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Machine learning for efficient CO2

sequestration in cementitiousmaterials: a
data-driven method

Check for updates

SUN Yanjie1, ZHANGChen1,2, WEI Yuan-Hao1, JIN Haoliang3, SHEN Peiliang4, POONChi Sun4, YAN He5 &

WEI Xiao-Yong1,6

Extensive experimental work has proved that CO2 sequestration by cementitious materials offers a

promising venue for addressing the rising carbon emissions problem. However, relying merely on

experiments on specific materials or some simple empirical methods makes it difficult to provide a

comprehensive understanding. To address these challenges, this paper applies three advanced

machine-learning techniques (Decision Tree, Random Forest, and eXtreme Gradient Boosting

(XGBoost)), with existing datasets coupling with data collected from the literature. The results show

that theXGBoostmodel significantly outperforms traditional linear regression approaches. In addition,

aiding in the SHapley Additive exPlanations(SHAP), apart from the widely recognized factors, cement

type was also investigated and shown its crucial role in affecting carbonation depth. CEM II/B-LL and

CEM II/B-M are two types having high carbonation potential. The results enable the identification of

key factors influencing CO2 sequestration through cement and provide insights into optimizing

experimental design.

Greenhouse gases, particularly carbon dioxide (CO2), are major and well-
agreed contributors to climate change, leading to a global push for strategies
aimed at reducing carbon emissions. This has resulted in significant efforts
focused on carbon capture, utilization, and storage (CCUS), which seek to
mitigate CO2 levels in the atmosphere and reduce the impacts of climate
change1. Among the various CCUS strategies, one of the most promising
approaches to close the carbon loop involves the sequestration of CO2

through hydration products in cementitious materials, which was pre-
viously considered the major source of CO2 emission2–4. The main advan-
tage of cementitiousmaterial carbonation is its favorable thermodynamics5.
However, one of the main challenges is the slow kinetics of the carbonation
reaction, which limits the efficiency and overall sequestration capacity of
these materials.

The CO2 absorption capacity of cementitious materials is collectively
influenced by various factors, including the carbonation environment6,
relative humidity (RH)7, water-to-binder(w/b) ratio8, carbonation type9, etc.
However, based on the complexity of the cement system, conventional
experimental approaches have typically focused on examining the impact of
individual factors. Although some traditional studies tried to analyze the
combination effects of these factors, these analyses were primarily empirical

and struggled to generalize to new data. A summary of the influencing
factors studied in the literature is provided in Table 1. Limited studies have
focusedon combinations of the effect ofmultiple factors on carbonationdue
to the constraints of analytical methods and the challenges of examining
larger factor combinations. For instance, by investigating the influence of
factor CO2 concentration, the values of factors relative humidity and tem-
perature have to be controlled to ensure the reliability and reproducibility of
experimental results10. Linear methods, such as fitting empirical laws, have
been utilized for analysis7.

However, assessing the combined effects of multiple factors across
varying degrees remains challenging. For instance, Liu et al.11 conducted
numerous tests to study the coupling effect of relative humidity and CO2

concentration, attempting to model the relationship. Despite their efforts,
the study was constrained by the limited data available for fitting the effects
of three factors (temperature, relative humidity, and CO2 concentration).
Also, the conclusions drawn were restricted to the specific conditions of the
experimental batch, limiting their broader applicability. This limitation
impedes the identification of the optimal combination when considering
multiple variables, as the best setting for individual factors may not neces-
sarily lead to the best outcome when they are combined. For example,
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Leemann et al. indicated that if the RH is controlled at 57%, the increase in
CO2 concentration shows a limited carbonation effect. However, if the RH
was CO2 increased to 70% or above, there would be a positive relationship
between concentration and carbonation effect10. We addressed these issues
by reorganizing existing data into a dataset that meets the requirements of
advanced machine-learning methods. By applying machine learning to
analyze these complex variables, such as the influence of environmental
factors (e.g., CO2 concentration, relative humidity, temperature) and
cement type, on carbonation depth, our research offers new insights and
predictive capabilities that can contribute to more efficient and sustainable
cement design practices.

