rich, allowing for a mix of grasses, sedges, and woody vege-
tation. Seasonal wetlands, another important type, experience peri-
odic inundation during specific times of the year, followed by dry
conditions. These include natural systems like ephemeral ponds and
human-made systems such as rice paddies, which harbor species
adapted to fluctuating water levels.

Amongst these wetland types, marshes are especially susceptible
to anthropogenic pressures because of their accessibility, fertile soils,
and proximity to densely populated regions. High demand for agri-
cultural and urban development, combined with inadequate protec-
tion measures, makes these wetlands highly vulnerable and often
heavily exploited.

In this study, wetlands are broadly classified into five types:
swamps (mineral soil dominated),marshes including seasonalmarshes
are classified under the broader category of marshes, emphasizing
vegetation type as the primary distinguishing factor, peatlands
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(encompassing both bogs and fens), seasonal wetlands (including
human-made systems and lakes), and mangroves (coastal wetlands
dominated by salt-tolerant woody species). This classification frame-
work emphasizes the hydrological, vegetative, and soil characteristics
of each wetland type, facilitating effective differentiation and map-
ping. By recognizing these distinctions, the study captures the ecolo-
gical and functional diversity of wetlands across Africa, enabling better
conservation and management strategies.

Wetlands in Africa are experiencing immense pressure from
human activities, the most important being direct drainage and con-
version to farmland, diversion of water away from wetlands for agri-
cultural irrigation, population growth and urban expansion into
wetland areas, pollution, overgrazing, and hydropower development;
there has often been excessive exploitation by local communities7–9. A
large number of African wetlands are thought to have been heavily
modified by overexploitation (e.g., the Yala swamp and Kingwal wet-
land in Kenya and Nakivubo swamps in Uganda)2,10 and upstream
developments altering the quality and flow of water feeding wetlands
(e.g., Hadejia Jam’are floodplain in Nigeria9). Many African wetlands
have been lost due to agricultural conversion, such as the Ga-mampa
swamp in South Africa11. However, the current extent ofwetland across
Africa, at high resolution, is not known, and most continental datasets
are very coarse estimates (e.g., 250m to 1 km resolution)3,10,12–14. Small-
scale wetlands may have been omitted or overestimated in previous
continental mapping studies due to coarse resolution datasets, lack of
ground control points and validation15–19. It is therefore not known
whether the cumulative coverage of small wetlands is important to
diverse ecological, climatic, and hydrological functions, and there is a
need to ensure appropriate representation of African wetlands for
sustainable management and for modeling climate mitigation and
biogeochemical cycles. The lack of high-resolution data hinders our
estimates of the total amount of carbon stored by these wetlands and
estimates of the potential for net carbon uptake or loss from African
wetlands at a continental scale. Much wetland carbon is belowground,
yet potentially fragile and susceptible to rapid loss with wetland
degradation20. Wetlands can become divided or separated into smal-
ler, isolated patches or fragments due to both human activities and
natural processes, including urbanization, agriculture, infrastructure
development, and changes in hydrology. In addition to topographic
reasons for the occurrence of small wetland patches in a landscape,
formerly largerwetlands canbecomedivided or separated into smaller
patches due to natural processes. Wetland fragmentation poses a
serious threat to the health and functionality of wetland ecosystems,
highlighting the need for conservation efforts focused on preserving
and restoring these valuable habitats. Wetland degradation refers to a
decline in the ecological integrity and functionality of wetlands,
characterized by reduced biodiversity, compromised water quality,
and diminished carbon sequestration potential. It occurs due to dri-
vers such as pollution, drainage, excessive water extraction,
encroachment by invasive species, and the impacts of climate change.
Unlike fragmentation, which involves the physical separation of wet-
land areas into smaller patches, degradation focuses on the dete-
rioration of the ecosystem’s health and its ability to provide essential
services, irrespective of spatial continuity. Climate change further
exacerbates fragmentation through altered hydrological regimes and
extreme weather events.

