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Abstract

Background and Objectives
The aim of this study was to develop and validate a machine-learning classifier based on patient
and witness questionnaires to support differential diagnosis of transient loss of consciousness
(TLOC) at first presentation.

Methods
We prospectively recruited patients newly presenting with TLOC to an emergency de-
partment, an acute medical unit, and a first seizure or syncope clinic. We invited partic-
ipants to complete an online questionnaire, either at home or at time of initial assessment.
Two expert raters determined the cause of participants’ TLOC after 6-month follow-up.
We used independent development and validation samples to train a random forest clas-
sifier to predict diagnosis from participants’ questionnaire responses and validate classifier
performance. We compared classifier performance against penalized linear regression and
referrer diagnosis.

Results
We included 178 participants in the final analysis, of whom 46 identified a witness able to
complete an additional witness questionnaire. Given low witness recruitment, we developed
a classifier based on patient answers only. A classifier trained on 9 items correctly identified 63
of 78 diagnoses (80.8%) (95% CI 70.0–88.5), an increase over the accuracy of initial assessing
clinicians who were only able to diagnose 70.5% correctly. Within this, 96% (87.0%–99.4%) of
those expertly rated as having syncope were correctly classified by the classifier (classifier
sensitivity); 40% (20%–63.6%) of those expertly rated after follow-up as having either epilepsy
or functional/dissociative seizures were similarly classified as being nonsyncope (classifier
specificity).

Discussion
Amachine-learning classifier for differential diagnosis of TLOC has comparable performance in
differentiating between 3 main causes of primary TLOC as the current standard of care but is
insufficiently accurate in its current form to warrant incorporation into routine care. A system
including information from witnesses might improve classification performance.
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Glossary

AMU = acute medical unit; CDA = clinical decision aid; ED = emergency department; ESC = European Society of Cardiology;
FDS = functional/dissociative seizure; iPEP = initial PEP; NPV = negative predictive value; OOBE = out-of-bag prediction
error; PEO = Paroxysmal Event Observer; PEP = Paroxysmal Event Profile; PESQ = Paroxysmal Event Symptoms
Questionnaire; PEWQ = Paroxysmal Event Witness Questionnaire; PPV = positive predictive value; RF = random forest;
TLOC = transient loss of consciousness.

Introduction

Background and Importance
Transient loss of consciousness (TLOC)—spontaneous
disruption of consciousness not due to head trauma, with
complete recovery1—is one of the commonest neurologic
concerns in primary/emergency care.2 Over 90% is due to
syncope, epilepsy, or functional/dissociative seizures
([FDSs]; “psychogenic nonepileptic seizures”).3,4 Rapid,
accurate diagnosis is vital for appropriate further manage-
ment. However, 20%–30% of patients are misdiagnosed or
mismanaged.5,6 Patients who could be reassured that they
experienced uncomplicated vasovagal syncope are told they
cannot work or drive until expert assessment. Patients who
should be investigated by cardiologists are referred to neu-
rologists and vice versa. Investigations to identify life-
threatening pathologies are delayed.2,3,5,7-9 Misdiagnosis is
particularly common in patients with FDSs. The mean in-
terval from first presentation to diagnosis of FDSs is 4 to
7 years,3 causing prolonged disability and risking potentially
fatal mistreatment.10,11

Diagnosis is complicated by the lack of unique distinguishing
single clinical features2,3 and because interictal investigations
are noncontributory in most cases.9,12 The optimal extraction
of historical information from the patient and any witnesses
remains the cornerstone of diagnosis. Previous research sug-
gests that clusters of features can distinguish between causes of
TLOC better than individual features.3,13-15

At present, taking and interpreting the history require time
and specialist expertise, which may not be available in
emergency or primary care settings. However, studies based
on clinical data such as peri-ictal symptoms suggest that
systematic questionnaires may support diagnosis.3,16

In previous research, we have shown the diagnostic potential
of systematic symptom-reporting questionnaires (captured
in the Paroxysmal Event Profile [PEP]) and of witness
reporting (the Paroxysmal Event Observer [PEO]) to sup-
port differential diagnosis of TLOC.3,17 We used machine
learning to reduce these extensive questionnaires to the
much shorter initial PEP (iPEP). This 36-item iPEP was used
to train a machine learning–based diagnostic classifier (the
“iPEP classifier”) to discriminate between diagnoses in
a cohort of patients with established gold standard diagnoses.
In a separate validation sample, this classifier accurately

diagnosed 74 of 86 patients (86.0%) correctly (100% syn-
cope, 85.7% epilepsy, 75.0% FDSs).18

However, such a tool would be of maximal clinical utility at
the point of first presentation, and the validity of using
a training sample of patients with long-standing, established
diagnoses to support diagnoses in a target population of
patients newly presenting with TLOC is uncertain.

Goal of This Investigation
The objective of this study was to develop and validate a pa-
tient-completed questionnaire-based machine-learning clas-
sifier within the target population (patients first presenting
with TLOC), with questionnaires incorporating new items
of potential diagnostic utility identified since development of
the PEP/PEO.13

Methods

Setting
We performed this study in a single large teaching hospital
in the United Kingdom, with a large adult emergency de-
partment (ED) and tertiary neurology and cardiology
services.

