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Abstract: The leakage of hazardous chemical gases in chemical plants can lead to severe

consequences. Source term estimation (STE) algorithms are effective in locating the leak

source. The layout of the sensor network significantly affects the performance of the

STE algorithm, yet the underlying mechanism remains unclear. In this study, we first

applied computational fluid dynamics (CFD) to simulate 160 hazardous chemical gas

leakage scenarios under multi-directional wind conditions in two hypothetic scenes with a

natural convection environment, creating an accident dataset. Subsequently, a mathematical

model for sensor placement optimization was developed and applied to the dataset to

generate a series of sensor layout solutions. Based on these layouts, 12,216 STE cases were

calculated. By analyzing the error distribution of these cases, the relationship between

sensor placement and STE performance was systematically investigated, and the most

effective sensor layout optimization strategies were discussed. This study found that in

scenarios with complex obstacles, increasing the average measured concentration of the

sensor network can significantly reduce the errors in the STE algorithm.

Keywords: unexpected gas leak; sensor placement optimization; source term estimation;

Bayesian inference; adjoint equation; simulated annealing

1. Introduction

In chemical plants, the unexpected release and dispersion of hazardous chemical

materials pose a significant threat to both human health and the natural environment.

For example, in India, the release of styrene chemical plants caused the hospitalization of

more than 1000 individuals [1]. Gas sensors are commonly installed in chemical plants to

detect gas leakages and prevent the escalation of accidents. These sensors are expected to

(a) promptly detect the leak accidents and (b) provide preliminary estimations of the source

location. However, uncertainty in the location of the leak source and the variation in wind

conditions often lead to diverse leak consequences, presenting challenges to the effective

detection of sensor networks. The determination of sensor locations is sophisticated

and crucial.

The sensor placement optimization (SPO) problem aims at figuring out the optimal

sensor placement with an objective under certain constraints, which are primarily the

number of sensors and the candidate sensor locations. The objective is mainly influenced by

practical requirements. Until now, various SPO models have been proposed with different

objectives. In [2], the authors constructed a database comprising consequences resulting

from various leak sources and proposed a mixed-integer linear programming (MILP) SPO
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model with minimal expected detection time as the objective. Ref. [3] incorporated the

unavailability of sensors and voting strategies into the MILP model to better align the

method with real-world scenarios. Some other risk factors related to gas leaks such as

minimal total gas concentration [4], minimal individual risk [4], minimal cumulative death

probability [5], and minimal risk value [6] have also been considered as objectives of

SPO in chemical plants. In addition to optimization algorithms, the development of gas

sensor designation (e.g., chemoresistive gas detectors [7]) and the gas phase impurities

measurement theorem [8] have also significantly enhanced the performance of hazardous

gas detection in real scenarios.

Source term estimation (STE) aims to determine the parameters of the leak source,

which typically include the location and the emission strength. The STE problem is rec-

ognized as an ill-posed inverse problem with high non-linearity [9]. Generally, there are

two mainstream approaches in STE [10]: optimization-based methods and Bayesian in-

ference. Optimization-based approaches usually define a cost function by evaluating the

discrepancy between concentration values measured by sensors and those computed by

a forward dispersion model. A single optimal solution that minimizes this cost function

is determined as the result of STE. In contrast, the Bayesian inference STE evaluates the

posterior probability of different source terms. By means of stochastic sampling methods,

the posterior probability density function (PDF) of source terms is drawn. The outcome

of Bayesian inference STE is the most probable parameters in terms of the posterior PDF.

For either of these two methods, the source–receptor relationship is a vital component that

provides the capability of quickly predicting the concentration measurements of sensors

when a certain source appears. Some popular methods for modelling the source–receptor

relationship include the Gaussian plume model, the advection–diffusion equation with its

adjoint equation [11], and data-driven models [12]. Besides optimization-based methods

and Bayesian inference, some studies have also developed STE algorithms based on deep

learning. Ref. [13] developed an STE algorithm based on a convolutional neural network

and concentration distribution images. Ref. [14] proposed a federated STE framework

inspired by federated learning. The efficiency of these algorithms has been validated under

chemical plant scenes.

In most cases, the concentration measurements of gas sensors form the foundation of

STE. A well-designed sensor placement layout can effectively provide spatial–temporal

information of the gas concentrations, thereby enhancing the accuracy of STE. Previous

research has highlighted the influence of sensor placement on STE. Ref. [15] compared

the STE errors among 10 different sensor placements in an urban neighborhood testing

scene. Ref. [16] proposed an SPO model leveraging the concept of information entropy

and demonstrated that the sensor group with higher capability of gathering information

performs better on STE. These works extensively investigated the impact of sensor place-

ment on STE. However, it is regrettable that the scales of the test scenes in these works are

relatively small, and that validation has not been conducted in complex environments such

as chemical plants.

Given the variability in wind condition and the presence of multiple potential leak

sources in chemical plants, this research develops an SPO framework with the goal of

detecting all potential leak scenarios and improving STE accuracy. The main objectives of

this study focus on two aspects: Firstly, an analytical framework combining SPO and STE

is established, which proposes a basis for assessing whether sensor placement can achieve

accurate STE in a chemical plant. Secondly, an analysis regarding the correlation between

sensor placement and STE accuracy is conducted, along with an exploration of the most

suitable SPO strategy for STE.
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The remaining sections of this paper are organized as follows: Section 2 introduces the

analytical framework, the Bayesian inference STE, and the proposed SPO models. Section 3

explains the parameters of the numerical experiment. Section 4 exhibits the results of SPO

and STE from the experiments and analyzes the impact of sensor placement on STE errors.

Finally, conclusions and future work are presented in Section 5.

2. Methodology

This chapter begins by presenting the overall analytical framework of the methodol-

ogy. Subsequently, the STE method employed in this study is introduced, and a detailed

exposition of the proposed SPO model with several objectives is given.

2.1. Analytical Framework

Given the layout of a scene, this framework aims to find a rational SPO strategy

for gas detection and enhanced STE utilizing computational fluid dynamics (CFD). The

framework encompasses leak scenario identification, data preparation, SPO, and STE, as

visually illustrated in Figure 1. The main processes listed as follows:

(1) Two test scenes are designed, in which variant potential leak sources and wind

directions are defined to generate a range of gas leak scenarios. Subsequently, essential

datasets of wind fields and gas concentration distributions for these scenarios are

collected through CFD simulation. These datasets serve as the foundation for SPO

and STE.

(2) Drawing on previous research, this study identifies two factors that might influence

the STE accuracy and designs three SPO objectives accordingly. The mathemati-

cal model of SPO is solved independently for these objectives to obtain rational

sensor placements.

(3) Based on the sensor placements optimized by SPO, STE is conducted for all scenarios.

These STE results are summarized, and the impact of two factors identified in (2) on

STE errors along with the optimal SPO objective are analyzed.

The remaining sections of this paper are organized as follows: Section 2 introduces 
the analytical framework, the Bayesian inference STE, and the proposed SPO models. Sec-
tion 3 explains the parameters of the numerical experiment. Section 4 exhibits the results 
of SPO and STE from the experiments and analyzes the impact of sensor placement on 
STE errors. Finally, conclusions and future work are presented in Section 5.

