

This is a repository copy of Dementia in a resource-constrained sub-Saharan African setting: a comprehensive retrospective analysis of prevalence, risk factors, and management at the only neuropsychiatric facility in Northeastern Nigeria.

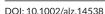
White Rose Research Online URL for this paper: https://eprints.whiterose.ac.uk/225859/

Version: Published Version

Article:

Wakawa, I.A., Musami, U.B., Kwairanga, S.H. et al. (21 more authors) (2025) Dementia in a resource-constrained sub-Saharan African setting: a comprehensive retrospective analysis of prevalence, risk factors, and management at the only neuropsychiatric facility in Northeastern Nigeria. Alzheimer's & Dementia, 21 (3). e14538. ISSN 1552-5260

https://doi.org/10.1002/alz.14538


Reuse

This article is distributed under the terms of the Creative Commons Attribution (CC BY) licence. This licence allows you to distribute, remix, tweak, and build upon the work, even commercially, as long as you credit the authors for the original work. More information and the full terms of the licence here: https://creativecommons.org/licenses/

Takedown

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

RESEARCH ARTICLE

Check for updates

Dementia in a resource-constrained sub-Saharan African setting: A comprehensive retrospective analysis of prevalence. risk factors, and management at the only neuropsychiatric facility in Northeastern Nigeria

Ibrahim Abdu Wakawa ^{1,2} Umar Baba Musami ^{1,2} Suleiman Hamidu Kwairanga ^{3,4}
Placidus Nwankuba Ogualili ^{1,5} Mohammed Yusuf Mahmood ¹
Zaharadeen Umar Abbas ¹ Muhammad Kawu Sunkani ¹ Zainab Bukar Yaganami ¹
Fatima Mustapha Kadau ¹ Nasir Muhammad Sani ¹ Peter Danmallam ¹
Luka Nanjul 1 Larema Babazau 4,7 Zaid Muhammad 2,4,8 Baba Waru Goni 4,9,10
Babagana Kundi Machina ^{11,12} Celeste M. Karch ¹³ Chinedu Udeh-Momoh ^{14,15,16,17}
Thomas K. Karikari ^{18,19} Chiadi U. Onyike ²⁰ Mahmoud Bukar Maina ^{4,21}

¹Department of Medical Services, Federal Neuropsychiatric Hospital, Maiduguri, Borno, Nigeria

Chiadi U. Onyike and Mahmoud Bukar Maina contributed equally to this work.

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

© 2025 The Author(s). Alzheimer's & Dementia published by Wiley Periodicals LLC on behalf of Alzheimer's Association.

²Department of Mental Health, College of Medical Sciences, University of Maiduguri, Maiduguri, Borno, Nigeria

³Department of Human Anatomy, Faculty of Basic and Allied Medical Sciences, College of Medical Science, Gombe State University, Tudun Wada, Gombe, Nigeria

⁴Biomedical Science Research and Training Centre Damaturu, Damaturu, Yobe, Nigeria

⁵Geriatric Unit, Department of Medical Services, Federal Neuropsychiatric Hospital, Maiduguri, Borno, Nigeria

⁶Department of Health Information, Federal Neuropsychiatric Hospital, Maiduguri, Borno, Nigeria

⁷Department of Medical Laboratory Services, Yobe State University Teaching Hospital, Damaturu, Nigeria

⁸Department of Human Physiology, College of Medical Sciences, Yobe State University, Damaturu, Damaturu, Yobe, Nigeria

⁹Department of Medicine, Yobe State University Teaching Hospital, Damaturu, Nigeria

¹⁰Department of Medicine University of Maiduguri, University of Maiduguri Teaching Hospital, Maiduguri, Borno, Nigeria

¹¹Department of Psychiatry, Yobe State Specialist Hospital, Damaturu, Yobe, Nigeria

¹²Department of Psychiatry, Yobe State University Teaching Hospital, Damaturu, Nigeria

¹³Department of Psychiatry, Washington University School of Medicine, St. Louis, Missouri, USA

¹⁴Division of Clinical Geriatrics, Center for Alzheimer Research, Karolinska Institute, Stockholm, Sweden

 $^{^{15}}$ Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield, UK

¹⁶ School of Public Health Sciences, Wake Forest University School of Medicine, North Carolina, USA

 $^{^{}m 17}$ Brain and Mind Institute, Aga Khan University, Nairobi, Kenya

¹⁸Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, University of Gothenburg, Gothenburg, Sweden

¹⁹Department of Psychiatry, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA

 $^{^{20}}$ Department of Psychiatry and Behavioural Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA

²¹Sussex Neuroscience, School of Life Sciences, University of Sussex, Brighton, UK

Correspondence

Mahmoud Bukar Maina, Biomedical Science Research and Training Centre Damaturu, 620242, Gujba Road Damaturu, Yobe State, Nigeria.

Email: mahmoud.maina@biortc.com

Funding information

Rainwater Charitable Foundation; Alzheimer's Association, Grant/Award Number: SAGA23-1141999; University of Sussex (HEIF seed funding 23/24); The UKRI Medical Research Council, Grant/Award Number: MR/Y019822/1; The Wellcome Leap Dynamic resilience program; National Institute of Health (NIH), Grant/Award Number: RO1-AG074562; Office for Veterans' Affairs UK Defense and Security Accelerator (DASA) Fund, Grant/Award Number: G2-SCH-2022-11-12245; Global Brain Health Institute, Grant/Award Number: UFRA-424

Abstract

INTRODUCTION: Dementia prevalence is increasing in sub-Saharan Africa, potentially due to population growth and aging. Resource-constrained settings such as Northeastern Nigeria face challenges in dementia management.

METHODS: We assessed dementia burden and management at the Federal Neuropsychiatric Hospital Maiduguri, the only neuropsychiatric facility in Northeastern Nigeria. This retrospective analysis included patient records from 1999 to 2023 for individuals 60 year of age and older with a dementia diagnosis.

RESULTS: Of the 1216 cases reported, Alzheimer's disease (60.5%) was the most common subtype, followed by vascular dementia (24.5%). Hypertension (41.6%) was the most frequent comorbidity. Memory loss was present in all cases, whereas behavioral symptoms like agitation presented in some cases. Treatments included cognitive enhancers (donepezil), supplements (gingko biloba), and non-drug therapies (psychoeducation).

DISCUSSION: The increasing burden of dementia at this sole facility highlights the urgent need for targeted interventions and further research to understand the underlying factors contributing to dementia in this population.

KEYWORDS

Alzheimer's disease, dementia, dementia management, Northeastern Nigeria, resource-constrained settings, sub-Saharan Africa, vascular dementia

Highlights

- Dementia trends and management in a neuropsychiatric facility serving over 26 million people in Northeastern Nigeria.
- Alzheimer's disease accounted for 60.5% of the dementia cases reported, with hypertension as the leading comorbidity.
- There is an urgent need for improved diagnostic tools and health care infrastructure to address dementia in resource-constrained settings.
- The findings lay the foundation for developing a dementia cohort as part of the Northern Nigeria Dementia Research Group.

1 | BACKGROUND

Sub-Saharan Africa is one of the regions most affected by the increase in the population of older adults 60 years of age and above. $^{1-3}$ From $\approx\!24$ million in 1980 to 74 million by 2020, the total number of older Africans is projected to triple between 2020 and 2050. Nigeria, the most populous country in Africa, has the highest number of older adults and is nineteenth worldwide. The consequences in terms of increased occurrence of both preclinical and symptomatic dementia are grave.

