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Abstract

1. It is common for movement ecologists to model individual- level animal movement 
in discrete time using methods such as hidden Markov models (HMMs). Although 
often the fitting of HMMs is computationally efficient, the key assumptions 
 required to model in discrete time become limiting when dealing with temporally 
irregular data or an animal that changes behaviour frequently, or when comparing 
separate analyses on different timescales.

2. Continuous- time models of animal movement, which can be formulated in a 
scale- invariant way, avoid these complications but typically lack computational 
efficiency. Most continuous- time methods only allow for inference in a Bayesian 
Markov chain Monte Carlo (MCMC) framework, sampling from a parameter space 
of high dimensionality, which has rendered them inaccessible to biologists, inhib-

iting their uptake.
3. In this work, we seek to address this inaccessibility by rigorously approximating 

existing inference methods for a class of spatially homogeneous continuous- time 
models. We have developed a methodology that involves limiting the number 
of switches in behavioural state and then integrating out the times of those 
switches, using a combination of analytical and numerical methods, known as the 
fast integrated continuous- time HMM (FInCH) approach. Our method allows for 
rapid evaluation of the likelihood, permitting direct maximisation of the likelihood 
or the posterior density, or the use of off- the- shelf fixed- dimension MCMC.

4. We demonstrate this approach using a range of simulated and real data, showing 
that the FInCH approach competes with its discrete- time counterparts in terms of 
efficiency while improving accuracy. By using spline- based interpolation of terms 
in the likelihood, the method extends to large datasets while remaining competi-
tive. We include examples with up to 100,000 observations.
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1  |  INTRODUC TION

By modelling the movement of animals, we may learn about how 
inter- species, intra- species and environmental interaction affects 
their behaviour. This is crucial for garnering ecological understand-

ing and assessing the ecological impact of invasive species and 
anthropogenic environmental change. In recent years, methods 
for telemetric data collection have drastically improved, and so-

phisticated methods for statistical analysis have been introduced 
(Patterson et al., 2017). However, the extensive analysis of large data 
(in particular, data with temporal irregularity) remains a logistical and 
computational challenge, partly due to a lack of accessible model 
formulation and software.

It is common for biologists to model individual movement 
as a discrete- time process, typically a hidden Markov model 
(HMM). An HMM is a hidden discrete- time Markov process de-

fined by a finite number of discrete states and the animal's loca-

tion (the state- dependent process). As Blackwell (1997) explains, 
many behavioural factors may affect the movement patterns of 
an animal, such as whether the animal is encamped or foraging; 
Blackwell (1997) introduces a discrete behavioural state in a 
continuous- time setting, while Morales et al. (2004) apply it in dis-

crete time. Patterson et al. (2017) give the example that if an an-

imal is encamped, we expect it to move relatively short distances 
but change direction more often; if it is foraging, the opposite is 
true. Accordingly, we refer to the discrete states of the HMM as 
the ‘behavioural states’ of the animal. However, this discrete- time 
approach is problematic when faced with separate analyses on 
different timescales or irregular data and loses information when 
handling missing observations from otherwise regular data. These 
pitfalls of discrete- time modelling are covered in detail by Harris 
and Blackwell (2013). Continuous- time models of individual animal 
movement avoid these issues by formulating behavioural changes 
independently of the timing of observations. Indeed, Parton and 
Blackwell (2017) argue that continuous- time approaches are the 
‘gold standard’ of animal movement models. However, movement 
ecologists have been slow to adopt these methods due mainly to 
their perceived complexity, the computational cost of algorithms 
for inference in continuous time and the widespread use of acces-

sible R packages for inference in discrete time such as moveHMM 
(Michelot et al., 2016). We give an overview of these existing 
methods for inference in Section 2.

We seek to improve the accessibility of continuous- time models 
by rigorously approximating the fully Bayesian but computationally 
slow ‘exact approach’ given by Blackwell et al. (2015) for a class of 
switching- diffusion models, improving the efficiency of this method 
in an MCMC framework and allowing for direct optimisation. To do 
this, we limit the number of behavioural changes per interval before 
integrating the potential times of these changes out of the move-

ment density term in the likelihood. We also build on the work of 
Blackwell (2020) by framing the exact approach as a temporally 
inhomogeneous HMM, using the forward algorithm to indirectly 
sum over visited behavioural states (Baum et al., 1970). In doing so, 

we develop the fast integrated continuous- time HMM (FInCH) ap-

proach. We detail the FInCH likelihood formulation in Section 3.

In Section 4, we demonstrate the effectiveness of direct opti-
misation with the FInCH approach compared to pre- existing ap-

proximations of the exact inference formulated in discrete time. In 
Section 4.1, we compare the FInCH approach with the HMM for 
regular data, showing that the FInCH approach generally performs 
better at estimating parameter values than the HMM, especially for 
small or sparse data sets. In Section 4.2, we show that the FInCH ap-

proach performs better on real, temporally irregular kinkajou (Potos 

flavus) movement data in comparison to a non- directional multiple 
imputation (MI) technique similar to that of McClintock (2017). In 
Section 4.3, we illustrate a potential workflow when using FInCH 
on a real, large, temporally irregular red fox (Vulpes vulpes) data set 
consisting of 5863 observations. In Section 4.4, we demonstrate the 
efficiency of FInCH for large regular data sets (up to 100,000 data 
points), made computationally feasible by spline interpolation of 
likelihood terms based on a user- defined portion of the data.

2  |  E XISTING METHODS FOR INFERENCE

In this section, we give an overview of some of the key existing meth-

ods of inference on individual animal movement data. We describe 
methods in both continuous and discrete time, detailing the model 
formulation, strengths and weaknesses for each. These methods 
represent the animal's behaviour as an unobserved discrete- space 
Markov chain, whose state determines the animal's movement pro-

cess, using continuous-  and discrete- time Markov chains, respec-

tively. Behavioural- switching models formulated in discrete time 
may, therefore, be considered an approximation of their continuous- 
time counterparts.

2.1  |  Inference in discrete time: The HMM

By far the most common method for inference of individual animal 
movement data in discrete time is the hidden Markov model (HMM). 
In this approach, the animal's movement is typically formulated in 
terms of the spatial step length of the animal and its turning angle be-

tween successive observations (often referred to as ‘steps and turns’). 
For example, if an animal is in a ‘foraging’ state, we may expect to see 
it turn frequently over short distances, but in a ‘migratory’ state, we 
may expect it to move long distances, in a more directed way.

Assume that we have T temporally regular observations of an an-

imal which moves according to one of N behavioural states, such that 
St is the state that influences the animal's movement between obser-
vations at times t and t + 1. (For ease of exposition, in this section we 
denote all variables as if they were defined at intervals of length 1.) 
Let the observed movement process of this animal at time t be given 
by 

{
Xt

}T
t=1

 with realisations xt =
(
lt ,�t

)
, where lt is the step length of 

the animal between times t and t + 1 and �t is the turning angle of the 
animal during the intervals 

[

t − 1, t
]

 and 
[

t, t + 1
]

. The HMMs fitted in 
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    |  3GRAINGER and BLACKWELL

Sections 4.1 and 4.2 assume that this turning angle is uniformly distrib-

uted. Figure 1 illustrates the structure and dependencies within the 
HMM.

2.1.1  |  The forward algorithm

The probability of movement between states at observation times 
is summarised by the transition probability matrix (TPM) Γ, an 
N × N matrix, such that Γ =

{
� ij
}
 where � ij = Pr

(
St = j| St−1 = i

)
, for 

i, j = 1, … ,N. Let the movement process of the animal at time t, con-

ditional on state j, be given by f
(
xt| St = j

)
, where f  denotes either 

a density or probability mass function. Given data x =
{
xt

}
, it may 

be shown that the likelihood for the HMM, as constructed above, 
is given by

which has NT summands—infeasible even for moderate amounts of 
data (Patterson et al., 2017). However, the forward algorithm allows 
for a much more efficient likelihood calculation (Baum et al., 1970). 
This recursive scheme is the reason for the tractability and widespread 
use of the HMM.

First, define the forward probability of state j at time t to be 

�t(j) = f
(
x1, … , xt , St = j

)
, summarised for every state by the vector 

�t =
(
�t(1), … , �t(N)

)
. Note that �t(j) contains information on the 

probability of state j being active at time t (conditional on all obser-
vations up to time t) and the likelihood of all observations up to time 
t; we may write the global likelihood as

where 1 ∈ ℝ
N is a row vector of ones. By exploiting the Markov prop-

erty, we may write the forward probability of state j at time t in terms 
of the previous state at time t − 1,

or, in matrix notation,

where Q
(
xt
)
= diag

(
f
(
xt| St = 1

)
, … , f

(
xt| St = N

))
. The forward al-

gorithm traverses the time series, updating �t at every observation 
time, so that we may recursively find the likelihood as

where � =
(
Pr

(
S1 = 1

)
, … , Pr

(
S1 = N

))
. This formulation of the 

likelihood is exceptionally efficient, meaning that direct maximum 
likelihood estimation is feasible and straightforward in most cases 
(see, for example, Zucchini et al. (2016) and Patterson et al. (2017)).

2.1.2  |  The hidden Markov model in practice

The hidden Markov model is useful and tractable as it separates 
the movement and behavioural processes of the animal. Due to the 
forward algorithm described in the previous section, HMMs are ex-

ceptionally computationally efficient. This availability of fast direct 
maximum likelihood estimation has led to their widespread usage 
in statistical ecology. For example, HMMs have been used over the 
years to study caribou (Dedeban et al., 2023; Franke et al., 2004), 
woodpeckers (McKellar et al., 2015), beluga whales (Storrie 
et al., 2023), petrels (Zhang et al., 2019) and elephants (Taylor 
et al., 2019). The uptake of this methodology is enabled further by 
accessible R packages such as moveHMM (Michelot et al., 2016).