In terms ofmethodology, these challenges come from the simplicity of
conventionalmethods. Thesemethods are basedon linearmodels, and thus,
it is hard to capture the multivariate effects. The inability to construct
computational models arises from the reliance on the regression of
empirical functions with the experimental data. This motivates us to con-
duct a study to address these issues by leveraging advanced machine-
learning technology.Machine-learning approacheshavebeenprovenacross
diverse fields for their ability to effectively model intricate multivariate and
inter-factor relationships, and also in the field of cement research, such as
compressive strength12–14, alkali-silica reaction expansion15, geopolymer-
ization process16. As for the cement carbonation research, machine learning
is also beginning to receive increasing attention17–19. However, most of the
research only focused on their own experimental results, and the data size is
limited. Thus, in this study,we incorporated a large-scale dataset to establish
a more generalized prediction model. We have customized three machine-
learning models based on decision tree (DT)20, random forest (RF)21, and
eXtreme Gradient Boosting (XGBoost) models22 by refining with empirical
functions, to predict the CO2 sequestration capacity of cementitious
materials. To further explain the model’s internal mechanism, SHapley
Additive exPlanations (SHAP). SHAP is a widely recognized method for
interpretingmodel outputs byquantifying the contributionof each feature23,
and it has been extensively applied across various domains, including
cementitious material carbonation, where it has been used to evaluate the
influence of material composition24.

The proposed method demonstrates its capability not only in identi-
fying the best combination but also in facilitating cost management. With
computational models that can generalize to new factor combinations, we
overcome the limitations of traditional empirical analysis. To exemplify this,
two applications in cement CO2 sequestration and multi-variable optimi-
zation have been integrated. This study aims to enhance our understanding

of the effects of various factors, thereby informing the design of carbon
capture strategies in cementitious materials.

Results
Model development and evaluation
As shown in Table 2, for the training set, the DTmodel has the lowestMSE
andRMSE on the training set, indicating it fits the training datawell. RF and
XGBoost have higherMSE andRMSE values on the training set, indicating a
less precise fit compared to the DT. Decision tree may create overly com-
plicated trees that capture noise. RF and XGBoost show much lowerMSE
and RMSE values on the test set, with XGBoost having the lowest values
among all models (MSE and RMSE were decreased by 51.57% and 29.52%
compared with the performances of DTmodel). The Taylor’s diagram was
also plotted, as shown in Fig. 1, and the results are consistent with our
findings. It shows thatXGBoost performs thebest on the test set, followedby
RF, with DT showing the lowest performance. This suggests that these
models generalize better to new data and are more robust in predicting
CO2sequestration capacity. The performance of each model can be further
illustratedbyFig. 2. The greenpoints indicate themodel performanceon the
training set; The DT model demonstrates superior performance compared
to RF and XGBoost. But when it comes to the performance on the test set, a
clear dispersion can be found on the DTmodel. While the performances of
RF and XGBoost are better at generalization. Overall, XGBoost is the most
effective model for predicting CO2 sequestration capacity in cementitious
materials, balancing both training accuracy and test set performance. One
key advantage of XGBoost over the other twomodels is its ability to correct
errors during its intermediate steps, which prevents the propagation of
errors and the snowball effect that might occur in the other models. This
feature allows XGBoost to fit the existing data more effectively.

