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Abstract: Hyperspectral object tracking has emerged as a promising task in visual object

tracking. The rich spectral information within hyperspectral images benefits the accurate

tracking in challenging scenarios. The performances of existing hyperspectral object track-

ing networks are constrained by neglecting the interactive information among bands within

hyperspectral images. Moreover, designing an accurate deep learning-based algorithm

for hyperspectral object tracking poses challenges because of the substantial amount of

training data required. In order to address these challenges, a new mixed multi-head

attention-based feature fusion tracking (MMFT) algorithm for hyperspectral videos is pro-

posed. Firstly, MMFT introduces a feature-level fusion module, mixed multi-head attention

feature fusion (MMFF), which fuses false-color features and augments the fused feature

with one mixed multi-head attention (MMA) block with interactive information, which

increases the representational ability of the features for tracking. Specifically, MMA learns

the interactive information across the bands in the false-color images and incorporates the

learned interactive information into the fused feature, which is obtained by combining the

features of the false-color images. Secondly, a new training procedure is introduced, in

which the modules designed for hyperspectral object tracking are first pre-trained on a

sufficient amount of modified RGB data to enhance generalization, and then fine-tuned on a

limited amount of HS data for task adaption. Extensive experiments verify the effectiveness

of MMFT, demonstrating its SOTA performance.

Keywords: feature fusion; mixed multi-head attention; Transformer; hyperspectral

object tracking

1. Introduction

Hyperspectral object tracking has attracted increasing attention, since the material

information contained in hyperspectral (HS) images enhances a tracker’s discriminative

ability against background clutter [1,2]. Unlike RGB images, which capture only three

channels, HS images span a wide range of wavelengths. This enables the differentiation

of objects that appear similar in RGB but exhibit distinct spectral characteristics, thereby

enhancing tracking performance in challenging scenarios. However, the datasets for HS

object tracking are small, which makes designing a robust tracker for HS object tracking

challenging. There has been a concerted focus on exploiting deep learning and traditional

machine learning methods to track targets with spectral information [3–5]. By transferring
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the discriminative capabilities acquired from extensive RGB datasets, deep learning-driven

trackers significantly outperform traditional machine learning methods [6–8].

Deep learning-based HS object tracking methods typically develop their networks

by using RGB tracking networks and applying band regrouping or selection methods to

convert HS data into false-color data to fit the network [9–12]. Some works reduce the

number of channels of the HS images to one three-channel false-color image and process

the images with RGB tracking networks [9,13]. These trackers achieve high speeds, e.g.,

SSDT-Net, which runs at 36 frames per second (FPS) [13] and processes only one three-

channel image at a time for tracking within the current frame. Other works divide HS

images into multiple false-color images and track the target by implementing several RGB

tracking networks [5,6,14]. Specifically, a sixteen-channel HS image is segmented into five

distinct false-color representations, and the tracking result is derived by combining the

tracking results of the target in each of these false-color images separately. Compared with

methods based on a single false-color image, tracking a target with multiple false-color

images shows better performance as more spectral information is preserved. However,

band regrouping methods neglect interactive information across the bands in HS images,

limiting performance improvement.

Additionally, HS object tracking methods face the challenge of limited HS data. Deep

learning-based methods, particularly those based on Transformer, require substantial

labeled training data to grasp long-range dependencies. The scarcity of available HS data

often results in overfitting. This issue is compounded by the fact that generating labeled

HS datasets is expensive and time-consuming, making it difficult to train robust tracking

networks capable of handling the complex characteristics of HS videos.

In order to tackle these challenges, a novel HS tracker, the mixed multi-head attention-

based feature fusion tracking (MMFT) algorithm, is proposed. Firstly, mixed multi-head

attention feature fusion (MMFF) is proposed to combine false-color features and learn the

interactive information between bands in one mixed multi-head attention (MMA) block.

MMFF obtains a fused feature by adding the false-color features using learnable weights,

which do not contain the interactive information. Simply conducting multi-head self-

attention (MHSA) on the fused feature to learn the interactive information is insufficient

since MHSA learns only the interactive information within the fused feature. Directly

conducting MHSA on the false-color images to learn interactive information requires

performing MHSA on multiple features, which is inefficient. Therefore, MMA divides

the heads of MHSA learning into two groups. One group is for self-attention learning on

the fused feature, while the other is for cross-attention learning on the fused feature and

the false-color features. This methodology enables learning of the interactive information

from the mixed spectral information and the false-color images. The learned interactive

information is also integrated into the fused feature by MMFF, which enhances the feature’s

representational capacity for tracking tasks. Additionally, compared to conducting MHSA

on the false-color images, MMFF is more efficient since the queries in the self-attention

and the cross-attention learning are formed from the fused feature, which contains the

same number of tokens as one feature of a false-color image. Secondly, a two-step (TS)

training strategy is proposed to mitigate overfitting resulting from the limited amount of

HS data. Training MMFF or fine-tuning the whole MMFT network on HS data cannot

achieve satisfactory performance due to overfitting. In the new training procedure, the

MMFF module is pre-trained with modified RGB data from a large RGB tracking dataset

to enhance generalization, while the rest of the algorithm is frozen. Subsequently, MMFT

performs fine-tuning on the HS dataset to adjust its parameters specifically for the HS object

tracking task. The experimental results validate that the new training procedure enhances
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the tracker’s performance. Extensive experiments on the HS object tracking dataset verify

that MMFT achieves SOTA performance.

As shown in Figure 1, MMFT demonstrates a superior AUC score compared to other

HS trackers, achieving a tracking speed of 26.1 FPS. Although SSDT-Net operates at a faster

speed than MMFT, its tracking performance is considerably lower.

0 10 20 30

Speed(FPS)

0.62

0.64

0.66

0.68
A

U
C

SST-Net

SSDT-Net

SiamHT

SiamHYPER

MMFT

Figure 1. A comparison of FPS and AUC between MMFT and other HS trackers.

In general, the paper’s primary contributions can be summarized as follows:

1. A novel feature fusion module, MMFF, is proposed, which enhances the hyperspectral

object tracking network by integrating interactive information between spectral bands

through an MMA mechanism.

2. A two-step (TS) training procedure is introduced, which effectively addresses the

challenge of limited HS data by pre-training with large RGB datasets and fine-tuning

on a smaller HS dataset, improving generalization and task adaptation.

