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 A B S T R A C T

The production of nanomaterials (NMs) has gained significant attention due to their unique properties and 
versatile applications in fields such as medicine, energy, and electronics. However, ensuring the large-scale 
synthesis of safe and sustainable NMs while maintaining their functionality remains a critical challenge. This 
study introduces the Safety by Process Control (SbPC) framework, a novel methodology integrating dynamic 
first-principles modeling, Model Predictive Control (MPC), and real-time safety monitoring. The framework 
employs a physics-based population balance model with a Method Of Moments (MOM) approximation to 
predict the evolution of key NM properties. A toxicity inferential sensor, built on experimental data, is 
integrated to facilitate real-time hazard assessment. The efficiency of the proposed framework is demonstrated 
using a continuous silver nanoparticle (Ag NP) production system as a case study. The proposed approach 
ensures the production of high-quality, safe, and sustainable NMs, aligning with Safe and Sustainable by Design 
(SSbD) principles and addressing gaps in current NM manufacturing processes. The framework’s adaptability 
to other NM types highlights its potential as a transformative tool for sustainable nanotechnology.
1. Introduction

Nanomaterials (NMs) constitute a class of advanced materials that 
exhibit remarkable properties and have found promising applications 
in various fields, including medicine, energy conversion, catalysis, sens-
ing, nanocomposite engineering and cosmetics (Sasidharan et al., 2019; 
Saldanha et al., 2017). While significant advancements have been made 
in their fabrication and fundamental studies, their widespread adoption 
has been hampered by challenges in scalable, reproducible synthesis 
and increasing concerns on the safety of NMs for human health and 
the environment (Sánchez Jiménez et al., 2022; Mech et al., 2022). In 
alignment with the Safe and Sustainable by Design (SSbD) principles, it 
is essential to acheive efficient, large-scale production of high-quality 
functional NMs while simultaneously addressing potential safety and 
sustainability concerns (OECD, 2022; Caldeira et al., 2022).
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Among the various types of NMs, silver nanoparticles (Ag NPs) hold 
a distinct position, demonstrating potential applications in a variety of 
fields, including medicine, agriculture, catalysis, optics, and electron-
ics (Abou El-Nour et al., 2010; Prabhu and Poulose, 2012; Beyene et al., 
2017). Various approaches have been developed for the synthesis of 
Ag NPs, each with distinct advantages and limitations (Iravani et al., 
2014). Physical and photochemical techniques often demand special-
ized equipment and must be controlled continuously (Jara et al., 2021), 
while biological methods may have limited reproducibility (Sharma 
et al., 2022). Chemical methods, in contrast, offer a versatile and scal-
able platform for producing high-purity Ag NPs under mild conditions. 
Specifically, chemical reduction in organic solvents or water can yield 
Ag NPs with controlled morphology and size distribution (Yaqoob et al., 
2020). Chemical methods for synthesizing Ag NPs are widely employed 
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due to their high efficiency, convenience, and low cost. Typical chemi-
cal approaches involve three types of reagents: metal-based precursors, 
capping oxidants, and reducing agents.

The demand for Ag NPs is growing rapidly (Syafiuddin et al., 2017) 
but cannot be met by current batch production methods (Cristaldi, 
2020). This necessitates a transition to continuous production (Długosz 
and Banach, 2019; Gacem and Abd-Elsalam, 2022; Makgwane and Ray, 
2014). Controllable and tunable Ag NPs synthesis using microreactors 
has attracted increasing research interest (Prakash et al., 2020; Zhu 
et al., 2021). High-throughput microreactors enable synthesis with pre-
cise control of the NPs morphological characteristics, while optimizing 
reactor geometry addresses laminar flow challenges and enables NP 
synthesis with narrow size distributions (Gao et al., 2020). Recently, 
microfluidic-based synthesis systems have been introduced to enable 
the controlled production of spherical Ag NPs with tunable sizes for var-
ious applications (Pinho and Torrente-Murciano, 2020). Furthermore, 
a self-regulating multistage Ag NP synthesis system has been developed 
for the production of tunable particle sizes (4–100 nm), incorporat-
ing real-time feedback control to overcome reproducibility issues and 
maintain stable NM production for long reaction times (Pinho and 
Torrente-Murciano, 2021).

The production of Ag NPs has many common characteristics with 
the process of crystallization. It is a multifaceted process governed 
by several fundamental mechanisms, including nucleation and growth. 
Population balance modeling (PBM) offers a comprehensive and dy-
namic understanding of NP size distribution evolution over time (Ramkr
ishna, 2000; Randolph, 2012; Ramkrishna and Singh, 2014). In this 
approach, a population of NPs is viewed as a continuum, accounting for 
various mechanisms such as nucleation and growth. The rates of these 
processes are formulated with appropriate mathematical equations, 
enabling accurate predictions of crystal size distribution under varying 
conditions (Vetter et al., 2013). Solving Population Balance Equations 
(PBEs) poses challenges, primarily due to the discretization of the inter-
nal coordinate space (e.g., NP diameter), which leads to prohibitive for 
control applications computational times. Numerical methods, such as 
the Finite Volume Method (FVM) (Filbet and Laurençot, 2004; Kumar 
et al., 2009) and the Cell Average Technique (CAT) (Kumar et al., 
2008), are commonly employed for their solution. Selecting an efficient 
numerical method depends on specific problem characteristics, includ-
ing particle interactions, size distribution complexity, and available 
computational resources. Monte Carlo simulations offer a particle-level 
perspective, particularly useful for simulating multivariate population 
balances (Lin et al., 2002). The Method of Moments (MOM) involves 
transforming PBEs into equations in terms of the moments of the 
number density function (Randolph, 2012). Hulburt and Katz (Hulburt 
and Katz, 1964) argue for tracking lower-order moments instead of 
the complete number density function, simplifying the complex pop-
ulation balance equation into a system of simple differential equations 
dependent only on time and space. Moments-based methods offer the 
advantage that low-order moments are related to physically meaningful 
and generally measurable macroscopic properties. Quadrature-based 
Methods of Moments (QMOM) (McGraw and Wright, 2003) approx-
imate the density function using a quadrature formula, aiming to 
close the infinite system of moment equations by selecting a finite 
set of quadrature weights and abscissas. The first implementations of 
QMOM for calculating Ag NPs distributions in a microtubular reactor 
combined multiphase model theory, and kinetic theory of granular 
flow (Liu et al., 2014; Bal and Bandyopadhyaya, 2018). The method has 
been also used to assess mixing regimes and reactor configurations by 
predicting the size of Ag NPs synthesized in flow reactors (Casado et al., 
2023; Pico et al., 2023). The Direct Quadrature Method of Moments 
(DQMOM) (Marchisio and Fox, 2005) directly solves for the quadrature 
weights and abscissas involved in the moment approximation. In this 
study, the focus is on developing a first-principles mathematical model 
to efficiently compute physically meaningful quantities, such as the 
mean and the variance of the Ag NPs size by employing the MOM 
2 
approximation for the numerical computations. Nucleation and growth 
are considered as the main mechanisms, omitting secondary phenom-
ena like aggregation and breakage. This allows for deriving closed 
forms for the lower-order moments of the NP distribution, facilitating 
their direct coupling with the fluid flow in the series of Plug Flow 
Reactors (PFRs) used for Ag NP production.