2. Methodology
This chapter begins by presenting the overall analytical framework of the methodol-

ogy. Subsequently, the STE method employed in this study is introduced, and a detailed 
exposition of the proposed SPO model with several objectives is given.

2.1. Analytical Framework

Given the layout of a scene, this framework aims to find a rational SPO strategy for 
gas detection and enhanced STE utilizing computational fluid dynamics (CFD). The 
framework encompasses leak scenario identification, data preparation, SPO, and STE, as 
visually illustrated in Figure 1. The main processes listed as follows:

(1) Two test scenes are designed, in which variant potential leak sources and wind di-
rections are defined to generate a range of gas leak scenarios. Subsequently, essential 
datasets of wind fields and gas concentration distributions for these scenarios are 
collected through CFD simulation. These datasets serve as the foundation for SPO 
and STE.

(2) Drawing on previous research, this study identifies two factors that might influence 
the STE accuracy and designs three SPO objectives accordingly. The mathematical 
model of SPO is solved independently for these objectives to obtain rational sensor 
placements.

(3) Based on the sensor placements optimized by SPO, STE is conducted for all scenarios. 
These STE results are summarized, and the impact of two factors identified in (2) on 
STE errors along with the optimal SPO objective are analyzed.

 

Figure 1. The complete workflow of this research, which can be divided into three parts: I. forward

dispersion simulation, II. SPO process, and III. STE process.
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2.2. Bayesian Inference STE

Bayesian inference STE with an adjoint equation, which is chosen as the STE method

in this research, is briefly introduced here. This method comprises three components:

Bayes’ theorem, the source–receptor relationship (adjoint equation), and the stochastic

sampling method.

A specified leak source can be expressed as

s = (x, q) (1)

where x = (x,y,z) and q are the location and the emission strength of the source, respectively.

The Bayesian inference STE attempts to draw the PDF of these parameters.

2.2.1. Bayes’ Theorem

Bayes’ theorem deduces the posterior probability of source parameters [11]. When

the vector D = (Di)—which denotes the concentration measurements of all sensors, with

i indicating the index for each sensor—the probability that s is the true source can be

expressed as

p(s|D, I) =
p(s|I)p(D|s, I)

p(D|I)
∝ p(s|I)p(D|s, I) (2)

where the prior probability p(s|I ) actually signifies the probability distribution of a leak

source among the space domain. With p(s|I ) chosen as a uniform distribution and the like-

lihood function p(D|s, I ) the Gaussian form, the posterior probability can be expressed as

p(s|D, I) ∝ p(D|s, I) ∝ exp

[

−
1

2∑
i

(Di − Ri)
2

σ2
i

]

(3)

where Ri is the modelled concentration calculated through the source–receptor relationship

model and σ2
i is the variance of the errors between Di and Ri. In the STE algorithm, σ2

i

presents an inverse correlation with the concentration of posterior PDF curve generated

by stochastic sampling. According to previous research and performance in numerical

experiments, this research sets the variance as σ2
i = 0.1 × Di.

2.2.2. Source–Receptor Relationship

The source–receptor relationship constructs a correlation between the leak source and

the measured concentration of sensors. The adjoint equation, deduced from the advection–

diffusion equation, is employed here for its adaptability to environments with multiple

obstacles.

In a three-dimensional spatial domain Ω, consider a point source Q that continuously

releases incompressible gas phase material at a steady rate qs over time of [0, T]:

Q = qsδ(x − xs)[H(t − T)− H(t − 0)] (4)

the general form of advection–diffusion equation is

∂C
∂t + u · ∇C −∇ · (K∇C) = Q

s.t.

∇nC = 0 at ∂Ω

C(x, t = 0) = 0

(5)

Here, δ(·) and H(·) are Dirac delta function and Heaviside unit step function, respec-

tively. C(x, t) is the gas concentration distribution over the space–time domain Ω × [0.T], u
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is the wind velocity field, K is the eddy diffusivity, ∂Ω is the spatial domain boundary, and

∇n is a directional derivative normal to the boundary. The adjoint equation can be derived

from Equation (5) as follows [17]:

−
∂C∗

∂t
− u · ∇C∗ −∇ · (K∇C∗) = h = δ(x − xi) (6)

where h = δ(x− xi) represents a sensor located at xi and C∗(x, t) is the adjoint concentration

(AC) field generated by this sensor. The steady-state advection–diffusion equation and the

adjoint equation can be illustrated as follows:

u · ∇C −∇ ·
(

K∇C
)

= Q (7)

−u · ∇C∗ −∇ ·
(

K∇C∗
)

= h = δ(x − xi) (8)

where u is the mean velocity field obtained by taking the time average of u, C(x) is the

mean concentration field, and C∗(x) is the mean AC field obtained in the same manner.

The adjoint equation simulates a hypothetical inverse dispersion process with the sensor

as the leak source, which generates the AC field over the spatial domain. The modelled

concentration of the sensor is proportional to the AC at the source location:

Ri = qs · C∗
i (xs) ≈ Di (9)

Here, C∗
i (xs) is the AC value of sensor i at the leak source. This adjoint equation

serves as an alternative to the advection–diffusion equation but significantly reduces the

computational cost by transforming the differential equation into a multiplication operation.

After obtaining the AC fields for each sensor, it becomes possible to calculate the modelled

concentrations of the sensors corresponding to different source parameters. This capability

is very beneficial for the sampling process as it needs to repeatedly calculate the posterior

probabilities for a large number of source parameter samples.

2.2.3. Stochastic Sampling Method

Given measured concentration D = (Di), for each specified source parameter, the

posterior probabilities can be calculated by Equation (3). It is computationally expensive

to calculate posterior probabilities for all possible source parameter combinations. The

stochastic sampling process, which samples a different x values from the spaces Ω and

q, is leveraged to draw the posterior PDF with lower computational cost. Markov chain

Monte Carlo (MCMC) [18] is one of the most popular sampling methods for its simplicity

and availability. In this research, an improved MCMC with affine invariance ensemble

samplers [19] was utilized.

2.3. Sensor Placement Optimization

2.3.1. Problem Statement and Objectives

When a gas leak occurs in chemical plants, the source location and the wind direction

significantly influence the spatial concentration distribution of the species. As mentioned

in Section 2.1 and Figure 1, a dataset of concentration distributions of all leak scenarios

with variant source locations and wind directions is prepared in advance. Based on the

dataset, the goal of SPO in this study is twofold: ensure the sensor placement is capable

of (I) detecting all leak scenarios and (II) enhancing STE accuracy, especially that of the

source location. It is obvious that (I) is the foundation of (II), as STE cannot be conducted

if no sensor is activated by gas plumes. The impact of sensor placement on STE is still

ambiguous. Ref. [16] illustrates the potential existence of the positive correlation between

the number of sensors and STE accuracy. Here, two factors, the measured concentrations of
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sensors (MC) and the count of activated sensors (AS), are treated as experimental objectives

of SPO. After SPO and STE, an analysis is conducted to explore the impact of these two

factors on STE. Three SPO objectives are designed as follows:

Objective 1: Highest Mean Measured Concentration (HMC)

HMC attempts to place sensors at locations with higher average concentration across

all leak scenarios by calculating a score proportional to MC. If there is no sensor activated

in one or more scenarios, penalties will be added to the score to ensure that the sensor

placement is capable of detecting all leak scenarios. The mathematical formulation of HMC

is shown in Equation (10a).