3. Based on the proposed methods, a new HS tracking method, MMFT, is intro-

duced. Comprehensive experiments on the dataset for HS object tracking confirm

the effectiveness of MMFT, highlighting its impressive performance with real-time

inference speed.

The structure of this paper is as follows. Section 2 provides a brief review of related

methods. Section 3 presents the details of MMFT. Section 4 shows the experimental results

with a comprehensive analysis. Section 5 concludes this work.

2. Related Work

An overview of research relevant to this study is presented in this section. Object

tracking algorithms based on RGB data are introduced first. Then, works related to HS

object tracking are reviewed. Moreover, methods based on Transformer in object tracking

are introduced.

2.1. RGB Object Tracking

The goal of visual object tracking is to estimate the location and bounding box of

a specified object within a video sequence. Most efforts have been devoted to tracking

methods on RGB videos. The Siamese network framework emerged as a prevalent ar-

chitecture in object tracking, following the introduction of SiamFC [15]. Siamese-based

methods formulated object tracking as a matching problem, aiming to locate samples

resembling the template within search patches. The template patch was obtained from

the first frame of a video, while the search patches were acquired from the subsequent

frames. Numerous advancements were explored to advance the precision of Siamese-based
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tracking algorithms [16–19]. For instance, SiamRPN [16] and SiamRPN++ [18] integrated

the Region Proposal Network [20] into object tracking, and estimated the states of the target

through dual branches dedicated to classification and regression. Anchor-free methods

were also integrated into Siamese-based tracking networks to alleviate dependencies on

hyperparameters [19,21,22]. Moreover, attention mechanisms were investigated within

Siamese-based networks [23–30]. Ref. [27] introduced an attention mechanism to capture

contextual information from features at various levels, resulting in improved accuracy.

SiamON [28] proposed a target-aware attention mechanism within the Siamese network,

allowing the tracker to allocate more attention to the target, particularly effective in ad-

dressing occlusion challenges. The use of trackers on RGB data was explored for decades,

and achieved remarkable performance [29]. Compared to HS training data, the RGB data

were sufficient for training discriminative tracking networks. However, applying tracking

networks designed for RGB data directly to HS object tracking tasks is not feasible due to

differences in channel numbers and data distribution.

2.2. Hyperspectral Object Tracking

HS tracking has drawn growing interest recently, since the enriched spectral infor-

mation gives the trackers stronger discriminative ability in demanding situations like

deformation and background clutter. Based on RGB tracking methods, HS object tracking

algorithms developed methods with band processing and fusion modules.

The early HS tracking approaches relied on handcrafted features and correlation filter-

based trackers [1,31]. MHT [1] introduced modified HOG and global material abundance

features to extract material information from HS images, and applied the correlation

filter tracker BACF [32] for tracking the target. Subsequently, the authors of [3,10,33]

explored different methods to enhance feature extraction from HS images, leading to further

performance improvements. TSCFW introduced a spatial–spectral-weighted regularizer to

inhibit the pixels dissimilar to the target and penalized unexpected peaks in the response

maps [3]. Nowadays, more efforts have been devoted into deep learning methods to pursue

higher performance.

Trackers based on deep learning use networks built using a transferred RGB track-

ing network, whereas HS training data are insufficient for training a robust tracking

network [4,5]. Since RGB tracking networks operate on three-channel images, methods

were investigated to reduce the channels of the HS images [13,34–36]. For instance, BAHT

designed a background-aware band selection module to build images with three se-

lected bands, which were subsequently utilized by the RGB tracking network to track

the target [35]. Additionally, the bands in the HS images were regrouped into multiple

three-channel false-color images [4,5,7,37,38]. SiamBAG [4] approximated group weights

with a band attention module and fused the classification scores using the weights. SEE-Net

studied the importance of each band in HS images with a spectral self-expressive mod-

ule. The bands were regrouped into five three-channel images based on their importance.

The target was then localized on the basis of the results of the five images [5]. However,

these methods have notable limitations. Reducing the number of bands to three results

in a significant reduction in spectral information. Furthermore, converting HS data into

multiple three-channel images disrupts the spectral continuity, causing a loss of inter-band

correlations that negatively impacts tracking performance. In contrast, the proposed tracker

not only preserves a substantial amount of spectral information from the HS data but also

captures the inter-band correlations, enabling a more robust tracking approach. This capa-

bility of retaining spectral details and learning the interactions between bands establishes

our method as a more effective solution for HS tracking.
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2.3. Transformer-Based Object Tracking

The Transformer model, initially introduced in NLP, was later adopted for computer

vision tasks because of its remarkable performance [39–42]. For object tracking tasks,

Transformer has become a prevailing method. TransT integrated features from template

and search patches by leveraging Transformer-based modules, ECA and CFA [40]. In-

stead of the correlation operation in traditional Siamese network-based trackers, TransT

exploited the Transformer-based modules’ capacity for capturing long-range information,

and achieved better performance. Subsequent works utilized Transformer to build the

encoder and decoder, elevating the performance of Transformer-based trackers [43–47].

SiamPIN [46] introduced CNNs for extracting local information and utilized a model based

on Transformer for capturing global context. Their method proposed the Trans-ConV

unit block to facilitate the interaction between global and local information, resulting in

significant improvement. SFTransT [47] introduced the special attention mechanism to

protect high-frequency signals and achieve an all-pass filter to overcome the limitations

of Transformer. Recently, researchers have developed networks that utilize Transformer

blocks for feature extraction and template-search integration [48,49].

For HS object tracking, transformer was applied to fuse features of images. Imple-

menting transformer blocks to fuse the features obtained from RGB and HS images was one

of the mainstream methods [50–52]. TFTN employed 3-D convolution network to extract

features from HS images, and utilized transformer-based modules to fuse features of HS

images and corresponding RGB images [50]. Meanwhile, applying the transformer blocks

to fuse features corresponding to different information, i.e., spectral and spatial information,

was considered as another effective method [8]. Different from current transformer-based

approachs in HS tracking, the approach proposed in the work modifies self-attention learn-

ing in transformer blocks to fuse the features of the false-color images regrouped from a

single HS image.

3. Methods

In this section, the details of the proposed approach, MMFT, are presented. Firstly, the

architecture of MMFT is illustrated. Secondly, the methodology of the proposed module,

MMFF, is presented in detail. Thirdly, the proposed novel training and inference procedure

of the MMFT are introduced.