This study combines spatialmapping, fragmentation analysis, and
carbon stock estimation todevelop a comprehensiveunderstandingof
wetland dynamics across Africa. The primary objectives of this study
are to: (1) systematically map the spatial distribution of wetlands
across Africa by categorizing them into five distinct types—marsh,
mangrove, swamp, peatland, and seasonal wetland—based on ecolo-
gical and hydrological characteristics; (2) analyze wetland patchiness
and assess its relationship with population density, testing the
hypothesis that wetlands in highly populated areas are more

fragmented, and (3) estimate the total carbon stocks for each wetland
type and calculate potential carbon emissions under pristine and
drained conditions across various climate zones.

To classify our wetland types, we compile control points for cli-
mate zones. The control points are grouped into five wetland types,
including marsh (2202), mangrove (1477), swamps (1891), peatland
(1580), and seasonal wetland (1054). Here we classify swamps as
mineral soil wetlands, while peatlands include fen and bog systems
with or without trees (these include what are sometimes referred to as
peat swamps). These classes capture critical differences in wetland
vegetation, soils and water levels (see Supplementary Tables S2–S6)
and importantly are separable using optical and radar-derived indices
from freely available satellite datasets21. We analyze the relationship
between wetland patchiness derived from our map and population
data from theGridded Population of theWorld database (GPWV4) and
test the hypothesis that highly fragmented wetlands are associated
with large populations. We use a 10 km grid for fragmentation analysis
based on our previous studies that suggested that average continuous
wetland patches cover an area of 10–11 km2 21.

We calculate total carbon stocks for each wetland type by multi-
plying the total area of the wetland with typical values of carbon stock
per hectare estimated by previous studies22–28. We then estimate the
carbon emissions from different wetland types for two wetland degra-
dation states (pristine and drained conditions) in each climate zone.

Results
The current extent of the African wetland
Our high-resolution continental study reveals that wetlands cover
~947,750 km2ofAfrica (excludingdeepwater bodies),which constitutes
~3% of the total land area. Marshes, covering 436,743 km² (46% of total
wetlands), are more extensive than swamps, which account for
231,776 km2 (24%). Peatlands cover 208,842 km2 (22%), while seasonal
wetlands (5%) and mangroves (3%) have the least coverage. Most of
these wetlands are concentrated in western and central parts of Africa
(Fig. 1a), where there is a high amount of rainfall throughout the year.
However, some important wetland complexes (regions where there are
two or more wetland types clustered together) are situated in North
Africa, such as in theNile region. The largestwetland complex is located
in theCongo regionof central Africa covering about 278,450 km2,which
contains the most extensive peatland area (165,250 km2) in the entire
continent (Fig. 1e). Other important wetland complexes are situated in
southern Sudan (the Sudd) (67,150 km2) (Fig. 1d), the Zambia
(43,170 km2), Angola (46,072 km2) and Nigeria (47,130 km2).

Distribution of wetland across African climate zones
Wepresent the spatial distribution of different wetland types based on
high resolution image processing, according to the five main climatic
regions in Africa based on the Köppen–Geiger classification29: Tropical
wet (TW), tropical wet and dry (TWD), semi-arid (SARD), arid or desert
(ARD) and mediterranean subtropical climate (MED). The overall
accuracy of the trained algorithm compared to validation ground
control data is higher for wetlands in the TWD region (89%), with
mangrove and marsh well distinguished from other wetland classes
with producer’s accuracies exceeding 80% (Supplementary Table S2).
TWhas themost extensivewetland, hosting 57% (~448,210 km2) (Fig. 2)
of the total wetland area in Africa. Peatlands (37%) and swamps (34%)
are the most dominant wetland types of TW, which cover 165,950km2

and 153,580km2, respectively. Mangroves (2%) and seasonal wetlands
(0.5%) are the least commonwetland types in TW, covering only about
14,000 km2. The largest climate region is the TWD, covering up to 38%
of the total area of Africa. Wetlands in this region constitute only 3.2%
(~362,980 km2) (Supplementary Table S1) of the total area with 52%
beingmarshes (Fig. 2a). This region has a distinct climatic feature with
alternating wet and dry periods throughout the year, which plays a
significant role in the formation of different wetland conditions and
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variability across the season. Thus, TWD has a higher amount of sea-
sonal wetland cover relative to other climate zones (Fig. 2b). SARD is
characterized by 250–500mm of rainfall throughout the year, cover-
ing 6,700,000 km2 (22%) of Africa. Only about 1.4% of SARD is covered
by wetland, of which seasonal wetlands are the dominant type. ARD is
the second largest climatic region in Africa, extending up to about
9,000,000 km2, and has the lowest wetland coverage (0.4%).