Dementia is typically characterized by impairment in multiple domains such as memory loss, executive dysfunction, impairments in basic and instrumental activities of daily living (IADLs), as well as behavioural and psychological symptoms of dementia (BPSD).^{5–9} In addition, psychiatric comorbidities and other medical disorders are

common. 10 The impact is felt not only by the patient but also by the primary caregivers and clinicians. 11

The burden of dementia is disproportionately higher in low- and middle-income countries (LIMCs), particularly in sub-Saharan Africa. Late presentation and diagnosis, limited access to specialist care, inadequate health care infrastructure and resources, and a lack of culturally appropriate interventions represent unique challenges in the management of dementia in these settings. 12,13

In sub-Saharan Africa, there is generally a lack of peer-reviewed information on clinical dementia due to challenges in diagnosis. Biomarkers are often unavailable, and neuroimaging techniques are rarely used. Even in cases where neuroimaging is accessible, it is limited to structural imaging, such as magnetic resonance imaging (MRI). At the same time, more advanced modalities like positron emission tomography (PET) scanners are mostly unavailable.

Two seminal studies conducted on dementia in Nigeria were the Indianapolis-Ibadan Dementia Research Project and the Ibadan Study of Aging, which were carried out over three and two decades ago, respectively, in southwestern Nigeria. 14-16 Both were community studies that assessed the prevalence and risk factors of dementia in elderly adults. The outcomes of both studies revealed some degrees of variation when compared to findings from Western countries, particularly those from Europe and North America. Although environmental factors might influence these differences, genetic factors, such as variations in the apolipoprotein E (APOE) gene and haplotype, likely play a significant role. 17-19 In addition, other hospital-based studies have described dementia patterns in Nigeria using clinical diagnostic criteria and validated bedside instruments for cognitive assessment, such as the Mini-Mental State Examination (MMSE) and the Montreal Cognitive Assessment (MoCA).^{20–23} The diagnosis of other comorbidities is often clinical and depends on the examining clinician. There is a high tendency that psychiatric comorbidities are likely to be underdiagnosed or not detected completely. Furthermore, the lack of diagnostic biomarkers and neuroimaging techniques limits the validity of the diagnosis made. In northern Nigeria, a community-based study used the International Classification of Diseases, 10th Revision (ICD-10), and the Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition (DSM-IV), to diagnose dementia. The study reported a dementia prevalence of 2.79%, with a 95% confidence interval (CI) of 1% to 4.58%.²⁴

This study retrospectively examined the clinical management of dementia in a resource-constrained, sub-Saharan African neuropsychiatric hospital, the largest tertiary care facility serving the over 26 million people of Northeastern Nigeria.²⁵⁻²⁷ We sought to provide comprehensive insights into the approaches taken in the environment and identify potential areas for improvement in health care delivery. The study aimed to analyze the trends in clinical dementia cases among elderly Nigerians (60 years of age and above) who presented at the Federal Neuropsychiatric Hospital Maiduguri from all states of Nigeria since its inception. In addition, to understand clinical patterns according to the various counties in the home state of Borno where the hospital is located, we determined the number of reported cases by local government area, adjusted for population. We also identified the subtypes of dementia diagnoses in the last 5 years, assessed the prevalence of psychiatric comorbidities, reviewed routine laboratory investigations and reported symptoms, and evaluated the medications used for dementia management in order to enhance the understanding of dementia care and highlight the challenges and opportunities for improving dementia management in our region and in sub-Saharan Africa.

2 | METHODS

2.1 | Study location

This study was carried out at the Psychogeriatric Unit of the Federal Neuropsychiatric Hospital, Maiduguri (FNPHM), Nigeria, a specialized

RESEARCH IN CONTEXT

- Systematic review: Previous studies, including the Indianapolis-Ibadan Dementia Project and the Ibadan Study of Aging, have offered valuable insights into dementia in Southwestern Nigeria. However, there is a notable gap in research from Northern Nigeria—the country's most populous region.
- 2. Interpretation: Our study, based on data from the only neuropsychiatric hospital in Northeastern Nigeria, representing over 26 million people, documented 1216 dementia cases in individuals 60 years of age and older. Alzheimer's disease (60.5%) and vascular dementia (24.5%) were the most common subtypes, with a high prevalence of comorbid hypertension, aligning with global patterns.
- 3. Future directions: To advance dementia research in this underrepresented population, it is essential to explore the genetic, environmental, and lifestyle factors specific to this region and their role in dementia biology. We have established the Northern Nigeria Dementia Research Group to help build a dementia cohort to further our understanding of the disease and enhance regional and global dementia research.

institution established in 1999 to serve as the primary neuropsychiatric referral center for the six states within Nigeria's North-East geopolitical zone. These states have a combined population exceeding 22 million, based on the estimation from the most recent national census.^{25,26}

2.2 | Study participants

The study population comprised elderly patients 60 years of age and above who had been managed within the Psychogeriatric Unit of the Federal Neuro-Psychiatric Hospital (FNPHM), Nigeria since its inception in 1999. The study participants had a diagnosis of dementia by the World Health Organization's (WHO) Tenth Revision of the International Classification of Desease (ICD-10) code number F01-F99.

2.3 | Study procedure

This was a retrospective observational analysis of data abstracted from the hospital's electronic medical record (EMR) system, which provided detailed patient histories, including demographic information, dementia type, MMSE scores, BPSD, comorbidities, and results from baseline laboratory investigations. The diagnoses of dementia and its subtypes

were based on the ICD-10 and DSM-5 criteria, ascertained by a consultant neuropsychiatrist, and independently confirmed by another. The MMSE was used as a quantitative tool to assess cognitive function and support clinical diagnoses. Paper records (case notes) were reviewed manually to ensure the completeness and accuracy of the collected data and to collect data in instances where EMR data were incomplete or unavailable. However, some cases could not be used due to the inability to trace records data, ineligibility (such as missing critical content), or cases where the diagnosis was not confirmed by a consultant or was not based on ICD criteria. A data abstraction template was designed and built into a data entry application using Kobo toolbox to streamline the data entry process. This tool was formatted to contain all the necessary sociodemographic and clinical information. A training program was organized for those involved in data entry to ensure uniformity, reliability, and standards. This enabled the study doctors to mine the data from the case notes of the patients and enter them directly into the database. The data extraction was conducted between August 1 and 20, in 2024. Once the data entry was completed, the data set was exported as a Comma Separated Values (CSV) file for analysis.

2.4 Data analysis

Descriptive statistics are reported. Data analysis for this study was conducted using Anaconda Navigator and Jupyter Notebook for Python 3.10. Pandas and geopandas were used for data processing and descriptive statistics. Matplotlib and Seaborn's packages were used to plot the stack histograms, geoplots for the choropleth map, and UpSet plot to explore the intersections of symptoms, comorbidities, diagnostic data, and treatments, and the Upset data were used to describe correlations.

2.5 | Ethical considerations

The study was conducted in full compliance with ethical standards. Ethical approval was obtained from the National Human Research Ethical Review Committee through the institutional review board of the FNPHM. The study adhered to strict confidentiality protocols, ensuring all patient information was anonymized and securely handled.