The HMM described in this section implicitly treats the under-
lying state as being constant between observations, so that the 
observation process at some time t—actually a summary based 
on either two or three successive locations—depends only on the 
state at time t. Thus the state, for example the behaviour, is ef-
fectively defined only at observation times (Langrock et al., 2012). 
Given that we formulate the observation process in terms of an an-

imal's step length, these observations are assumed to be regularly 
spaced in time. This is limiting in the face of temporally irregular or 
missing data, an animal that changes behaviour frequently (for ex-

ample, see Figure 4), or separate analyses on different timescales 
due to issues with interpretability (demonstrated in Section 4.5). 
A small number of missing observations on an otherwise regular 
grid may be dealt with by replacing the corresponding likelihood 
matrix Q with the identity matrix (Langrock et al., 2012); this cor-
rectly allows for state transition probabilities over time intervals 
that are a multiple of the usual interval between observations, but 
neglects the information represented by the locations after the 
missing observations given those before them. Alternatively, miss-

ing data can be handled by treating the data segments before and 
after as separate time series (Conners et al., 2021); this neglects 

(1)

ℒ(�| x) =
N∑

s1 = 1

…

N∑

sT = 1

Pr
(
S1 = s1

) T∏

t = 1

f
(
xt| St = st

) T∏

t = 2

Pr
(
St = st| St−1 = st−1

)
,

ℒ(�| x) =
N∑

i= 1

�T (i) = �T1
T
,

�t(j) =

N∑

i= 1

�t−1(i)Pr
(
St = j| St−1 = i

)
f
(
xt| St = j

)
,

�t = �t−1ΓQ
(
xt
)
,

(2)ℒ(�| x) = �Q
(
x1

)
Γ … ΓQ

(
xT

)
1
T
,

F I G U R E  1  The state dependence structure of an HMM. The 
latent variables, 

{
St
}T
t=1

, represent the (hidden) behavioural state of 
an animal at each observation time 1, … , T. The state- dependent 
process, 

{
Xt
}T
t=1

, is the observed movement of the animal, often 
given as a bivariate series of step lengths and turning angles.
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the state transition information over the longer intervals as well as 
the movement information. In summary, these approaches, while 
straightforward to implement, do not permit the full use of the in-

formation from observations at intervals other than a single fixed 
length. More generally, irregular data may be dealt with by tak-

ing the multiple imputation (MI) approach of McClintock (2017). 
When taking the MI approach, the animal movement path is resa-

mpled at regular intervals. This method is popular with ecologists 
due to its inclusion in the R package momentuHMM (McClintock 
& Michelot, 2018)—we use an approach similar to this in compar-
ison to the FInCH approach in Section 4.2. All these approaches 
assume that the missingness of intended observations is not in it-
self informative; Chassan and Concordet (2023) explore the more 
general case.

In theory, issues with interpretability (but not loss of information) 
may be dealt with by framing the HMM as a continuous- time model, 
inferring transition rates (detailed in Section 2.2.1) directly as well as 
transition probabilities. This step is very rarely done in practice—it 
does not form part of the workflow when modelling in discrete time 
in either moveHMM or momentuHMM. Alternatively, we may find 
transition rates by taking the matrix logarithm of the TPM (inverting 
Equation 4). Such a step potentially suffers from issues of existence 
and uniqueness—see Section 5 for further discussion. Here, we do 
not pursue this approach further.

In this paper, we wish to make the case that, even when the ir-
regularity of the data is negligible, it is better to avoid any loss of in-

formation or adverse effect on the inference by using scale- invariant 
methods for inference.

2.2  |  Inference in continuous time

Many models for inference in continuous time are similar to 
their discrete- time counterparts, with animal movement de-

pendent on a (hidden) underlying state process. However, 
we formulate behavioural changes in continuous time in-

dependently of observation time, representing an animal's 
behaviour as a continuous- time Markov chain. An animal's 
movement is typically represented by a switching- diffusion 
process (Blackwell, 1997, 2003), although recent efforts have 
been made to incorporate directional persistence akin to the 
‘step- and- turn’ HMM (Michelot & Blackwell, 2019; Parton & 
Blackwell, 2017). In the switching- diffusion case, an animal's 
movement process is most often represented by a Brownian 
motion or Ornstein- Uhlenbeck (OU) process (Uhlenbeck & 
Ornstein, 1930). The parameters of these movement processes 
may then change according to the animal's behaviour at any in-

stant (Blackwell, 2003). Consequently, these continuous- time 
models violate the ‘snapshot’ property, which would require 
that each observation depends only on the underlying state at 
single instant (Glennie et al., 2023). Thus, existing straightfor-
ward methods for continuous- time HMMs with the snapshot 
property are not applicable (Blackwell, 2020).

2.2.1  |  Infinitesimal transition rates

As before, consider the case where we have N behavioural states 
and let St represent the behavioural state of the animal at some ar-
bitrary time, t. When making inference in continuous time, we allow 
for behavioural changes to be formulated independently of observa-

tions by modelling the infinitesimal transition rate between behav-

ioural states, rather than transition probability at observation times 
as described in Section 2.1. The rate at which the animal changes 
behaviours is given by the generator matrix G =

{
gij
}
, where gij ≥ 0 

represents the infinitesimal transition rate from state i  to state j, 
with i ≠ j, for i, j = 1, … ,N, such that

where gi ≥ 0 represents the transition rate out of each state, i . 
The generator matrix G determines the latent behavioural process; if 
an animal is in state i , then it remains so for holding time � i, where

The probability of an animal moving from state i  to state j given some 
increment in time �t may be written as

where o(�t) denotes a term such that

Hence we may approximate the probability of moving from state i  to 

state j by

when the time increment, �t, is small (Graham et al., 1989). It may be 
shown that the entries of Γ(�t) =

{
Pr

(
St+�t = j| St = i

)}
 are found by

which is used in the FInCH likelihood formulation in Equation (17). An 
explanation of this result is given in Supporting Information S.1.

Finally, we may incorporate spatial or environmental information 
into this transition rate to account for the way in which an animal's 
behaviour is affected by its surroundings. Let xt =

(
xt , yt

)
 be the lo-

cation of an animal at time t. Perhaps the simplest spatially inho-

mogeneous model accounts for instances where an animal tends to 

G =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

−g1 g12 … g1N

g21 −g2 g2N

⋮ ⋮ ⋱ ⋮

gN1 g2N … −gN

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

(3)� i ∼ Exp
(
gi
)
.

Pr
(
St+�t = j| St = i

)
=

⎧
⎪⎨⎪⎩

gij�t+o(�t) for i≠ j,

1−gi�t+o(�t) otherwise,

lim
�t→ 0

o(�t)

�t
= 0.

Pr
(
St+�t = j| St = i

)
≈

⎧
⎪⎨⎪⎩

gij�t for i≠ j,

1−gi�t otherwise,

(4)Γ(�t) = exp(G�t),
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    |  5GRAINGER and BLACKWELL

only exhibit each behaviour in a given spatial region. In this case, 
the infinitesimal transition rate of the animal from state i  to state j 
is given by

for some constants gij ≥ 0 and a partition of the space {
Aj , j = 1, … ,N

}
 . This example, where the transition rate between 

behaviours is dependent upon the region of the habitat an animal 
is in, is known as the ‘adaptive’ case. Examples of this model may 
be found in Harris and Blackwell (2013), Blackwell et al. (2015) and 
Alkhezi (2019). More generally, assume we have data for l  environ-

mental covariate values at time t, zt =
{
z1t , … , zlt

}
. We may write 

the infinitesimal transition rate from state i  to state j in (for example) 
the linear form

making inference on coefficient parameters � ij
0
, � ij

1
, … , �

ij

l
.

Although we do not focus on the spatially inhomogeneous case, 
this serves as a natural extension to the novel methods in this paper, 
as discussed in Section 5.

2.2.2  |  A simple example: Observed behaviour

Throughout this paper, we assume that the underlying state process is 
completely unobserved. However, for this short example, we assume 
the opposite. Guttorp (1995) parameterises the behavioural state switch-

ing process described in Section 2.2.1 in terms of transition rates out of 
each state, � =

{
gi
}
, and jump probabilities P =

{
qij
}
=
{
gij ∕gi

}
 from 

each state i to each state j with i ≠ j. These are the model parameters 
we seek to make inference on, which we group by � = (�,P). Given an 
observed underlying state- changing process, we may formulate the like-

lihood rather straightforwardly in terms of sufficient statistics. Let the 
number of behavioural changes from each state i to each state j be given 
by n =

{
nij
}
. Let the time spent in state i on the mth visit from state j be 

given by � ijm, such that the amount of time spent in each state is given by 
� =

{
� i

}
=

�

∑

i≠j

∑nij

m=1
� ijm

�

. The likelihood for � and P is given by

The review of Patterson et al. (2017) gives a general overview of both 
model switching in continuous time and simulations of this continuous- 
time model switching process. Carrying out inference in continuous 
time, allowing for changes in behaviour between observations, has ob-

vious advantages with regard to model accuracy. However, we often 
do not observe an animal's behaviour directly and therefore treat it 
as hidden (e.g. see Section 2.1). Inference in this case is much more 

involved than maximising the likelihood given in Equation (7). In this 
paper, we focus on and extend a method for inference in continuous 
time, in which an animal's behaviour is unobserved (or observed only 
sporadically), introduced by Blackwell (2003) and further developed by 
Blackwell (2020), exploiting ideas from Blackwell et al. (2015). We call 
this method the ‘exact approach’, which allows for exact, fully Bayesian 
inference.