The toxicity of Ag NPs is size dependent: smaller NP sizes generally 
lead to higher toxicity (Kong et al., 2020; Waktole, 2023; Cho et al., 
2018; Noga et al., 2023; Akter et al., 2018). The increased toxicity of 
smaller Ag NPs can be attributed to their significantly larger surface-to-
volume ratio and particle concentration, which increases their potential 
interaction with biomolecules and triggers adverse biological responses. 
The toxicity of Ag NPs is also influenced by their shape, as demon-
strated by the presence of active metallic facets (Tak et al., 2015), or 
aspect ratio (Acharya et al., 2018). It has been shown that spherical Ag 
NPs exhibit higher toxicity compared to other geometric configurations, 
due to their higher circularity (Panzarini et al., 2018; Auclair and 
Gagné, 2022). A combined approach of engineering NP toxicity to 
desired levels by modifying their size and surface is presented by Zhang 
et al. (2022). In this work, we employ the ToxScore metric (Hongisto 
et al., 2019), for assessing the toxicity of Ag NPs. ToxScore pro-
vides a single aggregated toxicity score by combining multiple toxicity 
endpoints derived from five assays conducted on cell line models.

So far, the challenge of controlling the morphological characteristics 
of Ag NPs while simultaneously ensuring the safety of the end prod-
uct for human health and the environment during continuous Ag NP 
production has not been fully addressed. This work demonstrates that 
by utilizing an inferential toxicity sensor, which predicts the ToxScore 
metric as a function of the NP mean diameter, it is possible to perform 
real-time predictions of health hazards. The mean diameter of the 
produced NPs can be estimated in real-time from online experimental 
measurements of UltraViolet–Visible (UV–Vis) absorption spectra. More 
specifically, the wavelength on the UV spectrum corresponding to the 
peak absorbance can be converted to the average NP diameter using 
an approximation of the Mie Theory (Mie, 1908; Eremin, 2005). Mie 
theory provides a solution to Maxwell’s equations for the interaction 
of light with a spherical particle, taking into account the particle’s size, 
refractive index, and the wavelength of the incident light. Mie theory is 
particularly applicable to the scattering and absorption of light by par-
ticles comparable in size to the wavelength of the light, such as in the 
case of NPs (Gupta et al., 2018; Niskanen et al., 2019). It provides size 
estimations which are in agreement with size measurement obtained 
from Transmission Electron Microscopy (TEM), particularly for metal 
NPs, like silver (Baset et al., 2011).

The control algorithm used in this work to regulate the production 
process of Ag NPs is Model Predictive Control (MPC). MPC is an 
advanced control strategy extensively used across various industries 
due to its capability to manage complex processes with multiple vari-
ables and constraints (Camacho et al., 2007). This capability makes 
MPC particularly effective for systems that require balancing competing 
objectives to achieve optimal performance.

To the best of the authors’ knowledge, the use of MPC in the pro-
duction of Ag NPs has not been addressed in the literature. However, 
several studies have proposed the application of MPC in crystallization 
processes, which present challenges similar to those encountered in 
NM synthesis. For example, Kwon et al. (2014) developed a compre-
hensive framework for modeling and controlling crystal shape during 
continuous protein crystallization. Their approach utilized MPC to 
produce crystals with a desired shape distribution. They employed a 
MOM model to approximate the dominant behavior of a PBE, which 
described the crystal volume distribution in a mixed suspension mixed 
product removal crystallizer. This moment model was then used to 
design an MPC controller capable of manipulating jacket temperature 
to address changes in set-point values and disturbances effectively. 
Similarly, Tahir et al. (2017) explored the application and challenges 
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Fig. 1. Configuration of the Ag NPs production system.

of MPC in continuous oscillatory baffled crystallization reactors, which 
are an intensified form of PFRs.

The proposed SbPC methodology is illustrated through a case study 
conducted as part of the SABYDOMA Horizon 2020 research project
(Nelson, 2022). The study focuses on the control of the SABYDOMA 
Lead Demonstrator, which is a continuous lab-scale Ag NPs microflu-
idics production process. This process involves a series of PFRs in-
tegrated with an advanced online sensor for nanotoxicity screening
(Owen et al., 2020). The precursor used is silver nitrate (AgNO3), while 
sodium citrate (SC) and tannic acid (TA) solutions act as reducing and 
capping agents under low-temperature conditions. This combination 
offers an efficient and environmentally friendly method for controlling 
the size and morphology of Ag NPs (Cheng et al., 2016).

It is demonstrated that the application of the proposed methodology 
effectively addresses the challenge of regulating the morphological and 
safety characteristics of Ag NPs produced in the continuous SABY-
DOMA process. Additionally, it is illustrated that the proposed SbPC 
framework provides a systematic approach for implementing the SSbD 
principles at the production stage, in alignment with Pillar 2 of the 
OECD SSbD description (OECD, 2022).

2. Model of the process

2.1. Process description - The Ag NPs production system

The configuration of the Ag NPs production system is described in 
Fig.  1. The Ag NPs are produced by a system of five PFRs in series 
immersed in a heated water bath. The first PFR is fed with an AgNO3
and a SC-TA solution and is dedicated to the nucleation process. The 
subsequent four PFRs serve as growth stages, with each one being fed 
with an AgNO3 solution of the same concentration.

2.2. System kinetics and first principles population balance model

In this section, a first principles approach is employed to model the 
formation of Ag NPs using the Finke–Watzky (F–W) two-step mecha-
nism (Thanh et al., 2014). This mechanism assumes a slow continuous 
nucleation (Eq. (1)) followed by a fast autocatalytic surface growth 
(Eq. (2)) (Sandoe et al., 2019): 

𝐴
𝑘𝑛
←←←←←←←←←←→ 𝐵, (1)

𝐴 + 𝐵
𝑘𝑔
←←←←←←←←←←→ 𝐵, (2)
3 
where 𝐴 represents nuclei, and 𝐵 represents NPs.
The resulting kinetic curves exhibit a sigmoidal shape due to the 

F–W two-step model, with nucleation rate constant, 𝑘𝑛, and surface 
growth rate constant, 𝑘𝑔 (Bentea et al., 2017). Experimental observa-
tions on Ag NPs production show that increasing SC concentration leads 
to smaller particle sizes.

In addition, higher concentrations of metal atoms result in larger Ag 
NP sizes, favoring growth over nucleation. The presence of the capping 
agent, TA, also influences growth kinetics, with higher concentrations 
leading to the formation of smaller NPs. Considering these factors, the 
NP growth rate is formulated as follows: 
𝐺 ≡ 𝐺(𝐷) = 𝐺𝑜(1 + 𝛼𝐷), (3)

where 𝐺𝑜 = 𝑘𝑔𝐶𝐴𝐶−1
𝑆𝐶𝐶

−1
𝑇𝐴, and 𝛼 is a temperature dependent parameter 

quantifying size-dependent growth rate; 𝐶𝐴, 𝐶𝑆𝐶 , 𝐶𝑇𝐴 denote concen-
tration of metal atoms, SC and TA, respectively. Here, for simplification 
purposes a linear relation between growth rate and diameter size is 
assumed. The growth rate constant, 𝑘𝑔 , follows an Arrhenius equation 
formulating its temperature dependence: 
𝑘𝑔 = 𝑘𝑔,𝑜 exp

(

−𝐸𝑎,𝑔∕𝑅𝑇
)

, (4)

where 𝑘𝑔,𝑜 is the pre-exponential factor, 𝐸𝑎,𝑔 is the activation energy of 
growth kinetics, 𝑅 is the gas constant and 𝑇  denotes the temperature.