3 | RESULTS

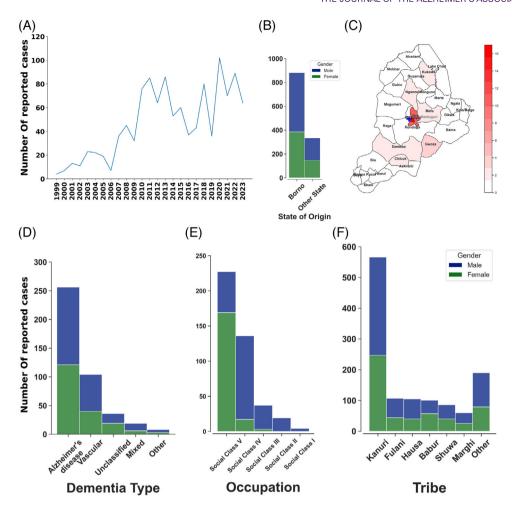
3.1 | Distribution of dementia cases, trends, and socio-demographic characteristics of patients at FNPHM

Since the inception of FNPHM, a total of 1216 dementia cases have been reported in patients 60 years of age and older. Among these, 655 (56%) were male with a mean age \pm SD of 71.4 \pm 9.7 years, and 509 (43.7%) were female with a mean age \pm SD of 72.7 \pm 8.3 years. In the last 5 years (January 2019 to December 2023) 423 cases were

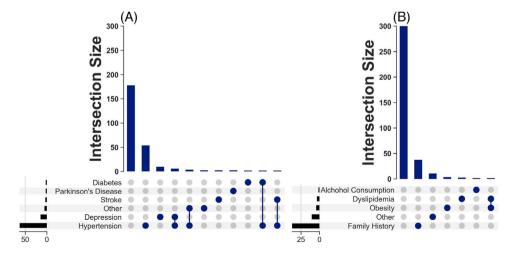
recorded, with a mean age of 71.9. Of these recent cases, 234 (55.3%) were male with a mean age of 71.6 years, whereas 189 (44.7%) were female with a mean age of 72.2 years. As shown in Figure 1A, there has been an upward trend in reported dementia cases over time.

By state of origin, 857 patients (\approx 70%) were from Borno State, making it the most represented state (Figure 1B). Yobe State followed with 130 cases (11.2%), Adamawa State with 49 cases (4.2%), and Bauchi State with 20 cases (1.6%). Jigawa and Sokoto States reported 19 cases (1.6%) and 12 cases (1.0%), respectively. No other state had more than 10 cases. For patients from Borno State, analysis by local government areas (LGAs) (Figure 1C) showed that Maiduguri and Jere LGAs, both urban areas, had the highest number of cases, with 17 cases per 100,000 population in Maiduguri and 10 cases per 100,000 in Jere. No other LGA reported more than two cases per 100,000 population.

Over the last 5 years, Alzheimer's disease (AD) was the most frequently reported form of dementia, accounting for 60.5% of cases (Figure 1D). Vascular dementia followed at 24.5% and mixed dementia at 4.5%. A small proportion of cases were unclassified. Other forms of dementia, including dementia due to head injury, depressive pseudodementia, and frontotemporal dementia, were very uncommon.


The social class distribution of patients over the last 5 years (Figure 1E) showed that the majority, 53.7%, belonged to social class V, consisting of unemployed individuals. This was followed by social class IV, with 32.2%, including unskilled workers such as petty traders, subsistence farmers, and messengers. Social class III, comprising low-skilled workers such as junior clerks, drivers, mechanics, and junior military and police personnel, accounted for 8.7% of cases. Social class II, representing intermediate-skilled professionals like technicians and nurses, has fewer cases (4.5%). Cases were rare in social class I, consisting of highly skilled professionals such as doctors, lawyers, and business executives.

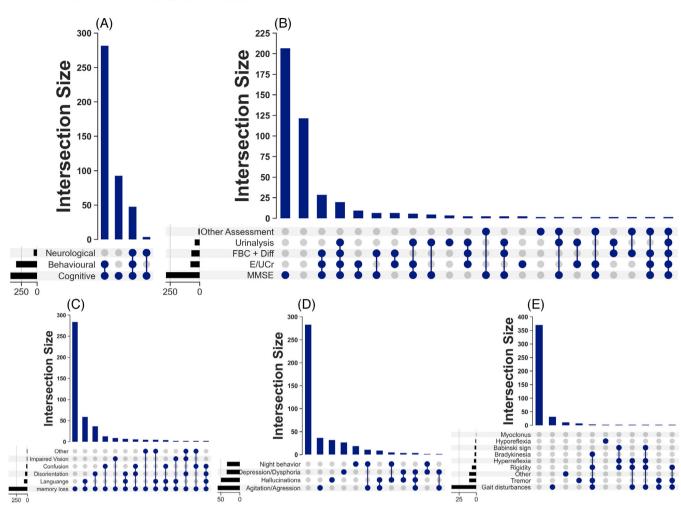
Most dementia cases were reported among the Kanuri tribe (Figure 1F), 46.5% of the total. The Fulani tribe followed with 8.8%, the Hausa and Babur with 8.6% and 8.3%, respectively, the Shuwa tribe with 7.1%, and the Marghi with 4.9%. Other tribes collectively accounted for 15.7% of cases.


3.2 | Reported comorbidities and risk factors in dementia patients attending FNPHM (2019–2023)

Hypertension was the most common comorbidity (Figure 2A), occurring in 41.6% of cases. The frequency of depression was 5.4%, that of stroke was 2.8%, and for diabetes, 0.7%. Parkinson's disease was observed in 0.9% of cases. Notably, 51.8% of cases had no comorbidity. Correlation analyses showed that 36.2% had hypertension and no other comorbid conditions. Hypertension combined with depression was observed in 2.4% of cases. Among the predisposing factors in patients with dementia (Figure 2B), family history was the most prevalent, reported in 8.7% of cases. Other predisposing factors were infrequent.

We analyzed comorbidities and risk factors in patients with AD, the most prevalent dementia subtype in our data set, and found that

Dementia case distribution and trends at Federal Neuropsychiatry Hospital, Maiduguri (FNPHM). (A) The trend of dementia cases at the Psychogeriatric Unit of FNPHM from 1999 to 2023. (B) Distribution of patients by state of origin and gender. (C) Choropleth map of Borno State showing the number of reported dementia cases per 100,000 population among patients from Borno State. (D) Distribution of dementia types at the hospital over the last 5 years. (E) Social class distribution of patients over the last 5 years. (F) Tribal distribution of patients since the inception of the hospital.



Reported comorbidities and risk factors in patients with dementia attending Federal Neuropsychiatric Hospital, Maiduguri (2019-2023). (A) Comorbidities. (B) Predisposing risk factors.