2.2.3  |  Exact inference: Unobserved behaviour

Statistical inference in continuous time is particularly challenging 
if the underlying behavioural process of the animal is unobserved. 
This is because the conditional distribution of the animal's position, 
given a previous position, is dependent on the complete behav-

ioural process between these two times. This problem is naturally 
bypassed when taking a discrete- time approximation, where behav-

ioural changes only occur at observation times. Models for exact 
inference completely reconstruct the animal's behaviour, including 
all states and the times of the state changes, jointly with the estima-

tion of the model's parameters. All of this is done by sampling in a 
Metropolis- within- Gibbs MCMC algorithm—implicitly a Reversible 
Jump algorithm (Green, 1995), to accommodate the unknown num-

ber of changes—giving a joint posterior distribution for the behav-

ioural states and the parameters. The dimension of the space to be 
explored by the MCMC is variable but necessarily high, meaning that 
the algorithm is computationally expensive.

Blackwell (1997, 2003) successfully carries out inference in 
continuous time but assumes that the location of an animal has 
no bearing on its behaviour. Harris and Blackwell (2013) describe 
extensions to the aforementioned models that allow for spatial 
covariates, whereby the movement and behaviour of the animal 
may depend on the discrete spatial region in which the animal is 
located in any given instant. Finally, Blackwell et al. (2015) give a 
method for exact, fully Bayesian inference, with the potential for 
both continuous and discrete spatial covariates to be accounted 
for explicitly. It is this method, the ‘exact approach’, which we build 
upon in this paper.

The ‘exact approach’ of Blackwell et al. (2015) allows for the inclu-

sion of environmental covariates with regard to switching probability 
by uniformising the underlying Markov process via the incorporation 
of the ‘potential switch’—setting a uniform rate of switches, and allow-

ing switches from a behavioural state to itself (Blackwell et al., 2015; 

Jensen, 1953). At time t, for spatial covariates zt at location xt, let gij
(
zt

)
 

be the infinitesimal transition rate from state i  to state j and let gi
(
zt

)
 

be the total transition rate out of state i . We take some (fairly arbitrary) 
uniform upper bound on transition rates between states,

and allow ‘potential’ changes in behaviour to occur at this rate. When a 
potential switch occurs, the probability of an actual switch out of state 
i  is given by

(5)gij
(
xt

)
=

⎧
⎪⎨⎪⎩

gij if xt ∈Aj ,

0 otherwise,

(6)gij
(
zt

)
= exp

(

�
ij

0
+

l
∑

m= 1

� ij
m
zmt

)

,

(7)ℒ(�| � , n) = exp

(
−

∑

i

gi� i

)

∏

i≠ j

(

qijgi
)nij .

� ≥ max
i,x,t

gi
(
zt

)
,
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6  |    GRAINGER and BLACKWELL

and the probability of an actual switch from state i  to state j is given by

In the spatially homogeneous case, this framework remains the 
same but with constant infinitesimal transition rates, such that 
� ≥ max i

{
gi
}
 . This method allows for exact, fully Bayesian infer-

ence within an MCMC framework, which accounts for the envi-
ronmental covariates that affect the transition rates to and from 
each state. However, because we have to consider the number and 
time of potential switches between observations, this involves a 
parameter space of very high dimension, which is computationally 
expensive due to poor mixing.

One method to improve the efficiency of this approach is 
the ‘Integrated Continuous- time HMM’ (InCH), introduced by 
Blackwell (2020), which frames the exact inference as a spatially 
inhomogeneous HMM, defined at potential switching times. The 
InCH approach utilises the forward algorithm and indirectly sums 
over behavioural states in the likelihood formulation (meaning they 
no longer need to be sampled), reducing the dimensionality of the 
parameter space and improving mixing substantially.

2.2.4  |  Continuous- time inference in practice

The aforementioned continuous- time methods allow for exact 
inference and are, therefore, more accurate than the approxi-
mate formulation described in Section 2.1. However, inference is 
possible only by constructing potential changes in behaviour be-

tween observations, which in practice requires an MCMC frame-

work. Thus, these methods are rendered somewhat inaccessible 
compared to discrete- time methods, which allow for rapid direct 
optimisation.

2.3  |  Bounding the numbers of switches

We can rigorously approximate the InCH approach by assuming that 
there may be no more than two changes in behaviour per interval 
between observations. The limit of two switches is enough to in-

clude intervals in which there are one or zero switches, which we 
assume to be the majority of intervals in any realistic case, and cases 
in which there are two switches, that is a ‘visit’ to a behavioural state 
which starts and ends between a given pair of observations. Thus, 
it covers the vast majority of cases, and allowing for the effects of 
such a short visit to a state captures much of the uncertainty and 
variability in the details of more complex realisations. This approxi-
mation has been shown to be very close in the case with only one 
switch between observations (Alkhezi, 2019), but in itself does not 
greatly accelerate the fitting process. However, limiting the number 
of changes in this way is the starting point for the new methods 
presented in Section 3.

3  |  FInCH LIKELIHOOD FORMUL ATION & 
IMPLEMENTATION

Limiting the number of switches to at most 1 or 2 in each interval be-

tween observations creates the opportunity for the times of poten-

tial changes in behaviour to be ‘integrated out’, rather than treated 
as variables to be sampled or imputed. By removing the number and 
time of potential switches from the parameter space, we can greatly 
reduce its dimensionality. This allows for direct likelihood maximisa-

tion or off- the- shelf MCMC sampling of just a few parameters, a key 
step towards enabling continuous- time models to compete with their 
discrete- time counterparts in terms of efficiency and accessibility.

As with the InCH approach, we frame the exact inference as a 
temporally inhomogeneous HMM defined at potential behavioural- 
switching times. We calculate a likelihood locally, conditional on the 
behavioural state at the beginning and end of each interval, in order 
to utilise the forward algorithm. Consider successive two observa-

tions at times t1 and t2 and locations xt1 =
(
xt1 , yt1

)
 and xt2 =

(
xt2 , yt2

)
 , 

respectively. Let the length of time between these observations be 
�t = t2 − t1. Let St represent the animal's behavioural state at time 
t. Here, we focus on the likelihood for parameter values based 
on only one interval between observations, the ‘local likelihood’. 
Suppressing conditioning on parameter values, the local likelihood 
is given by some expression

for some initial state i  and final state j. Crucial to the formulation of 
this local likelihood is the local movement density of the animal. In 
this regard, likelihood formulation for the FInCH approach is akin to 
the formulation of the likelihood for the spatially homogeneous InCH 
model, as described by Blackwell (2020).

However, the crux of the FInCH approach lies in the formulation 
of the animal movement density itself. We assume that no more than 
two changes in behaviour occur between observations, integrating 
out the number of potential switches in each case. This assumption 
is discussed in more detail in Section 2.3.

3.1  |  An overview of location density

The location density of an animal is given by limiting the number 
of switches between observations to two and integrating the joint 
density of its location at the end of the interval and the time of po-

tential switches over time. The overall diffusion rate is calculated 
as a weighted combination of diffusion rates in each visited state, 
as in Blackwell (2020). An expression for the overall diffusion rate 
is given in Equation (9). This paper considers only cases where an 
animal moves according to isotropic Brownian motion in each be-

havioural state.
Assume that an animal traverses a two- dimensional space, with-

out loss of generality over a time interval of length �t starting at lo-

cation 0 = (0,0). Let M be the number of changes in animal behaviour 

pi
(
zt

)
= gi

(
zt

)
∕�,

pij
(
zt

)
= gij

(
zt

)
∕�.

�
(
xt2

| xt1 , St1 = i, St2 = j, �t
)
,
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    |  7GRAINGER and BLACKWELL

in this interval and assume that a given animal changes behaviour 
M = m times, given by t1, … , tm, and visits states with diffusion rates 
�
2
1
, … , �2

m+1
. Then the distribution of its final location, (x, y), is given 

by a bivariate normal distribution,

with density f(x, y|0, �), where

Intuitively, a Brownian motion with diffusion rate �2 over an interval 

of length �t is equivalent to one with diffusion rate 1 over time �t�2 
and so a mixture of processes as described here can be written as a 
process with diffusion rate 1 over an effective time � as calculated in 
Equation (9).

Let �
(
t1, … , tm|M = m

)
 be a joint uniform distribution of m ran-

dom variables representing the probability distribution of the time 
of each potential switch. The marginal movement density over this 
interval is then given by integrating over the time of each potential 
switch,

for which we suppress conditioning on visited states. For each se-

quence of possible visited states, we calculate analytic, semi- analytic 
and numeric solutions for this movement density for M = 0, M = 1 and 

M = 2 potential changes in state.

3.2  |  Movement density solutions

In this section, we discuss density values for a given number of behav-

ioural changes in an arbitrary interval. The methodology for move-

ment density calculations is given in Supporting Information S.2. 

For the case with no potential behavioural changes in an interval of 
length �t, in state i  with diffusion rate �2

i
, we have a FInCH move-

ment density given by

which follows directly from Equation (8). In the case with one potential 
switch between observations, such that we begin in state i  and move 

to state j, with diffusion rate �2
j
, we have

where R =

√

x2 + y2 represents the Euclidean distance moved by the 
animal in the interval. The integral in Equation (12) is the exponential 

integral, for which fast routines exist as part of the GNU Scientific 
Library (Galassi et al., 2006; Hankin, 2006).

In the case with two potential switches, such that we move from 
state i  to state j, before transitioning to state k with diffusion rate 
�
2
k
, we have

where

In Equation (13), the inner integral is akin to the one- switch case. We 
solve the outer integral numerically, using adaptive quadrature via the 
inbuilt integrate() function in R.