Objective 2: Most Activated Sensors (MAS)

MAS seeks to enhance the mean value of AS over all scenarios. Similar to HMC, a score,

incorporating penalties, is computed to evaluate the sensor placement. The mathematical

formulation of MAS is illustrated in Equation (10b).

Objective 3: Most Activated Sensors with Higher Measured Concentration (MAS-MC)

Both HMC and MAS focus on one single factor during optimization. MAS-MC

evaluates the performance of sensors on both MC and AS in all scenarios. The result of

MAS-MC may not excel in a particular factor but will strike a balance in the two. The

mathematical formulation of MAS is expressed in Equation (10c).

2.3.2. Mathematical Model

The mathematical model of SPO is illustrated in Equation (10). The constraints of the

model are the total number and candidate locations of sensors, and the objectives are HMC,

MAS, and MAS-MC.

HMC : max
(

Cmean(:)

)

0.75m
(10a)

MAS : max

[(

min
1≤j≤m

Aj + 0.1

)

·
(

A(:)

)

0.75m

]

(10b)

MAS − MC : max

[

10
( min

1≤j≤m
Aj)

·
(

C(:)

)

0.75m

]

(10c)

s.t.

ε l ∈ {0, 1} ∀l ∈ L (10d)

∑
l∈L

ε l = n (10e)

αl,j =

{

ε l , if cl,j ≥ thres

0, otherwise
(10f)

where:

X(:) = sorted_ascending (X ) =
(

X(1), . . . , X(m)

)

(10g)

(

X(:)

)

0.75m
=

⌈0.75m⌉

∑
j=1

X(j)

⌈0.75m⌉
(10h)

Cj = ∑
l∈L

(

αl,j · cl,j

)

(10i)

Aj = ∑
l∈L

αl,j (10j)
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Cmeanj =

{ Cj

Aj
, if Aj > 0

−cpnt, if Aj = 0
(10k)

The notation used in SPO model Equation (10) is summarized in Table 1. This model

selects n optimal locations from L to install sensors with guidance of the objective function.

Equation (10a–c) are mathematical expressions for three objectives. It should be noted

that when calculating the score, these objectives only consider the average performance

over scenarios ranking in bottom 75% as illustrated by Equation (10g,h). This strategy

aims to highlight the overall performance on the particular objective over m scenarios and

mitigate polarization. Furthermore, Equation (10b,c) also consider the worst performance

among m scenarios, which bring penalty if polarization exists. In Equation (10c), the

minimum value of AS over all scenarios appears as an exponent with a base of 10 to

accommodate the magnitude of MC, as the order of magnitude of MC is typically around

10−3 ∼ 10−5. When the minimum AS increases, the score of this objective increases by an

order of magnitude of 10. Equation (10d,e) define the constraint on the total number of

sensors. Equation (10f) determines whether a sensor located at l is activated in scenario j by

comparing the concentration measurement with an activation threshold. This threshold is

set to 1 × 10−6 kg/m3. Equation (10i) calculates the sum of concentration measurements

in scenario j, Equation (10j) counts the number of activated sensors in scenario j, and

Equation (10k) assesses the average concentration measurement among activated sensors

in scenario j.

Table 1. Problem notation.

Symbols Meaning

n Number of candidate sensors
m Number of all potential leak scenarios
L = {x1, x2, . . . , xN} Set of candidate sensor locations
ε l Binary variable indicating if a sensor is installed at location l
thres Detection threshold of sensors

αl,j
Binary variable indicating if the sensor at l is activated by gas
leak in scenario j

Aj Total number of activated sensors in scenario j
cl,j Concentration measurement at location l under scenario j

cpnt
A penalty to concentration if no sensor is activated in
a scenario

Cj
Sum of concentration measurement value of all activated
sensors in scenario j

Cmeanj
Average value of concentration measurement over all
activated sensors in scenario j

In this model, the candidate locations L are determined by the scene layout, and

the number of sensors n is specified artificially. In practical engineering applications, the

necessary number of sensors can be determined according to [2]. In this research, to obtain

adequate data for STE result analysis, the number of sensors is incrementally increased

from the minimum number required to detect all scenarios. SPO is conducted individually

for each objective and each specified number of sensors.

2.3.3. Simulate Annealing

This SPO model is solved by the simulated annealing (SA) algorithm [20]. In the

algorithm, max f (p) is set as the objective function where p = {x1, x2, . . . , xn} is the vector

of coordinates for n sensors, N is the maximum iteration, and W is the maximum refusion

count for each iteration. Figure 2 shows the detailed process of the algorithm.
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A penalty to concentration if no sensor is activated in a scenario
Sum of concentration measurement value of all activated sensors in 
scenario 𝑗
Average value of concentration measurement over all activated sensors 
in scenario 𝑗

In this model, the candidate locations 𝐋 are determined by the scene layout, and the 
number of sensors n is specified artificially. In practical engineering applications, the nec-
essary number of sensors can be determined according to [2]. In this research, to obtain 
adequate data for STE result analysis, the number of sensors is incrementally increased 
from the minimum number required to detect all scenarios. SPO is conducted individually 
for each objective and each specified number of sensors.

2.3.3. Simulate Annealing

This SPO model is solved by the simulated annealing (SA) algorithm [20]. In the al-
gorithm, 𝑚𝑎𝑥 𝑓(𝐩) is set as the objective function where 𝐩 = {𝐱𝟏, 𝐱𝟐, … , 𝐱𝐧} is the vector of 
coordinates for n sensors, N is the maximum iteration, and W is the maximum refusion 
count for each iteration. Figure 2 shows the detailed process of the algorithm.

Figure 2. Block diagram of SA algorithm.

During one iteration in SA, if the number of unaccepted changes hits W times, it can 
be considered that no better solution than the current one could easily be found. 𝑈[0, 1] 
is a random variable conforming to a uniform distribution between 0 and 1. 𝑇𝑖 is the vir-
tual temperature of ith iteration, which decreases gradually according to 𝑇𝑖 = 𝑇𝑖−1 ⋅ 𝑘 . 
This setting allows for the algorithm to accept a worse solution with a certain probability, 

Figure 2. Block diagram of SA algorithm.

During one iteration in SA, if the number of unaccepted changes hits W times, it can

be considered that no better solution than the current one could easily be found. U[0, 1] is

a random variable conforming to a uniform distribution between 0 and 1. Ti is the virtual

temperature of ith iteration, which decreases gradually according to Ti = Ti−1 · k. This

setting allows for the algorithm to accept a worse solution with a certain probability, which

is beneficial to the global search. As i increases, Ti decreases and this probability tends to 0.