Recruitment and Participants
Prospective recruitment took place from February 10, 2022,
to January 9, 2023. One team member (D.H.) screened all
admissions to the ED and acute medical unit (AMU) for
presentations with TLOC and all new referrals to neurology
and cardiology departments for TLOC, according to the
criteria stated further.

Inclusion Criteria

1. Patients first presenting with TLOC.
2. Referred to secondary care for diagnostic evaluation OR

given firm diagnosis of syncope in accordance with
European Society of Cardiology (ESC) guidelines for
syncope presentations not requiring further investigation.

3. Adults older than 16 years.
4. Able to complete questionnaires independently.
5. Sufficient English language ability to complete question-

naires without support.

Exclusion Criteria

1. Unable to give informed consent to participation in
research.
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2. Unable to complete questionnaires independently.
3. Previous specialist (neurologic or cardiologic) assess-

ment of TLOC.
4. Secondary cause of TLOC identified.

We invited participants either in person (during their ED or
AMU attendance) or before specialist assessment, sending
participant information sheets about the study to all indi-
viduals identified as eligible.

We asked participants to identify a witness to their TLOC
and to share with them a separate information sheet re-
garding the study. We sought independent consent from
witnesses to participate.

Sample Size
Development

There are no simple rules for calculating sample sizes for
machine learning with random forest (RF) classifiers. Al-
though the RF approach is optimized for classification
problems in low-n high-p settings,19 performance improves
with increased sample size.20,21We previously demonstrated
robust performance of an RF classifier for this problem in
a training set of 163 participants.18 Simulating classification
performance using our previous study data demonstrated
that classifier accuracy increased progressively with a sig-
moidal distribution flattening out at 40–50 participants. To
ensure that we captured enough participants with a suffi-
ciently certain diagnosis to allow inclusion in the analysis, we
aimed to recruit 100 participants for the training stage of this
study.

Validation

We consider the primary clinical problem to be one of
separating “cardiologic” (syncope) presentations from
“neurologic” (epilepsy or FDSs). In our pilot study, the
iPEP classifier had a sensitivity for syncope of 100% (95%
CI 86.7%–100%). Demonstrating sensitivity for syncope
within the previously determined 95% CI (>86.7%)
requires (for 1-tailed α = 0.05 and β = 0.9) 42 participants
with syncope in the validation sample.22 Previous studies
suggest a prevalence of syncope in our target population of
approximately 50%.23 This gives a total validation sample
size of 84. A study of ED attendances with suspected
seizures in our target population found that 14.3% could
not be given a firm diagnosis of a primary TLOC cause
(1.1% unknown diagnosis, 9.9% acute symptomatic seizure,
3.3% missing data).24 We, therefore, adjusted our target to
98 participants to ensure recruitment-sufficient numbers
with clear diagnoses. Adjusting for loss to follow-up (esti-
mated 6%25) provides a final validation sample size of 105
participants.

Study Instruments
PESQ and PEWQ

We used 2 brief questionnaires derived from previous de-
velopment work18 and subsequently published reviews13,26:

one for patients themselves and one for witnesses if available.
A 52-item patient questionnaire (the “Paroxysmal Event
Symptoms Questionnaire” [PESQ]) comprises 3 de-
mographic questions (age, sex, years of formal education), 14
questions regarding medical history, and 35 questions of
peri-ictal symptoms. An 18-item witness questionnaire
(“Paroxysmal Event Witness Questionnaire” [PEWQ])
comprises 18 questions regarding ictal semiology.
Participants/witnesses could complete the PESQ/PEWQ
either online (through a dedicated interface, hosted on
a secure university server) or on paper.

We provide PESQ and PEWQ in eAppendix 1.

Diagnostic Reference Standard
Because we sought to recruit an unselected first-presentation
TLOC cohort, we were unable to use gold standard diagnoses
as reference; most of the people with epilepsy or FDSs do not
have sufficiently frequent seizures to capture ictal EEG
recordings6 while ESC guidance supports making clinical di-
agnosis without further investigation of uncomplicated vaso-
vagal syncope.27 However, consensus clinical diagnosis of
TLOC-causing disorders by multiple experts is highly
reliable.28,29 We, therefore, use as reference standard the con-
sensus diagnosis reached by 2 independent TLOC experts
(M.R. and S.J.H.), blinded to PESQ and PEWQ data (ques-
tionnaire responses and classifier predictions), from notes re-
view at least 6 months after enrollment.

Participants for whom no firm clinical diagnosis could be
reached at the end of follow-up, or who had multiple di-
agnoses, were excluded from further analysis. A previous
study of patients with suspected seizures in this population
found that only 1.1% of patients could not be given a single
etiologic diagnosis, so we anticipated a low diagnostic failure
rate.24

Analysis
Development

We used an iterative feature selection algorithm to identify
most highly discriminatory features from the PESQ data
provided by the first 100 participants. The details of this stage
of the analysis are the same as that used in our previous initial
development research.18 An RF trained using the CART
algorithm on all development data (5,000 iterations, sam-
pling √p predictor variables [where p = number of pre-
dictors] at each iteration) ranked the relative prediction
importance of each predictor variable; progressively smaller
RFs are then trained by removing the least important 20% of
predictors and calculating out-of-bag prediction error
([OOBE]; average of the prediction error of each tree in the
ensemble for data not sampled in its training, an estimate of
generalization error equivalent to cross-validation meth-
ods30) of the resulting RF. The final set of predictor variables
and RF used is that which minimizes OOBE; we previously
found that more parsimonious feature selection resulted in
significant impairment in performance.31 The final