3.3  |  Generating a local likelihood

To utilise the local movement densities in a local likelihood, we must 
find expressions for each number of switches, and all visited states, 
conditional on start and end states. Naturally, when M = 0 or M = 1 , 
this is straightforward, so that Equations (11) and (12) may be used 
directly. Recall from Section 2.2.3 that the probability of an ‘actual’ 
switch from state i  to state j is given by pij. In the two- switch case, 
we must account for every feasible first- visited ‘intermediate’ state. 
To do this, we write the movement density, conditional on initial 
state i  and final state k, as

where we sum over all possible first- visited states. This process, 
with M = 2 behavioural changes and N = 3 possible behavioural 
states, is demonstrated in Figure 2. Weighting movement densi-
ties based on the probability of each number of potential switches, 
we then have

as a combined movement density conditional on start and end states, 
where P(m|�t, i, k) is obtained using existing algorithms for finding 
the conditional probability of a number of changes of a uniformised 
Markov chain (Hobolth & Stone, 2009). For Equation (16) to hold, we 
assume that each Pr (M = m|t, i, k) term sums to 1. In line with this 
(due to the two- switch limit assumption), we use the approximation

(8)x, y ∣ 0, � ∼ N(0, �I),

(9)� = t1�
2

1
+

m
∑

i= 2

(

ti − ti−1
)
�2
i
+
(
�t − tm

)
�2
m+1

.

(10)

�(x, y|�t,M = m) = ∫
0<t1<…<tm<�t

f(x, y|0, 𝜂)�
(
t1, … , tm|M = m

)
dt1, … , dtm,

(11)x, y ∣ t, i,M = 0 ∼ N
(
0, �2

i
�tI

)
,

(12)�(x, y|�t, i, j,M = 1) =
1

2�
(

�
2
i
− �

2
j

)

R2∕
(
2�t�2

j

)

∫
R2∕(2�t�2i )

exp( − z)

z
dz,

(13)�(x, y��t, i, j, k,M = 2) =

�t

∫
0

⎧
⎪⎨⎪⎩

1

��t2
�
�
2

i
− �

2

j

�
b

∫
a

exp( − z)

z
dz

⎫
⎪⎬⎪⎭
dv,

a =
R2

2
(
�
2
i
v + �

2
k
(�t − v)

) , b =
R2

2
(
�
2
j
v + �

2
k
(�t − v)

) .

(14)�(x, y��t, i, k,M = 2) =

N∑

j= 1

�(x, y, j|�t, i, k,M = 2)

(15)=

∑N

j=1
�(x, y|�t, i, j, k,M = 2)pijpjk

∑N

j=1
pijpjk

,

(16)�(x, y��t, i, k) =
2∑

m= 0

Pr (M = m|�t, i, k)�(x, y|�t, i, k,M = m),
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8  |    GRAINGER and BLACKWELL

3.4  |  A spline- based interpolation

To find the full local likelihood, we find the total probability of transi-
tion from state i  to state k over an interval of length �t. This is given 
by � ik(�t), the appropriate element of the matrix Γ(�t) = exp(G�t), 
where G is the generator matrix of the underlying Markov process, 
as described in Section 2.2.1. Given the combined local movement 
density described in Section 3.3, we may obtain the joint density for 
location and final state,

The process of finding the global likelihood from this expression is de-

tailed in Section 3.5.

When finding the expression in Equation (17), we may avoid cal-
culating the movement density values in Equations (12) and (13) for 

every possible combination of behaviours between all successive 
observations by implementing spline- based interpolation. This is 
done by separating the data into groups that are similarly temporally 
spaced, that is with similar values of �t.

For the models that we are considering, the required term 
�(x, y, k|�t, i) (Equation 17) depends on x and y only through the dis-

tance moved R =

√

x2 + y2, so we can write it as �(R, k��t, i). In outline, 
having grouped together cases with similar values of �t, we can find the 
values of �(R, k��t, i) for given i, k by evaluating it exactly for selected 
values of R and then using spline interpolation for the remaining Rs.

Let the data x consist of n data points, taken at times 
t =

{
t1, … , tn

}
. Now let t̃i = ti+1 − ti represent the temporal length 

of interval i , such that t̃ =
{

t̃1, … , t̃n−1

}

. We group together all sim-

ilarly spaced interval times according to some user- defined differ-
ence threshold (throughout this paper we use 5%). Given that we 
expect some variation (albeit within the threshold of 5%), it is worth 
noting that in this paper we use the first time interval occurrence 
as the time interval for all occurrences in the group. From here, we 
consider each group of ‘unique’ time steps individually.

Pr (M = 2��t, i, k) ≈ 1 −

1∑

m= 0

Pr (M = m|�t, i, k).

(17)�(x, y, k��t, i) = � ik(�t)�(x, y��t, i, k).

FIGURE 2 The state- changing 
process, conditional on beginning and 
end states, for the case with three 
possible behaviours. In the upper plot, 
we demonstrate all potential state 
sequences for some initial state i  and 

final state j. In the lower plot, we 
demonstrate this process as a line graph, 
assuming that an animal begins and ends 
an interval in state 3.
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    |  9GRAINGER and BLACKWELL

Consider group j, corresponding to each interval with time 
step (approximately) t̃j, containing nj elements. First, we check 
that this group contains enough elements for a spline interpola-

tion to come to effect. This, again, is user defined—in calculations 
throughout this paper we use 20 elements as the cut- off point, 
so that any group with fewer than 20 elements has Equation (17) 
calculated explicitly. If this group contains enough elements, 
for example, nj ≥ 20 then we consider the spatial Euclidean step 
lengths moved by the animal for each interval in the group. Let 
these step lengths be given by R =

{
R1, … ,Rnj

}
. Suppose we wish 

to use 10% of the data within each group to find the interpolat-
ing function. We now calculate �(R, k�t, i) explicitly, for some initial 
and final state, for 10% of the intervals in this group, including 
cases with step lengths given by Rmin = min (R), Rmax = max (R) and 

Rmedian = median(R), with the rest of the entries being a random 
sample. Assume we use explicit calculations for mj entries in total, 
given by R̃ =

{

R̃1, … , R̃mj

}

.

Finally, for group j, assume we now have values for �(R, k�t, i) 
given by �

R̃1
, … , �

R̃mj
. We may fit a cubic spline to these values, ob-

taining coefficients al , bl , cl , dl for l = 1, … ,mj − 1. Then we approx-

imate �(R, k��t, i) for every step entry not yet calculated, R∖ R̃: for 
R ∈

(

R̃l , R̃l+1

)

,

which is far more efficient than repeatedly calculating Equation (17) 
explicitly. This process is repeated for every combination of begin-

ning and end states, for each unique temporal step length. In this 
paper, we use the method of Forsythe et al. (1977), which is the well- 
tested default in the R function stats::splinefun, but different vari-
ations of spline- based interpolation are available. In each of these 
methods, however, we expect the proportion of data required for a 
given level of accuracy to be somewhat inversely proportional to the 
size of the data set. Thus, within the FInCH approach, we base the 
spline interpolation on a fixed proportion of the data.

3.5  |  A temporally inhomogeneous forward 
algorithm

The joint density in Equation (17) is used in the recursive forward 
algorithm (described for the HMM in Section 2.1.1) to find the full 
global likelihood conditional only on movement and transition rate 
parameters. For instance, let �i = P

(
S0 = i

)
 be the initial state prob-

ability of some state i , which may be inferred or deterministic. As 
of the second observation, after some time �t, where the animal is 
observed to be in location x1 =

(
x1, y1

)
, we may find the joint prob-

ability of the animal's location, initial state i , and final state j by

The combined joint distribution of the animal's state at time t and the 
data up to the second observation is then given by summing over (or 
integrating out) initial state values to obtain

where k represents each final state. The full likelihood at this point is 
given by

where � represents all model parameters on which we make infer-
ence. We use the full likelihood value to normalise Equation (20), 
before treating this value similarly to the initial state distribution 
(but with state k as the new ‘initial state’) in Equation (19). This 
process is repeated, with each ‘full’ likelihood term contributing 
to the total, global likelihood until each observation has been ac-

counted for.

3.6  |  FInCH likelihood summary

As with the work of Blackwell (2020), the process of integrating 
over behavioural states in Equations (20) and (21) means that vis-

ited states do not need to be sampled. Furthermore, because we 
have integrated out the time until potential changes in behaviour 
occur, we are no longer required to sample the times or frequency 
of these. This method is advantageous within an MCMC framework, 
as it allows for a simple Metropolis- Hastings algorithm and dra-

matically reduces the dimensionality of the parameter space from 
which we sample, which we expect to improve mixing substantially. 
Alternatively, because we have no parameters left to sample outside 
of the likelihood itself, we allow for direct optimisation, permitting 
inference in either a Bayesian or frequentist setting.

3.7  |  Implementation

Coding is in R for the sake of ease. Whereas a fully compiled lan-

guage would result in quicker computation, the focus here is rela-

tive computation time. Furthermore, this allows for a conservative 
estimate for the absolute computation time for FInCH. In each of the 
examples below, all computation was carried out on the same laptop 
PC (2.3 GHz, 32 GB).

For direct optimisation, the R function optim() was used to 
maximise log- likelihood for both the FInCH approach and the 
HMM. In doing so, we use the method of Nelder and Mead (1965), 
which is robust but reasonably slow compared to other methods, 
as it utilises only function values. Of course, absolute speed does 
not matter so much here, as we only concern ourselves with the 
accuracy and computational efficiency of these techniques rela-

tive to one another. In the spirit of fairness with regard to compar-
isons in terms of efficiency, we use initial log diffusion rate values 
of log �2

1
= − 3 for the slow state and log �2

2
= 2 for the fast state 

in all comparative cases, for all methods. When using the multiple 

(18)�(R, k��t, i) ≈ al + bl

(
R − R̃l

)
+ cl

(
R− R̃l

)2

+ dl

(
R− R̃l

)3

,

(19)�
(
x1, y1, i, k|�t

)
= �i� ik(�t)�

(
x1|�t, i, k

)
.