For nucleation, a simple linear relation with the concentration of 
diluted precursor, 𝐶AgNO3

, is assumed: 

𝐽 = 𝑘𝑛𝐶AgNO3
. (5)

The nucleation rate constant, 𝑘𝑛 exhibits an Arrhenius-type dependence 
on temperature: 
𝑘𝑛 = 𝑘𝑛,𝑜 exp

(

−𝐸𝑎,𝑛∕𝑅𝑇
)

, (6)

where 𝑘𝑛,𝑜 is the pre-exponential factor and 𝐸𝑎,𝑛 denotes the activation 
energy of nucleation kinetics.

In this study, the population dynamics of NPs are modeled, each 
characterized by its diameter, 𝐷. Denoting the number density function 
of Ag NPs with 𝑛(�⃗�, 𝐷, 𝑡), the population balance model (Eq. (7)) de-
scribes the evolution of 𝑛 in flow, neglecting breakage and aggregation 
processes: 
𝜕𝑛
𝜕𝑡

+ ∇ ⋅
(

𝑣𝑛
)

+ 𝜕
𝜕𝐷

(𝐺𝑛) = 0 →
𝜕𝑛
𝜕𝑡

+ 𝑣𝑥
𝜕𝑛
𝜕𝑥

+ 𝜕
𝜕𝐷

(𝐺𝑛) = 0, (7)

where 𝑣 = 𝑣𝑥 corresponds to the fluid velocity in the plugflow reac-
tor, assuming a one-dimensional flow (the fluid velocity within each 
pluglow reactor is uniform). The PBE is complemented by appropriate 
initial and boundary conditions.

In our system, it is considered that initially no particles exist in the 
plug flow reactors volume, 𝑛(𝑥,𝐷, 0) = 0, and particles with 𝐷 = 0 are 
produced through nucleation, i.e,: 
𝑛(𝑥, 0, 𝑡) = 𝐽∕𝐺(0), (8)

where 𝐽 denotes the nucleation rate (given by Eq. (5)), and 𝐺(0) is the 
growth rate at size 𝐷 = 0: 𝐺(0) = 𝐺𝑜. The particle PBE is coupled with 
mass balance equations for the diluted species of the system, and in 
particular for the capping agent, TA, and the SC species:
𝜕𝐶𝑇𝐴
𝜕𝑡

+ 𝑣𝑥
𝜕𝐶𝑇𝐴
𝜕𝑥

= 0,

𝜕𝐶𝑆𝐶
𝜕𝑡

+ 𝑣𝑥
𝜕𝐶𝑆𝐶
𝜕𝑥

= 0. (9)

Finally, the mass balance for the solute is written as (Bosetti and 
Mazzotti, 2019): 
𝜕𝐶AgNO3

𝜕𝑡
+ 𝑣𝑥

𝜕𝐶AgNO3

𝜕𝑥
+

𝜌𝑐𝑘𝑣
𝑀𝑊

𝜕𝜇3
𝜕𝑡

, (10)

where 𝜌𝑐 is the density of NPs, 𝑘𝑣 is the shape factor of the NPs, 𝑀𝑊
denotes the molecular weight, and 𝜇3 ≡ ∫ ∞

0 𝐷3𝑛(𝑥,𝐷, 𝑡)d𝐷, corresponds 
to the third order moment of the NP population.
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2.3. Method of Moments (MOM) model

Solving the system of Eqs. (7)–(10) is computationally intensive, 
prompting the utilization of average or total quantities to represent 
particle distributions. Lower order moments of the distribution func-
tion, 𝑛, offer a practical alternative, describing useful statistics of the NP 
population. These statistics include the average diameter, the standard 
deviation from the average diameter, and the mass concentration of 
NPs.

For the system under study, the PBE has one spatial dimension 
(�⃗� = 𝑥) and one size dimension (the diameter, 𝐷), whereas the mass bal-
ances are one-dimensional (assuming negligible energy and momentum 
gradients). One can alleviate the extra dimension for the solution of the 
population balance model (diameter, 𝐷), by deriving the corresponding 
equations that describe the dynamics of the populations statistics, i.e. of 
the lower order moments of the NP distribution. Multiplying Eq. (7) by 
𝐷𝑗 and integrating from 0 to ∞ with respect to 𝐷, yields equations 
describing the dynamics of moments, 𝜇𝑗 : 
𝜕𝜇𝑗
𝜕𝑡

+ 𝑣𝑥
𝜕𝜇𝑗
𝜕𝑥

+ (𝐺𝑛)
|

|

|

|

|

∞

0
= 0

𝐸𝑞𝑠. (3),(8)
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→
𝑛(𝑥,𝐷→∞,𝑡)=0

(11)

𝜕𝜇0
𝜕𝑡

+ 𝑣𝑥
𝜕𝜇0
𝜕𝑥

− 𝐽 = 0, (12)
𝜕𝜇𝑗
𝜕𝑡

+ 𝑣𝑥
𝜕𝜇𝑗
𝜕𝑥

− 𝑗𝐺𝑜
[

𝜇𝑗−1 + 𝛼𝜇𝑗
]

= 0, 𝑗 ≥ 1 (13)

where 𝐽 denotes the nucleation rate formulated using Eq. (5); 𝐺𝑜, 𝛼
denote the zero diameter growth rate, and the proportionality constant 
that quantifies the linear dependence of growth rate, 𝐺, on diameter, 
𝐷 (see Eq. (3)).

Furthermore, the parameter 𝛼 is assumed to follow an Arrhenius-
type dependence on temperature: 

𝛼(𝑇 ) = 𝛼𝑜𝑒
−

𝐸𝛼,𝑎
𝑅𝑇 . (14)

Eqs. (12)–(13) form a closed set describing the evolution of moments, 
𝜇𝑗 , dependent on spatial dimension, 𝑥 and time, 𝑡.

Given the above, one can track any number of moments; by in-
creasing the number of tracked moments, the reconstruction of number 
density function, 𝑛 is more accurate, however the computational cost 
also increases. In practice, only the lower order moments, 𝜇0, 𝜇1, 𝜇2, 𝜇3, 
are of particular interest, representing the number, average size, mean 
area and mass of NPs, respectively.

In this work, the evolution of several parameters is simulated, 
including:

• Moments up to 3rd order (𝜇3): Eqs. (12)–(13) for 𝑗 = 0, 1, 2, 3
• The mass balance equations for TA and SC: Eqs. (9)
• The mass balance of the solute (AgNO3): Eq. (10)

Assuming the inflow stream to the first reactor (𝑥 = 0) does not 
contain any seeds, Dirichlet boundary conditions are imposed for each 
moment of the NP distribution, i.e.: 
𝜇𝑗 (0, 𝑡) = 0, 𝑗 = 0, 1, 2, 3 (15)

For the solute concentration, 𝐶AgNO3
, a Dirichlet type boundary 

condition is also imposed: 
𝐶AgNO3

(0) = 𝐶0
AgNO3

, (16)

where 𝐶0
AgNO3

 is the concentration of AgNO3 at the inlet of the 1st PFR. 
The value of the state variable 𝐶AgNO3

, at the inlets of reactors #2, 
#3, #4 and #5 are determined by the mass balances at the junctions 
where fresh AgNO3 solution is introduced to each reactor. At the mixing 
point the distribution of the particles 𝑛 is not affected by the addition 
of AgNO3 solution (it only affects the concentration of the population 
of NPs in the stream).
4 
The main interest of this work lies in monitoring the average 
diameter of produced NPs: 

�̄� =
𝜇1
𝜇0

, (17)

and the standard deviation of the NP population: 

𝜎 =
(

𝜇2
𝜇0

− �̄�2
)

1
2
. (18)

3. Model predictive control framework

MPC is a control strategy that solves an online optimization problem 
at each sampling instant to compute the optimal control action. This 
control methodology requires a dynamic model of the plant to predict 
the system’s future behavior over a finite time horizon, hence the 
name ‘Model Predictive Control’. MPC stands out among other control 
strategies because it can easily handle multi-input multi-output systems 
and incorporate multiple constraints on the input and output variables. 
The constraints imposed by the algorithm ensure that all input signals 
remain within the capacities of the system actuators, and the output 
variables do not violate the bounds specified by production protocols. 
The objective function includes the errors between model predictions 
and the desired set-points, as well as the incremental changes of the 
manipulated inputs. The optimization problem is reformulated and 
solved at each time step, incorporating feedback from the plant, with 
the controller implementing only the first control action from the 
sequence of computed actions. The rolling-horizon concept of MPC is 
presented graphically in Fig.  2.