In this research, the initial temperature T0 is set to 5000, the cooling coefficient k is set to 0.9,

N is set to 20,000, and W is set to 20,000.

3. Numerical Experiment Settings

3.1. Test Scenes and Leak Scenarios Design

Two scenes were designed for algorithm validation. The first scene, with flat terrain,

denoted as Scene1, has a calculation domain measuring 60 m × 60 m × 20 m in length,

width, and height, respectively. The primary aim of Scene1 is to assess the algorithm’s

effectiveness; hence, this scene is smaller and contains no obstacles. Nine hypothetical

leak sources are uniformly located inside Scene1 at the height of z = 10 m. The layout of

Scene1 is shown in Figure 3a. The second scene, mimicking the layout of a chemical plant,

is denoted as Scene2. The calculation domain of Scene2 spans 180 m × 120 m × 30 m, which

is significantly larger than that of Scene1. Eleven cylindrical storage tanks with heights of

20 m are located, and eleven hypothetical leak sources are defined on each storage tank at

a height of z = 10 m in Scene2. Inhomogeneous wind fields would be formed under the

impact of these obstacles. Figure 3b exhibits the layout of Scene2. The locations of leak

sources in these scenes are listed in Table 2. The emission strength of all leak sources is
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set to a constant 0.5 kg/(m3·s). The leaked species is propane, which is a commonly used

chemical with a molar mass slightly greater than that of air.

which is beneficial to the global search. As i increases, 𝑇𝑖 decreases and this probability 
tends to 0. In this research, the initial temperature 𝑇0 is set to 5000, the cooling coefficient 
k is set to 0.9, N is set to 20,000, and W is set to 20,000.

3. Numerical Experiment Settings
3.1. Test Scenes and Leak Scenarios Design

Two scenes were designed for algorithm validation. The first scene, with flat terrain, 
denoted as Scene1, has a calculation domain measuring 60 m × 60 m × 20 m in length, 
width, and height, respectively. The primary aim of Scene1 is to assess the algorithm’s 
effectiveness; hence, this scene is smaller and contains no obstacles. Nine hypothetical leak 
sources are uniformly located inside Scene1 at the height of 𝑧 = 10 m. The layout of Scene1 
is shown in Figure 3a. The second scene, mimicking the layout of a chemical plant, is de-
noted as Scene2. The calculation domain of Scene2 spans 180 m × 120 m × 30 m, which is 
significantly larger than that of Scene1. Eleven cylindrical storage tanks with heights of 20 
m are located, and eleven hypothetical leak sources are defined on each storage tank at a 
height of 𝑧 = 10 m in Scene2. Inhomogeneous wind fields would be formed under the 
impact of these obstacles. Figure 3b exhibits the layout of Scene2. The locations of leak 
sources in these scenes are listed in Table 2. The emission strength of all leak sources is set 
to a constant 0.5 kg/(m3·s). The leaked species is propane, which is a commonly used chem-
ical with a molar mass slightly greater than that of air.

Compared to wind speed, the direction of wind more significantly influences the con-
centration distribution when a leak source is activated. Constrained by computational re-
sources, this study only generates scenarios under varying wind directions while the wind 
speed is constant. Eight wind directions are chosen uniformly within the range of 0°  to 359°, namely, 𝜃𝑘 = (𝑘 − 1) ⋅ 45°, where 𝜃𝑘 is the kth direction of the wind. Here, the an-
gle specifies where the wind blows from. A direction of 0° represents the wind blowing 
from north to south, and 90𝑜 represents it blowing from east to west. The wind speed is 
set at a constant 2 m/s in Scene1 and 4 m/s in Scene2.

A leak scenario is defined by a specified leak source and a determined wind direction. 
For each scene, the forward dispersion simulation of all scenarios formed a dataset for 
SPO, and then STEs were conducted for each scenario. If a scene contains m’ potential leak 
sources, then =   leak scenarios will be generated from this scene. Hence, 72 sce-
narios and 88 scenarios were generated for Scene1 and Scene2, respectively.

  

(a) (b) 

Figure 3. Layouts of test scenes. The red points in each scene represent hypothetical leak sources. 
(a) Layout of Scene1. (b) Layout of Scene2.

Figure 3. Layouts of test scenes. The red points in each scene represent hypothetical leak sources.

(a) Layout of Scene1. (b) Layout of Scene2.

Table 2. Locations of leak sources.

Scene1 Scene2

Index x (m) y (m) z (m) Index x (m) y (m) z (m)

1 15 15 10 1 38 84 10
2 30 15 10 2 68 84 10
3 45 15 10 3 98 84 10
4 15 30 10 4 55 53 10
5 30 30 10 5 90 60 10
6 45 30 10 6 122 87 10
7 15 45 10 7 152 87 10
8 30 45 10 8 119 64 10
9 45 45 10 9 149 64 10

10 122 42 10
11 152 42 10

Compared to wind speed, the direction of wind more significantly influences the

concentration distribution when a leak source is activated. Constrained by computational

resources, this study only generates scenarios under varying wind directions while the

wind speed is constant. Eight wind directions are chosen uniformly within the range of 0◦

to 359◦, namely, θk = (k − 1) · 45
◦
, where θk is the kth direction of the wind. Here, the angle

specifies where the wind blows from. A direction of 0
◦

represents the wind blowing from

north to south, and 90o represents it blowing from east to west. The wind speed is set at a

constant 2 m/s in Scene1 and 4 m/s in Scene2.

A leak scenario is defined by a specified leak source and a determined wind direction.

For each scene, the forward dispersion simulation of all scenarios formed a dataset for

SPO, and then STEs were conducted for each scenario. If a scene contains m’ potential

leak sources, then m = 8 × m′ leak scenarios will be generated from this scene. Hence,

72 scenarios and 88 scenarios were generated for Scene1 and Scene2, respectively.

3.2. CFD Software and Configuration

Given that the source–receptor relationship in STE is derived from the steady-state

advection–diffusion equation, we utilized this equation to simulate the gas dispersion
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in order to mitigate discrepancies between the forward dispersion model and adjoint

equations. The wind field is critical for both forward dispersion and an adjoint equation.

Large eddy simulation (LES), which is capable of providing a representation of turbulent

structures and dynamics, was utilized to generate wind fields for all leak scenarios.

The open-source software program fire dynamic simulator (FDS) v6.7.9 [21] was

chosen to generate a wind field with effect of gas dispersion for different scenarios. In

this experiment, FDS simulates the wind field by solving the Navier–Stokes equation with

LES modelling the small-scale eddies. Subgrid-scale eddy coefficients are modeled by

Deardorff’s model [22]. After averaging the obtained wind fields over the time domain, the

open-source software program OpenFOAM v1912 [23] was selected to simulate the forward

dispersion by solving the steady-state advection–diffusion equation (Equation (8)), without

the consideration of viscosity and turbulence. This operation is carried out to reduce the

error between mathematical models of forward dispersion and the adjoint equation. The

AC fields of sensors under different wind conditions were also calculated by OpenFOAM by

solving adjoint equation expressed as Equation (9). The FDS and OpenFOAM calculations

were conducted on a workstation running a Linux OS with an Intel® Gold 6242R 3.1 GHz

CPU and 192 GB of memory. The volume of grids for CFD was approximately 1 m3. It

generally costs about 1.2 h and 3 h for FDS to finish a single scenario in Scene1 and Scene2,

respectively. The calculations of OpenFOAM were quite fast because the steady-state

equations are easy to solve. Figure 4 illustrates some calculation results from Scene2.