Wetland fragmentation and human population
We develop a wetland fragmentation and population index (WFPI) by
overlaying the gridded population layer with the gridded wetland
fragmentation layer using the fuzzy overlay method (see “Method”).
The fragmentation index is an indicator of regions with a high number
of wetland patches (based on the 10m resolution data) per 10 km grid,
and the population index is a count of persons per kilometer grid
downscaled into a 10 km grid, indicating areas of high concentrations
of population. Our WFPI shows areas where fragmentation is coin-
cident with humans (Fig. 3) using 10 km grid cells across Africa.

We identify nine regions with a WFPI value indicating highly
fragmented grid cells (80–226 wetland fragments per 10 km2) related
to large population size (40,000–300,000 persons per 10 km2). Six of
these regions are in West Africa (Nigeria, Liberia, Gabon, Guinea, and
Cameroon), two in North Africa (Egypt and Algeria), and one in East
Africa (Kenya). In West Africa, areas such as Rivers State and Lagos in
Nigeria, andMonrovia in Liberia, have the highest WFPIs of 0.89, 0.76,
and 0.83, respectively (Table 1). These areas are characterized by high
population growth associated with urban expansion, thereby increas-
ing pressure on nearby wetlands, mainly coastal mangroves and
swamps. Other areaswith highWFPI include Conakry in Guinea (0.68),
Alexandra in Egypt (0.66), Algiers in Algeria (0.61), and Murang’a in
Kenya (0.59) often associated with agriculture encroaching on

wetlands in these regions30–32. Our index indicates that a total of
13,021 km2 of wetlands may be heavily threatened by human activity
within Africa (WFPI > 0.5), and about 28,724 km2 of wetland occurs in
populated areas, which suggests a moderate risk of human interac-
tions (WFPI 0.3–0.5). However, large wetland areas with a high con-
centration of fragments (for example the Congo basin wetlands) that
are far away from settlements or sparsely populated show little or no
relation between fragmentation and human populations (Fig. 3). The
high concentration of fragments in the Congo basin are thought to be
geomorphologically and climatologically controlled rather than driven
by human activities25, though these peatlands could be highly sensitive
to human-induced fragmentation in the future. The low fragmentation
in the Great African Lakes region is likely due to the hydrological sta-
bility and the presence of large, continuous wetland systems. These
wetlands are naturally resistant to fragmentation, while human activ-
ities like agriculture and urbanization are primarily confined to
upland areas.

Carbon stock in African wetlands
Healthy wetlands can store large amounts of carbon, but the quantity
of carbon stored varies among different wetland types20,22. Among
thesewetland types, peatlands are thought to have the highest carbon
stock followed by mangroves, swamps and marshes22–24,33. We use the
IPCCmean carbon stock for each wetland type, according to different
climate zones, to estimate the total carbon stored in the four wetland
types of Africa. Our continental map indicates that African wetlands
contain 54 ± 11 Gt of carbon, which is around 5% to 9% of wetland soil
carbon stored globally (520–710 Gt C)20, and higher than that of Eur-
opean wetlands (12–31 Gt)34 based on differences in wetland area.
Peatlands store about 41% of this African wetland carbon, while 28% is
stored in marshes, 27% in swamps, and 3% in mangroves (Fig. 2d).