Neurology.org/CP Neurology: Clinical Practice | Volume 15, Number 2 | April 2025
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prediction model was an RF trained on all development data
using the selected set of predictor variables. We selected
hyperparameters on the basis of optimization in our pilot
study, combined with evidence that classifier performance is
robust to variations in these hyperparameter settings.32

To compare a nonlinear machine learning–based classifier
against more traditional regression approaches, we also
trained a penalized maximum likelihood (LASSO) classifier,
choosing the model complexity/regularization parameter λ
that minimized the cross-validated mean-squared error.

Validation

We validated prediction models against an independent
validation data set. Both RF and regression models classified
participants into likely diagnoses of epilepsy, syncope, or
FDSs, evaluating performance regarding overall classification
accuracy, as well as sensitivity, specificity, positive predictive
value (PPV), and negative predictive value (NPV).

Given that syncope due to structural or arrhythmic cause is the
condition with highest short-term morbidity/mortality, we
determined sensitivity for syncope to be our primary outcome.
We compared sensitivity for syncope of the new RF with that
found in our initial research18 (χ2 test, one-tailed α = 0.05 for
target sensitivity 97.5%). We also tested the hypothesis that
classification accuracy of the RF is significantly greater than that
of the regression model (McNemar test, α = 0.1).

Furthermore, we performed a post hoc analysis simulating
performance of the classifier as a clinical decision aid (CDA)
augmenting the initial assessing clinician’s evaluation. For
this, classifier diagnosis was used as “tie-break” for occasions
when the initial assessing clinician gave no working di-
agnosis, otherwise the initial diagnosis was used; these di-
agnoses were compared with our reference standard.

Standard Protocol Approvals, Registrations,
and Participant Consents
We pre-registered the study protocol on clinicaltrials.gov
(ID: NCT05367999). Ethical approval was obtained from
NHS Health Research Authority Edgbaston Research Ethics
Committee (IRAS: 304114). All patients and witnesses
confirmed their consent to participate before completing the
PESQ/PEWQ and were able to withdraw at any time.

Data Availability
Deidentified data set, data dictionary, and analytic codes are
available on request from the authors.

Results

Descriptive Results
Screening and Recruitment

Of 2,811 patients screened for recruitment, 1,181 were
approached to participate. Of these, 186 (15.7%) gave consent
and completed thePESQ. Sevenparticipants eitherwithdrewor

were deemed ineligible at the end of follow-up. One participant
was excluded because no final diagnosis could be reached.
Therefore, we included 178 participants in further analyses; the
first 100 participants constituted the development data set and
the remaining 78 validation. Of 178 included participants, 46
identified a witness who completed the PEWQ. Figure 1
illustrates participant flow through the study. Patients were
deemed ineligible at screening most commonly because of not
experiencing TLOC (592%, 36.3%), having previous specialist
care for a TLOC-causing disorder (352%, 21.6%), or having
a secondary cause for their TLOC (285%, 17.5%). Only 59
(3.6%) were ineligible for inability to complete the PESQ be-
cause of language or other barriers.

Demographics and Diagnoses

Syncope was the most common final diagnosis (134 partic-
ipants; 75.3%), followed by epileptic seizure (32 participants,
18.0%). Table 1 summarizes participant demographics.

Expert raters agreed on diagnoses in 144 of 178 cases
(80.1%). For the remainder, consensus diagnoses were
reached by discussion. One participant was excluded because
of persistent uncertainty regarding diagnosis.

Expert raters agreed with the initial clinician diagnosis in 120
of 178 cases (67.4%).

Figure 1 Participant Flow Diagram

Neurology: Clinical Practice | Volume 15, Number 2 | April 2025 Neurology.org/CP
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Patient Questionnaire

Most frequently endorsed PESQ items across all participants
were “I want to know what has happened when I black out”
(140 participants), a history of light-headed spells (88 par-
ticipants), and “I feel hot or cold in my attacks” (80 partic-
ipants). Least frequently endorsed items were “The sight of
blood or needles triggers my attacks,” “During my attacks I
have memories of a past bad experience which I cannot stop,”
and a history of brain tumor (each 4 participants).

Figure 2 presents relative proportions of participants en-
dorsing each PESQ item by final diagnosis, with hierarchical
clustering of questionnaire items.

Witness Questionnaire

A total of 46 witnesses completed the PEWQ. Of these, only
one was for a participant with FDSs. Most frequently endorsed
items were “The skin or lips looked pale during the attack” (33
witnesses), “During the attack, arms and legs are limp” (31
witnesses), and “Breathingwas shallow or quiet after the attack”
(28 witnesses). Least frequently endorsed were “The attacks
involve violent thrusting of the hips” (2 witnesses), “The
attacks involve chewing, smacking, or licking movements of the
mouth and lips” (4 witnesses), and “The attacks involve
scratching or bicycling movements of the legs” (4 witnesses).

