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Abstract. A triangulation of a polygon is a subdivision of it
into triangles, using diagonals between its vertices. Two different
triangulations of a polygon can be related by a sequence of flips: a
flip replaces a diagonal by the unique other diagonal in the quadri-
lateral it defines. In this paper, we study coloured triangulations
and coloured flips. In this more general situation, it is no longer
true that any two triangulations can be linked by a sequence of
(coloured) flips. In this paper, we study the connected components
of the coloured flip graphs of triangulations. The motivation for
this is a result of Gravier and Payan proving that the Four-Colour
Theorem is equivalent to a property of the flip graph of 2-coloured
triangulations: that any two triangulations can be 2-coloured in
such a way that they belong to the same connected component of
the 2-coloured flip graph.

1. Introduction

A triangulation of a polygon is a subdivision of it into triangles, using

diagonals between its vertices. Two different triangulations of a poly-

gon can be related by a sequence of flips: a flip replaces a diagonal by

the unique other diagonal in the quadrilateral it defines. In this paper,
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2 Flip graphs of coloured triangulations

we study m-coloured triangulations and m-coloured flips: we allocate n

colours to the triangles and flip diagonals only if the two triangles in-

cident with it have the same colour, say i. The flip assigns the colour

i+ 1 (reducing modulo n) to the two introduced triangles. When using

colours, it is no longer true that any two triangulations can be linked

by a sequence of (coloured) flips. In this paper, we study the connected

components of the coloured flip graphs of triangulations. The motivation

for this is a result of Gravier and Payan proving that the Four-Colour

Theorem is equivalent to the property that for any two triangulations of a

convex polygon, one can find a 2-colouring of their triangles in such a way

that they belong to the same connected component of the 2-coloured flip

graph. This problem is naturally very hard to solve and still wide open.

Our contribution sheds light on the size of the connected components

under coloured flips and on the shapes of the components.

Flip graphs of triangulated surfaces are well known and have been

studied a lot, in particular the polygon case is one of the many instances

of the Catalan combinatorics. Different generalisations appear in various

contexts. Here, we only mention two directions. Edge colouring, their

orbits under flipping and the diameters of the flip graphs have been

studied in [3] and [11]. Triangulated surfaces and flips also appear in

the context of cluster algebras and cluster categories: any (monochro-

matic) triangulation of a so-called marked surface gives rise to a cluster

in the cluster algebra of the surface and any two clusters are linked by

a sequence of flips. A different notion of coloured flips also appears in

cluster combinatorics, in the context of higher cluster categories, see [4]

and [13].

This article is structured as follows: Section 2 contains the back-

ground on triangulated polygons and introduces coloured triangulations.

Then it explains the link between coloured triangulations and the Four-

Colour theorem. In Section 3, we study the size and structure of the

connected components of coloured flip graph. Section 4 contains further

observations and a conjecture about the possible occurrence of a triangle

in a component of the 2-coloured flip graph: we expect that a triangle

cannot appear with two different colours in a single component. In an

appendix, we provide a translation of the results we use from [7], we de-

scribe the connected components of the 2-coloured flip graphs for small

polygons and compute the size of their components.
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2. Background

Here we recall the notions of triangulations of convex polygons. We write
Pn to denote a convex polygon with n vertices.

Definition 2.1 (Triangulation). A triangulation of Pn is a subdivision
of the polygon into triangles, using pairwise non-crossing diagonals.

Boundary segments are not considered to be diagonals. Note that
any triangulation of Pn decomposes the polygon into n − 2 triangles,
using n− 3 diagonals.

Example 2.2. A triangulation given by n− 3 diagonals incident with a
common vertex will be called a fan triangulation. An example of a fan
triangulation of a hexagon is Figure 1.

Figure 1: A fan triangulation of a hexagon.

The following result is well-known. We include a proof for convenien-
ce. The strategy of the proof is illustrated for n = 8 in Figure 2.

Lemma 2.3. The number of triangulations of a convex (n + 2)-gon is
given by the n-th Catalan number Cn = 1

n+1

(
2n
n

)
.

Proof. The proof can be done using an inductive argument. One checks
that the claim is true for n = 1. Choose an edge E, and consider the
triangle it is a part of. In an (n+2)-gon, there are n other options for the
third vertex of this triangle. All of these reduce the problem to one or two
smaller cases, as to the left and right of this triangle, there are smaller
polygons of size m− 1 and n+ 4−m respectively, for m = 3, . . . , n+ 2.
(For m = 3, there is only a polygon of size n + 1 on the right of the
triangle, for m = n + 2, there is only a polygon of size n + 1 on the
left of the triangle.) We count the number of triangulations of these two
subpolygons and let m run. This gives the total number of triangulations
as Cn−1+C1Cn−2+ ...+Cn−2C1+Cn−1, which is a well-known recursive
formula for the Catalan numbers.
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Figure 2: Every triangulation of the octagon falls into one of 6 types.

Triangulations of a polygon are related by the so-called flip:

Definition 2.4. Let t be a diagonal in the triangulation T of Pn. The
union of the two triangles containing t is a quadrilateral. We obtain a
new triangulation T ′ by replacing the diagonal t with the other diagonal
of that quadrilateral. This local move is called a flip.