When compared to previous machine-learning models applied to
cement carbonation, the XGBoost model has a good performance in both
accuracy and complex interaction processing. Thehigh effectiveness of tree-
based methods like XGBoost enables it to address problems for some tra-
ditional regression models. Thus, the selected XGBoost model is also
comparedwith the traditional empirical regressionmethodusing a subset of
the dataset. The randomly selected factors were RH (65%), w/b ratio (0.37),
CO2 concentration (0.045%), temperature (20 ∘C), carbonation type (NAC),
cement type (CEM II/B-V), cement strength class (42.5), cement strength
development (R), cement content (75%), and addition type (fly ash). To
evaluate the carbonation depth variation depending on carbonation time,
the comparison is shown inFig. 3. The results show that theXGBoostmodel

Table 1 | Influencing factors of carbonation rate reported in the literature

Ref. Data scale Influence factors Basic conclusions

26 16 groups RH, Cement Type RH has a positive effect at low values and reaches a peak in the range of 60% to 70%. The type of cement significantly

affects carbonation; specifically, the use of silica fume decreases the carbonation depth.

6 9 groups CO2 Elevated CO2 concentrations result in increased consumption of calcium silicate hydrate (C-S-H) and clinker.

31 4 groups Carbonation type Accelerated testing alters the ranking of cement types based on their influence.

32 13 groups CO2, RH A high concentration of CO2 and moderate RH (around 50%) are essential factors for enhancing the degree of

carbonation.

33 14 groups Temperature The rate of carbonation was significantly influenced by temperature, with the optimal carbonation occurring at

approximately 100 °C.

34 16 groups Water/cement ratio Water/cement ratio is the most important influence factor.

35 9 groups Water/cement ratio, time Carbonation depth increases with water/cement ratio and the age of concrete.

Table 2 | Performance of each model

Model Training set_MSE Training set_RMSE Test set_MSE Test set_RMSE

Decision Tree 1.494 × 10−33 3.865 × 10−17 3.589 1.890

Random Forest 0.173 0.416 1.947 1.395

XGBoost 0.005 0.073 1.774 1.332
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significantly outperforms the traditional empirical regression, with theMSE
and RMSE reduced by 99.79% and 95.43%, respectively. This highlights the
practical advantage of our model, as the traditional empirical regression
makes it hard to capture the complex non-linear relationships in the data,
while XGBoost effectively models them. So, in the following sections, the
XGBoost model was selected to perform model interpretation and carbo-
nation depth prediction.

SHAP interpretation and feature analysis
The SHAP analysis of the XGBoostmodel reveals a comprehensive order of
feature importance, as illustrated in Fig. 4a. The results align with the
established understanding that carbonation time is the most significant
factor influencing carbonation depth (contributing 21.8% to the model’s
predictions); longer duration results in deeper carbonation depth25. In
Addition to carbonation time, RHRH26, which accounts for 16.6%, the w/b
ratio8 at 15.3%, and CO2 concentration

6 at 11.9% are identified as the three
most critical factors affecting concrete carbonation, aside from carbonation
time. Figure 4b, a SHAP waterfall summary, provides deeper insights into
the influence of each feature. This visualization shows the both magnitude

and direction of influence factors. For relative humidity, both extremely low
and excessively high levels negatively impact carbonation. When the RH is
too high, the transport of reactants is impeded, thereby slowing down the
carbonation process7. For the w/b ratio, it positively correlates with carbo-
nation, a higher w/b ratio promotes carbonation. This is because an
increased w/b ratio leads to higher porosity and a greater degree of cement
hydration, which in turn enhances the carbonation reaction8. Furthermore,
the figure emphasizes the importance of CO2 concentration in accelerating
the carbonation reaction. A higher CO2 concentration environment will
contribute to the reaction of calciumhydroxide. An important finding from
this research is the significant role of cement type, which is also a key factor
influencing carbonation. This will be explored in detail in the following
sections.

Quantitative analysis
In the quantitative analysis using SHAP values, interactions between features
were observed. Given that the calculation of SHAP values for individual fea-
tures is independent, it was deemed appropriate to aggregate the SHAPvalues
of certain features. Some factors canbeeasily adjusted inpractical applications,
and analyzing these factors enables themodel to assist in experimental design,
thereby reducing the need for extensive experimentation.