(a) (b) 

Figure 4. Forward dispersion and adjoint equation results for Scene2. (a) The concentration distri-
bution of the leak from Source 7 under a northeast wind at a height of z = 10 m. (b) AC field of a 
sensor located at ( )= under the same wind condition.

3.3. Candidate Sensor Locations, SA, and STE

Considering the balancing of SPO performance and computational limitations, 360 
and 600 available candidate locations were determined uniformly in the plane at z = 10 m 
for Scene1 and Scene2, respectively. Details of the candidate locations are illustrated in 
Appendix A. To enhance the robustness of the optimization, SA was independently con-
ducted five times for each of the three objectives. The solution yielding the highest score 
among these five runs was then selected as the optimized outcome for the specific objec-
tive.

After SPO, STE was conducted for all scenarios based on the optimized sensor place-
ment. To accelerate the STE algorithm, during the MCMC process, the range of q is fixed 
as 𝑞 ∈ [0, 1] (the actual value of q is 0.5 kg/s). The STE result is identified as the point at 
which the PDF is maximized for the dimensions x, y, z, and q. The location error 𝐸𝑟𝑟𝑜𝑟𝑥,𝑗
was defined as the Euclidean distance between estimated and true location, while the er-
ror of leak strength 𝐸𝑟𝑟𝑜𝑟𝑞,𝑗 was calculated as the absolute difference. The formulations 
of these indices are expressed as Equation (11):𝑥𝑗 = 𝑎𝑟𝑔𝑚𝑎𝑥𝑥 𝑝𝑗(𝑥|𝐷, 𝐼)𝑦𝑗 = 𝑎𝑟𝑔𝑚𝑎𝑥𝑦 𝑝𝑗(𝑦|𝐷, 𝐼)𝑧𝑗 = 𝑎𝑟𝑔𝑚𝑎𝑥𝑧 𝑝𝑗(𝑧|𝐷, 𝐼)𝑞𝑗 = 𝑎𝑟𝑔𝑚𝑎𝑥𝑞 𝑝𝑗(𝑞|𝐷, 𝐼)

𝐸𝑟𝑟𝑜𝑟𝒙,𝑗 = √(𝑥𝑗 − 𝑥𝑠)2 + (𝑦𝑗 − 𝑦𝑠)2 + (𝑧𝑗 − 𝑧𝑠)2𝐸𝑟𝑟𝑜𝑟𝑞,𝑗 = |𝑞𝑗 − 𝑞𝑠|
The SA and STE algorithms were executed on the same workstation introduced in 

Section 3.2. The time consumed by SA increases proportionally with the number of can-
didate sensors, which varies from 10 min to approximately 1 h. The time required for STE 
depends on the scale of the scene and the number of sensors. For Scene1, concurrent STE 
computation for 72 scenarios takes around 1 to 3 h to complete. For Scene2, this time ex-
tends to approximately 2 to 6 h.

4. Experiment Results
For both scenes, this section presents the SPO and STE results, along with an analysis

of the impact of AS and MC on the error of STE and the exploration on the most suited 

Figure 4. Forward dispersion and adjoint equation results for Scene2. (a) The concentration distribu-

tion of the leak from Source 7 under a northeast wind at a height of z = 10 m. (b) AC field of a sensor

located at x = (38, 18, 10) under the same wind condition.

3.3. Candidate Sensor Locations, SA, and STE

Considering the balancing of SPO performance and computational limitations, 360

and 600 available candidate locations were determined uniformly in the plane at z = 10 m

for Scene1 and Scene2, respectively. Details of the candidate locations are illustrated in Ap-

pendix A. To enhance the robustness of the optimization, SA was independently conducted

five times for each of the three objectives. The solution yielding the highest score among

these five runs was then selected as the optimized outcome for the specific objective.

After SPO, STE was conducted for all scenarios based on the optimized sensor place-

ment. To accelerate the STE algorithm, during the MCMC process, the range of q is fixed

as q ∈ [0, 1] (the actual value of q is 0.5 kg/s). The STE result is identified as the point at

which the PDF is maximized for the dimensions x, y, z, and q. The location error Errorx,j

was defined as the Euclidean distance between estimated and true location, while the error
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of leak strength Errorq,j was calculated as the absolute difference. The formulations of these

indices are expressed as Equation (11):

xj = argmax
x

pj(x|D, I)

yj = argmax
y

pj(y|D, I)

zj = argmax
z

pj(z|D, I)

qj = argmax
q

pj(q|D, I)

Errorx,j =
√

(

xj − xs

)2
+

(

yj − ys

)2
+

(

zj − zs

)2

Errorq,j =
∣

∣qj − qs

∣

∣

(11)

The SA and STE algorithms were executed on the same workstation introduced

in Section 3.2. The time consumed by SA increases proportionally with the number of

candidate sensors, which varies from 10 min to approximately 1 h. The time required for

STE depends on the scale of the scene and the number of sensors. For Scene1, concurrent

STE computation for 72 scenarios takes around 1 to 3 h to complete. For Scene2, this time

extends to approximately 2 to 6 h.

4. Experiment Results

For both scenes, this section presents the SPO and STE results, along with an analysis

of the impact of AS and MC on the error of STE and the exploration on the most suited SPO

objective. For ease of reference, the abbreviations used in this section are listed in Table 3.

Table 3. Abbreviation reference.

Abbreviation Meaning

SPO Sensor placement optimization
STE Source term estimation
AS Factor: number of activated sensors
MC Factor: measured concentrations of sensors
HMC SPO objective: highest mean measured concentration
MAS SPO objective: most activated sensors

MAS-MC
SPO objective: most activated sensors with higher
measured concentrations

4.1. Results in Scene1

4.1.1. SPO Results in Scene1

In Scene1, the number of candidate sensors for SPO is represented by an increasing

sequence. This sequence begins at 8, increases by 1 until it reaches 25, and then increases by

5 until reaching 65. In total, 26 elements are contained in this sequence. For each optimized

sensor placement, we evaluated the average values of AS and MC over all scenarios, as well

as the 75% average of these factors calculated by Equation (10h). The variations of these

two factors with changes in the number of sensors are illustrated in Figure 5. We checked

the results and ensured that all optimized sensor placements were capable of detecting all

leak scenarios. Additionally, the results show the following:
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Figure 5. Results of SPO for different numbers of candidate sensors in Scene1. (Upper): performance 
on average MC (left) and AS (right). (Lower): performance on 75% average MC (left) and AS (right).