Fig. 1 | The distribution of wetland in Africa, at 10m resolution. Continental
distribution derived from classification of a combination of Sentinel-1 and Sentinel-
2 composites between January 2020 and January 2021, The Basemap data used

provided by Esri (a) and extensive wetland complexes in b northern Algeria and
Tunisia, c Nigeria, d South Sudan, e part of the Congo basin, f Morocco, g Chad,
h Botswana.
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Fig. 3 | Gridded wetland fragmentation and population index for 10 km cells
across Africa showing areas where fragmentation is associated with popula-
tion (values closer to 1). The insert map a–d shows areas of highWFPI value. Data

for wetland cover uses our 10m dataset to determine fragmentation within each
10 km cell. Data for population density uses 1 km data reprofiled to 10 km.
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Net carbon uptake or loss from African wetlands
We estimate the contribution of African wetlands to the global carbon
budget across each climatic region using empirically derived emission
rates for selected wetland types for which data are available (see
Method). We use two approaches, First, we use the default emission
factor from the IPCCemission factor database to calculate total carbon
emissions from wetlands under two conditions (drained or natural).
Using our high resolution map of wetlands in Africa, we calculate that
drained peatland, mangrove and marsh are capable of emitting
260MtC yr−1 (936Mt CO2 yr

−1 equivalents) which is equivalent to 2.4%
of global net annualCO2 emissions35 and almost ten times themeannet
annual uptake under natural conditions of 27Mt C yr−1 (98Mt CO2

equivalents yr−1) by these wetlands. Wetlands within high WFPI areas,
under drained conditions, could release 10.3Mt C yr−1 (37Mt CO2

equivalents yr−1).
The net wetland carbon flux varies according to water level36,37.

Therefore, in our second approach, we use the emission factor for
different wetland types at various water levels obtained from Zou et
al.37 to estimate the carbon flux for peatlands, marshes, and mineral
soil swamps. The six categories of water level range from −3 to 2 (WTL-
3 ≤ −70 cm; −70 cm<WTL-2 ≤ −50 cm; −50 cm<WTL-1 ≤ −30 cm;
−30 cm<WTL0 ≤ −5 cm; −5 cm<WTL1 ≤ 40 cm; and 40 cm<WTL2),
where negative values indicate depth below the surface, while positive
values indicate ponding. At water level −3 we estimated that African
wetlands will have a net release of 310Mt CO2 equivalent yr

−1, while for
water level−2 theywill emit 115MtCO2 yr

−1 and 46MtCO2 yr
−1 forwater

level −1, while 91Mt CO2 yr
−1 will be taken up by Africanwetlands when

the water level is at level 1.

Discussion
Our estimate of wetlands in Africa (947,750km2) is larger than that of
the coarser global wetland dataset by CIFOR (859,278 km2) and that of
GLWD (934,481 km2). The variation may be due to the coarser resolu-
tion imagery used to produce previous global wetland maps, which
may result in misclassification and omission of small-scale wetlands.
This inconsistency highlights the importance of using high-resolution
data to improve the estimation of wetlands, which in turn can be used
to develop policy and monitoring to protect wetlands. Our study
shows close similarities with smaller geographical scale studies, such
as the peatland map of Angolan highlands constructed by Lourenco
et al.38 (see Supplementary Fig. S6).

There was high confusion in discriminating between mineral soil
swamps and peatlands, especially in the TW region, with users’ and
producers’ accuracy below 70% and 80%, respectively. There is also a
common confusion amongst other wetland classes, such as swamps
and mangrove, marsh, and seasonal wetlands, due to similarities in
their visual and spectral signatures. The low accuracy in theArid region
(Supplementary Table S5) was a result of confusion in discriminating

swampand peatlands along theNile area, due to the presence of a peat
deposit within the swamps. Similar confusion occurs in TW and TWD
due to peat deposits in swamps, so ourmethod did not performwell in
discriminating between non-peatland swamps and peatland.

The WFPI analysis generally identifies sites where the impact of
human activities results in patchiness of the surrounding wetlands.
The overlap between fragmentation and high population density
indicates an increased susceptibility to future human impacts. It
should be noted that some extensive wetland regions with a high
density of fragments, such as those in the Congo Basin, showminimal
correlation between fragmentation and human populations, especially
in areas distant from settlements or with sparse human activity. The
fragmentation in these wetlands is largely attributed to geomorpho-
logical patterns and climatological processes rather than anthro-
pogenic influences. However, these peatlands remain susceptible to
potential future fragmentation driven by human activities, emphasiz-
ing the need for future studies that examine wetland change and
detect changes in fragmentation to support vigilant conservation and
management strategies. Ourmap can be used as a baseline tomonitor
and assess wetland changes over time at a fine scale (10m resolution).
It should also be noted that our method can now be used to generate
timeseries observations for analyzing human-driven and natural wet-
land changes, as well as their fragmentation, supporting future
remotely sensed observations on the success of different sustainable
wetland protection policies. We use detailed ground control points
specifying wetland types and locations, ensuring that incorporating
topographic indices would not substantially affect classification
accuracy. However, we aim to refine the models further in future
research by integrating topographic variables to enhance their preci-
sion and applicability. Our future work will be concentrated on gath-
ering more and better-quality ground control data to support some
future time series analyses.