3.1. Dynamic matrix control

This study employs Dynamic Matrix Control (DMC) as the control 
algorithm, which is a popular MPC variant. In DMC, discrete time step-
response models of the plant are integrated in the control algorithm 
to provide the predictions for the system’s future behavior (Tatjewski, 
2007; Camacho et al., 2007; Mulholland, 2016). The step response 
model that describes the model output, 𝑦(𝑡), is given by: 

𝑦(𝑡) =
∞
∑

𝑖=1
𝑔𝑖𝛥𝑢(𝑡 − 𝑖), (19)

where 𝑔𝑖 are the step response coefficients and 𝛥𝑢 is the change of 
the manipulated variable 𝑢 between two consecutive discrete time 
instances.

In systems that reach a steady state over a finite horizon, 𝑙𝑝𝑖𝑛, the 
prediction of the output at time instant 𝑘, �̂�(𝑡+𝑘||

|

𝑡), takes the following 
form: 

�̂�(𝑡 + 𝑘||
|

𝑡) =
𝑘
∑

𝑖=1
𝑔𝑖𝛥𝑢(𝑡 + 𝑘 − 𝑖) +

𝑙𝑝𝑖𝑛
∑

𝑖=1
(𝑔𝑘+𝑖 − 𝑔𝑖)𝛥𝑢(𝑡 − 𝑖) + 𝑦𝑚(𝑡) − 𝑦𝑠𝑠, (20)

where 𝑦𝑚(𝑡) is the current output measurement and 𝑦𝑠𝑠 is the steady 
state at which the step response model has been derived. Measured 
disturbances can be incorporated into Eq. (20) as additional input 
variables that cannot be manipulated. In this case, the prediction of 
the output at each time instant 𝑡 + 𝑘 can be described by: 

�̂�(𝑡 + 𝑘||
|

𝑡) =
𝑘
∑

𝑖=1
𝑔𝑖𝛥𝑢(𝑡 + 𝑘 − 𝑖) +

𝑘
∑

𝑖=1
𝑔′𝑖𝛥𝑑(𝑡 + 𝑘 − 𝑖) +

𝑙𝑝𝑖𝑛
∑

𝑖=1
(𝑔𝑘+𝑖 − 𝑔𝑖)𝛥𝑢(𝑡 − 𝑖)+

+
𝑙𝑝𝑖𝑛
∑

𝑖=1
(𝑔′𝑘+𝑖 − 𝑔′𝑖 )𝛥𝑑(𝑡 − 𝑖) + 𝑦𝑚(𝑡) − 𝑦𝑠𝑠

(21)

where 𝑔′𝑖 is the step response coefficient for the measured disturbance 
prediction model at each sampling instance and 𝛥𝑑 is the change of 
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Fig. 2. The rolling horizon concept of MPC.
Fig. 3. Open-Loop dynamic simulator.
the measured disturbance 𝑑 between two consecutive discrete time 
instances.

The DMC algorithm determines the optimal sequence of future 
manipulated variables over the control horizon (𝛥𝑢(𝑡),… , 𝛥𝑢(𝑡 + 𝑁𝑐 ))
by minimizing the quadratic objective function: 

min
(𝛥𝑢(𝑡),…,𝛥𝑢(𝑡+𝑁𝑐 ))

⎧

⎪

⎨

⎪

⎩

𝑁𝑝
∑

𝑘=1

‖

‖

‖

�̂�(𝑡 + 𝑘|𝑡) − 𝑦𝑠𝑝
‖

‖

‖

2
𝑄 +

𝑁𝑐
∑

𝑘=0

‖

‖

‖

𝛥𝑢(𝑡 + 𝑘)‖‖
‖

2
𝑅

⎫

⎪

⎬

⎪

⎭

, (22)

where �̂�(𝑡 + 𝑘|𝑡) is the output prediction at time instance 𝑡 + 𝑘 given 
by Eq. (20) or Eq. (21), 𝑦𝑠𝑝 is the desired set-point value, 𝑁𝑝 and 𝑁𝑐
correspond to the prediction and control horizon respectively and 𝑄, 𝑅
are positive definite matrices weighting the output deviations from the 
set-point and the increments of the manipulated variables, respectively. 
The increments of the manipulated variables, 𝛥𝑢, at each time instance 
𝑡 + 𝑘 are defined as: 
𝛥𝑢(𝑡 + 𝑘) = 𝑢(𝑡 + 𝑘) − 𝑢(𝑡 + 𝑘 − 1), 𝑘 = 0,… , 𝑁𝑐 (23)

The manipulated and the controlled variables are constrained within 
upper and lower bounds with the following inequalities: 
𝑢 ≤ 𝑢(𝑡 + 𝑘) ≤ 𝑢 , 𝑘 = 0,… , 𝑁 , (24)
𝑚𝑖𝑛 𝑚𝑎𝑥 𝑐

5 
𝑦𝑚𝑖𝑛 ≤ �̂�(𝑡 + 𝑘||
|

𝑡) ≤ 𝑦𝑚𝑎𝑥, 𝑘 = 1,… , 𝑁𝑝 (25)

Hard constraints, as described in Eqs. (24)–(25), impose conditions on 
the variables that must be satisfied at all times. However, these condi-
tions may lead to infeasibility issues if no solution exists that satisfies all 
constraints. To address this problem, hard constraints can be replaced 
by soft constraints, which set conditions that are desirable to satisfy 
as much as possible, but also allow for violations as a compromise to 
ensure a feasible solution to the optimization problem.

Soft constraints on the predicted output variables can be incorpo-
rated into the control algorithm using slack variables. This modification 
alters the objective function of the DMC algorithm as follows: 

min
(𝛥𝑢(𝑡),…,𝛥𝑢(𝑡+𝑁𝑐 ))

⎧

⎪

⎨

⎪

⎩

𝑁𝑝
∑

𝑘=1

‖

‖

‖

�̂�(𝑡 + 𝑘|𝑡) − 𝑦𝑠𝑝
‖

‖

‖

2
𝑄 +

𝑁𝑐
∑

𝑘=0

‖

‖

‖

𝛥𝑢(𝑡 + 𝑘)‖‖
‖

2
𝑅+

+𝑊𝑚𝑖𝑛

𝑁𝑝
∑

𝑘=1
𝜖𝑚𝑖𝑛(𝑡 + 𝑘) +𝑊𝑚𝑎𝑥

𝑁𝑝
∑

𝑘=1
𝜖𝑚𝑎𝑥(𝑡 + 𝑘)