4.1.2. STE Results in Scene1

The 78 sensor placements generated by different candidate sensor quantities and 
three optimization objectives, along with the 72 leak scenarios, constitute a total of 5616 
distinct STE situations. The box figures and line plots in Figure 6 illustrate location and q 
errors of these STE situations with different quantities of candidate sensors. Overall, as 
the quantitation of candidate sensors increases, the STE errors decrease, and the error dis-
tributions are more concentrated around mean values. When comparing among three ob-
jectives, we noticed that HMC leads to the worst overall STE accuracy, both on location 
and q, and that the accuracy of MAS-MC is better than that of MAS. Combined with the 
SPO result shown in Figure 5, it can be inferred that the STE accuracy has a proportional 
correlation with AS, while that correlation with MC is not obvious.

Figure 5. Results of SPO for different numbers of candidate sensors in Scene1. (Upper): performance

on average MC (left) and AS (right). (Lower): performance on 75% average MC (left) and AS (right).

(1) As the number of candidate sensors increases, average AS increases proportionally

for three objectives. Among the three objectives, HMC exhibits the lowest average AS

with a noticeable gap. The average AS of MAS-MC is comparable to that of MAS but

slightly lower.

(2) In these three objectives, the average MC of HMC surpasses that of MAS-MC, which,

in turn, exceeds that of MAS. Additionally, as the average AS reaches a certain threshold,

the average MC seems to exhibit a negative correlation with it. This is explainable, as when

there are numerous candidate sensors, from an overall perspective across all scenarios,

the average AS is bound to increase, while the average MC of each sensor will inevitably

experience a certain degree of decline. Generally speaking, these results align with the

expectation of these optimization objectives.

4.1.2. STE Results in Scene1

The 78 sensor placements generated by different candidate sensor quantities and three

optimization objectives, along with the 72 leak scenarios, constitute a total of 5616 distinct

STE situations. The box figures and line plots in Figure 6 illustrate location and q errors of

these STE situations with different quantities of candidate sensors. Overall, as the quanti-

tation of candidate sensors increases, the STE errors decrease, and the error distributions

are more concentrated around mean values. When comparing among three objectives, we

noticed that HMC leads to the worst overall STE accuracy, both on location and q, and that

the accuracy of MAS-MC is better than that of MAS. Combined with the SPO result shown

in Figure 5, it can be inferred that the STE accuracy has a proportional correlation with AS,

while that correlation with MC is not obvious.
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Figure 6. STE errors in Scene1. (a) STE errors over different numbers of sensors and three optimiza-
tion objectives. (Upper row): location errors. (Lower row): q errors. (b) Mean and median values of 
STE errors over different numbers of sensors and three optimization objectives. (Left): location er-
rors. (Right): q errors.

Figure 7 summarizes all 5616 STE situations and divides them into several intervals 
according to the values of AS and MC, then examines the average and median STE errors 
of these intervals. The values on the axes in Figure 7 are the lower limits of each interval. 
For example, the number 6 on the AS-axis of Figure 7b (II) is the average STE location 
error of scenarios with AS values between 6 and 10. From (I) and (III) in Figure 7a, it is 
evident that as AS increases, the decrease in the error of STE is noticeable, both in terms 
of position error and q error. However, (II) and (IV) in the same figure fail to exhibit a 
monotonic relationship between STE error and MC, and, in particular, the relationship 
between the q error and MC is ambiguous. When horizontally comparing different col-
umns along the AS-axis in (II) and (III) of Figure 7b, it illustrates that the location error 
decreases significantly as AS increases. When the AS value is very low (e.g., the values of 
AS as 1 and 2), a negative correlation between the location error and MC occurs; however, 

Figure 6. STE errors in Scene1. (a) STE errors over different numbers of sensors and three optimization

objectives. (Upper row): location errors. (Lower row): q errors. (b) Mean and median values of STE

errors over different numbers of sensors and three optimization objectives. (Left): location errors.

(Right): q errors.

Figure 7 summarizes all 5616 STE situations and divides them into several intervals

according to the values of AS and MC, then examines the average and median STE errors

of these intervals. The values on the axes in Figure 7 are the lower limits of each interval.

For example, the number 6 on the AS-axis of Figure 7b (II) is the average STE location

error of scenarios with AS values between 6 and 10. From (I) and (III) in Figure 7a, it is

evident that as AS increases, the decrease in the error of STE is noticeable, both in terms

of position error and q error. However, (II) and (IV) in the same figure fail to exhibit a

monotonic relationship between STE error and MC, and, in particular, the relationship

between the q error and MC is ambiguous. When horizontally comparing different columns

along the AS-axis in (II) and (III) of Figure 7b, it illustrates that the location error decreases

significantly as AS increases. When the AS value is very low (e.g., the values of AS as 1 and
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2), a negative correlation between the location error and MC occurs; however, under other

conditions, this correlation is not noticeable. (IV) and (V) in the same figure show similar

results; the only difference is that MC has almost no effect on the STE error of q.

under other conditions, this correlation is not noticeable. (IV) and (V) in the same figure 
show similar results; the only difference is that MC has almost no effect on the STE error 
of q.

 

(a) 

(b) 

 

(c) 

Figure 7. Summary on relationship between STE errors and sensor placements in Scene1. (a) Mean 
and median values of STE errors over different intervals of AS and MC. Green and yellow lines 
represent mean and median values, respectively. Red dashed lines represent quantities of STE con-
ditions. (b) Heatmaps illustrating the STE errors in different AS and MC intervals. The numbers in 
(II,III) are rounded to the nearest integer, and the numbers in (IV,V) are presented with one decimal 
place. (c) Quantities of STE situations over different intervals of AS and MC under different SPO 
objectives.

Figure 7c categorizes all STE situations according to the SPO objectives associated 
with the sensor placements and draws the distribution in different intervals. From these 
heatmaps, it can be read that in this simple scene, MAS and MAS-MC achieve a balance 
between AS and MC, while HMC leads to extreme intervals and thus increases STE errors.

4.2. Results in Scene2

4.2.1. SPO Results in Scene2

Scene1 is a very simple scene that has no obstacles, while Scene2 is a much more so-
phisticated one at larger scale and with several cylindrical obstacles inside. These huge 
obstacles significantly impact the homogeneity of the wind field and greatly extend the 
coverage area of gas concentration. The numbers of candidate sensors in this scene 

Figure 7. Summary on relationship between STE errors and sensor placements in Scene1. (a) Mean and

median values of STE errors over different intervals of AS and MC. Green and yellow lines represent

mean and median values, respectively. Red dashed lines represent quantities of STE conditions.

(b) Heatmaps illustrating the STE errors in different AS and MC intervals. The numbers in (II,III)

are rounded to the nearest integer, and the numbers in (IV,V) are presented with one decimal place.

(c) Quantities of STE situations over different intervals of AS and MC under different SPO objectives.

Figure 7c categorizes all STE situations according to the SPO objectives associated

with the sensor placements and draws the distribution in different intervals. From these

heatmaps, it can be read that in this simple scene, MAS and MAS-MC achieve a balance

between AS and MC, while HMC leads to extreme intervals and thus increases STE errors.