3.1. Architecture of the MMFT Algorithm

The MMFT algorithm consists of four parts, i.e., band reduction, backbone, MMFF,

and head network, as shown in Figure 2. Similar to the traditional Siamese network in the

object tracking field, MMFT takes in a pair of images comprising the template and search

patches. These patches undergo parallel processing within the network except for the head

network. The head network integrates the features from the two images to predict the

target’s state.

3.1.1. Band Reduction

To boost the speed of the proposed tracker, multiple convolution layers are employed

to reduce the channels of the input image, denoted as X ∈ R
H×W×16, to 9 channels, forming

the output image X
′
∈ R

H×W×9. Subsequently, the output image with fewer channels is

sequentially segmented into numerous false-color images, enabling the extraction of deep

features by the transferred RGB tracking network. H and W represent the height and width

of the HS image, respectively.
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Figure 2. The pipeline of the proposed MMFT.

3.1.2. Mixed Multi-Head Feature Fusion (MMFF)

The crucial advantage of HS object tracking lies in the abundance of spectral infor-

mation that enhances tracking precision in challenging scenarios. However, dividing an

HS image into multiple false-color images causes the loss of interactive information be-

tween channels. To address this issue, the MMFF module is introduced to capture the

interactive information among tokens within the false-color features and merge it with the

features. As illustrated in Figure 2, the MMFF module is constructed for the template and

search patches.

The implementation of the MMFF module is detailed in this section. As shown in

Figure 3, the structure of MMFF consists of mixed multi-head attention (MMA) learning

and a multilayer perceptron (MLP). Unlike the standard Transformer encoder, which uses

multi-head self-attention, the MMFF module utilizes MMA to capture both intra-band

dependencies within the fused feature and inter-band dependencies across different false-

color features. Following the MMA block, the output fused feature is passed through an

MLP to further refine its representation ability. The MLP is designed as a two-layer network:

the first layer projects the feature to an intermediate dimension, using a fully connected

layer followed by a ReLU activation; while the second layer projects the intermediate

feature back to the original feature dimension. This design enables the model to capture

more complex non-linear relationships among the fused features, thereby boosting the

discriminative ability of the network. The inputs to the MMFF module are denoted as

X̃
′

i ∈ R
hw×d, and the fused feature is represented as X̃

′

f used ∈ R
hw×d. The output of the

module is X̃
′′
∈ R

hw×d. Here, h and w represent the height and width of the features. d

represents the channel number of the features. MMA learning serves as the key mechanism

for extracting interactive information and integrating it into the fused feature.

By utilizing MMA learning, the procedures in MMFF can be formulated as follows:















X̃
′′
=

N

∑
i=1

wiX̃
′

i + Norm(MMA(X̃
′

1, X̃
′

2, . . . , X̃
′

N))

X̃
′′
= X̃

′′
+ Norm(MLP(X̃

′′
))

, (1)
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where MMA(·) represents mixed multi-head attention learning, Norm(·) is the normal-

ization operator, MLP(·) represents the multiple layers of the perceptron, and X̃
′

i is the

ith false-color feature. Overall, MMFF fuses the false-color features and integrates the

interactive information from these images into the fused feature.

M
M

A  Learning
M

LP�1 �2�3

A
dd &

 N
orm

A
dd &

 N
orm

�1, �2, �3 are the learnable weights

Figure 3. The structure of the mixed multi-head feature fusion module.

3.1.3. Backbone and Head Network

The backbone and head network are inspired by the RGB tracking network, which is

TransT in our case. The backbone is based on a customized version of ResNet-50. In this

modified version, the 5th stage has been eliminated, and the 4th stage’s stride has been

adjusted to 1, thereby outputting features with higher resolution. The head network consists

of a template-search feature integration module and two parallel branches dedicated to

classification and regression. The template-search integration module applies self-attention

learning to enrich the features, and cross-attention learning to fuse the features of the

template and search patches. The classification and regression branches are constructed

with a three-layer perceptron. The target’s location is determined by identifying the

peak score in the classification map and retrieving the corresponding coordinates in the

regression map.

3.2. Mixed Multi-Head Attention

MMA learning is a crucial component within the MMFF module, responsible for

extracting the interactive information and integrating it into the fused feature. Further

elaboration on this process is presented in the corresponding section. A detailed description

of the mechanism is provided in the section. MHSA learning is commonly used in self-

attention learning, since different linear projections to queries, keys, and values enhance

self-attention learning [53]. MHSA is described as follows:

{

hi = Attention(QWQ
i , KWK

i , VWV
i )

M = Concat(h1, h2, . . . , hn)W
O

, (2)

where Attention(·) is the self-attention learning, Concat(·) represents the concatenation

operation, WV
i ∈ R

d×dk , WK
i ∈ R

d×dk , WQ
i ∈ R

d×dk , and WO ∈ R
ndk×d. n is the number of

heads, and d = ndk is the number of channels. Q, K, and V are the query, key, and value,

which are obtained with the same feature.

In contrast to MHSA, MMA performs the self-attention and the cross-attention within

one attention learning block. As illustrated in Figure 4, MMA learning consists of two

groups of attention learning. One group performs self-attention on the fused feature, while

the other group conducts cross-attention between the fused feature and the features of the

false-color images. The self-attention learning in MMA enables the model to capture the

intra-interactive information within the fused feature, while the cross-attention learning

allows the model to learn the inter-interactive information between the fused feature and
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the false-color features. By augmenting the learned interactive information into the fused

features, MMA enhances their discriminative ability.

Linear

Concatenate

Linear

Scaled Dot-Product 
Attention

Linear Linear Linear

Scaled Dot-Product 
Attention

Linear Linear Linear

Scaled Dot-Product 
Attention

\Linear Linear







Self-attention group Cross-attention group

Figure 4. The implementation of MMA learning.