(20)�
(
x1, k| �t

)
=

N∑
i= 1

�
(
x1, i, k|�t

)
,

(21)ℒ
twoobs

(
�|x1

)
=

N∑
k = 1

�
(
x1|k, �t

)
,
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imputation (MI) method, which is described in Section 4.2.1, we 
use initial probability values gleaned from a previous arbitrary 
run of optim(). When comparing FInCH to MI using the real data, 
we use initial transition rates given by log (0.01). When comparing 
FInCH to the HMM, we use initial transition rates given by 0.001 
or its equivalent discrete probability.

Where interval estimates are given after direct optimisation, 
they are based on a calculation of the Hessian matrix at the es-

timated values (again using optim()). They can be interpreted as 
confidence intervals or as credible intervals using a flat prior dis-

tribution based on a locally multivariate normal approximation to 
the likelihood.

The computation time for direct optimisation with each method 
represents the expected time for an individual run of optim(). In the 
simulation study in Section 4.1, this is based on the average of 100 
separate pooled runs, whereas in the real data Sections 4.2 and 4.3, 
this is based on one. The idea here is to show that the FInCH ap-

proach is not only computationally feasible but that it competes with 
its discrete- time counterparts.

With regard to MCMC for exact inference, in order to obtain 
the shape of the posterior distribution for parameter values using 
InCH, for comparison in Section 4.2, we carry out 10,000 itera-

tions of MCMC, with a flat prior distribution. To find 95% inter-
vals for posterior mean values, we use the quantile() function to 
account for lack of symmetry (for an example of this asymmetry, 
see Figure 6).

4  |  RESULTS AND COMPARISONS

In this section, we observe the effectiveness of the FInCH approach 
in terms of efficiency and accuracy in comparison with existing ap-

proaches in continuous and discrete time. This is done for a range of 
simulated and real data. Section 4.3 details a case study on a large 
red fox (Vulpes vulpes) data set which serves as an example workflow 
for an ecologist using the FInCH approach.

4.1  |  Simulated regular data: FInCH versus HMM

The discrete- time model that is analogous to our switching diffu-

sion is an HMM, as described in Section 2.1, with a uniform turning 
angle distribution. To observe the accuracy of the FInCH approach in 
comparison to the HMM, we fit both approaches to spatially homo-

geneous, temporally regular, simulated data. This simulated animal 
follows two behavioural states (which we call states 1 and 2) with 
(log) diffusion rates given by log �2

1
= − 2 and log �2

2
= 1, respec-

tively. The infinitesimal transition rate out of both states is given by 
g12 = g21 = 0.001, where g12 and g21 are the transition rates out of 
state 1 and state 2, respectively.

To compare approaches, we assess the computation time and 
accuracy of the FInCH and HMM approaches on data with a varying 
amount of observations, n (with n ∈ {100,200,500, 1000}). For each 

value of n, we generate 100 data sets and carry out inference on 
each. This accounts for the effect of potential artefacts of individ-

ual data sets. In each case, we pool point estimate and uncertainty 
values for parameters by finding the mean and relevant quantiles of 
the 100 separate maximum likelihood estimates for each parameter. 
In every simulated data set, the time between observations is set to 
be 100 s, which corresponds to around 0.1 changes in behaviour per 
interval. This was deemed to be reasonable as the results of Glennie 
et al. (2023) give max (�t) =

(

max i

(

gi
))−1

= (0.001)
−1 = 1000 to be 

an intuitive rule of thumb for the maximum time step one would con-

sider using an HMM for when faced with an animal moving accord-

ing to these parameters.
When using the FInCH approach, we can vary the amount of data 

used to carry out a spline interpolation, described in Section 3.4, on 
the local likelihood. Generally, the more (regular) data we have, the 
lower the proportion of the data we use. This manually assigned 
trade- off between computation time and accuracy allows for com-

putational feasibility when dealing with large data sets (see Table 4 

for an example of this). The results of this simulation study- based 
comparison of inference techniques are shown in Table 1.

By Table 1, the FInCH approach appears to be far more accurate 
than its discrete- time counterpart. As the number of observations 
decreases, there appears to be a greater disparity between the two 
methods, although point estimates for the log diffusion rate in each 
state appear to have stabilised at around 200 observations. This 
is evident in Figure 3, which demonstrates how estimates for the 
log diffusion rates in each state vary based on the number of ob-

servations. The MLE log diffusion rate values inferred when using 
the HMM approach exhibit less separation between the diffusion 
rates in the two states than the FInCH method, although uncertainty 
around point estimates is comparable and decreases as the number 
of observations increases throughout.

The FInCH approach has the key advantage of allowing for in-

ference on the infinitesimal transition rate rather than a behavioural 
change transition probability at observation times. This not only 
aids with point estimate accuracy but allows for more precise pre-

dictive distribution calculation. See Figure 4—the disparity between 
the HMM approximation and the true predictive distribution for the 
animal step length, over a typical gap between observations, be-

comes clearer with more sparse data as we compare the case with 
0.1 expected behavioural switches between observations to 0.5. An 
HMM may intuitively be used on a data set with 0.5 expected ob-

servations in practice, based on results from Glennie et al. (2023). 
In comparison, the FInCH approach performs very well in both in-

stances as it allows for intermediate behavioural changes.
Regarding computation time, the FInCH approach, although 

slower than its discrete- time counterpart, demonstrates compu-

tational feasibility in all cases. The aforementioned user- defined 
trade- off between computation time and precision (of Section 3.4) 
allows this method to scale very well with the data. For example, in 
the case with n = 200 observations, we find that the FInCH method 
takes 3.73 s on average. In the case with n = 1000 observations, 
FInCH only takes 5.56 s on average. This is not a significant increase 
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in computation time because, with more data, we see a more marked 
gain from the spline- based interpolation.

4.2  |  A comparative case study: Kinkajou data

The kinkajou (Potos flavus) is a small mammal that exists in closed- 
canopy forest environments throughout central and southern 
America. The kinkajou is an example of a species threatened by not 
only habitat loss due to deforestation, but also the exotic pet trade 
(Harrington, 2015). Understanding animal behaviour can inform con-

servation efforts in the face of such threats. However, this species is 
nocturnal and, as an arboreal species, it spends most of its time in trees 
(Ford & Hoffman, 1988). This is a primary limitation for the study of this 
species, as it is very challenging to directly observe (Galvis et al., 2024; 

Sanderson & Trolle, 2005). Suppose instead we wish to make inferences 
on the behaviour of individual kinkajous by using GPS data, collected by 
tagging an individual specimen. We encounter potential further prob-

lems here due to the thickness of the forest canopy causing GPS signal 
loss, which may result in missing or irregular data (Wright et al., 2017). 
We therefore require a method of analysis that is accurate, fast and 
handles temporal irregularity in a straightforward manner.

To compare discrete- time and FInCH approaches on tempo-

rally irregular data, we utilise a relatively small individual kinkajou 
movement dataset obtained from Movebank (Kays & Hirsch, 2015; 

Powell et al., 2017). This dataset consists of no environmental co-

variates and 61 separate spatiotemporal locations, around 600 s 
apart, with some observations missing (see Figure 5). Because we 
may view both FInCH and discrete- time methods as approximations 
of the exact inference, we assess model performance by compar-
ing the results from both methods with those of the exact, fully 
Bayesian InCH approach (Blackwell, 2020). We use the closeness 
of each approximate method to the results found via this exact ap-

proach as a proxy for the overall accuracy of each method.
When demonstrating each model, we fit two behavioural states to 

the kinkajou data. We assume that the kinkajou moves according to a 
Brownian motion, making inference on its diffusion rate in each state 
and the rate at which it changes behaviour. From the estimated diffu-

sion rates in each state, given in Figure 6, we can see that the animal 
moves with a far lower diffusion rate in one behavioural state than the 
other, which indicates that the kinkajou has both a ‘slow’ and a ‘fast’ or 
‘busy’ behaviour. The slower behaviour may represent periods in which 
the kinkajou is asleep, or otherwise at rest, and the busier state may 
describe the movement of the kinkajou when it is foraging.

4.2.1  |  Multiple imputation

Observing Figure 5, we see that the data set has 6 missing observa-

tions, which accounts for around 10% of the data set. We cannot 

TA B L E  1  Pooled point estimates and uncertainties for parameter values obtained using direct optimisation via the HMM and FInCH 
approach on simulated data, compared to actual values.