4.2. Results in Scene2

4.2.1. SPO Results in Scene2

Scene1 is a very simple scene that has no obstacles, while Scene2 is a much more

sophisticated one at larger scale and with several cylindrical obstacles inside. These huge

obstacles significantly impact the homogeneity of the wind field and greatly extend the

coverage area of gas concentration. The numbers of candidate sensors in this scene comprise

an increasing sequence that begins at 8, increases by 2 until 20 and then increases by 5 until

110. Similar to Scene1, the average and 75% average AS and MC are evaluated for each

optimized sensor placements, and the results are shown in Figure 8. The SPO results in this

scene are roughly similar to those of Scene1, while some new features are also presented:
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comprise an increasing sequence that begins at 8, increases by 2 until 20 and then increases 
by 5 until 110. Similar to Scene1, the average and 75% average AS and MC are evaluated 
for each optimized sensor placements, and the results are shown in Figure 8. The SPO 
results in this scene are roughly similar to those of Scene1, while some new features are 
also presented:

(1) The average AS of three objectives shows little disparity. Although the 75% aver-
age AS of HMC still lags behind the other two objectives, the differences between HMC 
and other objectives are no longer that substantial. This is due to the escalation in the gas 
coverage area, which makes the deployed sensors much more likely to detect the gas.

(2) The average MC of MAS-MC is lower than that of HMC, while that of MAS is 
significantly lower than that of the other two objectives. The average MC shows a negative 
correlation with the average AS. Overall, the SPO results for MAS and MAS-MC are close 
to expectations. However, the optimization results for HMC exceed expectations as the 
AS values are not significantly low, even though AS is not included in the objective func-
tion of HMC.

Figure 8. Results of SPO for different quantities of candidate sensors in Scene2. (Upper): perfor-
mance on average MC (left) and AS (right). (Lower): performance on 75% average MC (left) and AS 
(right).

4.2.2. STE Results in Scene2

The 75 sensor placements generated by different candidate sensor quantities and 
three optimization objectives, along with the 88 leak scenarios, constitute a total of 6600 
distinct STE situations. Figure 9 shows the location and q errors of all STE situations. Due 
to the increased scene scale, the overall location error is notably higher than that in Scene1. 
Also, the correlation between q error and quantities of candidate sensors is unrecogniza-
ble. Therefore, the location errors of STE are emphasized here. Among these three objec-
tives, MAS location errors become the highest. When the numbers of candidate sensors 
are relatively low (lower than 14), the number of errors in MAS-MC is lower than in HMC. 
In other cases, the location errors in HMC are the lowest.

Figure 8. Results of SPO for different quantities of candidate sensors in Scene2. (Upper): performance

on average MC (left) and AS (right). (Lower): performance on 75% average MC (left) and AS (right).

(1) The average AS of three objectives shows little disparity. Although the 75% average

AS of HMC still lags behind the other two objectives, the differences between HMC and

other objectives are no longer that substantial. This is due to the escalation in the gas

coverage area, which makes the deployed sensors much more likely to detect the gas.

(2) The average MC of MAS-MC is lower than that of HMC, while that of MAS is

significantly lower than that of the other two objectives. The average MC shows a negative

correlation with the average AS. Overall, the SPO results for MAS and MAS-MC are close

to expectations. However, the optimization results for HMC exceed expectations as the AS

values are not significantly low, even though AS is not included in the objective function

of HMC.

4.2.2. STE Results in Scene2

The 75 sensor placements generated by different candidate sensor quantities and three

optimization objectives, along with the 88 leak scenarios, constitute a total of 6600 distinct

STE situations. Figure 9 shows the location and q errors of all STE situations. Due to

the increased scene scale, the overall location error is notably higher than that in Scene1.

Also, the correlation between q error and quantities of candidate sensors is unrecognizable.

Therefore, the location errors of STE are emphasized here. Among these three objectives,

MAS location errors become the highest. When the numbers of candidate sensors are

relatively low (lower than 14), the number of errors in MAS-MC is lower than in HMC. In

other cases, the location errors in HMC are the lowest.
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(a) 

 

(b) 

Figure 9. Errors under STE conditions in Scene 2. (a) STE errors over different numbers of sensors 
and three optimization objectives. (Upper row): location errors. (Lower row): q errors. (b) Mean and 
median values of STE errors over different numbers of sensors and three optimization objectives. 
(Left): location errors. (Right): q errors.

The 6600 STE results summarized in Figure 10 to some extent align with the findings 
in Scene1 but also reveal some novel phenomena. From (I) and (II) in Figure 10a, the aver-
age and median location errors gradually decrease as AS increases, and a sharp decline 
occurs when AS reaches around 30. When it comes to MC, we observe a significant decline 
when MC is relatively low (lower than approximately 1.73 × 10−4 kg/m3). Then, as MC 
increases, the location errors decrease gradually. (III) and (IV) of the same figure fail to 
reveal any relationship between the q error and AS or MC. In (II) and (III) of Figure 10b, 
the colors are darkest in the bottom-left corner, indicating that it is nearly impossible to 
conduct STE if the values of AS and MC are both low. Additionally, it is noted that the 
colors in the upper halves of both images are slightly lighter than those in the lower 
halves, which means lower STE location errors are detected when MC values are higher. 
The location errors are quite low when AS is extremely high (higher than around 31); 
however, this is usually not cost-effective for enterprises. The leftmost rows in (IV) and 

Figure 9. Errors under STE conditions in Scene 2. (a) STE errors over different numbers of sensors

and three optimization objectives. (Upper row): location errors. (Lower row): q errors. (b) Mean and

median values of STE errors over different numbers of sensors and three optimization objectives.

(Left): location errors. (Right): q errors.

The 6600 STE results summarized in Figure 10 to some extent align with the findings in

Scene1 but also reveal some novel phenomena. From (I) and (II) in Figure 10a, the average

and median location errors gradually decrease as AS increases, and a sharp decline occurs

when AS reaches around 30. When it comes to MC, we observe a significant decline when

MC is relatively low (lower than approximately 1.73× 10−4 kg/m3). Then, as MC increases,

the location errors decrease gradually. (III) and (IV) of the same figure fail to reveal any

relationship between the q error and AS or MC. In (II) and (III) of Figure 10b, the colors are

darkest in the bottom-left corner, indicating that it is nearly impossible to conduct STE if

the values of AS and MC are both low. Additionally, it is noted that the colors in the upper

halves of both images are slightly lighter than those in the lower halves, which means

lower STE location errors are detected when MC values are higher. The location errors are

quite low when AS is extremely high (higher than around 31); however, this is usually not
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cost-effective for enterprises. The leftmost rows in (IV) and (V) illustrate very high q errors

when only one sensor is activated. Apart from this, little representative information can be

extracted from these two subplots.
(V) illustrate very high q errors when only one sensor is activated. Apart from this, little 
representative information can be extracted from these two subplots.
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(b) 

 

(c) 

Figure 10. Summary of relationship between STE errors and sensor placements in Scene 2. (a) Mean 
and median values of STE errors over different intervals of AS and MC. Green and yellow lines 
represent mean and median values, respectively. Red dashed lines represent quantities of STE con-
ditions. (b) Heatmaps illustrating STE errors in different AS and MC intervals. The numbers in (II,III) 
are rounded to the nearest integer, and the numbers in (IV,V) are presented with one decimal place. 
(c) Distribution of quantities of STE situations over different intervals of AS and MC under different 
SPO objectives.