Prior to conducting the pair effect analysis, the importance of the top 10
featurepairs, excluding carbonation time,was identified (Fig. 5).Carbonation

Fig. 1 | Model comparison using Taylor’s diagram. The purple triangle represents

the observed values, the red circle represents XGBoost results, the blue asterisk

represents RF results, and the green cross represents DT results.

Fig. 3 | The comparison between traditional empirical regression and XGBoost

model with selected data. The black rectangle represents the real data, the blue

triangle represents the results of XGBoost prediction, the yellow circle represents the

regression results, and the yellow line represents the regression line.

Fig. 2 | The prediction diagram for train and test sets of each model (DT, RF, and XGBoost). The black line represents the baseline, the red line indicates the 20% upper

offset, the yellow line indicates the 20% lower offset, the green circle marks the training set, and the blue circle marks the test set.
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time was excluded as it is widely understood that longer carbonation time
leads to greater carbonation depth. The analysis indicates that the pair con-
sisting of the w/b ratio and RH is themost influential. These two features are
commonly encountered and easily adjustable factors in carbonation control.

As illustrated in Fig. 6a, the combined effects of the w/b ratio and RH
reveal that thehighest SHAPvalue is achievedwith aw/b ratio of 0.58 andan
RH of 80%. Figure 6b depicts the relationship between CO2 concentration
and RH, indicating that a higher CO2 concentration combined with an RH
between 70% and 75% is preferable. Figure 6c presents the relationship
between the w/b ratio and CO2 concentration, demonstrating that both
factors positively influence carbonation, with a w/b ratio of 0.78 and a CO2

concentration of 4.2% achieving the highest carbonation depth. As men-
tioned earlier, cement type is another crucial factor. Its relationshipwithRH
and the w/b ratio is analyzed in Fig. 6d, e. The trends for RH and the w/b
ratio are similar, with cement types 6 and 7, corresponding to CEM II/B-LL
and CEM II/B-M, showing superior carbonation performance.

Case study
After establishing and evaluating the machine-learning model, it was
selected to assist in the experimental design process. To assess the model’s
effectiveness in this context, a case study was conducted to evaluate its
suitability for guiding experimental design.Anewdataset froman academic

study10 was utilized for this purpose. The dataset includes varied features
such as Cement Type (CEM I, CEM III/A, CEM II/B-LL), Cement Strength
Class (52.5, 42.5, 32.5), Cement StrengthDevelopment (N, R), andw/b ratio
(0.65, 0.40). Importantly, this data had not been previously trained by the
model.After inputting the data, the results, as shown inFig. 7, revealed some
discrepancies between experimental and predicted outcomes. For example,
for CEM III/A 42.5 N 0.65, the deviation between the experiment and the
prediction is 29.4%, representing a poor performance of the model. But for
CEM III/A 42.5 N 0.40, the deviation is only 0.8%. This is reasonable, given
that the dataset was unseen by the model, and there may be other unac-
counted features influencing the results. However, the results are still
meaningful, with certain clear trends consistent between experimental and
predicted values. For instance, the earlier analysis indicated that CEM II/B-
LLhas amore significant effect on carbonation,which is also observed in the
case study, where the K value for this cement type is much higher than for
the other two. This demonstrates that themodel is sensitive to cement type,
making it a useful tool for cement selection.Also, themodel ismore accurate
to higher w/b ratios(themean deviation for w/b 0.65 groups is 3.0%), where
the carbonation trends for different cements become more distinct. How-
ever, the model shows less sensitivity to Cement Strength Development,
resulting in lower accuracy for these predictions, as also suggested by the
earlier SHAP analysis.

Fig. 5 | The importance of the combination effects.