Approach Observations log�2

1
log�2

2
γ12 γ21 Time (s)

True values — −2.00 1.00 0.091 0.091 —

FInCH 1000 −2.01 0.99 0.092 0.091 5.56

[−2.07, −1.92] [0.90, 1.09] [0.071, 0.13] [0.060, 0.13]

HMM 1000 −1.97 0.95 0.089 0.082 0.59

[−2.04, −1.89] [0.86, 1.04] [0.070, 0.12] [0.055, 0.11]

FInCH 500 −2.00 1.00 0.089 0.093 5.53

[−2.11, −1.88] [0.88, 1.12] [0.061, 0.14] [0.050, 0.15]

HMM 500 −1.97 0.95 0.086 0.085 0.31

[−2.09, −1.83] [0.83, 1.07] [0.059, 0.14] [0.050, 0.13]

FInCH 200 −2.00 0.99 0.089 0.092 3.73

[−2.27, −1.72] [0.78, 1.18] [0.040, 0.16] [0.037, 0.20]

HMM 200 −1.97 0.94 0.083 0.085 0.11

[−2.22, −1.70] [0.73, 1.16] [0.039, 0.15] [0.038, 0.16]

FInCH 100 −1.98 0.99 0.090 0.092 2.02

[−2.35, −1.64] [0.71, 1.33] [0.032, 0.25] [0.037, 0.28]

HMM 100 −1.94 0.94 0.079 0.089 0.063

[−2.27, −1.57] [0.63, 1.25] [0.028, 0.21] [0.032, 0.20]

Note: In each case, we use 100 simulated data sets, each consisting of observations every 100 s. To ensure that the FInCH approach is 
computationally feasible in all cases, we can manually alter the amount of data we use to carry out a spline interpolation to find the ‘local’ likelihood 
as a function of spatial step length. For the cases with 1000 and 500 observations, we use 5% and 10% of the data, respectively. We use 20% of the 
data for the datasets with 100 and 200 observations. In all cases, the FInCH approach correctly predicts the infinitesimal transition rate to and from 
each state to be g12 = g21 = 0.001 to two significant figures, whereas the HMM is unable to infer this parameter directly.
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12  |    GRAINGER and BLACKWELL

justify fitting an HMM directly to the data when dealing with non- 
negligible temporal irregularity (see Section 2.1.2). Instead, we take 
a multiple imputation approach inspired by the widely used R pack-

age momentuHMM (McClintock & Michelot, 2018). This method in-

volves resampling the movement path at regular intervals, using a 
single- state continuous- time model and then fitting an HMM to the 
resampled observations. This process of imputation and estimation 
is repeated multiple times in order to account for the uncertainty in 
the animal's path (see Equation 23). However, whereas this pack-

age uses continuous- time correlated random walks (CTCRWs), intro-

duced by Johnson et al. (2008), to reconstruct the movement path, 
we use a single- state diffusion model instead. In essence, this is the 
same, but without accounting for directionality (which is consistent 
with other examples in this paper). Having resampled the movement 

path, we fit a two- state HMM, finding MLE and uncertainty values 
using pooled estimates from each iteration. This involves a step- by- 
step iterative process:

1. Fit a single- state diffusion model to the data, using optim() to 
glean an ‘average’ diffusion rate.

2. Sample a path at regular observation times (in this case, 600 s), 
using this MLE diffusion rate, utilising Brownian bridges (e.g. 
Bullard, 1999; Horne et al., 2007) to ensure that observed loca-

tions are visited by the animal.
3. Fit a non- directional two- state HMM to this regular, augmented 

path.
4. In total, we repeat steps 2 and 3 a total of n = 30 times, stor-

ing MLE parameter values and parameter uncertainties each 

F I G U R E  3  Point estimates and 
uncertainty for the log diffusion rate 
in each behavioural state, by the size 
of the data set, found using FInCH and 
HMM approaches. Estimates for the 
log diffusion rate of the animal in both 
behavioural states display less accuracy 
and more uncertainty as the number of 
observations decreases. In each case, 
however, the FInCH approach performs 
better than its discrete- time counterpart.
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time. Let � represent any of the parameters we wish to esti-
mate. If we let �i be the ith MLE parameter value, var

(

�
i
)

 be 

the variance estimate of the ith parameter, and � be the pooled 
mean MLE parameter value, we may find pooled point and vari-
ance estimates for parameter � by as described by Rubin and 
Schenker (1986).

4.2.2  |  Comparing approaches

In this case study, observing Table 2, the FInCH approach appears 
much more accurate than its discrete- time counterpart. This is evi-
denced by the fact that, when using the MI approach, the 95% confi-
dence interval for the log diffusion rate in the slow behavioural state, 
log �2

1
, does not include the mean posterior value found by InCH. This 

disparity is shown clearly in Figure 6. As with the case study on regular 
data in Section 4.1, we usually do not make direct inference on the 
infinitesimal transition rate between states, g21 and g21, when using 
discrete- time methods. However, as before, we can find the transition 
probabilities at each observation, �12 and �21, using all approaches. The 

(22)� =
1

n

n
∑

i= 1

�
i ,

(23)var
(
�
)
=

1

n

n
∑

i= 1

var
(

�
i
)

+

(

1 +
1

n

)

[

1

n − 1

n
∑

i= 1

(

�
i
−�

)2

]

,

F I G U R E  4  A key advantage of 
continuous- time methods such as 
the FInCH approach is the ability to 
infer transition rates between states, 
rather than the transition probability 
at observation times. We demonstrate 
this here by observing the predictive 
distribution for the step length of an 
animal between observations, for when 
we start and end in either the slow or 
fast state. Both plots are based on the 
results of inference on the data set 
consisting of 1000 data points. In the 
upper plot, observations are 100 s apart. 
In the lower plot, we see the same but for 
the case where observations are taken 
500 s apart. In both cases, the predictive 
distribution of the HMM is far less 
accurate than that of the FInCH approach. 
However, the lower plot demonstrates 
that, as we increase the interval between 
observations, and hence the number of 
expected behavioural changes between 
observations, the HMM sees a far greater 
reduction in accuracy than FInCH.
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FInCH approach performs far better than the MI method in this regard, 
too. The results from the exact inference suggest that the kinkajou is in 
the slow state 51.4% of the time, whereas FInCH and MI suggest that 
this value is 54.3% and 59.4%, respectively.

The FInCH approach took 5.46 s to compute compared to 2.36 s 
for the MI, demonstrating that the FInCH approach can undoubtedly 
compete with its discrete- time counterparts when used on tempo-

rally irregular data. Furthermore, as shown in Section 4.1, the FInCH 
approach scales fairly well with the data, whereas McClintock (2017) 
demonstrates that this may not always be true with the MI approach.

For direct optimisation with FInCH, we choose a potential 
switching rate of � = 0.003, which corresponds to around 1.8 po-

tential changes in behaviour between intervals. To account for the 
low quantity of data, we use a spline interpolation technique, which 
utilises 50% of similarly temporally spaced data to approximate local 
likelihood values (detailed in Section 3.4). The choice of 30 iterations 
of the MI was largely based on the results of McClintock (2017), 
which demonstrated that more imputations at the expense of more 
computational effort does not always yield more accurate results. 
This fact is also evident here, with 400 iterations taking 31.05 s to 
compute and yielding point estimates log �̂2

1
= − 0.72, log �̂2

2
= 1.60, 

�̂12 = 0.32 and �̂21 = 0.19. This does not give a substantial improve-

ment on diffusion rate point estimates and suggests that the kinka-

jou spends 62.7% of its time in the slow behaviour, in contrast with 
the 51.4% found in the exact inference.

When carrying out exact inference, we use the Integrated 
Continuous- time HMM (InCH) approach of Blackwell (2020), calcu-

lating posterior distribution parameters within an MCMC framework 
with flat priors. We do this for 10,000 iterations. To find 95% confi-
dence intervals with InCH, we use the quantile() function in R in order 
to account for a lack of symmetry (which is evident in Figure 6).

4.3  |  A big data case study: Red fox

In this section, we consider a large data set with missing data 
(n = 5863 ) concerning the GPS location of an individual red fox 
(Vulpes vulpes) around UK grasslands (Porteus et al., 2024a, 
2024b). We assume that this fox moves according to Brownian 
motion with a diffusion rate, �2

i
, determined by three separate be-

haviours, i ∈ {1,2,3}. Unlike the comparative studies in Section 4.1 

and Section 4.2, we demonstrate only the FInCH approach. This 
section serves as both an example of this approach for big data 
and an example workflow for an ecologist working in a FInCH 
framework.

We choose (fairly arbitrary) starting parameters given by 
log �2

1;0
= − 3, log �2

2;0
= 0, log �3

3;0
= 2 and gij = 0.001 for i ≠ j with 

i, j ∈ {1,2,3}. This transition rate value corresponds to around 
0.6 changes in behaviour per 10 min interval. We interpolate 
based on 1% of similarly temporally spaced data, and set a 
very conservative potential switching rate of � = 0.2. The time 
taken for inference via direct optimisation was around 20 min 
and involved 2978 function calls, largely due to the increased 
number of model parameters and MLE values ĝ13 ≈ ĝ31 ≈ 0 tak-

ing a while to converge. In contrast, all runs of optim() else-

where in this paper converge in less than 500 iterations. Fixing 
g13 = g31 = 0 ahead of running FInCH and setting � = 0.02 yields 
similar MLE values for parameters in around 8 min, requiring 
934 iterations. Full MLE parameter values and uncertainties 
are given in Table 3. Diffusion rate point estimates are given 
by log �̂

2

1
≈ − 3.78, log �̂2

2
≈ − 1.30 and log �̂

2

3
≈ 3.52. We therefore 

have a very slow ‘resting’ state 1, an active ‘running’ state 3 and 
a moderately active ‘walking’ state, 2. The estimated generator 
matrix, Ĝ, is given by

F I G U R E  5  The time between 
successive observations in the kinkajou 
(Potos flavus) data set. Clearly, there 
are occasional missed observations 
(in one case, two missed observations in 
succession). Most ‘regular’ observations 
are recorded around 600 s apart. ‘Partly 
regular’ temporal structure such as this 
is common amongst temporally irregular 
data sets.
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which indicates that the fox never moves directly between state 1 and 
state 3.

Based on the point estimates for diffusion rates found in this 
inference, we may calculate the distribution for the animal's speed 
in each behaviour. For a diffusion rate �2

i
, the Euclidean distance 

moved by the animal in a given unit time is given by a li ∼ Rayleigh
(

�i

)

 

(Chattamvelli & Shanmugam, 2021). This is demonstrated, along with 
point estimates and uncertainties for diffusion rates, in Figure 7. 