⎫

⎪

⎬

⎪

,

(26)
⎭
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Table 1
Estimated kinetic parameter values.
 Kinetic Constant 𝑘𝑛,𝑜 = 1.2 ⋅ 10−4 nm/(min mM) 
 Diameter Dependence Factor 𝑎𝑜 = 1.0 ⋅ 10−3 1/nm  
 Kinetic Constant 𝑘𝑔,𝑜 = 24 (nm mM)/min  
 Activation Energy 𝐸𝑎,𝑛 = 3.2 ⋅ 105 kJ/mol  
 Activation Energy 𝐸𝑎,𝑎 = 4.8 ⋅ 105 kJ/mol  
 Activation Energy 𝐸𝑎,𝑔 = 5.5 ⋅ 105 kJ/mol  

where 𝑊𝑚𝑖𝑛,𝑊𝑚𝑎𝑥 are weights to penalize soft constraint violations and 
𝜖𝑚𝑖𝑛, 𝜖𝑚𝑎𝑥 are the non-negative slack variables: 

𝜖𝑚𝑖𝑛(𝑡 + 𝑘), 𝜖𝑚𝑎𝑥(𝑡 + 𝑘) ≥ 0, 𝑘 = 1,… , 𝑁𝑝. (27)

In this case, Eq. (25) is adjusted accordingly to include 𝜖𝑚𝑖𝑛, 𝜖𝑚𝑎𝑥: 

𝑦𝑚𝑖𝑛 − 𝜖𝑚𝑖𝑛(𝑡 + 𝑘) ≤ �̂�(𝑡 + 𝑘||
|

𝑡) ≤ 𝑦𝑚𝑎𝑥 + 𝜖𝑚𝑎𝑥(𝑡 + 𝑘), 𝑘 = 1,… , 𝑁𝑝. (28)

This structure of the optimization problem enables the controller to 
assign values other than zero to 𝜖𝑚𝑖𝑛 and 𝜖𝑚𝑎𝑥, allowing for violation 
of the hard constraints in Eq. (25) to ensure that a feasible solution is 
acquired at every time step during optimization.

4. Case study

In this case study, our goal was to implement the modeling and 
control methodologies described in the previous sections to design a 
complete MPC framework, where the developed MOM model serves as 
a representation of the Ag NPs actual production plant.

4.1. Kinetic parameters estimation

The kinetic parameter values of 𝐺𝑜 and 𝐽 in the population balance 
model, including the factor introduced for the diameter dependence 
𝑎(𝑇 ), were estimated by applying the Thompson Sampling Efficient 
Multiobjective Optimization (TSEMO) algorithm (Bradford et al., 2018) 
on steady state experimental data collected from the SABYDOMA Lead 
Demonstrator process. For each experiment 𝑘 = 1,… , 𝐾, the available 
input data included the flow rates and concentrations of the AgNO3, 
SC and TA solutions (in uL/min and mmol/L respectively), as well as 
the temperature (in ◦C). The output data consisted of the UV spectrum 
and the concentration of Ag NPs at the reactor outlet. The average 
experimental NP diameter 𝐷exp,𝑘 (in nm) was estimated by applying 
Mie Theory (Mie, 1908) on the UV spectrum, as described in the 
introduction section.

Two objectives were considered:
1. Minimizing the sum of squared differences between the calculated 

(𝐷𝑘) and experimental (𝐷exp,𝑘) Ag NP diameters:

𝑓1 =
𝐾
∑

𝑘=1
(𝐷𝑘 −𝐷exp,𝑘)2

2. Minimizing the sum of squares of the concentration of AgNO3 at the 
reactor outlet, which optimizes the yield:

𝑓2 =
𝐾
∑

𝑘=1

(

𝐶AgNO3 ,𝑘

)2

A large number of parameter samples were generated, with the 
sample size determined through computational experiments. The sam-
ple size was incrementally increased until no significant improvement 
in optimization results was observed. In the resulting Pareto front, 𝑓2
reached its minimum value of 0 for several vectors of the kinetic param-
eters [𝑘𝑛,𝑜 𝑎𝑜 𝑘𝑔,𝑜 𝐸𝑎,𝑛 𝐸𝑎,𝑎 𝐸𝑎,𝑔

]

. Among these, the parameter 
vector selected was the one that minimized the first objective, 𝑓1. The 
selected solution from the Pareto front is presented in Table  1. 
6 
4.2. Toxicity prediction model

Samples of the Ag NPs produced by the SABYDOMA Lead Demon-
strator were characterized using TEM and evaluated regarding their 
toxicity using the ToxScore metric, which is a combination of five 
endpoints, namely: CellTiter-Glo (CTG) a cell viability assay, 8OHG, 
an assay for DNA oxidative damage, Caspase 3/7 to identify apoptotic 
cells, H2AX histone phosphorylation, which constitutes an early event 
in the cellular response against double-strand breaks (DSBs) of DNA 
and the DAPI assay for the detection of blue fluorescence upon binding 
to AT regions of DNA using a nuclear and chromosome counterstain 
(4,6-diamidino-2-phenylindole, DAPI). The NPs were screened using 
BEAS-2B cells in the aforementioned assays in the presence and absence 
of 10% serum with 0-, 6-, 24- and 72-hour exposure time points, in 
four biological replicates and eight concentrations for each compound. 
The ToxPi v2.3 software (Reif et al., 2010; Marvel et al., 2018) was 
used to process the experimental data and calculate the final integrated 
ToxScore metric. Experimental data were available for 8 Ag NPs of 
varying sizes. The limited number of experimental data points makes 
the dataset unsuitable for the application of advanced machine learning 
methods to train a model that relates the ToxScore metric to the NP 
diameter D, thus restricting the search to linear or low-order polyno-
mial models. Models up to the 3rd order were trained on the dataset, 
leading to the final selection of a second-order polynomial model that 
achieves a high 𝑅2 value (𝑅2=0.8801) with an Leave-one-out (LOO) 
cross-validation 𝑅2

𝐿𝑂𝑂 value of 0.7413: 

𝑇 𝑜𝑥𝑆𝑐𝑜𝑟𝑒 = −3 ⋅ 10−5 ⋅𝐷2 − 8 ⋅ 10−4 ⋅𝐷 + 0.4845. (29)

The model in Eq. (29) will be used within the control framework as an 
inferential sensor to predict toxicity based on the NP diameter.

4.3. Open-loop simulation platform

The MOM model and the ToxScore model were integrated in the 
MATLAB-Simulink environment to construct an open-loop dynamic 
simulator of the production process (Fig.  3). This simulator requires 
a set of process inputs (the temperature and the flow rates and con-
centrations of the AgNO3, SC and TA solutions) and a sampling time 
to compute the mean diameter of the produced Ag NPs, its standard 
deviation and the concentration of remaining Ag in the product stream. 
The mean diameter of the produced Ag NPs serves as an input to the 
inferential sensor, which estimates the ToxScore value using Eq. (29). 
This setup results in a total of four plant outputs.

The model was integrated into an interactive simulation platform, 
which allows users to simulate changes to the inputs via the control 
panel interface (Fig.  4). The control panel includes knobs for defining 
the inputs and edit blocks for specifying the exact timing of each 
step change. The interface features multiple display blocks that show 
current values of the input and output variables, along with the initial 
steady-state values.