15525279, 2025, 3, Downloaded from https://alz-j

com/doi/10.1002/alz.14538 by UNIVERSITY OF SHEFFIELD, Wiley Online Library on [29/04/2025]. See the Terms

on Wiley Online Library for rules of use; OA articles are governed by the applicable Creative Commons License

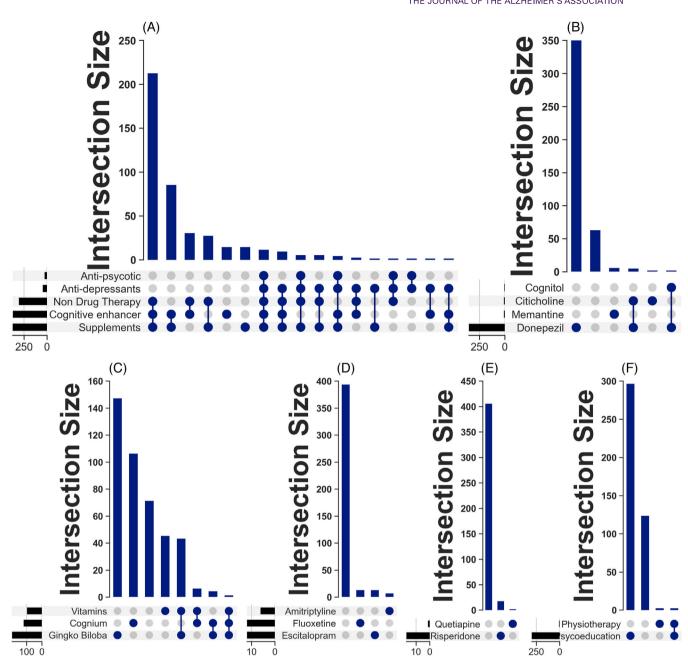
Reported symptoms and investigations conducted in dementia patients attending Federal Neuropsychiatric Hospital, Maiduguri (2019-2023). (A) Combination of reported symptoms. (B) Combination of investigations conducted. (C) Combination of reported cognitive symptoms. (D) Combination of reported behavioral symptoms. (E) Combination of reported neurological symptoms.

the proportions of hypertension, depression, stroke, and family history closely matched those in the overall dementia population. This similarity suggests no significant differences in comorbidity and risk factor profiles of the AD patients compared to our overall dementia population. Based on these findings, we focused on analyzing dementia management holistically rather than conducting separate analyses for AD patients.

3.3 Reported symptoms and investigations conducted in dementia patients attending FNPHM (2019 - 2023)

Among the reported symptoms (Figure 3A), cognitive symptoms were the most prevalent, occurring in all cases. Behavioral symptoms were reported in 77.5% and neurological symptoms in 11.8%. Cognitive and behavioral symptoms were noted in 66.4% of the cases. A smaller proportion, 21.8%, had only cognitive symptoms. The combination of cognitive, behavioral, and neurological symptoms was observed in 11.1%, whereas cognitive and neurological symptoms were present in 0.7%.

Memory loss was observed in all the cases (Figure 3C). Language difficulties were reported in 17.3%, disorientation in 11.6%, confusion in 5.2%, and impaired vision in 2.4% of cases. In terms of cognitive symptom combinations, 66.9% had memory impairment alone. Memory loss combined with language difficulties was observed in 13.7%, and memory loss combined with disorientation in 8.5%. The combination of memory loss and confusion was noted in 2.8%.


Of the reported behavioral symptoms (Figure 3D), agitation/ aggression was the most commonly reported, occurring in 13.7%. Hallucinations were observed in 11.6%, followed by depression/dysphoria in 8.0% and night behavior disturbances in 7.8%. Notably, the majority, 66.7%, reported no behavioral symptoms. Regarding combinations of behavioral symptoms, agitation/aggression and night behavior disturbances were reported together in 2.4% of cases.

Of the reported neurological symptoms (Figure 3E), gait disturbances were the most frequently reported, observed in 8.5% of cases. Tremor was observed in 2.4%. Other neurological symptoms were far less common.

The MMSE was performed in 67.4% of cases (Figure 3B). Other routine investigations included electrolytes, urea, and creatinine assays,

5525279, 2025, 3, Downloa

doi/10.1002/alz.14538 by UNIVERSITY OF SHEFFIELD, Wiley Online Library on [29/04/2025]. See the Term

Recorded treatments given to patients with dementia attending Federal Neuropsychiatric Hospital, Maiduguri (2019–2023). (A) Combination of treatment options. (B) Cognitive enhancers administered. (C) Supplements administered. (D) Antidepressants administered. (E) Antipsychotics administered.

performed in 17.7%, and complete blood count with differential in 15.8%, and urinalysis in 9.2%. Other tests were less frequently performed.

3.4 Recorded treatments given to dementia patients attending FNPHM (2019-2023)

Supplements were the most frequently administered of the recorded treatments (Figure 4A), given in 88.4% of cases. Cognitive enhancers were used in 87.2% of cases, whereas non-drug therapy was employed in 71.4%. Antidepressants were prescribed in 9.7% of cases, and antipsychotics in 5.2%. Regarding treatment combinations, nondrug therapy combined with cognitive enhancers and supplements was administered in 50.1% of cases. The combination of cognitive enhancers and supplements alone was observed in 20.1%. Non-drug therapy and cognitive enhancers together were used in 7.1%, whereas the combination of cognitive enhancers, supplements, and antidepressants was given in 0.9%.

Among the cognitive enhancers, donepezil was the most frequently administered cognitive enhancer (Figure 4B), given in 82.7% of cases. Memantine was rarely prescribed (1.2%), as was citicoline (1 case, 0.2%). The combination of donepezil and citicoline was prescribed infrequently (0.9%), and that of donepezil and vinpocetine in 1 case (0.2%). Notably, 14.7% of cases received no cognitive enhancers. Among the supplements administered (Figure 4C), gingko biloba was the most commonly used in 52.1% of cases. Silk protein hydrolysate (marketed as Cognium) was administered in 31.3% of cases, and vitamins were given in 25.4%. Combinations of supplements were given in 11.5% of cases, whereas 19.0% did not receive any supplements.

Escitalopram and fluoxetine were the most commonly prescribed antidepressants, each in 29.3% of cases (Figure 4D). Amitriptyline was prescribed in 14.6% of cases. The remaining patients did not receive any antidepressants. Risperidone was the most administered antipsychotic in 77.3% of cases. Quetiapine was used in just one case (4.5%). The remaining patients did not receive any antipsychotic medications.

Of the non-drug therapies (Figure 4F), psychoeducation was the most frequently utilized intervention, reported in 80.1%. Physiotherapy was used in two cases (1.7%), whereas the combination of psychoeducation and physiotherapy was recorded in two cases (1.7%). In addition, 16.5% did not receive any non-drug therapy.

A significant proportion of cases were lost to follow-up, with 70.9% of the cases not returning for further evaluation or treatment. In contrast, 123 patients (29.1%) were confirmed to be alive at the time of the last follow-up.

4 | DISCUSSION

The upward trend in dementia observed here aligns with global patterns where aging populations and improved diagnostic capabilities have increased case reporting.²⁸ The dips in case reporting may be linked to WHO's Mental Health Gap Action Programme (mhGAP).²⁹ During WHO-provided free treatment years, more patients likely sought care at FNPHM. Fewer patients likely visited when these interventions were unavailable. This highlights the influence of external factors on health care utilization and reporting trends.

Male dominance here contrasts with the global trend of higher female prevalence, particularly in AD.³⁰ Similar female dominance has been reported in studies from Uganda, South Africa, and Lagos, Nigeria.^{31–33} However, male-dominant trends have also been observed in other parts of sub-Saharan Africa,^{34,35} potentially due to cultural factors, and disparities in health care access between genders.^{34,35} The significant representation of patients from Borno State may be attributed to FNPHM's status as a major health care provider in the region.³⁶

The predominance of AD reflects local and global patterns, with AD as the most common dementia subtype. ^{24,30–34,37} However, the findings contrast with a hospital-based study conducted in Ibadan, Nigeria, between 1984 and 1989, which reported vascular dementia as the predominant subtype. ³⁸ Although this study had a small sample size, ³⁸ the results highlight the high frequency of vascular dementia in Nigeria, which was also the second most common in our data set. This substantial proportion of vascular dementia cases may be linked to the

high prevalence of hypertension in Nigeria. Similar findings have been reported across Africa.³⁹

Across social classes, the dominance of Social Class V (unemployed), highlights the role that socioeconomic factors play in dementia risk. Lower socioeconomic status has been linked to a higher risk of developing dementia. $^{34,39-41}$

The higher prevalence of dementia among the Kanuri tribe (46.5%) compared to other tribes may be due to their predominant representation in the population of Borno State. Although the literature on tribal variations in dementia prevalence is limited, these findings suggest the need for more research to better understand these differences.