We explore the possible impact of African wetlands on global
climate through net carbon uptake/loss under natural and a range of
drained conditions. We find that the three selected wetland types
(peatland, mangrove, and marsh) under drained conditions could
contribute up to 3% of global net annual carbon loss, a value which
might be much higher if data for emissions from other wetlands
becomeavailable and included in the estimation.Humanactivities have
beenwidely reported tobe akeydriver ofwetlanddegradation39–41. The
degradation of wetland is often related to deeper water tables, which
leads to increased decomposition and release of carbon to the
atmosphere42,43. We find that wetlands, which are currently highly
fragmented in heavily populated areas of Africa, have the potential to
release CO2 equivalent to0.6%of total global annual emissions. Hence,
protection of African wetlands, particularly in tropical wet (TW), tro-
pical wet and dry (TWD) regions, andmost areas with highWFPI where
the largest carbon stocks and greatest net C emission potential are to
be found, will be important for managing future land-based emissions.
Although land use was indirectly considered in the carbon loss esti-
mations, a comprehensive evaluation of its specific impacts was out-
side the scope of this study. Future investigations should integrate
detailed land use data to better understand and quantify its contribu-
tion to wetland fragmentation and degradation.

Our analysis of African wetlands provides a high-resolution
insight as to their extent, condition and their potential contribution
to the global carbon balance, providing data critical for both
improving land-surface climate models and for sustainable wetland
conservation.

Methods
Datasets
Ground control points. We collated data on the location and char-
acteristics of wetlands across Africa from reliable sources, including
the Food and Agriculture Organization (FAO) global dryland

Table 1 | The location, number of fragments and population of
high WFPI 10 km2 grid cells across Africa for the year 2020

Location Country Population per
grid cell

Fragmentation per
grid cell

WFPI

Rivers state Nigeria 130,698 209 0.89

Lagos Nigeria 303,143 107 0.76

Greater
Monrovia

Liberia 136,475 185 0.83

Alexandra Egypt 168,943 94 0.66

Algiers Algeria 220,546 76 0.61

Muranga Kenya 72,349 61 0.59

Conakry Guinea 98,844 174 0.68

Littoral Cameroon 67,846 173 0.57

Estuarie Gabon 41,947 226 0.55

Article https://doi.org/10.1038/s41467-025-59373-2

Nature Communications |         (2025) 16:5065 5

www.nature.com/naturecommunications


assessment database, Global Peatland Database (GPD), journal papers,
academic reports, and NGO reports. We verified each data point and
screened them to exclude any coordinates that were inaccurate, mis-
labeled, or inconsistent by using visual interpretation of very high
spatial resolution digital globe images (>1m pixel) made available for
visualization through Google Earth. Our final dataset used 8204 con-
trol points for different wetland types in Africa. These control points
were sorted based on the climate zones in Africa and assigned to either
training or validation points (Supplementary Fig. S4). Thus, the control
points were grouped into an equal number of training and testing
points to ensure robust accuracy assessment16,44.

Satellite data. Sentinel-1 and -2 satellite images covering the entire
study area for the period of January 2021 to December 2021 were
available through the Google Earth Engine platform (GEE) at 10m
resolution. We used the Ground Range Detected interferometric wide-
swath with a pixel spacing of 10m Sentinel-1 images acquired in dual-
polarization (VV/VH) and pre-processed as a Level-1 data product, with
an average acquisition interval of 12 days. A total of 5728 Sentinel-1
images in ascending order were collected for the study area. Sentinel-2A
and 2B Top of Atmosphere reflectance data with 13 spectral bands were
obtained through the GEE. We used blue (0.496 µm, band 2), green
(0.560 µm,band 3), red (0.665 µm,band4), near infrared (NIR, 0.835 µm,
band 8), and short-wave infrared 2 (SWIR2 2.202 µm, band 12) bands.
Sentinel-2 images with cloud cover of <20% were selected from January
2020 to January 2021 which resulted in a total of 13596 images45–49.