Fig. 4 | SHAP interpretation of the XGBoost model. a Feature importance. b SHAP waterfall.
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Another case study is touse thepredictionmodel to generatemoredata
and project the results onto a three-dimensional space to visualize the
combination effects of different factors. Take the influence factors RH and
w/b ratio as an example, the results are shown inFig. 8. Thefindings indicate
that the trend does not strictly follow the general assumption that an
increase in the w/b ratio leads to a decrease in the carbonation coefficient.
The carbonation coefficient increases with the w/b ratio at the RH around
65%–70%.ButwhenRHreachedover 75%, the effect of thew/b ratio canbe
omitted.With such an analysis, the combined effects of other factors can be
obtained.Andby controlling for certain variables, amore accurate trend can
be observed. Based on the above case studies, we can see that machine
learning can assist in cement carbonation design. With limited data, these
methods can provide a preliminary estimate. While for more detailed data,
they can offer a more visually insightful representation.

Discussion
In this study, experimental results from the literature were analyzed using
three different machine-learning models, and the performance of each
model was evaluated. Further interpretation was performed using SHAP
analysis. The XGBoost model was found to outperform both the decision
tree and the random forest models. The main cause was attributed to its
nature as an ensemble model, which combined the predictions of multiple
individual decision trees. Notably, XGBoost employed a boosting technique
where trees were built sequentially, with each subsequent tree attempting to
correct the errors of the previous trees, leading to a model that can capture
complex patterns more effectively.

The model identified carbonation time, relative humidity, w/b ratio,
and CO2 concentration as the most influential factors, collectively
accounting for over 50%of the feature importance.Thenewfindingwas that

Fig. 6 | Combined effect analysis of the top 5 pairs. a w/b ratio-RH, b CO2-RH, c w/b ratio-CO2, d cement type-RH, and e cement type-w/b ratio.

Fig. 7 | Case study results. The blue bar chart

represents the experimental results, and the orange

bar chart represents the prediction results.
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cement typewas also found to significantly affect carbonation, withCEMII/
B-LL and CEM II/B-M exhibiting faster carbonation rates.

The application of machine-learning enabled the analysis of co-effects,
facilitating the identification of optimized experimental conditions. The case
studysuggested that themodel is generally reliable andsensitive tocement type.

However, this work also had some limitations; the model was not that
accurate when applied to unseen datasets. So, the model can be further
improved through hyperparameter optimization or exploring a newmodel.
Also, the dataset usedwas relatively small compared to the scale required for
practical machine-learning applications. To address these, we will enhance
our model and expand the dataset to improve generalizability.

Methods
Data collection and processing
The data was collected from existing databases CarboDB27. It is an open-
access repository specializing in concrete carbonation data. Compared to
the limited scope of experimental results shown in Table 1, this large-scale
dataset allows for a broader andmore generalized analysis. This dataset was
chosen because it is currently the largest available, including a wide range of
experimental results from previous studies. It contained extensive multi-
factor combination relationships. A total of 1619 data entries were gathered.
The dataset includes detailed information on various factors influencing
concrete carbonation, such as cement type, RH, temperature, CO2 con-
centration, w/b ratio, carbonation time, and so on. Prior to the analysis, the
data underwent a series of processing procedures to ensure quality and
consistency. This involved:
• Features selection:Therewere various features of the rawdata, butweonly

focused on a limited type of features: ‘Time/d’, ‘Cement Type’, ‘Cement
Strength Class (the compression strength at a specific age)’, ‘Cement
Strength Development (the rate at which the compressive strength of
cement develops over time)’, ‘Cement Amount/%’, ‘Addition Type’, ‘w/b
ratio’, ‘Carbonation Type’, ‘CO2/%’, ‘RH’, ‘Temperature’, ‘Depth average
[mm]’. These selected features represent a mix of material properties and
environmental factors, ensuring that the analysis captures both the char-
acteristics of cement and the external conditions influencing carbonation.

• Handling missing data: for ‘cement amount/%’, the missing data was
set as 100, assuming that if the cement amount is not mentioned, no
other materials have been added to replace cement. for ‘addition type’,

themissing data was set as ‘n’. for rh and temperature, themissing data
were set as the common values 65 and 20. since these are commonly
used in practice.