The dominance of hypertension as the most common risk factor aligns with previous studies. ^{42,43} Hypertension contributes to cerebrovascular damage, which can lead to cognitive decline and dementia. ^{42,43} The high prevalence of hypertension in this study likely reflects broader regional, national, and continental trends, where hypertension is a common and often undiagnosed or poorly managed health issue—which exacerbates its impact on cognitive health. ⁴⁴

The relatively lower occurrence of depression, stroke, and diabetes may reflect either underdiagnosis or a genuinely lower prevalence of these conditions. Depression, for instance, is a well-known risk factor and comorbidity in dementia, and it can mimic cognitive decline. ⁴⁵ The low reporting rate could suggest challenges in recognizing and diagnosing depression in patients with dementia, a concern highlighted in studies from other resource-constrained settings. ⁴⁶ Similarly, the small number of cases involving stroke and diabetes—both recognized risk factors for dementia—may point to limitations in screening or reporting practices, which is often an issue in low-resource environments. ^{47,48}

The low report on comorbidities raises concerns about the completeness of medical records and/or the thoroughness of patient evaluations. It is possible that some comorbidities were not identified due to limitations in diagnostic capabilities or the prioritization of dementia management over the identification of other conditions. Another contributing factor could be the overwhelming patient volume at the hospital or across the country, which may restrict doctors' ability to conduct thorough assessments. In Nigeria, where the doctor-to-patient ratio is critically low, health care professionals are often overburdened with large caseloads.⁴⁹ There is currently about 1 neurologist per 2 million people in Nigeria.⁵⁰

The prominence of family history as a risk factor for AD has long been established in other populations. However, the overall low reporting of other predisposing factors can be attributed to a lack of detailed medical histories or challenges in collecting accurate data. This is typical of studies in low-resource settings, where these factors are often underexplored due to limited patient interaction, or cultural sensitivities.⁵¹

The reporting of memory loss in all cases is consistent with findings globally highlighting memory loss as the most prominent early symptom of dementia. 52-57 The presence of language difficulties, disorientation, and confusion in a smaller proportion of cases aligns with global observations. For example, language difficulties are often associated with more advanced stages of dementia. 58.59

The high prevalence of behavioral symptoms is also consistent with the literature on dementia. The BPSD, including agitation, aggression, and hallucinations, are well documented and often challenging to manage. $^{60-62}$ Other studies demonstrate that these symptoms not only cause significant distress to patients and caregivers but are also predictors of institutionalization. $^{6.63,64}$ The fact that a significant portion of patients reported agitation/aggression and hallucinations is typical of the BPSD.

The lower prevalence of neurological symptoms is in line with other studies where these symptoms are typically less common in the early stages of dementia but may become more pronounced as the disease progresses. These are often indicative of more extensive neurodegeneration or advanced disease in conditions like Parkinson's disease dementia.⁶⁵

The observed combinations of symptoms align with the previous studies, which emphasize the fact that patients often present with symptoms that span cognitive, behavioral, and neurological domains, further complicating diagnosis and management.⁶⁶⁻⁶⁸

The lack of detailed data on investigations conducted at FNPHM reflects the resource constraints typical of many sub-Saharan African health care settings.³⁹ The limited access to advanced diagnostic tools like neuroimaging and biomarker assays can lead to a reliance on clinical symptoms for diagnosis, potentially contributing to underdiagnosis or misdiagnosis of dementia subtypes. This might also explain the lower reporting of certain symptoms, which may require more sophisticated clinical approaches to be accurately identified.^{39,69}

The frequent administration of cognitive enhancers and supplements at FNPHM reflects global trends in dementia care, where these interventions are commonly used to manage symptoms and improve quality of life. ^{34,35,70} The predominant use of donepezil among cognitive enhancers aligns with its established efficacy in improving cognitive function in AD. ^{35,71} The limited use of memantine, despite its recognized benefits in moderate to severe AD, is due to resource constraints at FNPHM, particularly its cost and limited availability in a low-resource setting. When available, its use may be restricted to cases where a patient's diagnosis specifically warrants it. Studies show that ginkgo biloba is often utilized for its neuroprotective properties, which can support cognitive function in patients with dementia, ⁷² supporting their extensive use at FNPHM.

The conservative use of antidepressants and antipsychotics in this study aligns with the caution recommended in the literature regarding their use in the management of BPSD. Antidepressants such as escitalopram and fluoxetine are prescribed to manage depressive symptoms, which are common in dementia, but their benefits must be carefully weighed against potential adverse effects, particularly in older adult patients.⁷³ This approach is consistent with findings that highlight the need for careful consideration of the risks and benefits of psychotropic medications in dementia care.

The limited use of antipsychotics, with risperidone being the most administered, reflects best practices that advise minimizing the use of these drugs due to their association with increased mortality and cardiovascular adverse events in patients with dementia.^{73,74} Current guidelines emphasize non-drug approaches as the first line of

treatment for BPSD, reserving antipsychotics for severe cases where other interventions have failed. The high prevalence of non-drug therapies, particularly psychoeducation, supports the recommendations in the literature, which highlight the importance of non-pharmacological interventions. Several studies have highlighted the role of such therapies in managing BPSD, which are often inadequately addressed by medication alone. 67,75 The reliance on psychoeducation at FNPHM reflects an understanding of the value of patient and caregiver education in managing dementia, particularly in settings where access to advanced pharmacological treatments may be limited.

The combination of non-drug therapy, cognitive enhancers, and supplements in more than half of the cases at FNPHM aligns with an approach to dementia care that integrates multiple modalities to address the complex needs of patients. For example, some studies have emphasized the potential synergistic effects of combining different synthetic and natural compound classes to enhance therapeutic efficacy.⁷⁶

The significant loss to follow-up among patients with dementia reflects cultural attitudes, where many Nigerians seek medical care only when symptomatic and often discontinue follow-up once they feel better. In addition, incomplete reporting of deaths confounds the tracking of patient outcomes. These factors, common in LMICs, hinder the ability to assess the effectiveness of treatments. The resource constraints in Borno State worsened by the Boko Haram conflict have severely impacted clinical care in the region. Limited health care infrastructure, medical supplies, and reduced access to specialized services lead to delayed diagnosis and poor follow-up, thereby hindering comprehensive dementia care in the region.

Overall, our study provides valuable insights into dementia trends and management in a resource-constrained setting, despite inherent limitations, including reliance on retrospective clinical records, limited diagnostic tools, and patient loss to follow-up. Further research is essential to overcome these challenges and improve dementia diagnosis, care, and long-term outcomes in underserved regions.

4.1 | Recommendations

To improve dementia diagnosis and care in resource-constrained settings, we recommend equipping health care facilities with advanced diagnostic tools, including biomarker and imaging analysis equipment, and establishing well-characterized cohorts to define biomarker reference parameters and better understand disease progression. Educating patients and caregivers on continuous care, supported by reminders, home visits, or telehealth, is essential to ensure regular follow-up. Strengthening communication between facilities and families for accurate documentation and implementing community-based interventions to address cultural attitudes and reduce dementia stigma are equally critical. Partnering with local leaders can foster a proactive approach to care. Allocating resources to train health care providers in non-drug therapies and comorbidity management will enhance care quality. Finally, prioritizing research on treatment effectiveness in

low-resource settings and improving data collection methods will better track outcomes, efficacy, and mortality rates.