Based on the 95th quantile of the distribution for the fox's speed in 
its ‘running’ behaviour, l3 ∼ Rayleigh(exp(3.52)), we may expect the 
top speed of this red fox to be around 14.29 m/s (51.4 km/h), which is 
supported by current literature (Fothergill & Cordey, 2015).

4.3.1  |  State reconstruction

By formulating its likelihood using the temporally inhomoge-

neous forward algorithm, the FInCH approach indirectly sums 

(24)

Ĝ =

⎛
⎜
⎜
⎜
⎜
⎜
⎝

− ĝ11 ĝ12 ĝ13

ĝ21 − ĝ22 ĝ23

ĝ31 ĝ32 − ĝ33

⎞
⎟
⎟
⎟
⎟
⎟
⎠

≈

⎛
⎜
⎜
⎜
⎜
⎜
⎝

−0.00025 0.00025 0

0.00049 −0.001 0.00052

0 0.00041 −0.00041

⎞
⎟
⎟
⎟
⎟
⎟
⎠

,

F I G U R E  6  The uncertainty around 
point estimates for the kinkajou diffusion 
rate, in each state, using each method, 
where the HMM is fitted by multiple 
imputation (MI). The histogram shows 
the posterior distribution for each log 
diffusion rate obtained using InCH. Note 
here that by taking a direct optimisation 
approach, we have assumed a multivariate 
normal distribution for approximate 
(FInCH and MI) parameter values. The 
MLE values found through FInCH are 
a close estimate of the posterior mean 
values and an almost exact estimate of 
the posterior modes. In contrast, the 
MI approach is somewhat inaccurate—
especially in the case for the slow state.
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over the animal's behavioural states, meaning we do not have 
to sample them. However, in practice an ecologist may be inter-
ested in reconstructing the animal's behavioural states to gain 
a more in- depth interpretation of the data and of the behav-

iours themselves. In a standard discrete- time HMM setting the 
Viterbi algorithm, introduced by Viterbi (1967), may be used to 
find an animal's most likely behaviour at each observation time 
(Zucchini et al., 2016). This is a readily available option in popular 
software for implementing HMMs, such as moveHMM (Michelot 
et al., 2016).

The Viterbi algorithm may also be used directly in a FInCH 
framework. The probability of the fox being in each behaviour over 
the first 150 h of data is given in Figure 8, in which there is a clear 
cyclic nature to the fox's most and least active behaviours over a 
24 h period.

Given the results in Figure 8, an ecologist may wish to make in-

ferences on the cyclic nature of the fox's activity. In Figure 9, we 
fit the probability of the fox being in each behaviour found via the 
Viterbi algorithm to the hour of the day using a generalised additive 
model (GAM). The fox exhibits a high likelihood of being at rest be-

tween 12:00 and 21:30, whereas fox activity is predicted to peak 
between 00:00 and 08:00. This crepuscular and nocturnal cyclic ac-

tivity is supported by the findings of Díaz- Ruiz et al. (2016).

4.4  |  The FInCH and the HMM for temporally 
regular large datasets

As described in Section 3.4, we may use a spline- based interpolation 
method to reduce the computation time for inference via the FInCH 
method, with an effect that increases based on the regularity of the 
data. When faced with entirely regular data, the FInCH approach 
scales very well with the size of the data in a way that competes with 
the HMM in terms of computation time. An example of this, when 
we fit two behavioural states to regular data sets of size n = 100,000 

and n = 10,000, is given in Table 4.

4.5  |  The importance of continuous- time inference

In Section 4.2, we demonstrated the importance of inferring the 
generator matrix, with transition rates, rather than the discrete- time 
transition probability matrix (TPM) for ecological interpretability, 
based on the potential uncertainty of TPM values. This section of-
fers a stronger example—the generator matrix in Equation (24) yields 
a TPM (over 600 s intervals) given by

Approach log�2

1
log�2

2
γ12 γ21 g12 g21 Time (s)

Exact −2.29 1.80 0.38 0.36 0.0011 0.0011 33.82

[−3.49, −0.95] [1.40, 2.30]

FInCH −2.67 1.85 0.43 0.38 0.0015 0.0013 5.46

[−3.64, −1.70] [1.38, 2.32]

MI −0.62 1.64 0.29 0.20 – – 2.36

[−1.82, 0.59] [1.13, 2.16]

Note: For the InCH approach, we have 95% confidence intervals for parameter values given by 
[0.00053, 0.0016] and [0.00041, 0.0016] for g12 and g21, respectively. The FInCH approach yield 
95% confidence intervals of [0.00066, 0.0033] and [0.00032, 0.0052] for g12 and g21, respectively. 
In discrete time, we estimate the transition probabilities to and from each state in the HMM case, 
yielding 95% confidence intervals of [0.11, 0.79] for �12 and [0.058, 0.69] for �21 . In the FInCH case, 
we obtain 95% confidence intervals of [0.26, 0.57] for �12 and [0.14, 0.67] for �21. In the InCH case, 
we have 95% confidence intervals of [0.21, 0.49] for �12 and [0.17, 0.48] for �21. This demonstrates 
far more uncertainty when using the discrete- time approach than the two continuous- time 
methods. The general high uncertainty in each case highlights the importance of making inference 
on the transition rates to and from each state, g12 and g21, in order to gain ecological insight. Point 
estimates for transition probabilities out of each state at observations, in each case, are based on 
intervals of 600 s.

TA B L E  2  Point estimates, with 95% 
confidence intervals for parameter values 
given for diffusion rate values, derived 
using the three methods.

TA B L E  3  Point estimates and uncertainty values for model 
parameters obtained from running the FInCH model on the fox 
data.

log�2

1
log�2

2
log�2

3

−3.78 −1.30 3.52

[−3.85, −3.70] [−1.46, −1.15] [3.47, 3.58]

g12 g13 g21

0.00025 ≈0 0.00049

[0.00021, 0.00030] [0.00040, 0.00060]

g23 g31 g32

0.00052 ≈0 0.00041

[0.00044, 0.00062] [0.00034, 0.00049]
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with �̂13 and �̂31 values accounting for a visit to state 2 in the interval 
between observations. However, Γ̂ alone, without knowledge of tran-

sition rates, does not demonstrate that the animal may never move 
directly between state 1 and state 3. Thus, this key structural feature 
would likely have been missed by an ecologist if inference had taken 
place in discrete time.

A further advantage of making inference in continuous time and 
inferring transition rate values may be seen when reconstructing an 
animal's behavioural state sequence. In this example, due to the high 
number of data used, we viewed it appropriate to use the Viterbi 
algorithm to find the probability of the fox being in each state at 
each observation time. However, when the transition rates from and 
to each state are inferred, we may sample the behavioural sequence 
of the animal on any timescale. For example, Blackwell (2020) 
demonstrates this type of approach by using the Forward- Filtering 
Backward- Sampling method of Früwirth- Schantter (1994). This is 
especially useful with particularly sparse data or when comparing 
different analyses on contrasting timescales.

(25)Γ̂ =
{
�̂ ij
}
=
{
Pr

�
St+600 = j� St = i

�}
≈

⎛
⎜⎜⎜⎜⎜⎝

0.88 0.11 0.02

0.21 0.58 0.21

0.03 0.17 0.81

⎞
⎟⎟⎟⎟⎟⎠

,

F I G U R E  7  In the upper plot, we have 
point estimates and uncertainty for log 
diffusion rates in the three behavioural 
states. Because this is a very large data 
set, we see very little uncertainty around 
point estimates. In the lower plot, we see 
the distribution for the fox's speed (in 
metres per second) in these behaviours.
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4.6  |  Choosing a method

In this paper, we have demonstrated that the FInCH approach is highly 
effective in comparison to its discrete- time counterparts, regarding both 
accuracy and the ability to compete in terms of computational expense, 
in a spatially homogeneous switching- diffusion setting. However, in 
cases with regular large data sets recorded at a high sampling frequency 
relative to the rate at which an animal changes behaviour, the disparity 
between the HMM and FInCH performance may not be too great, as-

suming that the HMM is formulated in a continuous- time framework. 
Existing R packages do not formulate the HMM in this way, however, 
and Table 4 demonstrates that the FInCH approach scales very well 
with the size of regular data sets. Thus, the FInCH approach may still be 
preferable even in this special, albeit fairly common, case.

The ‘two- switch’ FInCH approach in this paper is efficient due to the 
semi- analytical solutions for the location density in Section 3.2, which 
are obtained under the assumption of a fairly simplistic animal move-

ment process. One advantage of the HMM is the easy incorporation of 
directional persistence in an animal's movement (see Section 2.1 or the 
discussion in Section 5 for details). The existing implementation of the 
FInCH methodology does not support the inclusion of velocity, so if this 
is expected to be an important aspect of animal behaviour in a particular 
study, then an ecologist may not wish to use this approach until it has 
been suitably extended. Viable alternatives exist that allow for exact 

inference, such as that of Michelot and Blackwell (2019), or for finer- 
scale approximation, as in Parton and Blackwell (2017). However, if an 
ecologist wishes to carry out inference on regular data without imputa-

tion of times, locations and velocities between observations then cur-
rently an HMM approximation may be preferred, despite the limitations 
described above. Generally, however, we claim that, provided that there 
is a reasonable tolerance for computation time, the FInCH approach is 
a favourable alternative to the HMM whenever the data and ecological 
assumptions made fit within a FInCH framework.