Specifically, the query is a fused feature calculated as follows:

X̃
′

f used =
N

∑
i=1

wiX̃
′

i, (3)

Q = X̃
′

f used, (4)

where X̃
′

i represents the false-color features extracted from the images regrouped from one

HS image, wi is the learnable weights, and N is the number of false-color images. Then, for

different hi, the keys and values are a group of features, which consists of the fused feature

and the false-color features as follows:































KF = X̃
′

f used

KX
i = X̃

′

i

VF = X̃
′

f used

VX
i = X̃

′

i

, (5)

where KF and VF represent the key and value corresponding to the fused feature, and KX
i

and VX
i denote the keys and values corresponding to the false-color features. The attention

learning can be described as follows.

hi = softmax(
(qi + p)(ki + p)T

√
dk

)vi, (6)

where qi = QWQ
i , ki = KWK

i , and vi = VWV
i . K consists of KF and KX

i , and V has the

same situation. dk is the number of channels in ki. p represents the positional embedding

information, which includes the positional relationships between locations within the

feature map. In Formula (6), the position embeddings for the queries and keys are the same

because the positional embedding corresponds to the size of the features [42], and the fused

feature and the false-color features, which generate the queries and keys, share the same
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size. In this way, MMFF realizes the fusion of false-color features and augments interactive

information of tokens into the fused feature in one MMA learning procedure.

3.3. Two-Step Training Procedure

The MMFT network consists of two types of modules, those transferred from the RGB

tracking network and those specifically built for HS object tracking. Modules originating

from the RGB tracking network have already been trained on large datasets of RGB tracking,

acquiring discriminative ability for tracking RGB objects. Since tracking the object with the

false-color images shares most of the prior knowledge on feature extraction and movement

state estimation, the components transferred from the RGB tracking network are frozen

during the HS training process. Modules constructed for HS object tracking, such as the

band reduction and MMFF modules, derive their parameters from the HS data. However,

the HS data are insufficient for training the parameters in the modules, especially for the

Transformer-based MMFF. To obtain the parameters with enhanced generalization and

adaptability for the HS object tracking task, a two-step training procedure is proposed

to train the modules, as shown in Figure 5. In step 1, modules designed for HS object

tracking, i.e., the band reduction module and the MMFF module, are pre-trained on a

large RGB dataset to improve generalization. In step 2, the same modules in the MMFT

network are fine-tuned on the limited HS data to adapt to the HS tracking task. During

both steps of training, modules transferred from the RGB tracking network are frozen. The

implementation details of the TS training procedure are outlined in Algorithms 1 and 2,

which provide a detailed description of the first and second steps of the training process.

The large RGB dataset in step 1 is the commonly used object tracking dataset, GOT-10K,

which contains more than 10 K sequences, while the HS training dataset in step 2 consists

of only 40 sequences. Therefore, the approach increases the amount of training data.

Algorithm 1: The first step of the TS training procedure

Input: N frames of RGB datasets XRGB ∈ R
H×W×3, where W, H, and C represent

the width, height, and channel of the RGB image, respectively.

Output: The pre-trained weight of the parameters in the MMFT.

1 Initialization: Load the weights from the RGB tracker into the MMFT, initialize

the parameters in the Band Reduction and MMFF modules with random

initialization, and freeze the parameters in the Backbone and Head network;

2 for n = 1, 2, . . . , N do

3 Concatenate XRGB along the channel dimension to form X
′

RGB ∈ R
H×W×3N ;

4 Put X
′

RGB into the Band Reduction to obtain X
′
∈ R

H×W×9 ;

5 Divide X
′

into multiple false-color images X
′

1, X
′

2, X
′

3 ∈ R
H×W×3 ;

6 Put X
′

1, X
′

2, X
′

3 into the Backbone to obtain X̃
′

1, X̃
′

2, X̃
′

3 ∈ R
hw×d ;

7 Put X̃
′

1, X̃
′

2, X̃
′

3 into the MMFF to obtain X̃
′′
∈ R

hw×d ;

8 Put X̃
′′

into the Head network to obtain the classification and regression

responses ;

9 Calculate the Lcls using the pj in the classification response and the yj in the

groundtruth;

10 Calculate the Lreg using the bj in the regression response and the b̂j in the

groundtruth ;

11 end for



Remote Sens. 2025, 17, 997 10 of 23

Algorithm 2: The second step of the TS training procedure

Input: N frames of the HS dataset XHS ∈ R
H×W×16.

Output: The fine-tuned weight of the parameters in the MMFT.

1 Initialization: Load the pre-trained weights from the first step into the MMFT and

freeze the parameters in the Backbone and Head network;

2 for n = 1, 2, . . . , N do

3 Put XHS into the Band Reduction to obtain X
′
∈ R

H×W×9 ;

4 Divide X
′

into multiple false-color images X
′

1, X
′

2, X
′

3 ∈ R
H×W×3 ;

5 Put X
′

1, X
′

2, X
′

3 into the Backbone to obtain X̃
′

1, X̃
′

2, X̃
′

3 ∈ R
hw×d ;

6 Put X̃
′

1, X̃
′

2, X̃
′

3 into the MMFF to obtain X̃
′′
∈ R

hw×d ;

7 Put X̃
′′

into the Head network to obtain the classification and regression

responses ;

8 Calculate the Lcls using the pj in the classification response and the yj in the

groundtruth;

9 Calculate the Lreg using the bj in the regression response and the b̂j in the

groundtruth ;

10 end for
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Figure 5. Illustration of the two-step training procedure.

The existing two-step training strategy in L2RCF [54], which trains the tracking net-

work with labeled remote sensing (RS) data in the first step and RS data with generated

pseudo-labels in the second step, differs from the TS training procedure in MMFT in three

key aspects. Firstly, MMFT uses cross-modal data for training, while L2RCF utilizes intra-

domain data. Secondly, in MMFT, only the HS-specific modules are trained, whereas L2RCF

trains the full network parameters. Thirdly, in step 2, MMFT focuses on fine-tuning the

modules with HS data to adapt the model for the HS tracking task, while L2RCF generates

pseudo-labels to augment the training set and enhance the generalization of the classifier.

Prompt learning is the commonly used method for handling data scarcity by adding

small model branches or adapters, and fine-tuning only the added parameters. Different

from prompt learning, the TS training procedure offers a more effective solution. The TS

training procedure addresses the scarcity of training data by pre-training the additional

modules for the HS object tracking task on the abundant RGB dataset in step 1. Then, the

model is fine-tuned on HS data in step 2 to adapt the model specifically for the HS tracking

task. Moreover, prompt learning cannot be directly applied to the HS object tracking task.