Figure 3 presents relative proportions of witnesses endorsing
each PEWQ item by diagnosis; because only 1 participant
with FDSs identified a witness, results are shown for syncope
and epileptic seizures only.

Hierarchical clustering of PEWQ items (displayed in the
dendrogram in Figure 3) identifies 2 high-level clusters of
“syncopal” features (shallow breathing, flaccidity, pallor) and
“other” features. The “other” features subcluster into a group
highly reported in epileptic seizures (postictal stertor, violent
shaking, rigidity, and prolonged shaking) and a group of less
frequently reported symptoms.

Sensitivity and Specificity of Individual
Questionnaire Items
No item was more than 80% sensitive and specific for any
diagnosis. Three PESQ items had individual sensitivity and
specificity >0.5 for either syncope or epileptic seizures. More
met this criterion for FDS, but given low FDS prevalence,
PPV/NPV did not exceed 0.2.

Seven PEWQ items had individual sensitivity and
specificity >0.5 for either syncope or epileptic seizures.

The most sensitive individual question for syncope with ade-
quate specificity was “The skin or lips looked pale during the
attack” (sensitivity = 85.3%), and the most specific with ade-
quate sensitivity was “During the attack, arms and legs are limp”
(specificity = 72.7%). For epilepsy, themost sensitive item from
the PESQ was “After my attacks I feel very confused” (68.8%),
while the most specific was “The attacks involve violent shaking
of the arms or legs” (91.2%) from the PEWQ.

Table 2 summarizes diagnostic performance of most highly
discriminating individual items from the PESQ and PEWQ;
eTable 1 provides complete data for all items.

Model Development
PESQ Only

Because PESQ and PEWQ were available for only 46 par-
ticipants, we performed model development using PESQ
responses only. eFigure 1 demonstrates relative predictor
importance of PESQ responses. Some items contributed
heavily to classifier performance (e.g., “My attacks come on
when I am asleep” and “I wake from my attacks with a cut
tongue”) while others decreased performance (e.g., “I want
to knowwhat has happened when I black out” and “history of
light-headed spells”). Historical variables showed generally
lower predictor importance than peri-ictal symptoms.

Feature selection identified a 9-variable RF as optimal: it used
1 demographic variable (age in years) and 8 symptoms.
Figure 4 shows these symptoms and relative reporting pro-
portions by diagnosis. Hierarchical clustering demonstrates
2 high-level clusters within these items, a “seizure” cluster
(onset from sleep, waking with cut tongue, deja vu, sleep
deprivation trigger) and a “polysymptomatic” cluster, highly
reported in FDSs.

The optimal RF had an OOBE of 0.21 (79% accuracy).

Penalized regression (LASSO) identified 7 predictors with
nonzero coefficients: 1 demographic (age in years), 1 his-
torical (brief jerks during the day), and 5 symptoms (“My
attacks come on when I am asleep”; “I wake from my attacks
with a cut tongue”; “I feel hot or cold in my attacks”; “After
my attacks I feel very confused”; and “During my attacks I

Table 1 Summary of Participant Demographics

Diagnosis N (% total) Median age (range) N (%) female N (%) providing witness

Syncope 134 (75.3) 64 (17–94) 75 (56.0) 34 (25.4)

ES 32 (18.0) 47.5 (16–86) 14 (43.8) 11 (34.4)

FDS 12 (6.7) 31 (16–57) 9 (75.0) 1 (8.3)

Abbreviations: ES = epileptic seizure; FDS = functional/dissociative seizure.

Neurology.org/CP Neurology: Clinical Practice | Volume 15, Number 2 | April 2025
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smell things that are not really there”). eTable 2 provides
model coefficients, and eFigure 2 presents the hyper-
parameter tuning.

PESQ-PEWQ

Given the small PESQ-PEWQ data set, we used all available
data for model development. Because only 1 participant in

Figure 2 Heatmap of Relative Frequency of Patient-Reported Symptoms by Diagnosis

Color depicts the proportion of
respondents with each diagnosis en-
dorsing each item. FDS = functional/
dissociative seizure. Dendrogram on
the left-hand side demonstrates hier-
archical clustering of questionnaire
items (items that are most likely to co-
occur are clustered; then, clusters of
items most likely to co-occur clustered
on higher levels).

Neurology: Clinical Practice | Volume 15, Number 2 | April 2025 Neurology.org/CP
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this data set had FDSs, they were excluded from the analysis
and a binary classifier for distinguishing syncope from epi-
leptic seizures was developed. eFigure 3 demonstrates pre-
dictor importance for the combined PESQ-PEWQ classifier.
Again, symptom and witness reports were the most

important predictors, with the latter disproportionately
represented among the most important predictors.

The optimal model used 3 predictor variables: 2 symptom
reports from the PESQ (“My attacks come on when I am asleep”
and “I wake from my attacks with a cut tongue”) and one from
the PEWQ (“During the attack, arms and legs are limp”).

Model Validation
PESQ-Only

To avoid overfitting, we performed external validation using
a separate holdout data set comprising the last 78 recruited
participants. The PESQ classifier correctly identified 63 of 78
diagnoses (80.8%; 95% CI 70.0–88.5). The sensitivity for
syncope was 96.6% (87.0–99.4). Table 3 summarizes the
diagnostic performance for each diagnosis. eTable 3 gives the
confusion matrix.