In Section 4.2, the FInCH method is shown to be markedly faster 
than the exact inference, while producing similar results. This ap-

proach offers a viable, more accessible alternative to its exact 
counterpart, allowing for inference via direct maximisation of the 
likelihood, as illustrated here, or of the posterior density, if a pen-

alty term representing the prior distribution is included. The user 
may still wish to utilise the exact inference if they expect many be-

havioural changes between observations, accept the sampling- based 
Metropolis- within- Gibbs mechanisms behind the InCH approach 
and can accommodate the computational expense. However, even in 
this case, we are able to simply increase the number of behavioural 
changes possible when taking the FInCH approach between obser-
vations to allow for relatively straightforward direct inference. As 
previously discussed, alternative methods exist for exact inference 
that allow for the incorporation of directionality in inference without 

F I G U R E  8  We may use the Viterbi algorithm to reconstruct an animal's state sequence when using FInCH, just as we may when using the 
HMM. In this example, which looks at the first 150 h of data, it seems as if the period in which the fox is most active (that is, in the ‘running’ 
behavioural state) is fairly consistent throughout the day.
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time- discretisation error. These methods may be preferred by an 
ecologist if there is a wish to account for directional persistence.

5  |  DISCUSSION AND NE X T STEPS

The FInCH approach has been demonstrated to be very efficient 
when used on regular data due to a spline- based interpolation of 

local likelihood terms. As stated in Section 3.4, we expect that the 
proportion of data required for a given level of accuracy will be in-

versely proportional to the size of the data set. Furthermore, increas-

ing the amount of data used for this interpolation will increase the 
accuracy of the inference at greater computational expense. In this 
paper, we have ensured that no fewer than 20 similarly spaced data 
points have been used for this interpolation, lowering the propor-
tion of data used for larger data sets (for example, see Section 4.1). 

F I G U R E  9  Upper plot: The estimated probability of the fox being in its resting state, with uncertainty, throughout a given day. Lower 
plot: A stacked area plot showing the probability of the fox being in either of its three behavioural states throughout a given 24 h day. These 
results were calculated by normalising results from a generalised additive model (GAM) which fits a cyclic cubic spline, with 7 knots, to the 
hour of the day. Here, we have overwhelming evidence against there being no relationship between fox activity and the hour of the day 
(p < 10−15).
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We have used a higher proportion of temporally irregular data (for 
example, we used 50% of similarly spaced data in the kinkajou case 
study in Section 4.2). Inferring the amount of data that should be 
used on a case- by- case basis falls beyond the remit of this paper but 
is undoubtedly worthy of investigation.

Throughout this paper, we have considered infinitesimal tran-

sition rates found directly when using methods formulated in con-

tinuous time. In theory, one may find the matrix logarithm of the 
transition probability matrix to find the generator matrix after 
making inference in discrete time. However, this process is not as 
straightforward as taking the matrix exponential—the matrix loga-

rithm of a given TPM may not exist, and if it does exist, may not be 
unique. This is not merely a mathematical technicality; it reflects the 
fact that a given discrete- time model may not have any reasonable 
interpretation in continuous time, which in turn casts some doubt 
on the interpretation of that model. Albeit a feasible step in prac-

tice, software for inference in discrete time such as that of Michelot 
et al. (2016) and McClintock and Michelot (2018) tends not to in-

clude finding the infinitesimal transition rate as part of their work-

flow. Thus, we have not accounted for this in our analysis.
Although here we have only demonstrated up to three be-

havioural states, we may easily incorporate more using the same 
method. We expect this to result in a slight increase in computation 
time as we need to account for the local likelihood by considering 
every possible visited state, although of course any method will 
experience some increase in computational cost with more states. 
Likewise, we may readily apply this approach to data in any num-

ber of dimensions, though the specific analytic integrals (shown in 
Supporting Information S.2) will differ. The choice of two dimen-

sions here reflects most animal movement data. Again, increasing 
the number of dimensions used in the data is liable to increase com-

putation time as we are more likely to require adaptive quadrature to 
acquire an expression for the animal's movement density.

In the calculation for the local likelihood, as given previously, 
we take the probability of two potential switches to be given by the 
probability of having two or more potential switches in the exact 
model. In theory, this overinflates the probability of having two 
potential switches. However, this is compatible with the idea that 
the case of two switches partly acts as a proxy for more complex 
realisations with multiple changes in behaviour. Furthermore, we 

found that a variation of the likelihood approximation, such that we 
explicitly calculate the probability of two switches, gave only a neg-

ligible improvement in model accuracy at the expense of increased 
computation time.

In the homogeneous FInCH approach described here, it is 
perfectly reasonable to assume an upper bound exists on tran-

sition rates between behavioural states, which may serve as the 
‘potential’ switching rate as earlier described. Allowing a ‘switch’ 
from a state to itself—that is, a potential switch that is not an ac-

tual switch—is an aspect of ‘uniformisation’ (Blackwell et al., 2015; 

Jensen, 1953). We considered removing the potential switching rate, 
�, as far as possible, moving somewhat further from the InCH ap-

proach (Blackwell, 2020), by assuming that two potential changes 
in behaviour always occur between observations. This seemed to 
improve computation time, but its effect on model accuracy is less 
clear; further experimentation is in progress.

Although a key strength of the FInCH approach is that it allows 
for fast direct optimisation, with associated approximate interval 
estimates, the user may still wish to make fully Bayesian inference. 
Our method reduces the dimensionality of the space from which 
we need to sample, from being large and variable (Blackwell, 2003, 
2020), or bounded but proportional to the number of observations 
(Alkhezi, 2019), to being fixed and small—just the number of parame-

ters in the model. Using the likelihood defined here, inference within 
a Metropolis- Hastings framework will be straightforward and com-

putationally feasible.
A natural next step for the FInCH approach in its current form 

is the incorporation of environmental covariates. For example, an 
ecologist may be interested in how an animal's proximity to an envi-
ronmental feature (such as a river or forest) affects its probability of 
changing behaviour. Indeed, this is the original purpose behind the 
introduction of the ‘potential switch’, which differentiates the exact 
approach of Blackwell et al. (2015) from that of Blackwell (2003). 
To do this and maintain an upper bound on behavioural transition 
rates, we assume that the FInCH approach represents a ‘separa-

ble’ model, as described by Blackwell et al. (2015) and Harris and 
Blackwell (2013). In such models, we assume that movement into 
a new environment only directly affects an animal's transition 
rate between behaviours, such that its movement patterns do 
not directly depend on its location. Thus, we do not have to deal 
with instantaneous behavioural switches. As discussed in Harris 
and Blackwell (2013), this is not a particularly limiting assumption. 
Separability is also assumed in the spatially heterogeneous exact in-

ference method of Blackwell et al. (2015) and the InCH approach of 
Blackwell (2020) in order to allow for the assessment of an animal's 
environment as a prerequisite for finding the probability of an ac-

tual change in behaviour. We may ‘integrate over’ an animal's envi-
ronment, in effect integrating with respect to space as well as time 
when calculating its movement density.

Existing methods for inference in discrete time, such as the step- 
and- turn HMM, account for the turning angle of an animal between 
observations when inferring its behavioural state. For example, an 
animal which is migrating, therefore moving a more directed way, is 

TA B L E  4  An example of the time taken for the FInCH and HMM 
approach on regular data of size 100,000 and 10,000, respectively.

Approach Observations Time (s)

FInCH 100,000 95.4

HMM 100,000 64.9

FInCH 10,000 16.4

HMM 10,000 9.38

Note: Two behavioural states were fitted in each case. To carry out 
inference in the n = 100,000 case, a spline interpolation utilising 0.1% 
of the data has been used. In the n = 10,000 case, we incorporate 0.5% 
of the data. Point estimates for parameter values inferred in these 
examples are given in Supporting Information S.3.
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likely to ‘turn’ less than an animal which is foraging. There are clear 
advantages to considering turning angle in continuous time, which 
would also allow for a fairer comparison to the HMM. To do this, 
we believe the FInCH approach may be amenable to ‘continuous- 
time correlated random walks’ (CTCRWs), introduced by Johnson 
et al. (2008). These allow for directionality by assigning a diffusion 
process to the animal's velocity rather than directly to its position. 
We may then integrate velocity to produce a smooth movement pro-

cess (which is also more realistic over a fine timescale). Future work 
may serve as an extension of Michelot and Blackwell (2019), which 
incorporates behavioural switching into CTCRWs.

This methodology is novel in allowing for inference via direct op-

timisation when behavioural changes are formulated independently 
of observation times. However, it is not the only example of scale- 
invariant inference that allows for direct likelihood maximisation. 
For example, recent unpublished work (Blackwell, in review) builds 
on earlier work of Michelot et al. (2019) to incorporate behavioural 
switching into the Langevin diffusion model while maintaining the 
interpretation of its movement parameters as describing habitat 
selection within each behavioural state. This model could be fitted 
using existing Langevin methods (Blackwell & Matthiopoulos, 2024; 

Michelot et al., 2019) combined with standard HMM techniques, by 
assuming that changes in behaviour occur only at observation times 
and that spatial covariates (and therefore both movement rates and 
transition rates between behaviours) depend only on locations at 
the times of observations and remain piecewise constant over time. 
It would be interesting, however, to see if this model framework is 
amenable to a FInCH- type approach.

6  |  CONCLUSIONS

We have shown that the spatially homogeneous FInCH approach 
is more accurate than its discrete- time counterparts for a range of 
real and simulated data. This is especially true for irregular data or 
data for an animal that changes behaviour frequently. The FInCH ap-

proach is also far more accessible than pre- existing continuous- time 
methods for statistical inference, such as the InCH model, in that it 
allows for full likelihood calculation, and therefore direct maximisa-

tion, at a computational cost that competes with models formulated 
in discrete time. Furthermore, the spline interpolation between the 
likelihood terms of the FInCH approach reduces computation time, 
allowing for computationally feasible inference when faced with 
large data sets. One advantage of this method is that the amount 
of data used in the interpolation is user- defined in response to the 
size of the dataset, so in practice the computational cost scales well.
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