An illustrative simulation is presented next, where the system starts 
with a mean NP diameter of 62.98 nm and a ToxScore of 0.315 and 
undergoes a series of step changes at different time points:

1. +50% in AgNO3 flow rate in PFR#3 at t = 5
2. +20% in SC concentration in PFR#1 at t = 15
3. -30% in TA concentration in PFR#1 at t = 35
4. -25% in SC/TA flow rate in PFR#1 at t = 65

The step changes are depicted graphically in Fig.  5. Fig.  6 presents 
the corresponding dynamic responses of the mean diameter and the 
ToxScore of the produced Ag NPs at the effluent stream. The dashed 
vertical lines 1–4 indicate the time at which each step change occurs.
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Fig. 4. Open-Loop simulation platform.
Fig. 5. Step changes in the flow rates and concentrations of the inlet streams.
Fig. 6. Dynamic response of the mean diameter of Ag NPs and ToxScore corresponding to step changes in the flow rates and concentrations of the inlet streams.
4.4. Design of the control framework

The primary goal of this study was to develop a control framework 
for the production of Ag NPs that meets both functionality and safety 
specifications. To achieve this, the mean diameter of the Ag NPs in the 
product stream of the final PFR and the toxicity value of the produced 
7 
Ag NPs (ToxScore) were designated as the controlled variables. While 
a set-point value for the mean diameter must be defined according to 
functionality specifications, the ToxScore — which serves as a metric 
for quantifying the toxicity of the Ag NPs — does not have a specific set-
point. Instead, it is constrained by an upper bound, as higher ToxScore 
values indicate more toxic NPs based on Eq. (29). The manipulated 
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Fig. 7. Dynamic responses of NP mean diameter corresponding to 10% step changes in the manipulated variables.
variables in the control framework are the flow rates of all inlet 
streams into the five PFRs. The concentrations of these streams act as 
unmeasured disturbances.

Step response models, which are an integral part of DMC, were 
developed by introducing step changes to all manipulated variables 
in the open-loop simulator and simulating the dynamic effects on the 
mean diameter of the produced Ag NPs. More specifically, +10% step 
changes were introduced separately to each manipulated variable, start-
ing from an initial steady-state corresponding to a mean NP diameter 
of 62.98 nm. Fig.  7 depicts the dynamic response of the Ag NPs mean 
diameter at the exit of the last PFR after the step changes are applied 
to each manipulated variable. The dynamic responses were discretized 
with a sampling interval of 1 min to extract the step response coeffi-
cients. The number of step response coefficients for each manipulated 
variable, 𝑙𝑝𝑖𝑛, must be sufficiently large to capture the entire time 
window during which the system transitions until it reaches a new 
steady state. For this system, a time horizon of 20 min is sufficient to 
capture the entire dynamic response of the mean NP diameter, resulting 
in step response models containing 21 coefficients for each manipulated 
variable (see Eq. (19)). The prediction of the mean NP diameter at time 
instance 𝑡 + 𝑘 is a summation of the impact of all manipulated input 
flows individually. In this case, Eq. (20) is presented in more details as 
follows (Eq. (30)), where 𝑦1 corresponds to the Ag NP mean diameter 
and 𝑛𝑢 = 6: 

𝑦1(𝑡 + 𝑘||
|

𝑡) =
𝑛𝑢
∑

𝑗=1

𝑘
∑

𝑖=1
𝑔𝑖,𝑗𝛥𝑢𝑗 (𝑡 + 𝑘 − 𝑖)+

+
𝑛𝑢
∑

𝑗=1

𝑙𝑝𝑖𝑛
∑

𝑖=1
((𝑔𝑘+𝑖,𝑗 − 𝑔𝑖,𝑗 )𝛥𝑢𝑗 (𝑡 − 𝑖)) + 𝑦1,𝑚(𝑡) − 𝑦1,𝑠𝑠.

(30)

where 𝑔𝑖,𝑗 are the step response coefficients corresponding to input 𝑗.
To facilitate computations at all discrete time points during the 

prediction horizon 𝑁 , Eq. (30) is evolved into Eq. (31), which provides 
𝑝

8 
the predictions of the output variable across 𝑁𝑝 as a vector: 

⎡

⎢

⎢

⎢

⎢

⎣

�̂�1(𝑡 + 1||
|

𝑡)

⋮

�̂�1(𝑡 +𝑁𝑝
|

|

|

𝑡)

⎤

⎥

⎥

⎥

⎥

⎦

=
𝑛𝑢
∑

𝑗=1

⎡

⎢

⎢

⎢

⎢

⎣

𝐺𝑗

⎡

⎢

⎢

⎢

⎢

⎣

𝛥𝑢𝑗 (𝑡)

⋮

𝛥𝑢𝑗 (𝑡 +𝑁𝑐 )

⎤

⎥

⎥

⎥

⎥

⎦

+ 𝐹𝑟𝑗

⎡

⎢

⎢

⎢

⎢

⎣

𝛥𝑢𝑗 (𝑡 − 1)

⋮

𝛥𝑢𝑗 (𝑡 − 𝑙𝑝𝑖𝑛)

⎤

⎥

⎥

⎥

⎥

⎦

⎤

⎥

⎥

⎥

⎥

⎦

+

⎡

⎢

⎢

⎢

⎢

⎣

𝑦1,𝑚(𝑡) − 𝑦1,𝑠𝑠

⋮

𝑦1,𝑚(𝑡) − 𝑦1,𝑠𝑠

⎤

⎥

⎥

⎥

⎥

⎦

. (31)

Eq. (31) contains two matrices of appropriate dimensions for each 
manipulated variable: The matrix 𝐺𝑗 is multiplied by the vector con-
taining the future incremental changes of the manipulated variable over 
the control horizon [𝛥𝑢𝑗 (𝑡)... 𝛥𝑢𝑗 (𝑡 + 𝑁𝑐 )]. Thus, 𝐺𝑗 has dimensions 
𝑁𝑝 × (𝑁𝑐 + 1). The matrix 𝐹𝑟𝑗 is multiplied by the vector containing 
the past changes of the manipulated variable [𝛥𝑢𝑗 (𝑡− 1)... 𝛥𝑢𝑗 (𝑡− 𝑙𝑝𝑖𝑛)]. 
Therefore, 𝐹𝑟𝑗 has dimensions 𝑁𝑝 × 𝑙𝑝𝑖𝑛.

Step response models are reduced order models incorporated into 
the DMC algorithm, which inevitably introduce some discrepancies 
compared to the more detailed MOM physics-based model. To assess 
how this modeling uncertainty affects the accuracy of step response 
model predictions, a +20% step change was applied to all manipulated 
variables from the initial steady-state condition to both the MOM model 
and the step response models. Fig.  8 shows the results. As anticipated, 
prediction errors occur as the system moves further from the initial 
steady-state condition. Nevertheless, the step response models continue 
to adequately reflect the system’s dynamic behavior, even in areas 
distant from the original linearization point.