The classifier did not differ significantly from our prespecified
target sensitivity for syncope of 97.5% (p = 0.644). We also
performed a post hoc analysis comparing classifier diagnosis
with the initial assessing clinician’s diagnosis and referrer or
discharge diagnosis. The classifier accuracy was numerically,
but not statistically significantly, superior to initial diagnosis
(accuracy 70.5%; p = 0.192) and referrer diagnosis (accuracy
75.6%; p = 0.561).

We hypothesized that machine-learning classifiers such as
RFs would outperform regression modeling because they
allow for items to have different contributions to differential
diagnosis depending on co-occurrence with other items. We,
therefore, compared performance of the PESQ classifier with
a linear model (penalized regression model). The latter

Figure 3 Relative Frequency by Diagnosis of Witness
Reports

Color depicts the proportion of witnesses for respondents with each di-
agnosis endorsing each item. Dendrogram to the left depicts hierarchical
clustering of questionnaire items (items that are most likely to co-occur are
clustered; then, clusters of items most likely to co-occur clustered on higher
levels). FDS not shown because only a single PEWQ was completed for par-
ticipants with this diagnosis. FDS = functional/dissociative seizure; PEWQ =
Paroxysmal Event Witness Questionnaire.

Table 2 Predictive Performance of Most Highly Discriminating Individual PESQ and PEWQ Items

Final diagnosis Item Sensitivity Specificity PPV NPV

Syncope

Patient Hot or cold during 0.537 0.636 0.818 0.689

Witness Limp during 0.824 0.727 0.903 0.571

Pale during 0.853 0.636 0.878 0.583

Shallow breathing after 0.647 0.545 0.814 0.333

Epilepsy

Patient Confused after 0.688 0.603 0.275 0.102

Unaware had attack 0.625 0.658 0.286 0.111

Witness Violent shaking of arms or legs 0.545 0.912 0.667 0.861

Arms and legs rigid 0.545 0.882 0.600 0.857

Shaking >1 min 0.545 0.882 0.600 0.857

Snoring after 0.636 0.736 0.438 0.862

Abbreviations: NPV = negative predictive value; PESQ = Paroxysmal Event SymptomsQuestionnaire; PEWQ= Paroxysmal EventWitness Questionnaire; PPV =
positive predictive value.

Neurology.org/CP Neurology: Clinical Practice | Volume 15, Number 2 | April 2025
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classified 58 of 78 diagnoses (74.4% [63.0–83.3]) correctly.
The performance was, therefore, worse than the PESQ
classifier, but this difference was not statistically significant
(p = 0.499). We provide the confusion matrix (eTable 4) and
diagnostic statistics (eTable 5) for this model in the sup-
plementary materials.

To assess whether the RF classifier development described in our
prespecifiedprotocol couldbe improvedonusingothermachine-
learning methods and models, we describe elsewhere a post hoc
analysis using ensemble comparison of multiple machine-
learning approaches using H2O AutoML. However, this did
not produce a model that outperformed our RF classifier.33

PESQ-PEWQ

There was no separate validation data set for the PESQ-
PEWQ classifier. Evaluating model performance using
training data will overestimate model performance because

of overfitting; we, therefore, use OOBE (equivalent to cross-
validation methods).30

OOBE was 11.1%, equivalent to a classification accuracy of
88.9%. eTable 6 provides the confusionmatrix for this classifier.

Pilot iPEP Classifiers

The patient-only and patient-witness iPEP classifiers from our
pilot study performedworse than the newmodels in this external
validation data set, classifying 75.8% (68.8–81.8) and 78.3%
(63.2–88.5) of diagnoses correctly. We provide full details in
eAppendix 2, given the confusion matrix and diagnostic test
statistics for the patient-only (eTables 7 and 8, respectively) and
patient-witness (eTables 9 and 10) iPEP classifiers.

PESQ-Augmented Clinician Performance
Using PESQ classification to adjudicate in cases where the
initial assessing clinician gave no diagnosis, or one unlikely to

Figure 4 Relative Reporting Proportions of Predictors Included in PESQ Classifier

FDS = functional/dissociative seizure; PESQ = Paroxysmal
Event Symptoms Questionnaire.

Table 3 Diagnostic Test Statistics for the PESQ Classifier

Sensitivity Specificity PPV NPV

Syncope 0.966 (0.870–0.994) 0.400 (0.200–0.636) 0.824 (0.708–0.902) 0.800 (0.442–0.965)

Epilepsy 0.429 (0.188–0.704) 0.969 (0.882–0.995) 0.750 (0.356–0.956) 0.886 (0.782–0.946)

FDS 0.167 (0.009–0.635) 0.986 (0.915–0.999) 0.500 (0.095–0.905) 0.934 (0.847–0.976)

Abbreviations: FDS = functional/dissociative seizure; PESQ = Paroxysmal Event Symptoms Questionnaire; PPV = positive predictive value.
Values in brackets represent 95% CIs. Syncope sensitivity denotes the proportion of patients diagnosed with syncope after 6-mo follow-up who were classed
as syncope based on the initial questionnaire at first presentation and the PESQ classifier. Syncope specificity denotes, among those participants who (after 6
mo) were given a nonsyncope diagnosis, the proportion of those who were also given a nonsyncope diagnosis using the PESQ classifier at first presentation.
Syncope PPV denotes the proportion of those classified as syncope who received a syncope diagnosis at follow-up. Syncope NPV denotes the proportion of
those classified as nonsyncope who received a nonsyncope diagnosis at follow-up. The same applies mutatis mutandis for epilepsy and FDS.
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cause TLOC (e.g., TIA), then classifier-augmented clinical
decision agreed with experts on 66 of 78 patients (accuracy =
84.6% [95% CI 74.3–91.5]).