• Delete data: Removal of data thatmissing the carbonation depth value.
• Encoding Categorical Variables: Categorical variables, such as cement

type, were encoded, and the mappings were stored. Categorical vari-
ables were encoded into numeric values. It assigned an integer code to
each category.After encodingwas complete, these numeric valueswere
used formachine-learning algorithms.Themappings storedduring the
encoding process can be referenced later.

The processed dataset thus represents a substantial and reliable foun-
dation for the subsequent machine-learning analysis.

Machine-learning modeling and interpretation
In essence, the various methods used to estimate carbonation depth aim to
construct a function f that when provided with a set of factors and their
corresponding values as inputs (e.g., carbonation time, RH), generates an
estimate of the carbonation depth d. Representing the factor values as v1, v2,
⋯ , vn, the function can be expressed as:

d ¼ f ðv1; v2; � � � ; vnÞ: ð1Þ

The carbonation process is influenced by a range of factors, as mentioned
earlier, with carbonation time standing out as particularly significant.28

Traditionally, in accordance with Fick’s first law of diffusion, the carbona-
tion depth is commonly assumed to adhere to the Eq. (2)29.

d ¼ K
ffiffi
t

p
ð2Þ

where d represents the carbonation depth in millimeters, while K signifies
the carbonation coefficient in millimeters per square root of the year. The
parameterK is anticipated to exhibit a nuanced relationship with a series of
factors. To derive a specificK, a regression is performedon the observed d at
given

ffiffi
t

p
. For each set of factor values, an individual regression is necessary

to determine an independent K, resulting in a lookup table as shown in
Table 3, where a carbonation depth can be obtained by looking up the
experimental results, and using them to derive a specific K.

Fig. 8 | Case study RH VS w/b ratio.
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It is crucial to emphasize that in conventionalmethodologies relyingon
Eq. (2), the actual values of the influencing factors are not explicitly utilized
in the regression procedure. The function f acquired through traditional
techniques essentially serves as a lookup function derived from empirical
findings in the table, as opposed to a computationalmodel. The drawback of
this non-computational function is the absence of a modeled multivariate
distributionof the factors.Consequently, predicting the carbonationdepthd
for factor values not in the table requires additional experiments to gather
data for regression. This approach is not only impractical but also costly.

The reason why traditional methods cannot establish a computational
model lies primarily in the fact that the regression techniques require prior
knowledge of the expression of the regression function, which is typically
very challenging, especially when dealing with a large number of factors.
Therefore, approaches similar to Eq. (2) adopt a simple linear assumption to
construct the expression, while avoiding the issue of involving factor values
in the calculations. This was an inevitable choice in the early days when
computational power was limited. Machine-learning methods are ideal for
addressing these challenges.

Let’s define the input as a vectorX ¼ ½v1; v2; � � � ; vn�> and the output
as Y = d. In machine learning, a complex function can be learned (i.e.,
Y = f(X)) without knowing its exact expression, given that input-output
pairs (i.e., (X, Y)) are available. The learning process begins by initializing a
randommodel and using it to compute an estimation f 0ðXÞ. Subsequently,
this result is compared to the expected outputY. A loss is then computed to
gauge how far the estimation deviates from the expected value. In this study,
Mean Square Error (MSE) and Root Mean Square Error (RMSE) will be
utilized to calculate the loss as follows:

MSE ¼ 1

n

Xn

i¼1

yi � byi
� �2 ð3Þ

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n

Xn

i¼1

yi � byi
� �2

s
ð4Þ

where yi is the actual value, ŷi is the predicted value, and n is the number of
observations.

The initial model is adjusted iteratively to minimize this loss. This
iterative process continues until the minimum loss is achieved.

The procedure is generally similar to the regression process, with a
major difference in the fact that the explicit form of f is not necessarily
required. Taking the Decision Tree (DT) methods as an example20, these
methods assume the function is a decision tree (Fig. 9) in which a final
optimal estimation is reached after evaluating the input values in an orderly
manner. The DT algorithm assesses loss and refines the tree’s structure to
optimize both the ranges of factor values and the sequence in which factors
are evaluated, aiming to make decisions that minimize losses. A notable
advantage is that an explicit function f (i.e., structure for the decision tree) is
not necessarily required beforehand; the DT algorithm can autonomously
determine it. Moreover, the utilization of decision trees provides an avenue
to capture non-linear relationships among variables.