Once the step response models were developed, the next step in-
volved defining the DMC optimization problem. To capture the main 
ideas from the earlier sections, the complete mathematical formulation 
of this problem for a control system with two controlled variables is 
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Fig. 8. Dynamic responses of NP mean diameter and predictions of the step response models corresponding to 20% step changes in the manipulated variables.
presented in the following equations: 

min
(𝛥𝑢(𝑡),…,𝛥𝑢(𝑡+𝑁𝑐 ))

⎧

⎪

⎨

⎪

⎩

𝑁𝑝
∑

𝑘=1

‖

‖

‖

[

�̂�1(𝑡 + 𝑘|𝑡) − 𝑦𝑠𝑝,1
�̂�2(𝑡 + 𝑘|𝑡) − 𝑦𝑠𝑝,2

]

‖

‖

‖

2
𝑄 +

𝑁𝑐
∑

𝑘=0

‖

‖

‖

𝛥𝑢(𝑡 + 𝑘)‖‖
‖

2
𝑅+

+𝑊𝑚𝑖𝑛,1

𝑁𝑝
∑

𝑘=1
𝜖𝑚𝑖𝑛,1(𝑡 + 𝑘) +𝑊𝑚𝑎𝑥,1

𝑁𝑝
∑

𝑘=1
𝜖𝑚𝑎𝑥,1(𝑡 + 𝑘)+

𝑊𝑚𝑖𝑛,2

𝑁𝑝
∑

𝑘=1
𝜖𝑚𝑖𝑛,2(𝑡 + 𝑘) +𝑊𝑚𝑎𝑥,2

𝑁𝑝
∑

𝑘=1
𝜖𝑚𝑎𝑥,2(𝑡 + 𝑘)

⎫

⎪

⎬

⎪

⎭

(32)

subject to:
⎡

⎢

⎢

⎢

⎢

⎣

�̂�1(𝑡 + 1||
|

𝑡)

⋮

�̂�1(𝑡 +𝑁𝑝
|

|

|

𝑡)

⎤

⎥

⎥

⎥

⎥

⎦

=
6
∑

𝑗=1

⎡

⎢

⎢

⎢

⎢

⎣

𝐺𝑗

⎡

⎢

⎢

⎢

⎢

⎣

𝛥𝑢𝑗 (𝑡)

⋮

𝛥𝑢𝑗 (𝑡 +𝑁𝑐 )

⎤

⎥

⎥

⎥

⎥

⎦

+ 𝐹𝑟𝑗

⎡

⎢

⎢

⎢

⎢

⎣

𝛥𝑢𝑗 (𝑡 − 1)

⋮

𝛥𝑢𝑗 (𝑡 − 𝑙𝑝𝑖𝑛)

⎤

⎥

⎥

⎥

⎥

⎦

⎤

⎥

⎥

⎥

⎥

⎦

+

⎡

⎢

⎢

⎢

⎢

⎣

𝑦1,𝑚(𝑡) − 𝑦1,𝑠𝑠

⋮

𝑦1,𝑚(𝑡) − 𝑦1,𝑠𝑠

⎤

⎥

⎥

⎥

⎥

⎦

(33)

�̂�2(𝑡 + 𝑘||
|

𝑡) = −3 ⋅ 10−5 ⋅ �̂�1(𝑡 + 𝑘||
|

𝑡)2 − 8 ⋅ 10−4 ⋅ �̂�1(𝑡 + 𝑘||
|

𝑡) + 0.4845, 𝑘 = 1,… , 𝑁𝑝

(34)

𝛥𝑢(𝑡 + 𝑘) = [𝛥𝑢1(𝑡 + 𝑘), 𝛥𝑢2(𝑡 + 𝑘),… , 𝛥𝑢6(𝑡 + 𝑘)], 𝑘 = 0,… , 𝑁𝑐 (35)

𝛥𝑢𝑗 (𝑡 + 𝑘) = 𝑢𝑗 (𝑡 + 𝑘) − 𝑢𝑗 (𝑡 + 𝑘 − 1), 𝑗 = 1,… , 6, 𝑘 = 0,… , 𝑁𝑐 (36)

𝑢𝑚𝑖𝑛,𝑗 ≤ 𝑢𝑗 (𝑡 + 𝑘) ≤ 𝑢𝑚𝑎𝑥,𝑗 , 𝑗 = 1,… , 6, 𝑘 = 0,… , 𝑁𝑐 (37)

𝑦𝑚𝑖𝑛,𝑗 − 𝜖𝑚𝑖𝑛,𝑗 (𝑡 + 𝑘) ≤ 𝑦𝑗 (𝑡 + 𝑘||
|

𝑡) ≤ 𝑦𝑚𝑎𝑥,𝑗 + 𝜖𝑚𝑎𝑥,𝑗 (𝑡 + 𝑘), 𝑗 = 1, 2, 𝑘 = 1,… , 𝑁𝑝 (38)

𝜖𝑚𝑖𝑛,𝑗 (𝑡 + 𝑘), 𝜖𝑚𝑎𝑥,𝑗 (𝑡 + 𝑘) ≥ 0, 𝑗 = 1, 2, 𝑘 = 1,… , 𝑁𝑝. (39)

The control algorithm aims to minimize the objective function given 
in Eq. (32) while adhering to the constraints specified in Eqs. (33)–(39). 
For the implementation of the algorithm, CasADi, an open-source soft-
ware tool for numerical optimization (Andersson et al., 2019), was 
utilized (version 3.6.3). CasADi employs a symbolic framework to 
9 
model and solve optimization problems, which supports the formula-
tion of optimal control problems. Among the various solvers available 
within CasADi, IPOPT was selected (Andersson et al., 2019), a widely 
used open-source primal–dual interior point method, which is included 
in CasADi installations.

4.4.1. Closed-loop simulation platform
The closed-loop simulation platform builds upon the open-loop sim-

ulator by incorporating DMC to establish a control feedback loop. Fig. 
9 illustrates the closed-loop simulator within the MATLAB-Simulink 
environment. The controller receives the current measurements of the 
mean diameter and ToxScore of the Ag NPs in the product stream, 
along with their set-points, bounds, and a set of parameters that adjust 
the optimization problem. This information is used to construct the 
parameter vector for the optimization problem formulation in CasADi. 
The parameters are updated at each discrete time step to provide 
DMC with up-to-date information on the system’s state and control 
objectives. The controller outputs a vector with six elements, containing 
the optimal incremental changes for the six manipulated flows relative 
to the current values. The closed-loop simulator is an interactive simu-
lation platform that consists of the closed-loop system and the control 
panel (Fig.  10). The final stages of control design involve fine-tuning 
the parameters of the DMC controller to improve its performance, a 
process carried out through trial and error. The results of this parameter 
tuning process are presented in Table  2. It should be noted that the 
formulation of the DMC problem permits the specification of a set-point 
for ToxScore. However, in most instances, this feature is not activated 
and only the upper bound on the Toxscore is applied. In such cases, 𝑞22
is set equal to 0. 
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Fig. 9. Closed-Loop dynamic simulator.
Fig. 10. Closed-Loop simulation platform.
Table 2
Parameter Tuning for DMC Controller in general configuration.
 Controller parameters
 Prediction Horizon 𝑁𝑝 = 20  
 Control Horizon 𝑁𝑐 = 10  
 Sample Time 𝑇𝑠 = 1 min  
 Weighting matrix 𝑄: 𝑞𝑖𝑗,𝑖≠𝑗 = 0, 𝑞11 = 10, 𝑞22 = 105 
 Weighting matrix 𝑅: 𝑟𝑖𝑗,𝑖≠𝑗 = 0, 𝑟𝑖𝑗,𝑖=𝑗 = 0.1  
 Penalty weights for CV1 𝑊𝑚𝑖𝑛,1 = 104, 𝑊𝑚𝑎𝑥,1 = 104  
 Penalty weights for CV2 𝑊𝑚𝑖𝑛,2 = 106, 𝑊𝑚𝑎𝑥,2 = 106  

4.4.2. Closed-loop simulation results

The effectiveness of the control algorithm is typically assessed 
through its performance in two main control tasks: disturbance rejec-
tion and set-point tracking. To showcase the efficiency of the proposed 
control framework, simulations of two representative case studies 
were performed. The dynamic responses of the process variables are 
displayed using the visualization tools provided by the simulation 
platform.

The first case study illustrates the control system’s response to a 
simultaneous +20% step change in the concentrations of SC and TA 
in the inlet stream to the first PFR. The results of the simulation 
are depicted in Fig.  11. The top two subplots display the controlled 
10 
variables, the third subplot illustrates the adjustments in the manipu-
lated variables, and the bottom subplot shows the step changes in the 
unmeasured disturbances along with their timing.