When comparing classifier performance with that of the
initial clinician, the initial clinicianmade the correct diagnosis
in 8 cases in which the classifier was incorrect; 6 of these were
epileptic seizures and 2 syncope. In 16 cases in which the
initial clinician misdiagnosed the patient or made no di-
agnosis, the classifier was correct; 15 of these were syncopal
and 1 FDS.

Discussion

This study provides evidence that a machine learning–based
classifier solely using patients’ own responses to a brief
patient-completed questionnaire can identify common cau-
ses of TLOC with an accuracy greater than 80%. In this
study, only 67.4% were correctly diagnosed in emergency or
primary care at the point of presentation or received no
probable diagnosis on initial assessment and 76.4% after
further nonspecialist assessment. While overall performance
is insufficient to recommend its routine clinical use, com-
parison with the present standard of care does suggest that
such a tool may helpfully augment present unstructured
clinical assessment and an illustrative post hoc analysis
suggests that classifier augmentation could improve the di-
agnostic accuracy of initial clinical diagnoses to 84.6%.

There is increasing recognition that artificial intelligence and
machine learning can be used to augment (rather than re-
place) clinicians’ decisions in this fashion.34 With estimated
annual (direct and indirect) costs of epilepsy misdiagnosis in
England and Wales running to £138 million,35 this repre-
sents potential for significant cost savings and patient benefit.

The PESQ classifier is unusual in providing three-way clas-
sification including all the common primary causes of TLOC.
Candidate clinical decision rules for discriminating between
syncope and bilateral tonic-clonic seizures,15,36 or epilepsy
and FDSs,16,26,37 focus on the mathematically simpler
problem of binary classification. Our classification problem
more accurately reflects the challenge faced by the primary/
emergency care clinician.

Our results underscore the importance of holistically evaluating
clusters of clinical features in the differential diagnosis of TLOC,
rather than treating individual features in isolation as patho-
gnomonic. No single PESQ or PEWQ item proved both sen-
sitive and specific for any diagnosis; furthermore, a classifier that
evaluated combinations of features nonlinearly performed
better than a linear model in identifying the correct diagnosis
(although this did not reach statistical significance).

Our results also underscore the utility of systematic in-
terrogation of ictal experience. Peri-ictal symptoms were
more discriminating than participants’ medical histories,

highlighting the importance of thoroughly exploring TLOC
experiences. Previous work suggests that combining open
questions with systematic, prompted questioning about ictal
experience (e.g., through questionnaires such as the PESQ)
identifies more ictal symptoms than open questions
alone38,39; the effect of prompting may differ between
diagnoses.26,40

A major limitation of this study is the low witness re-
cruitment. Just 46 of 178 participants (25.8%) identified
a witness able to complete the PEWQ. We could, therefore,
not both develop and independently validate a classifier
based on both PESQ and PEWQ. This reflects a common
difficulty: while professional guidance stresses the impor-
tance of obtaining a witness report for patients with TLOC,41

clinicians may struggle to achieve this in practice. Further
work should identify means of supporting witness identifi-
cation and questioning to aid TLOC differential diagnosis. In
our previous study involving patients with long-standing
TLOC disorders, witness information was available from
83% of participants17; initial presentations may be less likely
to be observed (or observed by those close to the patient).
Given the low number of witnesses recruited and our con-
sequent inability to provide independent validation of the
combined PESQ-PEWQ classifier, the results for this clas-
sifier should be considered exploratory only.

Only 15.7% of eligible presentations were recruited to our
study. If there were systematic differences in recruitment by
diagnosis (or e.g., patient demographics), this would bias the
external validity of our results. Further work should address
barriers to recruitment in such studies (which in principle
place minimal burden on participants, and evidence from our
qualitative work suggests that the interventions were highly
acceptable to participants).

Our reference standard diagnosis does not represent the gold
standard for any of our target conditions. This places an
obvious caveat to our estimations of classifier performance
because the reference is a “best possible” diagnosis rather
than a clinically definite one. This is underlined by the fact
that our expert raters either initially disagreed on or needed
discussion to arrive at a consensus diagnosis for 34 of 178
participants (19.1%). However, this was a necessary com-
promise to ensure the ecological validity of our sample; most
of the people presenting with TLOC will not achieve a gold
standard diagnosis—for example, their attacks will be too
infrequent (or even one-off) to be witnessed by an expert or
captured on video-EEG or cardiac monitoring. We intend to
follow up clinical outcomes for our participants to evaluate
the stability of “best possible” diagnoses over the longer term
and the impact this may have on validity of our results.