Population data. We obtained information about population dis-
tribution from the Gridded Population of the World database (GPW
V4) provided by Center for International Earth Science Information
Network (https://sedac.ciesin.columbia.edu). The GPW dataset has an
approximate resolutionof 30 arcsec, equivalent to 1 kmat the Equator,
that contains global population counts, density, urban/rural status, age
and gender structures with more than 12,500,000 input units main-
tained by NASA’s Socio-Economic Data and Applications Center
(SEDAC). The population input data were collected at the finest reso-
lution available from the ‘2010’ round of censuses, which occurred
between 2005 and 2014. The data were used to produce population
estimates for the years 2000, 2005, 2010, 2015, and 2020 (https://
earthdata.nasa.gov/data/catalog?keyword=gpw-v4/methods). We
selected the population estimates for 2020 for our analysis.

Mapping of wetland extent
To accurately delineate the wetlands of Africa we classified the con-
tinent into different major zones according to the climatic and eco-
logical features. These zones include tropical wet (TW), tropical wet
and dry (TWD), mediterranean subtropical (MED), semiarid (SARD),
and desert or arid (ARD). We grouped the control points for each
wetland type based on these climate zones. TWD consists of 3120
control points, TW includes 2550, SARD has 1144, ARD contains 848,
and MED comprises 536. We processed the images collected from
Sentinel-1 and -2 images for the period of 2020–2021 to develop
optical and radar indices for each climate zone. The optical variables
used include spectral bands 2 (blue), 3 (green), 4 (red), 8 (NIR), 11 and
12 (SWIR), the normalized difference vegetation index (NDVI), nor-
malized difference water index (NDWI), modified normalized differ-
ential water Indices (MNDWI), and tasseled cap wetness index (TCWI).
SAR variables included vertically transmitted, vertically received SAR
backscattering coefficient (σ0VV), vertically transmitted, horizontally
received SAR backscattering coefficient (σ0VH), and the normalized
difference (Ndiff VH�VV

VH +VV) and ratio indices (Nratio= VV
VH) for the wet and

dry season. We then undertook a variable importance analysis50–57 for
each climate zone to select the most important variables to input into
the final classification. The highest importance is typically placed on
the variables that contribute the most to reducing the model’s

impurity or error. We identified these variables by computing variable
importance in an RF algorithm using the mean decrease impurity
(MDI), which measures howmuch each variable improves the model’s
predictiveperformance.We ran the variable importance algorithm five
times before finally selecting the variables with higher reduction in
impurity considered as higher importance. For all images in the arid
and semi-arid region, we extracted the maximum pixel values, while a
median value was used for other regions to enhance identification58.
Finally, we applied a Random Forest (RF)59,60 algorithm to classify and
validate wetland types in each climate zone.

To produce the forest tree in RF we needed to identify the two
important parameters: the number of decision trees to be generated
(Ntree); and the number of variables to be selected and tested for the
best split when growing the trees (Mtry). The parameter Ntree was
assessed for the values of 100 – 600: a value of 500 was selected as
error rates for all classification models were constant beyond this
point. In this study, we used the combined SAR and Optical indices as
input variables.