Remote Sens. 2025, 17, 997 11 of 23

The method does not change the structure of the base model, which in this work is the RGB

object tracking network. To adapt it for the HS object tracking task, the HS images need to

be transferred into three-channel images to match the base model. This operation differs

from the proposed TS training strategy and leads to the loss of the spectral information.

The RGB data contain three channels, which is not suitable for the MMFT network.

Hence, the RGB images, XRGB ∈ R
H×W×3, are concatenated along the channel dimension

to form the images, X
′

RGB ∈ R
H×W×3N , making them suitable for training the MMFT

algorithm. The RGB images are sampled from the large RGB tracking dataset. After

training with the RGB data, the MMFT is fine-tuned on the HS dataset. The image pairs,

the template and the search patches, are sampled from one sequence to collect the training

samples. And the same loss functions are utilized for the TS training. The classification

branch employs the binary cross-entropy loss function, which is calculated as follows:

Lcls = −∑
j

[yjlog(pj) + (1 − yj)log(1 − pj)], (7)

where yj represents the foreground or background with 1 and 0, and pj is the probability of

the sample belonging to the foreground. The generalized IoU (GIoU) loss and L1 loss [55]

are applied in the bounding box regression branch, and can be written as follows:

Lreg = ∑
j

1
IoU(bj ,b̂j)>0

[p1LGIoU(b
j, b̂j) + p2L1(b

j, b̂j)], (8)

where the two hyperparameters p1 and p2 control the relative importance of the GIoU loss

and the L1 loss [40]. p1 is critical for handling large misalignments between the prediction

and groundtruth, while p2 is effective for fine-tuning the bounding box coordinates once

the prediction is close to the groundtruth bounding box. In this work, p1 and p2 are set to

2 and 5, respectively. bj denotes the predicted bounding box, while b̂j corresponds to the

regression target.

3.4. Inference

In the inference procedure of MMFT, the initial frame of a video is applied to obtain

the template patch based on the given location and the state of the target, and the template

patch is used in the following frames of the video. The search patch in the following

frames is obtained according to the model’s predictions in the previous frame. The MMFT

network produces two score maps: the classification map and the regression map. The

classification map contains two channels, indicating the likelihood of the sample belonging

to the foreground or background. And four channels in the regression map represent the

normalized coordinates. To account for the proximity of target locations in consecutive

frames, a weighted mask is used to penalize scores that deviate significantly from the center

within the classification map.

4. Experiments

The section commences with an overview of the experimental setup, progressing to an

ablation study aimed at validating the impacts of the proposed components on the MMFT

and TS training process. Subsequently, quantitative and qualitative analyses are presented

to compare MMFT with other RGB and HS trackers.

4.1. Experimental Setup

4.1.1. Dataset

Due to the TS training procedure, which first pre-trains the designed modules on the

RGB dataset to gain better generalization, and then fine-tunes them on the HS dataset
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to adapt to the tracking task in HS videos, both RGB and HS datasets are utilized. The

GOT-10K dataset is chosen as the RGB dataset and the HS dataset is provided in [1].

The HS dataset contains three types of videos, i.e., HS videos, false-color videos, and RGB

videos. The false-color videos are obtained from the HS videos with the CIE color matching

function [1], which provides a standardized method to convert spectral power distributions

into color coordinates that approximate human color perception. The RGB videos are shot

at the same time and at a similar angle to the HS videos. Hence, the three types of videos

describe almost the same scenarios, which is suitable for comparing different trackers.

There are 35 videos for testing and 40 videos for training. These videos are classified based

on 11 challenging factors, i.e., out-of-plane rotation (OPR), out of view (OV), background

clutter (BC), in-plane rotation (IPR), fast motion (FM), motion blur (MB), deformation

(DEF), occlusion (OCC), scale variation (SV), illumination variation (IV), and low resolution

(LR). The trackers’ performance is assessed through precision plots, success plots, as well as

metrics such as the area under the curve (AUC) score and distance precision (DP) score. The

AUC score is calculated from the success plot data. The DP score is obtained by counting

the reported results at a 20-pixel threshold.

4.1.2. Implementation Details

In the experiments, MMFT is coded in Python using PyTorch. The training and

evaluations are conducted on a computer with a Xeon Silver 4210R CPU and two NVIDIA

RTX 3090 GPUs. The RGB tracking network utilized for transferring is TransT, which

is trained on large RGB datasets, including, COCO [56], LaSOT [57], GOT-10K [58], and

TrackingNet [59]. During the TS training procedure, all module parameters, except those

of the band reduction module and MMFF, are kept frozen. In this work, the parameters

are updated using the AdamW optimizer. For the first step of training, a learning rate of

1 × 10−4 and a weight decay of 1 × 10−4 are applied. The training process is conducted

for 100 epochs, with a batch size of 32. The learning rate is scheduled to decrease by a

factor of 10 after 60 epochs. For the second step of training, a learning rate of 1 × 10−5 and

a weight decay of 1 × 10−4 are applied. The training process is conducted for 30 epochs,

with a batch size of 32. The learning rate is scheduled to decrease by a factor of 10

after 20 epochs. Moreover, the MMFF architecture is configured with 8 heads for the

experiments. The sizes of the inputs, i.e., template and search patches, are resized to

128 × 128 and 256 × 256, respectively.

5. Results and Analysis

5.1. Ablation Study

5.1.1. Effectiveness of the Band Reduction

To validate the effectiveness of the band reduction, an ablation study on the band

reduction with different numbers of output channels is conducted. As shown in Table 1, the

tracker with an output setting of 15 channels achieves the best tracking performance, with

AUC and DP@20P scores of 0.679 and 0.917, respectively. However, its inference speed is

limited to 21.1 FPS. When the number of output channels is reduced to nine, the tracker

achieves AUC and DP@20P scores of 0.675 and 0.914, respectively, while improving the

inference speed to 27.9 FPS. Reducing the number of channels to six achieves the worst

performance in Table 1 due to the loss of spectral information. Considering the trade-off

between inference speed and performance, the number of output channels is set to nine for

the band reduction.



Remote Sens. 2025, 17, 997 13 of 23

Table 1. Comparison of band reduction with different numbers of output channels.

Output Channels

6 9 12 15
AUC DP@20P FPS

✓ 0.586 0.826 30.9
✓ 0.675 0.914 27.9

✓ 0.676 0.915 24.5
✓ 0.679 0.917 21.1

The top two values are marked in red and blue.