We did not achieve our target validation sample size; because
prevalence of syncope was higher than expected, the study
was nonetheless adequately powered for our primary out-
come. However, the sample was smaller than that
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recommended in simulation studies that estimate empirical
sample size requirements for external validation ofmultivariable
prognostic models.42 The high prevalence of syncope in our
sample is striking, differing from estimates reported
elsewhere.23,43 This may reflect the true incidence of the re-
spective diagnoses2,12,44; however, it may be that people with
epilepsy and FDS—still stigmatized conditions45,46—were less
willing to participate. It is a strength of this study that not only
recruitment included patients referred to specialist clinics, but
that we were also able to recruit 39 participants diagnosed with
reflex syncope (the single most common cause of TLOC23)
who were discharged directly from EDor AMUwith no further
assessment. This population would not have been captured in
specialist clinics.

We demonstrate that a simple, patient-completed question-
naire can provide relevant information to differential di-
agnosis of TLOC but cannot replace clinician assessments.
Rather than automated assessment, such tools may best have
a role in augmenting clinician evaluation, as CDAs.34 This
would allow the clinician to combine outputs with their own
holistic assessment to determine a working diagnosis.

Patient-completed tools to reduce clinician workload are not
frequently used, despite demonstrated feasibility of patient ap-
plication of CDAs for their own care.47,48Given that around 9 in
10 patients attending EDs in England in 2018–2019 spent over
an hour in the department,49 ED attendances provide ample

opportunity for self-administration. Implementation within
now-commonplace smartphones or browser-based applications
could ensure user friendliness. Combining machine-learning
predictions with tools such as locally intelligible model-agnostic
explanations50 to render them more explainable to patients and
clinicians may help clinicians to feel their use more defensible,
overcoming objections to their otherwise “black-box” nature.33

Together, these considerations should address the main factors
affecting ED clinicians’ willingness to use CDAs in their clinical
practice.51 Patient-completed tools need not be restricted to
simple questionnaires as we have used; in other works, we have
also demonstrated feasibility of automated capture and analysis
of patients’ spoken accounts52; these 2 approaches could be
combined. Further research on clinician experience of inter-
acting with such a CDA could support wider use.

Misdiagnosis leads to ineffective, potentially dangerous,
treatment.8,10 Diagnoses such as epilepsy also have psycho-
logical and social implications, such as for employment and
driving.35 Methods to support accurate, prompt diagnosis
with efficient use of medical resources—both human (e.g.,
referral to the appropriate specialist team) and investigative
(reducing requesting of inappropriate low-yield inves-
tigations such as chest or brain imaging for syncope)12—are
needed to ensure efficient and effective management of this
common and disruptive presentation. There is also a need
for work clarifying the human and economic costs of missed
or delayed diagnoses to support economic modeling of
benefits of implementation of CDAs.
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TAKE-HOME POINTS

Transient loss of consciousness (TLOC) is one of the

commonest acute neurologic concerns, with high

short-term morbidity and mortality if misdiagnosed

or mistreated. Over 90% is due to syncope, epileptic

seizures, or functional/dissociative seizures.

Initial assessing clinician’s diagnoses for the cause of

TLOC match expert assessments in only 67% of

cases.

A machine-learning based clinical decision aid

validated on an independent sample correctly

classified 80.8% (95% CI 70.0–88.5) of TLOC di-

agnoses on the basis of patient age and 8 patient-

reported peri-ictal symptoms.

Combining patient symptoms with witness reports

may improve classifier performance, but only 25.8%

of participants were able to identify a witness able

to provide a report of ictal semiology.

New tools are needed to support clinician assess-

ment of TLOC to reduce rates of missed or delayed

diagnosis.

Neurology: Clinical Practice | Volume 15, Number 2 | April 2025 Neurology.org/CP
e200448(10)

D
o
w

n
lo

ad
ed

 f
ro

m
 h

tt
p
s:

//
w

w
w

.n
eu

ro
lo

g
y
.o

rg
 b

y
 2

a0
2
:c

7
c:

3
f1

8
:9

c0
0
:3

1
8
3
:7

6
4
8
:3

1
e7

:e
2
d
e 

o
n
 3

0
 A

p
ri

l 
2
0
2
5



Disclosure
A. Wardrope received institutional grant funding from the
United Kingdom National Institute for Health Research
to the University of Sheffield to undertake this study. M.
Ferrar received institutional grant funding from the
United Kingdom National Institute for Health Research to
Sheffield Teaching Hospitals NHS Foundation Trust to
undertake this study. S. Goodacre received institutional grant
funding from the United Kingdom National Institute for
Health Research to the University of Sheffield to undertake
this study. M. Reuber received institutional grant funding
from the United Kingdom National Institute for Health
Research to the University of Sheffield to undertake this
study. Full disclosure form information provided by the
authors is available with the full text of this article at
Neurology.org/cp.

Publication History
Received by Neurology: Clinical Practice August 20, 2024. Accepted in
final form January 15, 2025. Submitted and externally peer-reviewed.
The handling editor was Editor Luca Bartolini, MD, FAAN, FAES.