From Figure 10c, it can be observed that although there is some clustering in the up-
per-left corner interval of the graph, the STE situations resulted by HMC do not exhibit 
the excessively low values of AS observed in Scene1. The distribution of MAS is relatively 
concentrated in the lower intervals of the MC-axis, indicating lower MC, while the distri-
bution of MAS-MC is similar to that of HMC. The results reveal that in such complex 
scenarios, MC should be a key consideration for SPO, while AS can be given less empha-
sis.

4.3. Discussion

The SPO and STE conducted on Scene1 and Scene2 yielded rich outcomes, including 
diverse SPO results and a total of 12,216 STE results. These results also demonstrate that 
the complexity of the scene influences the SPO and STE results. Compared to Scene1, the 

Figure 10. Summary of relationship between STE errors and sensor placements in Scene 2. (a) Mean

and median values of STE errors over different intervals of AS and MC. Green and yellow lines

represent mean and median values, respectively. Red dashed lines represent quantities of STE

conditions. (b) Heatmaps illustrating STE errors in different AS and MC intervals. The numbers in

(II,III) are rounded to the nearest integer, and the numbers in (IV,V) are presented with one decimal

place. (c) Distribution of quantities of STE situations over different intervals of AS and MC under

different SPO objectives.

From Figure 10c, it can be observed that although there is some clustering in the

upper-left corner interval of the graph, the STE situations resulted by HMC do not exhibit

the excessively low values of AS observed in Scene1. The distribution of MAS is relatively

concentrated in the lower intervals of the MC-axis, indicating lower MC, while the dis-

tribution of MAS-MC is similar to that of HMC. The results reveal that in such complex

scenarios, MC should be a key consideration for SPO, while AS can be given less emphasis.

4.3. Discussion

The SPO and STE conducted on Scene1 and Scene2 yielded rich outcomes, including

diverse SPO results and a total of 12,216 STE results. These results also demonstrate that

the complexity of the scene influences the SPO and STE results. Compared to Scene1,

the expansion of scale and the complexity of obstacles in Scene2 result in numerous new

features in the experimental outcomes. Due to the closer resemblance of Scene2 to a real
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chemical plant, we consider the results obtained in this scene to be more representative.

From the results, some regularities can be observed:

(1) A negative correlation between the STE location error and the value of AS is

observed in both two scenes. However, the STE location errors in Scene2 only show a

noticeable reduction when AS reaches approximately 20. In practice, the quantity of

candidate sensors is a primary constraint of SPO, and thus the AS values are usually

not that large. In such conditions, placing sensors in locations with higher MC is more

cost-effective for SPO.

(2) Although a negative correlation between q error and AS is observed in Scene1, the

results in Scene2 fail to provide supporting evidence. Actually, since q merely serves as a

multiplier in STE as Equation (10), it is relatively challenging to make precise estimates of

it through stochastic sampling.

(3) Among the three SPO objectives, HMC leads to the best overall STE performance

in Scene2 even though it results in the worst performance in Scene1. The scale of Scene2 and

the complexity of obstacles make it relatively easy for sensors to be activated in a gas leak

scenario. This prevents AS from being excessively low, despite HMC not incorporating AS

as part of the optimization objective. Therefore, when applying the SPO method described

in this paper in complex scenes such as chemical plants, it suffices to consider only the MC

of sensors to achieve a reduction in STE location error, without emphasizing the values

of AS.

(4) The discrepancy between results of Scene1 and Scene2 cautions us to mind the

influence of scene complexity on the analysis results when analyzing sensor placements

utilizing this analytical framework. Conclusions drawn from simple scenes may not

necessarily be generalizable to complex scenes such as chemical plants.

(5) In Scene1 (Figure 6), the downward trend of STE location errors slows down

when the number of sensors exceeds 17 (with SPO objective as MAS-HC). In Scene2

(Figure 9), such performance requires that the number of sensors exceeds around 45 (with

SPO objective as HMC). In practical scenarios, the total number of sensors also acts as an

objective, considering the economic cost.

5. Conclusions and Future Work

This paper proposed an analytical framework to determine sensor locations for en-

hanced STE and analyzed the SPO strategy in complex scenes such as chemical plants

through investigating the impact of sensor placement on STE errors. To obtain rational

sensor placements, a mathematical model of SPO is proposed in Section 3 with HMC,

MAS, and MAS-MC as objectives. All these objectives ensure that the sensor placements

possess the capability of detecting all potential gas leak scenarios. Subsequently, STE

calculations and post-processing are conducted based on sensor placements gained by

SPO. In experiments, two test scenes were created, in which CFD, SPO, and STE were

sequentially conducted. A total of 12,216 STE results indicated that both AS and MC have

a negative correlation with the STE location errors. Specifically, a significant reduction

in this error was observed when AS is large. In Scene1, AS has a greater impact on STE

errors compared to MC, and MAS-MC as the objective of SPO yields optimal STE accuracy.

In Scene2, the significant reduction in STE location errors requires AS to be larger than

around 20, which is hard to achieve under the constraints of the number of candidate

sensors. Moreover, results in Scene2 revealed that in chemical plant scenes, the objective of

SPO should focus on MC rather than AS for enhanced STE. In this experiment, HMC as

the objective resulted in lowest overall STE errors. Additionally, the different conclusions

drawn from the two scenes discerned the lack of generalizability across scenes with distinct

scales and complexities.
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The current work still has some limitations. Firstly, although this paper extensively

analyzed the impact of AS and MC on STE errors, more research is needed to explore

the underlying principles of this impact from a mathematical perspective. Secondly, this

study temporally focused on the influence of AS and MC in sensor placement; however,

some potential factors like the distance between sensors, and that between sensor and

the leak source, might also be critical to the accuracy of STE. It would be meaningful to

explore further and propose an improved SPO model. Thirdly, more realistic factors should

be included in further experiments, for instance, the settling of species dispersion, the

expansion of experimental scene, and the expansion or limitations of candidate sensor

locations for SPO. Lastly, the factors affecting the STE errors of q need more exploration.

These issues remain to be addressed in future research.
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Appendix A

Details of candidate sensor locations and some of the SPO results are listed in

this appendix.

The candidate sensor locations are determined mainly by the height of leak sources and

the vertex coordinates of CFD meshes. As mentioned in Sections 3.1 and 3.3, for consistency

with adjoint equation, the forward gas dispersion is calculated by adjoint–diffusion equation,

which weakens the settling of leaking species. Therefore, the candidate locations are selected at

the same height of leak sources z = 10 m. At this height, 352 and 600 candidates are uniformly

selected by program for the SA algorithm; Figure A1 shows these candidate locations (blue

dots) in Scene1 and Scene2, respectively. The optimized sensor locations for some cases in

Scene1 and Scene2 are shown in Figures A2 and A3, respectively.
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Figure A3. Leak sources (red dots) and optimized sensor placements (blue dots) for some cases

in Scene2.
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