5.1.2. Superiority of Proposed MMFF

To highlight the superiority of the MMFF module, a comprehensive experiment is

conducted, and the results are presented in Table 2. In the experiment, the number of

channels of the input images for all methods are reduced from 16 to 9 using the band reduc-

tion module. In Table 2, the baseline tracker utilizes simple addition to fuse the features,

while the weighted fusion tracker employs learnable weights to fuse the features. The

concatenated tracker concatenates the features and reduces them to the original channel di-

mensions using a CNN. The self-attention weighted fusion tracker calculates self-attention

on the fused feature, which is obtained by applying weighted fusion to combine false-color

features. Concatenated self-attention fusion involves merging the enhanced concatenated

feature using learnable weights. An enhanced concatenated feature is obtained by applying

self-attention to the concatenated feature, which is obtained by merging features along

the channel dimension for the false-color features. Additionally, MMFF_na and MMFF

are trackers that perform MMA computations using the method illustrated in Figure 4.

They subsequently fuse the features according to Equation (1). During the MMA process,

all queries are generated from the fused feature. Specifically, MMFF_na generates sets of

keys and values in a 5:1:1:1 ratio from the fused feature and the false-color features. MMFF

generates sets of keys and values in a 2:2:2:2 ratio for the same features.

Table 2. Quantitative analysis of different feature fusion modules.

Model AUC DP@20P Params (M) FLOPs (G)

Baseline 0.586 0.820 18.54 43.48
Concatenated 0.548 0.801 21.69 47.51

Weighted fusion 0.675 0.914 18.54 43.48
Self-attention weighted fusion 0.677 0.916 31.15 59.62

Concatenated self-attention fusion 0.682 0.915 62.61 99.89
MMFF_na 0.685 0.917 37.44 67.67

MMFF 0.689 0.919 37.44 67.67

The top two values are marked in red and blue.

As shown in Table 2, the baseline tracker achieves an AUC score of 0.586 and a

DP@20P score of 0.820. The performance of the concatenated tracker is inferior to the

baseline due to information loss incurred during dimension reduction. Compared with

the baseline, the weighted fusion method yields improvement in the tracking results,

enhancing the tracker’s performance by 0.089 and 0.094 in terms of AUC and DP@20P

scores, respectively. The performance enhancement can be attributed to the contribution

of the features corresponding to false-color images, which enhances the overall tracking

performance. The self-attention weighted fusion calculates attention on the weighted

feature, further enhancing it and resulting in better tracking performance. The concatenated

self-attention fusion yields a superior AUC score due to the enhanced interaction between

false-color features through the application of self-attention to the concatenated feature.

However, this improvement comes at the expense of increased computational resources.

Concatenating features triples the number of feature tokens, resulting in a nine-fold increase



Remote Sens. 2025, 17, 997 14 of 23

in computational cost for calculating self-attention. Therefore, the method is inefficient. As

depicted in Table 2, the proposed MMFF and MMFF_na modules rank first and second

in the experiment. Replacing the feature fusion module with MMFF and MMFF_na,

the tracking performance significantly improves compared to the baseline, achieving

enhancements of 0.103 and 0.099 in AUC score, respectively. These results demonstrate the

effectiveness of the proposed module.

Table 2 also presents the model complexity and computational cost of the various

methods. The top three methods in Table 2 exhibit similar model complexity and computa-

tional cost, as they employ simple data processing techniques, i.e., element-wise addition

and convolution layers. In contrast, the model complexity and computational cost of the

methods in the last four lines of Table 2 are significantly higher than those in the top three

lines due to application of the attention mechanism. Compared to weighted fusion, self-

attention weighted fusion contributes to a limited improvement in the performance, with

increased model complexity and computational cost. Concatenated self-attention fusion

has the largest number of parameters and FLOPs since the self-attention is conducted on

the large concatenated feature. The size of the concatenated feature is three times that of

the features in MMFF_na and MMFF. MMFF_na and MMFF have the same number of

parameters and FLOPs since they both apply MMA to compute the attention. Overall,

MMFF achieves the best performance with a limited increase in the model complexity and

computational cost.

5.1.3. Impact of Different Training Strategies

An experiment is conducted to confirm the superiority of the proposed training

procedure. As there is a significant shortage of hyperspectral video data, an RGB dataset

is utilized for pre-training the band reduction and MMFF modules, and an HS dataset

is applied for fine-tuning the modules. As described in Section 3.3, since the MMFT

network requires input images with more than three channels, the original RGB images,

XRGB ∈ R
H×W×3, are modified by concatenating N copies along the channel dimension

to form images, X
′

RGB ∈ R
H×W×3N . This straightforward transformation ensures that

the RGB data can be effectively utilized during the pre-training stage, compensating for

the channel mismatch between the RGB and hyperspectral data. Table 3 presents the

experimental results comparing different training procedures. RGB training refers to the

training procedure involving training the modules using the modified RGB data only.

HS training indicates the training procedure where the modules are trained exclusively

with the HS training dataset. TS training is the proposed training procedure, involving

the pre-training of modules using RGB data followed by fine-tuning with HS data. As

illustrated in Table 3, conducting RGB training on the modules using the GOT-10K dataset

results in a competitive performance, with AUC and DP@20P scores reaching 0.679 and

0.910, respectively. However, when performing RGB training with the LaSOT dataset or

the combination of LaSOT and GOT-10K, the performances of the trackers drop. Based on

the result of RGB training on the GOT-10K dataset, conducting TS training on the proposed

modules leads to the best performance, achieving AUC and DP@20P scores of 0.689 and

0.919, respectively. Conducting HS training of these modules results in a decrease in

tracking performance, with a 0.016 drop in the AUC score compared to the RGB training on

the GOT-10K dataset. This decline is attributed to the limited availability of HS data, which

leads to overfitting during training. In summary, the TS training procedure for the modules

that cannot be transferred from the existing RGB tracking network proves its effectiveness

in HS tracking, achieving superior performance compared to other training procedures.
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Table 3. Quantitative analysis of the different training strategies.

Training Dataset Training Strategy

GOT-10K LaSOT HSI RGB Training HS Training TS Training
AUC DP@20P

✓ ✓ 0.679 0.910
✓ ✓ 0.674 0.907

✓ ✓ ✓ 0.677 0.903
✓ ✓ 0.665 0.904

✓ ✓ ✓ 0.689 0.919

The top two values are marked in red and blue.