References
1. O’Callaghan P. Transient loss of consciousness. Medicine. 2012;40(8):427-430. doi:

10.1016/j.mpmed.2012.05.010
2. Petkar S, Cooper P, Fitzpatrick AP. How to avoid a misdiagnosis in patients pre-

senting with transient loss of consciousness. Postgrad Med J. 2006;82(972):630-641.
doi:10.1136/pgmj.2006.046565

3. Reuber M, Chen M, Jamnadas-Khoda J, et al. Value of patient-reported symptoms in
the diagnosis of transient loss of consciousness. Neurology. 2016;87(6):625-633. doi:
10.1212/WNL.0000000000002948

4. Kotsopoulos IAW, de Krom MCTFM, Kessels FGH, et al. The diagnosis of epileptic
and non-epileptic seizures. Epilepsy Res. 2003;57(1):59-67. doi:10.1016/
j.eplepsyres.2003.10.014

5. Leach JP, Lauder R, Nicolson A, Smith DF. Epilepsy in the UK: misdiagnosis, mis-
treatment, and undertreatment?: the Wrexham area epilepsy project. Seizure. 2005;
14(7):514-520. doi:10.1016/j.seizure.2005.08.008

6. Malmgren K, Reuber M, Appleton R. Differential Diagnosis of Epilepsy. Oxford Text-
book of Epilepsy and Epileptic Seizures:81-94. 2012.

7. Chadwick D, Smith D. The misdiagnosis of epilepsy. BMJ. 2002;324(7336):495-496.
doi:10.1136/bmj.324.7336.495

8. Zaidi A, Clough P, Cooper P, Scheepers B, Fitzpatrick AP. Misdiagnosis of epilepsy:
many seizure-like attacks have a cardiovascular cause. J Am Coll Cardiol. 2000;36(1):
181-184. doi:10.1016/s0735-1097(00)00700-2

9. Kapoor WN, Karpf M, Wieand S, Peterson JR, Levey GS. A prospective evaluation
and follow-up of patients with syncope. New Engl Journal Medicine. 1983;309(4):
197-204. doi:10.1056/NEJM198307283090401

10. Reuber M, Baker GA, Gill R, Smith DF, Chadwick DW. Failure to recognize psy-
chogenic nonepileptic seizures may cause death. Neurology. 2004;62(5):834-835. doi:
10.1212/01.wnl.0000113755.11398.90

11. Smith D, Defalla BA, Chadwick DW. The misdiagnosis of epilepsy and the man-
agement of refractory epilepsy in a specialist clinic. QJM. 1999;92(1):15-23. doi:
10.1093/qjmed/92.1.15

12. Baron-Esquivias G, Martinez-Alday J, Martin A, et al. Epidemiological characteristics
and diagnostic approach in patients admitted to the emergency room for transient loss
of consciousness: group for Syncope Study in the Emergency Room (GESINUR)
study. Europace. 2010;12(6):869-876. doi:10.1093/europace/euq018

13. Wardrope A, Newberry E, Reuber M. Diagnostic criteria to aid the differential di-
agnosis of patients presenting with transient loss of consciousness: a systematic re-
view. Seizure. 2018;61:139-148. doi:10.1016/j.seizure.2018.08.012

14. ReuberM, Grunewald R, Panayiotopoulos CP. Newly identified seizures in adults: is it
epilepsy? In: The Educational Kit on Epilepsies. Medicinae; 2007:66-71.

15. Sheldon R, Rose S, Connolly S, Ritchie D, Koshman ML, Frenneaux M. Diagnostic
criteria for vasovagal syncope based on a quantitative history. Eur Heart J. 2006;27(3):
344-350. doi:10.1093/eurheartj/ehi584

16. Syed TU, Arozullah AM, Loparo KL, et al. A self-administered screening instrument
for psychogenic nonepileptic seizures. Neurology. 2009;72(19):1646-1652. doi:
10.1212/WNL.0b013e3181a55ef7

17. Chen M, Jamnadas-Khoda J, Broadhurst M, et al. Value of witness observations in the
differential diagnosis of transient loss of consciousness. Neurology. 2019;92(9):
e895-e904. doi:10.1212/WNL.0000000000007017

18. Wardrope A, Jamnadas-Khoda J, Broadhurst M, et al. Machine learning as a diagnostic
decision aid for patients with transient loss of consciousness. Neurol Clin Pract. 2020;
10(2):96-105. doi:10.1212/CPJ.0000000000000726

19. Genuer R, Poggi JM, Tuleau-Malot C. Variable selection using random forests. Pattern
Recognition Lett. 2010;31(14):2225-2236. doi:10.1016/j.patrec.2010.03.014

20. Kim SY. Effects of sample size on robustness and prediction accuracy of a prognostic
gene signature. BMC Bioinformatics. 2009;10:147. doi:10.1186/1471-2105-10-147

21. Millard K, Richardson M. On the importance of training data sample selection in
random forest image classification: a case study in peatland ecosystem mapping.
Remote Sensing. 2015;7(7):8489-8515. doi:10.3390/rs70708489

22. Arkin CF, Wachtel MS. How many patients are necessary to assess test performance?
JAMA. 1990;263(2):275-278. doi:10.1001/jama.1990.03440020109043

23. Fitzpatrick AP, Cooper P. Diagnosis and management of patients with blackouts.
Heart. 2006;92(4):559-568. doi:10.1136/hrt.2005.068650

24. Dickson JM, Dudhill H, Shewan J, Mason S, Grünewald RA, Reuber M. Cross-
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