The results clearly demonstrate that the controller effectively rejects 
the unmeasured disturbances and returns the system to its initial steady 
state. Since higher concentrations of reducing agents result in smaller 
NPs, the controller reduces the flow rate of the corresponding stream 
(SC/TA flow in PFR #1, 3rd subplot of Fig.  11). It also prioritizes 
increasing the flow rate of AgNO3 into the final PFRs to achieve faster 
results. This control strategy balances the trade-off between overshoot 
and convergence by leveraging the residence time information provided 
by the step response models.

In addition to disturbance rejection, the control algorithm also 
facilitates set-point tracking. Fig.  12 shows the control actions im-
plemented by DMC when a set-point of 50 nm is specified for the 
NP mean diameter, starting from the same initial conditions like the 
previous case study. Note that in this simulation, the upper bound on 
the ToxScore has been deactivated in the DMC problem setup.

The results demonstrate the controller’s ability to guide the system 
to the desired set-point value with zero offset, while continuously 
respecting the upper and lower bounds of the manipulated variables. 
This is clearly illustrated in the third subplot of Fig.  12, where the flow 
rate values consistently remain within the operational limits, which 
are indicated by the black dashed lines. However, the ToxScore values 
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Fig. 11. Dynamic response of the closed-loop system in rejecting unmeasured disturbances in SC and TA concentration.
Fig. 12. Dynamic response of the closed-loop system in tracking a set-point of 50 nm for the mean NP diameter without activating the upper ToxScore bound.
exceed the safety threshold, as shown in the second subplot, because 
the corresponding upper bound was deactivated.

Fig.  13 illustrates how the results change when the upper bound on 
the ToxScore is activated to prevent conditions that could lead to the 
production of NPs with undesirable safety characteristics. The dynamic 
responses now show that the Toxscore values do not violate the safety 
threshold; however, as a result, the diameter does not exactly match 
the desired set-point.
11 
4.4.3. Closed-loop simulation results considering modeling and measure-
ment uncertainties

Model uncertainty is already accounted in the DMC control scheme, 
addressing the discrepancy between the step response model predicting 
the NP mean diameter in the DMC controller formulation and the 
detailed MOM model. To further demonstrate the robustness of the 
proposed framework, a modified ToxScore predictive model was used 
within DMC, while assuming that the original model Eq. (29) represents 
the actual ToxScore metric. Specifically, the coefficients in Eq. (29) 
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Fig. 13. Dynamic response of the closed-loop system in tracking a set-point of 50 nm for the mean NP diameter with an activated upper bound for ToxScore.
Fig. 14. Dynamic response of the closed-loop system in tracking a set-point of 50 nm for the mean NP diameter with an activated upper bound for ToxScore, accounting for 
uncertainty in the ToxScore prediction model.
were modified to create the ToxScore prediction model used in DMC, 
as shown in Eq. (40): 
𝑇 𝑜𝑥𝑆𝑐𝑜𝑟𝑒 = −4.31 ⋅ 10−5 ⋅𝐷2 − 9.58 ⋅ 10−4 ⋅𝐷 + 0.3880. (40)

After this modification, the set-point tracking problem previously 
presented in Fig.  13 was simulated again. The only tuning param-
eter that was changed was the weight that penalizes violations of 
the ToxScore upper bound, which was set to 𝑊𝑚𝑎𝑥,2 = 1010. It is 
demonstrated that the DMC controller successfully stabilizes the system 
12 
in a new steady state that adheres to the ToxScore restrictions (Fig. 
14). Compared to Fig.  13, slight fluctuations are observed in both the 
manipulated and the controlled variables.

Measurement uncertainties were considered, by introducing Gaus-
sian noise into the plant output signals that are provided as feedback to 
the controller. Gaussian noise is characterized by a probability density 
function with a mean value 𝜇 = 0 and a standard deviation 𝜎, which 
determines the magnitude of the uncertainty. Gaussian noise with 𝜇 =
0, 𝜎 = 1 was added to diameter measurements, while Gaussian noise 



A. Kardamaki et al. Computers and Chemical Engineering 199 (2025) 109113 
Fig. 15. Dynamic response of the closed-loop system in tracking a set-point of 50 nm for the mean NP diameter without activating the upper ToxScore bound, accounting for 
ToxScore model uncertainty and measurement uncertainties.
Fig. 16. Dynamic response of the closed-loop system in tracking a set-point of 50 nm for the mean NP diameter with an activating upper bound for ToxScore, accounting for 
ToxScore model uncertainty and measurement uncertainties.
with 𝜇 = 0, 𝜎 = 5⋅10−3 was added to ToxScore measurements to account 
for intrinsic variability and sensor inaccuracies.

The case studies corresponding to Figs.  12 and 13 were re-examined, 
now considering both ToxScore model uncertainty and measurement 
uncertainties. The results are presented in Figs.  15 and 16. It is illus-
trated that the presence of modeling and measurement uncertainties 
does not affect significantly the performance of the control framework, 
which still manages to track the mean diameter of the produced NPs 
13 
to the desired set-point in the first case and keep the ToxScore metric 
within the safety bounds in the second simulation.

The code that generated the reported results can be found in: https:
//github.com/ntua-unit-of-control-and-informatics/mpc-sabydoma.
The experimental data used for developing the ToxScore inferential 
sensor and for estimating the kinetic parameters in the population 
balance model can be available upon request.

https://github.com/ntua-unit-of-control-and-informatics/mpc-sabydoma
https://github.com/ntua-unit-of-control-and-informatics/mpc-sabydoma
https://github.com/ntua-unit-of-control-and-informatics/mpc-sabydoma
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5. Conclusions

This study introduces the SbPC framework, a novel process control 
approach for regulating the morphological and safety characteristics of 
NMs during continuous production. The framework integrates dynamic 
first-principles modeling, real-time toxicity monitoring, and advanced 
MPC-based process control. A population balance model employing the 
MOM approximation provides a detailed understanding of nucleation 
and growth dynamics, enabling predictions of NP size and size distri-
bution throughout the reactors and at the production process’s exit. 
This model serves as the basis for deriving step-response models used in 
developing the MPC controller. The integration of a data-driven toxicity 
prediction model facilitates real-time health hazard assessment based 
on NP size. The MPC controller is designed to meet the functionality 
requirements defined by the desired size of the produced NPs while 
ensuring that the safety characteristics of the produced NPs remain 
within acceptable limits. Through a case study involving a continuous 
Ag NP production system, the framework demonstrated its ability to 
regulate critical morphological and safety characteristics in real-time. 
In this case study, the kinetic parameters of the population balance 
model were estimated by fitting the model to experimental data using 
the TSEMO multi-objective optimization method. Through an extensive 
set of simulations, it was demonstrated that functionality and safety re-
quirements, which can present conflicting objectives, can be effectively 
balanced over short timeframes. It was also shown that the proposed 
framework remains efficient even in the presence of model uncertain-
ties and measurement errors. The proposed SbPC framework addresses 
existing gaps in the nanotechnology field and lays a foundation for 
implementing SSbD principles in NM manufacturing. Its modular de-
sign makes the SbPC framework a scalable solution applicable to the 
production of various NMs, including gold, aluminum (Manikam et al., 
2011), copper (Lee et al., 2008; Khan et al., 2016), and zinc (Hachem 
et al., 2022) NPs, thereby broadening its industrial relevance.
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