Classification map accuracy and uncertainties
We undertook the classification of wetlands according to each climate
zone using the RF classifier. The control points for different wetland
types were compiled for each climate region separately to classify the
input variables developed for each region. To accurately classify the
wetland types based on their distinctive features in a particular region,
the input variables were extracted from composite images constructed
from different pixel values over a particular period of the year. In ARD,
seasonality is often a key property of wetlands. We therefore used the
variables extracted from seasonal composites of maximum pixel value
to train theRF classifier (Table 2). Seasonalwetlandswere also identified
using themaximum value fromour seasonal composites of wet and dry
seasons in each climate zone. For theTWDandMEDzones, the variables
constructed for the wet and dry season from the mean pixel value
composites were used to train the RF classifier (Table 2). The accuracy
of RF classifications for each climate zone was assessed using cross-
validation by splitting the control points into two halves (50% training
and 50% testing points) (Supplementary Fig. S4), spatially selected for
each climate zone from each class on a random basis. Our accuracy
estimationmatrix included theoverall accuracy (OA), Kappa coefficient,
producer accuracy, and user accuracy. We selected the Kappa coeffi-
cient in this analysis due to its widespread application and interpret-
ability in evaluating agreement between observed and predicted
classes, making it a reliable metric for wetland classification studies.
Overall accuracy determines how well the classification algorithm per-
formed, which can be measured by dividing the total number of cor-
rectly identified sample point by the total number of the testing points
(Supplementary Tables S2–S6). We evaluated our uncertainties by
comparing classifications made using the entire control point dataset
with those produced using only a subset of control points selected at
random for each wetland class in each climate zone. The uncertainties
were associated with our classification accuracy, high confusion
between wetland classes (e.g., swamps and peatlands), and limitations
in the number of control points. A common issue with the gridded
population data is a misallocation of population to areas outside urban
areas. These errorswereminimizedby down-sampling the 1 kmgridded
population and taking the average population within 10 km grids.

Wetland fragmentation and population index (WFPI)
We compared the distribution of wetland fragments and population at
the same cell size across 10 km× 10 km grid areas. For our analysis, we
used only the count of wetland fragments estimated at a resolution of
10 km to allow comparison to the gridded population data at 10 km
resolution. This resolutionwas selected because it was found to be the
mean dimension of wetland fragments from an earlier study in
southern Nigeria21.

Article https://doi.org/10.1038/s41467-025-59373-2

Nature Communications |         (2025) 16:5065 6

https://sedac.ciesin.columbia.edu/
https://earthdata.nasa.gov/data/catalog?keyword=gpw-v4/methods
https://earthdata.nasa.gov/data/catalog?keyword=gpw-v4/methods
www.nature.com/naturecommunications


We sought to identify the association of wetland fragmentation
with human population. We use a fuzzy logic approach to create a
membership rank for the fragmentation grid and population grid
(ranging from0 to 1),with0 representing the lowestmembership and 1
the highest membership in increasing order. Lower membership
indicated grid cells with less fragments or which are sparsely popu-
lated, while grid cells with a large number of wetland fragments or
which are densely populated were assigned to a higher membership
group. Finally, we overlaid the gridded fragmentation membership
layer with the gridded population membership layer to quantify the
coincidence of wetland fragments and human population. Higher
WFPI indicated interaction of dense population with wetlands, result-
ing in patchiness within the grid cells.

Population grid. The population grid was created by transforming
1 km resolution population data obtained from the GPW V4 data using
10 km grid reference cells across the continent of Africa. We classified
the cells in different class ranges from lowest to highest based on the
population count in each grid cell (Supplementary Fig. S1). Most of the
grids with dense population were located near major city centers or
close to river networks. We used this grid as an input for the fuzzy
membership transformation.

Fragmentation grid. To create the fragmentation grid, we converted
the classified wetland raster to polygons using the conversion tool in
ArcGIS Pro. We used an algorithm similar to spatial aggregation by
overlaying a 10km× 10 km grid on the original 10m resolution frag-
mentation map. For every 10m cell within a 10 km grid, the number of
unique wetland fragments was calculated. We then identified and
labeled distinct fragments within each grid. The fragment count within
each 10 kmgridcellwas computed toderive ametricof the total number
of fragments. The total number of fragments per grid cell was used to
group the cells into eight groups from low to highly fragmented (Sup-
plementary Fig. S2). The total fragment in each cell was calculated by:

Fraggrid =
Xn

i

Gridi ð1Þ

where Fraggrid is the fragmentation grid (10 km), n is the number of
fragments in grid cell i, and i is the code of the grid cell.