To demonstrate the occurrence of overfitting during HS training, Figure 6 presents

the training loss and performance curves. As shown in Figure 6, the training loss con-

sistently decreases over the epochs, indicating that the model is fitting the training data.

However, the AUC performance on the testing dataset peaks early and then declines. This

performance drop after the initial improvement confirms that the model is overfitting to

the training data, as it fails to generalize well to unseen data.
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Figure 6. Plots of training loss and performance over the epochs.

5.2. Comparison with State-of-the-Art RGB Trackers

To evaluate the performance of the proposed tracker, a competitive comparison

with eleven RGB trackers is conducted, including fDSST [60], SRDCF [61], BACF [32],

MCCT [62], SiamCAR [19], SiamRPN++ [18], TransT [40], SwinTrack [48], SeqTrack [63],

ARTrack [64], and HIPTrack [65]. Notably, HIPTrack and ARTrack have achieved SOTA

performance on RGB tracking datasets. The performance of all the compared trackers is

displayed in Figures 7 and 8. MMFT performs inference on HS videos. The other trackers

in Figure 7 perform inference on false-color videos, and those in Figure 8 perform inference

with RGB videos.

As demonstrated in Figures 7 and 8, MMFT outperforms other RGB trackers in preci-

sion and success, achieving superior performance at any threshold. It attains an AUC score

of 0.689 and a DP@20P score of 0.919. Moreover, a comparison between Figures 7 and 8

reveals that RGB trackers exhibit better tracking results on RGB data in contrast to false-

color data. Notably, ARTrack, a state-of-the-art tracker that excels on RGB object tracking

datasets and ranks among the top three trackers for both RGB and false-color videos on the

HS dataset, experiences a significant performance drop when applied to false-color videos,

with decreases of 0.024 in AUC and 0.018 in DP@20P scores. The observations emphasize
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the limitations of RGB-based trackers when applied to HS videos, particularly when HS

videos are transformed into three-channel formats. To address this, MMFT is specifically de-

signed for tracking in HS videos. The results presented in Figure 7 demonstrate that MMFT

outperforms ARTrack by a significant margin, surpassing it by more than 0.068 in AUC

and 0.023 in DP@20P scores, further validating its effectiveness for HS tracking. This en-

hancement can be attributed to the effective utilization of spectral information by MMFT in

HS videos. The abundance of spectral information in HS videos offers more discriminative

cues, leading to improved tracking performance and contributing to the robustness.
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Figure 7. Comparisons of MMFT and trackers on the corresponding false-color videos.
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Figure 8. Comparisons of MMFT and trackers on the corresponding RGB videos.

5.3. Comparison with Hyperspectral Trackers

To reveal the superior tracking performance of MMFT, a comparative experiment is

conducted against twelve SOTA HS trackers, i.e., DeepHKCF [34], MFI-HVT [66], MHT [1],

SST-Net [14], BAE-Net [37], SSDT-Net [13], SiamHYPER [2], SiamHT [67], SEE-Net [5],

TBR-Net [68], PHTrack [69], and SPIRIT [70]. The results, summarized in Table 4, clearly

show that MMFT outperforms the other trackers, achieving the highest AUC score of 0.689.

Among the comparative trackers, DeepHKCF, an adaptation of the KCF tracker, fails to

incorporate spectral–spatial structural information from HS data, leading to significantly

degraded performance. MHT relies on handcrafted features derived from HS data for

tracking. However, these features do not adequately capture the rich information present in
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HS videos, resulting in a lower AUC score compared to MMFT. Methods such as MFI-HVT,

SiamHT, and SSDT-Net convert HS videos into three-channel false-color videos before

extracting features for tracking. These methods result in a substantial loss of hyperspectral

spectral information, which adversely affects tracking accuracy and results in inferior

performance compared to MMFT. SST-Net, BAE-Net, SEE-Net, and TBR-Net rearrange HS

videos based on the importance of spectral bands, producing multiple false-color videos

as inputs to the tracker. Similarly, PHTrack generates such videos using a neural network.

Although these methods retain a significant portion of spectral information in HS videos,

the lack of feature interaction within the false-color videos impedes tracking performance,

leading to a decrease in the AUC score compared to the proposed method. SiamHYPER,

which utilizes both RGB and HS videos, achieves an AUC score of 0.678. The HS data in

this approach serve as supplementary information to assist in RGB video tracking. SPIRIT,

which employs a template update mechanism, achieves an AUC score of 0.679. However,

the performance of MMFT still surpasses it, with an AUC score 0.010 higher. MMFT’s

superior performance is attributed to several critical factors. First, the MMFF module

facilitates effective feature interaction across false-color videos, resulting in improved

tracking accuracy. Furthermore, pre-training MMFT on a large dataset of RGB videos

enhances its generalization capability, contributing to its overall superior performance.

Table 4 further demonstrates the inference speeds of MMFT and the compared HS

trackers. MMFT achieves an inference speed of 26.1 FPS, enabling real-time tracking.

Among the trackers evaluated, MMFT is the second fastest, only surpassed by SSDT-Net.

However, SSDT-Net compromises spectral information through the reduction of bands in

the HS data, resulting in a significant decrease in tracking precision. Considering tracking

performance and inference speed, MMFT offers a better balance of accuracy and practicality.

Table 4. Performance comparison with hyperspectral trackers of AUC and FPS.

Tracker DeepHKCF [34] MHT [1] MFI-HVT [66] BAE-Net [37] SST-Net [14] SSDT-Net [13] SiamHYPER [2]

AUC 0.328 0.588 0.604 0.606 0.623 0.639 0.678

FPS 0.91 2.61 2.42 0.72 0.65 35.7 19.0

Tracker SiamHT [67] SEE-Net [5] TBR-Net [68] PHTrack [69] SPIRIT [70] MMFT

AUC 0.621 0.666 0.660 0.660 0.679 0.689

FPS 16.0 8.72 14.9 15.2 26.0 26.1

The top two values are marked in red and blue.