AUTHOR CONTRIBUTIONS

The study was conceived, organized and supervised by Mahmoud Bukar Maina, Ibrahim Abdu Wakawa, and Chiadi U. Onyike. Data curation was done by Umar Baba Musami, Suleiman Hamidu Kwairanga. Placidus Nwankuba Ogualili, Mohammed Yusuf Mahmood, Muhammad Abba Fugu, Mohammed Mala Gimba, Muktar Mohammed Allamin, Zaharadeen Umar Abbas, Muhammad Kawu Sunkani, Zainab Bukar Yaganami, Fatima Mustapha Kadau, Nasir Muhammad Sani, Peter Danmallam and Luka Nanjul managed by Mahmoud Bukar Maina, and Ibrahim Abdu Wakawa. Data analysis was done by Suleiman Hamidu Kwairanga. The article was written with contributions from all authors. Methodology and study design were guided by Babagana Kundi Machina, Baba Waru Goni, Larema Babazau, Zaid Muhammad, Suleiman Hamidu Kwairanga, Chinedu Udeh-Momoh, and Thomas K. Karikari. Mahmoud Bukar Maina, Ibrahim Abdu Wakawa, Chiadi U. Onyike, Chinedu Udeh-Momoh, Celeste M. Karch and Thomas K. Karikari provided expert guidance and facilitated discussions throughout the project.

ACKNOWLEDGMENTS

Funding for this work was provided by the Rainwater Charitable Foundation, the Alzheimer's Association and the University of Sussex HEIF Seed Funding to Mahmoud Bukar Maina. We also acknowledge the Northern Nigeria Dementia Research Group, established through this funding, whose contributions supported the completion of this work. The UKRI Medical Research Council (MR/Y019822/1), Alzheimer's Association (SAGA23-1141999), The Wellcome Leap Dynamic resilience program (co-funded by Temasek Trust), National Institute of Health (NIH) (RO1-AG074562), Office for Veterans' Affairs UK Defense and Security Accelerator (DASA) Fund (G2-SCH-2022-11-12245), Global Brain Health Institute (UFRA-424). Special thanks to the patients, clinicians, and staff at the FNPHM for their invaluable contributions to the diagnosis, management, and documentation of dementia cases over the past two decades.

CONFLICT OF INTEREST STATEMENT

Dr. Mahmoud Bukar Maina received funding for this work from the Rainwater Charitable Foundation and the Alzheimer's Association. All other authors declare no conflicts of interest related to the content of this manuscript. Author disclosures are available in the Supporting Information.

CONSENT STATEMENT

Ethical approval for this study was obtained from the Health Research and Ethics Committee of the University of Maiduguri Teaching Hospital. Informed consent was not required, as anonymized patient data were used.

ORCID

Mahmoud Bukar Maina https://orcid.org/0000-0002-7421-3813

REFERENCES

- Akinyemi RO, Yaria J, Ojagbemi A, et al. Dementia in Africa: current evidence, knowledge gaps, and future directions. Alzheimers Dement. 2022;18:790-809. doi:10.1002/ALZ.12432
- Sabates-Wheeler R, Wylde E, Aboderin I, Ulrichs M. The implications of demographic change and ageing for social protection in sub-Saharan Africa: insights from Rwanda. J Dev Effect. 2020;12:341-360. doi:10. 1080/19439342.2020.1853792
- Velkoff VA, Kowal PR, Aging in Sub-Saharan Africa: The Changing Demography of the Region. 2006 cited August 29 2024. Available: https://www.ncbi.nlm.nih.gov/books/NBK20301/
- Mbam KC, Halvorsen CJ, Okoye UO. Aging in Nigeria: a Growing Population of Older Adults Requires the Implementation of National Aging Policies. Gerontologist. 2022;62:1243-1250. doi:10.1093/GERONT/GNAC121
- Calsolaro V, Femminella GD, Rogani S, et al. Behavioral and psychological symptoms in dementia (BPSD) and the use of antipsychotics. *Pharmaceuticals*. 2021;14:246.
- Cerejeira J, Lagarto L, Mukaetova-Ladinska EB. Behavioral and psychological symptoms of dementia. Front Neurol. 2012;3:73. doi:10. 3389/fneur.2012.00073
- Cipriani G, Danti S, Picchi L, Nuti A, Fiorino MD. Daily functioning and dementia. Dement Neuropsychol. 2020;14:93-102.
- De Lepeleire J, Aertgeerts B, Umbach I, et al. The diagnostic value of IADL evaluation in the detection of dementia in general practice. Aging Ment Health. 2004;8:52-57.
- Budson AE, Solomon PR. Memory Loss, Alzheimer's Disease, and Dementia-E-Book: A Practical Guide for Clinicians. Elsevier Health Sciences: 2021.
- 10. Bunn F, Burn A-M, Goodman C, et al. Comorbidity and dementia: a scoping review of the literature. *BMC Med*. 2014;12:1-15.
- Connors MH, Seeher K, Teixeira-Pinto A, Woodward M, Ames D, Brodaty H. Dementia and caregiver burden: a three-year longitudinal study. Int J Geriatr Psychiatry. 2020;35:250-258.
- Kalaria R, Maestre G, Mahinrad S, et al. The 2022 symposium on dementia and brain aging in low- and middle-income countries: highlights on research, diagnosis, care, and impact. Alzheimers Dement. 2024;20:4290-4314. doi:10.1002/ALZ.13836
- Bernstein Sideman A, Al-Rousan T, Tsoy E, et al. Facilitators and barriers to dementia assessment and diagnosis: perspectives from dementia experts within a global health context. Front Neurol. 2022;13:769360.doi:10.3389/FNEUR.2022.769360/BIBTEX
- Hendrie HC, Ogunniyi A, Hall KS, et al. Incidence of dementia and Alzheimer disease in 2 communities: yoruba residing in Ibadan, Nigeria, and African Americans residing in Indianapolis, Indiana. JAMA. 2001;285:739-747.
- Hendrie HC, Osuntokun BO, Hall KS, et al. Prevalence of Alzheimer's disease and dementia in two communities: nigerian Africans and African Americans. Am J Psychiatry. 1995;152:1485-1492. doi:10. 1176/AJP.152.10.1485
- Ogunniyi A, Baiyewu O, Gureje O, et al. Epidemiology of dementia in Nigeria: results from the Indianapolis-Ibadan study. Eur J Neurol. 2000;7:485-490.
- Gureje O, Ogunniyi A, Baiyewu O, et al. APOE epsilon4 is not associated with Alzheimer's disease in elderly Nigerians. *Ann Neurol.* 2006;59:182-185. doi:10.1002/ANA.20694
- Hendrie HC, Murrell J, Baiyewu O, et al. APOE ε4 and the risk for Alzheimer disease and cognitive decline in African Americans and Yoruba. *International Psychogeriatrics /IPA*. 2014;26:977. doi:10.1017/ \$1041610214000167
- 19. Rajabli F, Beecham GW, Hendrie HC, et al. A locus at 19q13.31 significantly reduces the ApoE $\varepsilon 4$ risk for Alzheimer's Disease in African Ancestry. *PLoS Genet.* 2022;18:e1009977. doi:10.1371/JOURNAL. PGEN.1009977