Fuzzy membership. We transformed the population and fragmenta-
tion grid into a fuzzy membership layer scaled from 0 to 1. 0 indicated
grid cells that are not members of any set while 1 was assigned to grid
cells with full membership. We used the fuzzy linear membership
function to transform the input values linearly on the 0 to 1 scale, with
0 being assigned to the lowest input value and 1 to the largest input
value (Supplementary Figs. S3 and S4). All of the values in between
receive somemembership value based on a linear scale, with the larger
input values.

Fuzzy overlay. The Fuzzy Overlay tool is used to analyze the possibility
of a phenomenonbelonging tomultiple sets in amulticriteria overlay. It
determineswhether a phenomenon is a possiblemember of a particular
set and analyzes the relationships between themembership ofmultiple
sets. We used the “fuzzy And” function to find the relationship between
the population and fragmentation membership layer. We overlaid the
population gridwith the fragmentation grid using a fuzzy overlay tool61.
This allowed us to analyze the relationship between the multiple
members set from each grid layer. Stronger relationships are found
between higher membership sets while lower membership sets show
weak relationships. Coincidence of a dense population grid (higher
population membership grid) with a highly fragmented grid (higher
fragmentation membership grid) resulted in the highest WFPI region.

Carbon loss estimation
We used the CO2 emission factor provided by the IPCC Wetland Sup-
plement guidance28 to estimate the amount of carbon loss from each
wetland type for different climate zones in Africa. An emission/
removal factor is a coefficient that quantifies the emissions or removals
of a gas per unit area. It is calculated based on a sample of measure-
ment data, averaged to develop a representative rate of emission for a
given activity level under a given set of operating conditions. We
multiplied the total area of each wetland type with its corresponding
emission/removal factor across the different climate zones for two
assumptions: (1) thewetlands are in pristine condition; (2)wetlands are
drained. The CO2 equivalent emission was calculated by:

CO2 emission i =
X
i, c, y

EF*Areað Þ ð2Þ

Table 2 | Composites and input variables for each region

648

649

650

651

652

653

Study region Composites

Date value B8 B12 NDVI NDWI MNDWI TCWI VV VH −

+

Tropical wet Jan - Dec 2021 Mean

Tropical wet and dry Jan - Dec 2021 Mean

Mediterranean/Humid

subtropical

Jan - Dec 2021 Mean

Semi-arid Jan - April 2021 

(wet)

Maximum

Arid/desert Jan - April 2021 

(wet)

Maximum

The shaded box indicates the selected variables of highest importance used as input for final classification in each region
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where CO2 equivalent emission is the annual net carbon emission/uptake
from a wetland type in tonnes CO2 yr

−1
, area is the land area of drained

organic soils in a land-use category in climate domain c, in ha and EF is
the emission factor for drained organic soils, by climate domain c, in
tonnes C ha−1 yr−1.

We also adopted the empirical function of Zou et al.37 to estimate
the wetland carbon flux using water level as a function of carbon
emission. The equation below was used to calculate the carbon flux
from selected wetland types under different moisture regimes in dif-
ferent climate zones:

Emissiony =
X

Ef sijk ×Areaijy

� �
ð3Þ

where Efs is the emission factors, i is the climate zone, j is the water-
table level (coded −3 to 2), y is the year, and k is the wetland type.

Carbon stock estimation
The total amount of carbon stored by each wetland type in Africa was
evaluated using the acquireddata of carbon stockper hectare from the
studies by refs. 22–24,26–28. To calculate the total amount of carbon
stored by each wetland, we multiplied the total area of the wetland by
the value of carbon stock per hectare: Wetland carbon = total wetland
area (hectare) * carbon stock (t C ha−I).

Data availability
Gridded Population of the World (GPW V4) data (Center for Interna-
tional Earth Science Information Network) are available at https://
sedac.ciesin.columbia.edu. The Carbon Emission factor data is avail-
able at https://www.ipccnggip.iges.or.jp/EFDB/find_ef.php?ipcc_code=
3.B.4&ipcc_level=2. https://doi.org/10.1038/s41561-022-00989-0. The
main data supporting the findings of this study are available as Sup-
plementary Information files. The shapefiles for the 10m resolution
wetland map of Africa are available from the University of Leeds data
repository (DOI to be added upon paper acceptance).
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