Another prevalent option known as Random Forest (RF) is con-
structed based on decision trees21. The concept involves training numerous
decision trees concurrently, consolidating and contrasting their decisions to
arrive at amore holistic decision. The algorithm commences by dividing the
data intomultiple subsets, with each subset used to train a decision tree (Fig.
10). Ultimately, the collective insights of the trees are leveraged to make the
final decision, akin to tapping into the collective wisdom of a crowd.

XGBoost is another widely used technique22. In contrast to Random
Forest, which simultaneously learns decision trees, XGBoost sequentially
trains a series of trees (Fig. 10). The aim is for each new tree to rectify errors
made by its predecessors. This is achieved by assigning a weight to each
dataset, regulating its influence on the learning process. These weights are
adjusted at each iteration: increased if the prediction deviates significantly
from the expected value (indicating a need for more focus in the next itera-
tion) ordecreasedotherwise.Theprogressive integrationofdecision trees in a
sequential manner leads to a continuous enhancement in performance.
XGBoosthas a seriesof outstanding features that enable itshigh-performance
behavior. It can handle complex relationships through the use of decision
trees. XGBoost addresses the overfitting issue through regularization (L1 and
L2), which penalizes overly complex trees. As for the predictive performance,
XGBoost’s sequential tree-buildingprocess, regularization, and iterative error
correction improve its performance. For all models, default hyperparameters
were applied. However, we did attempt to optimize the hyperparameters of
theXGBoostmodel, and the results showedan improvement inperformance.
Sincehyperparameter optimizationwasnot the focusof this study,weplan to
explore it further in future research.

Traditional ways of interpreting the effects of a single-factor typically
rely on linear regression model26. While it offers an understanding of
individual effects, it has the limitation of capturing the interactions between
multiple factors. Also, the traditional single-factor regression struggles to
give an insight into howdifferent factors contribute to a particular outcome.
To solve such a limitation of the traditional interpretation method, we
adopted SHAP analysis30 for a more comprehensive interpretation of our

Table 3 | Traditional lookup table

v1 v2 ... vn d

(Carbonation
time/d)

(RH/%) ... (Cement
Type)

(Carbonation
depth/mm)

56 65 ... CEM I 2.0

... ... ... ... ...

280 70 ... CEM III/B 7.3

Fig. 9 |Mechanism ofDTmodel, there is an initial tree and the data are input and

go through each branch, the prediction carbonation depth Y’ will initially be

obtained. By comparing the loss between the real combination depth Y and Y', the

decision tree will be further updated, e.g., by increasing the branches as indicated in

the red frame. Finally, a final tree is supposed to get an acceptable prediction value.
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machine-learning models. SHAP is an approach that assigns each factor a
value to identify its contribution to the final prediction. This interpretation
method allows us to analyze the effect of multiple factors in a visible way. In
combination with machine-learning models in this study, a comprehensive
framework for addressing the limitations of traditional empiricalmethods is
pointed out. It enables us to include all relevant factors in the analysis.

Overall, the workflow for studying the carbonation behavior by
machine learning is shown in Fig. 11. The process begins with a data split,
80% of the data is set as training set, the rest as test set. The data is then used
to train three machine-learning models, as mentioned before. The loss is
thencalculated to evaluate the accuracy of prediction and the generalization.
Besides the prediction performance, SHAP is employed to interpret the
feature importance. After that, the interpretation will be adopted to help a
quantitative analysis. Finally, case studies are given to indicatehow thiswork
helps material design.

Data availability
The dataset used in this study can be accessed from CarboDB at https://
carbodb.bgu.tum.de/#/.

Code availability
Code will be provided upon request.
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