- 20. Ucheagwu V. Giordani B. Prevalence and patterns of cognitive impairment in a sample of community dwelling older people in Nigeria. JAR life. 2023:12:85.
- 21. Masika GM, Yu DSF, Li PWC. Accuracy of the Montreal cognitive assessment in detecting mild cognitive impairment and dementia in the rural African population. Arch Clin Neuropsychol. 2021;36:371-380.
- 22. Onwuekwe IO. Assessment of mild cognitive impairment with mini mental state examination among adults in southeast Nigeria. Ann Med Health Sci Res. 2012;2:99-102.
- 23. Adeniji T. ORIGINAL: translation, cultural adaptation and validation of the hausa version of the standardised mini-mental state examination in Northeastern Nigeria. West Afr J Med. 2022;39(6):614-622.
- 24. Yusuf AJ, Baiyewu O, Sheikh TL, Shehu AU. Prevalence of dementia and dementia subtypes among community-dwelling elderly people in northern Nigeria. Int Psychogeriatr. 2011;23:379-386.
- 25. Ubabudu MC, Bakare AR. Nigeria's population politics and its janus-headed implications: a critical analysis. Int J Bus Manag Rev. 2023;11:39-56.
- 26. Idike A, Eme OI. Census politics in Nigeria: an examination of 2006 population census. J Policy Dev Stud Res. 2015;289:1-26.
- 27. NBS. Demographic Statistics Bulletin. 2023. [Cited September 26 2024]. Available: https://www.google.com/url?sa=t&source= web&rct=j&opi=89978449&url=https://www.nigerianstat.gov.ng/ pdfuploads/DEMOGRAPHIC_BULLETIN_2022_FINAL.pdf&ved= 2ahUKEwiaqrDIyeGIAxX1WEEAHb-YAgEQFnoECBcQAw&usg= AOvVaw3X7pva81AWTjAEEy-VeHU0
- 28. Nichols E, Vos T. The estimation of the global prevalence of dementia from 1990-2019 and forecasted prevalence through 2050: an analysis for the global burden of disease (GBD) study 2019. Alzheimer's & Dementia. 2021;17:e051496. doi:10.1002/ALZ.051496
- 29. WHO. Mental health, brain health and substance use. [cited 5 Sep 2024]. Available: https://www.who.int/teams/mental-healthand-substance-use/treatment-care/mental-health-gap-actionprogramme
- 30. Cao Q, Tan C-C, Xu W, et al. The prevalence of dementia: a systematic review and meta-analysis. J Alzheimer's Dis. 2020;73:1157-1166.
- 31. Ssonko M, Hardy A, Naganathan V, Kalula S, Combrinck M. Dementia subtypes, cognitive decline and survival among older adults attending a memory clinic in Cape Town, South Africa: a retrospective study. BMC Geriatr. 2023;23:829. doi:10.1186/S12877-023-04536-3
- 32. Adebayo RA, Olagunju AT, Olutoki MO, Fadipe B, Oduguwa TO, Lawal RA. A four-year review of geriatic mental health services in a Lagosbased hospital, Nigeria. Ethiop Med J. 2016;54:125-135.
- 33. Kamoga R, Mubangizi V, Owokuhaisa J, Muwanguzi M, Natakunda S, Rukundo GZ. Behavioral and psychological symptoms of dementia: prevalence, symptom severity, and caregiver distress in South-Western Uganda—a quantitative cross-sectional study. Int J Environ Res Public Health. 2023;20:2336. doi:10.3390/ijerph20032336
- 34. Elugbadebo OO, Farombi TH, Afolabi OA, Adebusoye LA. Clinical profile and pattern of dementia in a geriatric centre. Ann Ib Postgrad Med. 2024:22:20.
- 35. Ogualili PN, Pindar SK, Ibrahim AW, Ezejiofor OI, Muhammad FA. An appraisal of clinical diagnosis and management of dementia patients in a public hospital. Orient J Med. 2022;34:28-34.
- 36. Gunawardena N, Abdullahi A. Access to public healthcare services in urban areas in Nigeria: the influence of demographic and socioeconomic characteristics of the urban population. J Geo, Environ Earth Sci Int. 2021;25:1-13.
- 37. Amoo G, Akinyemi RO, Onofa LU, et al. Profile of clinically-diagnosed dementias in a neuropsychiatric practice in Abeokuta, South-Western Nigeria. Afr J Psychiatry (Johannesbg). 2011;14:377-382. doi:10.4314/ AJPSY.V14I5.5
- 38. Ogunniyi A, Lekwauwa UG, Falope ZF, Osuntokun BO, Clinicallydiagnosed dementing illnesses in Ibadan: features, types and associated conditions. 1993.

- 39. Guerchet M. Mayston R. Lloyd-Sherlock P. et al. Dementia in sub-Saharan Africa: challenges and opportunities. Dementia in sub-Saharan Africa Challenges and opportunities. Alzheimer's Dis Int. 2017. https://www.leahbeach.com. [cited 2 Sep 2024]. Available.
- 40. Li R. Li R. Xie J. et al. Associations of socioeconomic status and healthy lifestyle with incident early-onset and late-onset dementia: a prospective cohort study. Lancet Healthy Longev. 2023;4:e693-e702. doi:10. 1016/S2666-7568(23)00211-8
- 41. Klee M, Leist AK, Veldsman M, Ranson JM, Llewellyn DJ. socioeconomic deprivation, genetic risk, and incident dementia. Am J Prev Med. 2023;64:621-630. doi:10.1016/J.AMEPRE.2023.01.012
- 42. Sharp SI, Aarsland D, Day S, Sønnesyn H, Ballard C. Hypertension is a potential risk factor for vascular dementia: systematic review. Int J Geriatr Psychiatry. 2011;26:661-669. doi:10.1002/GPS.2572
- 43. Lee EKP, Poon P, Yip BHK, et al. Global burden, regional differences, trends, and health consequences of medication nonadherence for hypertension during 2010 to 2020: a meta-analysis involving 27 million patients. J Am Heart Assoc. 2022;11. doi:10.1161/JAHA.122. 026582
- 44. Iadecola C, Duering M, Hachinski V, et al. Vascular cognitive impairment and dementia: jACC Scientific Expert Panel. J Am Coll Cardiol. 2019;73:3326-3344. doi:10.1016/J.JACC.2019.04.034
- 45. Brzezińska A, Bourke J, Rivera-Hernández R, Tsolaki M, Woźniak J, Kaźmierski J. Depression in dementia or dementia in depression? Curr Alzheimer Res. 2020;17:16-28. doi:10.2174/ 1567205017666200217104114
- 46. Fekadu A, Demissie M, Birhane R, et al. Under detection of depression in primary care settings in low and middle-income countries: a systematic review and meta-analysis. Syst Rev. 2021;11:21. doi:10.1186/ s13643-022-01893-9
- 47. Obinna CO, Elias CA, Nkeiru PO. Screening for hypertension and diabetes in an underserved population through community outreach: a case of rural community in Enugu State, Nigeria. Asian J Med Health. 2019:1-9. doi:10.9734/AJMAH/2019/V15I230116
- Gobte NJ, Meyer DJ, Njecko BT. Report on health screening of blood pressure, blood sugar and body mass index in hospital staff in Cameroon, Africa. Afr J Midwifery Womens Health. 2013;7:194-200. doi:1012968/ajmw201374194
- Akinwale OE, George OJ. Personnel brain-drain syndrome and quality healthcare delivery among public healthcare workforce in Nigeria. Arab Gulf J Scientific Res. 2023;41:18-39. doi:10.1108/AGJSR-04-2022-0022/FULL/PDF
- 50. Mateen FJ, Clark SJ, Borzello M, Kabore J, Seidi O. Neurology training in sub-Saharan Africa: a survey of people in training from 19 countries. Ann Neurol. 2016;79:871-881. doi:10.1002/ANA.24649
- 51. Noroozi M, Zahedi L, Bathaei FS, Salari P. Challenges of Confidentiality in Clinical Settings: compilation of an Ethical Guideline. Iran J Public Health. 2018;47:875.
- 52. WHO. 2024 ICD-10-CM Codes F01-F09: Mental disorders due to known physiological conditions. 2024 cited September 1 2024. Available: https://www.icd10data.com/ICD10CM/Codes/F01-F99/F01-F09
- 53. Corey-Bloom J, Thai LJ, Galasko D, et al. Diagnosis and evaluation of dementia. Neurology. 1995;45:211-218. doi:10.1212/WNL.45.2.211/ ASSET/F1D79C4F-FC1A-4BEC-B4B5-FAF66A2A7CE3/ASSETS/ WNL.45.2.211.FP.PNG
- 54. Galvin JE, Sadowsky CH. Practical guidelines for the recognition and diagnosis of dementia. J Am Board Fam Med. 2012;25:367-382. doi:10. 3122/JABFM.2012.03.100181
- 55. Bouchard RW. Diagnostic criteria of dementia. Can J Neurol Sci. 2007;34:S11-SS18.
- 56. Livingston G, Johnston K, Katona C, Paton J, Lyketsos CG. Systematic review of psychological approaches to the management of neuropsychiatric symptoms of dementia. Am J Psychiatry. 2005;162:1996-2021. doi:10.1176/APPI.AJP.162.11.1996/ASSET/IMAGES/P72T12.JPEG