5.4. Attribute-Based Evaluation

This section uses 11 attributes to evaluate MMFT and seven compared trackers, i.e.,

SiamCAR [19], SiamRPN++ [18], and SwinTrack [48], and four HS trackers, i.e., MHT [1],

SiamHYPER [2], BAE-Net [37], and SSDT-Net [13]. Table 5 shows the trackers’ performance

in AUC score. The results presented in Table 5 reveal that MMFT achieves a top-two

position across 10 out of the 11 attributes, with the exception of OV. Notably, in attributes

such as BC and OCC, the performance of HS trackers outperforms RGB trackers due to the

enriched spectral information present in HS videos. Notably, for the IPR and MB attributes,

the MMFT demonstrates superiority over the second-ranked SiamHYPER tracker, with

an AUC score gain of 0.028 and 0.020, respectively. Due to the MMFT effectively utilizing

valuable feature information in HS videos, it provides robust performance in addressing

challenges related to in-plane rotation and motion blur.
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Table 5. Attribute-based comparison on hyperspectral videos or the corresponding false-color videos.

Attribute MMFT SiamCAR SiamRPN++ SSDT-Net SiamHYPER BAE-Net MHT SwinTrack

Background clutter (BC) 0.710 0.530 0.587 0.663 0.702 0.631 0.594 0.456
Deformation (DEF) 0.735 0.719 0.684 0.685 0.720 0.679 0.664 0.707
Fast motion (FM) 0.695 0.665 0.559 0.603 0.710 0.607 0.541 0.493

In-plane rotation (IPR) 0.748 0.631 0.674 0.666 0.720 0.699 0.670 0.567
Illumination variation (IV) 0.587 0.417 0.478 0.543 0.592 0.440 0.474 0.489

Low resolution (LR) 0.686 0.435 0.475 0.521 0.664 0.491 0.478 0.490
Motion blur (MB) 0.770 0.627 0.539 0.579 0.750 0.594 0.560 0.634
Occlusion (OCC) 0.630 0.527 0.544 0.607 0.635 0.555 0.565 0.533

Out-of-plane Rotation (OPR) 0.737 0.654 0.697 0.695 0.706 0.693 0.631 0.619
Out of view (OV) 0.685 0.602 0.608 0.732 0.596 0.516 0.620 0.710

Scale variation (SV) 0.668 0.548 0.591 0.639 0.657 0.608 0.564 0.586

The top two values are marked in red and blue.

5.5. Qualitative Analysis of Visual Tracking Results

To comprehensively verify the advantages of MMFT, a qualitative evaluation of

various trackers is provided. The evaluation includes RGB trackers like SiamCAR [19],

SwinTrack [48], and TransT [40], and HS trackers such as SSDT-Net [13] and BAE-Net [37].

The visualization results of all the trackers in Figure 9 illustrate the performance on the

Basketball, Coke, Fruit, Paper, and Rider2 image sequences from top to bottom. These

visualizations clearly indicate that the HS tracker demonstrates notably superior perfor-

mance compared to the RGB tracker. This can be attributed to the capacity of HS trackers

to utilize spectral information, enabling them to address challenges like background clutter

and occlusion. SSDT-Net suffers from a loss of spectral information due to its band fusion

method, resulting in poor tracking performance when faced with low-resolution and occlu-

sion scenarios, as in the cases of Basketball and Rider2. BAE-Net effectively utilizes the

spectral information from the HS video. However, its inability to fuse features across false-

color videos results in target loss in sequences like Basketball and Fruit. In contrast to the

compared trackers, MMFT accurately tracks the target in all five sequences. This achieve-

ment is attributed to the efficient processing of hyperspectral information by the MMFF

module. Furthermore, the results emphasize the capability of MMFT to handle challenging

scenarios, including background clutter (Coke, Fruit, Paper), low resolution (Basketball,

Rider2), occlusion (Basketball, Fruit, Rider2), and fast motion (Basketball, Coke).

MMFT TransT SwinTrack SiamCAR SSDT-Net BAE-Net GroundTruth

Figure 9. Visualization results of proposed MMFT tracker compared with several trackers.
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6. Discussion

While this work demonstrates that MMFT achieves state-of-the-art performance

in HS object tracking, several limitations merit discussion and will inform our future

research directions.

Firstly, the decision to reduce the HS images from 16 to 9 channels represents a

compromise between computational efficiency and tracking performance. Although the

experimental results in Table 1 indicate that this reduction achieves a favorable balance,

it may lead to the loss of critical spectral details in certain scenarios, thereby affecting

feature extraction and overall tracking performance. To address this, we plan to investigate

adaptive spectral band selection methods that can dynamically determine the optimal

number of channels for data with abundant spectral information.

Secondly, the results in Table 3 demonstrate that the TS training procedure is effective

for the HS tracking task. However, this approach is sensitive to domain shifts. Specifically, if

the modified RGB data used in the first step do not adequately capture the spectral features

of the HS domain, the subsequent fine-tuning step may not fully bridge the domain gap,

resulting in limited performance improvements. Therefore, training the network solely

on HS data would be preferable. However, the large number of parameters in the HS

tracking network can lead to overfitting when only limited HS data are available. There are

two potential solutions to address the issue: increasing the number of HS tracking data and

reducing the number of trainable parameters in the tracking network. The former method

fundamentally addresses the issue, such as using modified RGB data as pseudo-HS data in

the first step of the TS training procedure for model training. The latter method indirectly

handles overfitting via parameter-efficient fine-tuning techniques that introduce only a

small number of additional parameters into the pre-trained model. This technique, which

allows effective adaptation with limited HS data, will be a primary focus of our future

research efforts.

7. Conclusions

A new hyperspectral object tracking method, MMFT, is proposed, which incorporates

a novel feature-level fusion using mixed multi-head attention within the tracking network.

To enhance the feature representation capacity, a feature fusion module based on MMA

is proposed. This module, MMFF, integrates features from false-color images regrouped

from a single HS image and incorporates the learned interactive information between

different false-color images into the fused feature. Furthermore, to address the challenges

posed by limited HS training data, the TS training procedure for hyperspectral object

tracking network is introduced. The procedure involves pre-training the modules designed

for hyperspectral object tracking using an extensive set of modified RGB data to improve

generalization, followed by fine-tuning on a limited dataset of HS data for the task adaption.

The experimental results demonstrate the effectiveness of the MMFF and TS training

approach in improving tracking performance. MMFT achieves an AUC score of 0.689, with

an inference speed of 26.1 FPS.
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