- American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders. Diagnostic and Statistical Manual of Mental Disorders. 2022. doi:10.1176/APPI.BOOKS.9780890425787
- Chan D, Fox NC, Scahill RI, et al. Patterns of temporal lobe atrophy in semantic dementia and Alzheimer's disease. *Ann Neurol*. 2001;49:433-442. doi:10.1002/ANA.92
- Banovic S, Zunic LJ, Sinanovic O. communication difficulties as a result of dementia. *Mater Sociomed*. 2018;30:221. doi:10.5455/MSM.2018. 30.221-224
- Ferreira AR, Gonçalves-Pinho M, Simões MR, Freitas A, Fernandes L. Dementia-related agitation: a 6-year nationwide characterization and analysis of hospitalization outcomes. *Aging Ment Health*. 2023;27:380-388. doi:10.1080/13607863.2022.2065663
- Tampi RR, Bhattacharya G, Marpuri P. Managing Behavioral and Psychological Symptoms of Dementia (BPSD) in the Era of Boxed Warnings. *Curr Psychiatry Rep.* 2022;24:431-440. doi:10.1007/S11920-022-01347-Y
- Bessey LJ, Walaszek A. Management of behavioral and psychological symptoms of dementia. *Curr Psychiatry Rep.* 2019;21:1-11. doi:10. 1007/S11920-019-1049-5/METRICS
- 63. De Vugt ME, Stevens F, Aalten P, Lousberg R, Jaspers N, Verhey FRJ. A prospective study of the effects of behavioral symptoms on the institutionalization of patients with dementia. *Int Psychogeriatr*. 2005;17:577-589, doi:10.1017/S1041610205002292
- 64. Runte R. Predictors of institutionalization in people with dementia: a survey linked with administrative data. *Aging Clin Exp Res.* 2018;30:35-43. doi:10.1007/S40520-017-0737-4/TABLES/3
- Aarsland D, Creese B, Politis M, et al. Cognitive decline in Parkinson disease. *Nat Rev Neurol.* 2017;13:217-231. doi:10.1038/nrneurol. 2017.27
- Cerejeira J, Lagarto L, Mukaetova-Ladinska EB. Behavioral and psychological symptoms of dementia. Front Neurol. 2012;MAY:23573. doi:10.3389/FNEUR.2012.00073/BIBTEX
- 67. Bucks RS, Byrne L, Haworth J, et al. The cost of behavioral and psychological symptoms of dementia (BPSD) in community dwelling Alzheimer's disease patients. *Int J Geriatr Psychiatry*. 2002;17:403-408. doi:10.1002/GPS.490
- Lyketsos CG, Carrillo MC, Ryan JM, et al. Neuropsychiatric symptoms in Alzheimer's disease. *Alzheimer's and Dementia*. 2011;7:532-539. doi:10.1016/J.JALZ.2011.05.2410
- Adeloye D, Auta A, Ezejimofor M, et al. Prevalence of dementia in Nigeria: a systematic review of the evidence. J Glob Health Rep. 2019;3. doi:10.29392/JOGHR.3.E2019014
- Ferreira D, Nogueira N, Guimarães J, Araújo R. Anti-dementia drugs: what is the evidence in advanced stages? *Porto Biomed J*. 2024;9(2):251. doi:10.1097/J.PBJ.0000000000000251

- Passmore AP, Bayer AJ, Steinhagen-Thiessen E. Cognitive, global, and functional benefits of donepezil in Alzheimer's disease and vascular dementia: results from large-scale clinical trials. *J Neurol Sci.* 2005:229-230:141-146. doi:10.1016/J.JNS.2004.11.017
- Zhang W, Shi M, Wang J, Cao F, Su E. A comprehensive review of ginkgotoxin and ginkgotoxin-5'-glucoside in Ginkgo biloba L. seeds. J Food Compos Anal. 2024;125:105726. doi:10.1016/J.JFCA.2023. 105726
- Jha MK, Rush AJ, Trivedi MH. When discontinuing SSRI antidepressants is a challenge: management tips. Am J Psychiatry. 2018;175:1176-1184. doi:10.1176/appi.ajp.2018.18060692
- 74. Kirino E. Escitalopram for the management of major depressive disorder: a review of its efficacy, safety, and patient acceptability patient preference and adherence Escitalopram for the management of major depressive disorder: a review of its efficacy, safety, and patient acceptability. Patient Prefer Adherence. 2012;6:853-861. doi:10.2147/PPA. \$22495
- 75. Braun M. Management of Behavioral and Psychological Symptoms in Dementia. 2019; 355-364. doi:10.1007/978-3-319-93497-6_23
- Dembitsky VM, Dzhemileva L, Gloriozova T. D'yakonov V. Natural and synthetic drugs used for the treatment of the dementia. *Biochem Bio*phys Res Commun. 2020;524:772-783. doi:10.1016/J.BBRC.2020.01. 123
- 77. Ahmed A, Yahaya H, Jidda A, Ali FA, Dingari CA. The effect of boko haram insurgency on health and nutrition among the residents of Bolori 2 of Maiduguri metropolitan council of Borno State, Nigeria. *Int J Res Scientific Innov.* 2024;10:643-655.

SUPPORTING INFORMATION

Additional supporting information can be found online in the Supporting Information section at the end of this article.

How to cite this article: Wakawa IA, Musami UB, Kwairanga SH, et al. Dementia in a resource-constrained sub-Saharan African setting: A comprehensive retrospective analysis of prevalence, risk factors, and management at the only neuropsychiatric facility in Northeastern Nigeria. *Alzheimer's Dement*. 2025;21:e14538. https://doi.org/10.1002/alz.14538