Any two triangulation of Pn can be linked by a sequence of flips. This
is true for more general surfaces and has been proven by several authors
independently and for different set-ups. See for example [5, 8, 12] or [10]
for triangulations of planar point sets. In the convex polygon case, it
can be shown using the procedure of [14] that consists in flipping two
triangulations into the same fan triangulation.

Definition 2.5. The flip graph of Pn is the graph whose vertices are
triangulations of the polygon, and two vertices T1, T2 are connected by
an edge if and only if there exists a (single) flip linking T1 with T2.

2.1. Coloured triangulations, coloured flips

In this article, we are interested in a generalisation of triangulations: we
equip triangulations with a set of colours and define a new flip operation
for them.

Let m ≥ 1 and let C = {1, . . . ,m} be a set of m different colours. If T
is a triangulation of a polygon, we write F (T ) for the set of its triangles
(or faces). We write Sm for the symmetric group on m letters.

Definition 2.6 (Colouring). Let T be a triangulation of a convex poly-
gon. By a colouring of T we mean an assignment of colours from 1, . . . ,m
for every triangle of T .

Definition 2.7 (Coloured flip). Let C = {1, . . . ,m} be a set of colours
and σ ∈ Sm be a permutation. Let T be a triangulation of a convex
polygon with each triangle a colour in C. Let t ∈ T be a diagonal
incident with two triangles of the same colour i. Then the σ-flip of T at
t is defined as follows:
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1. Replace t by the flip of t′ in the underlying uncoloured triangula-
tion.

2. Change the colours of the two triangles incident with t′ to the colour
σ(i).

If the permutation σ is a single cycle of the form (1, 2, . . . ,m) (i.e. i 7→
i+ 1), we call a σ-flip simply an m-coloured flip.

Definition 2.8. Let P be a convex polygon and let C = {1, . . . ,m} be
a set of colours, let σ ∈ Sm be a permutation. The coloured flip graph
of P with colours C and permutation σ or the σ-flip graph of P is the
graph whose vertices are the coloured triangulations of Pn and whose
edges correspond to σ-flips. We will often just call it the flip graph of
the polygon.

The coloured triangulations are also counted in terms of Catalan
numbers. We note that whenever no two adjacent triangles have the
same colour, no edge can be flipped and we have an isolated vertex in
the flip graph.

Lemma 2.9. Consider a convex n+2-gon Pn+2 and a set C of m colours.

(i) There are Cnm
n coloured triangulations of Pn+2;

(ii) There are Cnm(m−1)n−1 triangulations of Pn+2 where none of the
diagonals can be flipped.

Proof. (i) Any triangulation of Pn+2 has n triangles, so there are mn

different ways to colour a triangulation. The claim then follows from
Lemma 2.3.

(ii) We consider the dual graph GT to a given triangulation T of Pn+2:
it has as vertices the triangles in T and an edge between the two vertices
of adjacent triangles. This graph is known to be a tree, it has n vertices
and at least two leaves. We start by colouring one leaf with one of the m
colours and then proceed to colour adjacent vertices. Since G is a tree,
for any new vertex we want to colour, there are m − 1 options. Hence
the factor (m− 1)n−1. The claim then follows with Lemma 2.3.

2.2. Triangulations of polygons and the Four-Colour
Theorem

The Four-Colour Theorem is one of the most famous mathematical prob-
lems in history. It concerns the question whether four colours are enough
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to colour any map drawn in the plane. In 1977, Appel, Haken and Koch
established that four colours are enough (see [1] and [2]):

Theorem 2.10 (Four-Colour Theorem). Any map on R2 can be coloured
using four colours such that any two regions sharing an edge are of dif-
ferent colours.

This result was proved with the assistance of computers. So far, there
is no abstract proof of this theorem. The main motivation of this project
is the search for an alternative approach to its proof. In 1999, Elia-
hou formulated the following conjecture about signed flips (2-coloured
flips) [6, §1]:

Conjecture 1. Let T1, T2 be two arbitrary triangulations of a convex
polygon P . Let C = {1, 2} be two colours. Then there exist colourings of
T1 and of T2 such that there is a sequence of 2-coloured flips between the
two coloured triangulations.

Eliahou showed that the signed flip conjecture implies the Four-
Colour Theorem. Gravier and Payan later proved that the two are equi-
valent [7], completing the earlier work of Eliahou and of Krychkov (see [9],
a reprint of the original preprint from 1992):

Theorem 2.11 ([7]). Given any two triangulations of a convex polygon,
it is possible to find a 2-colouring of each triangulation such that they
can be transformed into one another by a sequence of 2-coloured flips if
and only if the Four-Colour Theorem holds.

So in order to give an abstract approach to the Four-Colour Theorem,
it is enough to give an abstract prove of Conjecture 1. We will recall the
proof of Theorem 2.11 in Section 1 of the Appendix.

3. Connected components of coloured flip graphs

We will now show how to reduce the study of coloured flip graphs to
permutations which are a single cycle (Lemma 3.1) and the study of its
components to 1 or 2 colours (Lemma 3.3).

Lemma 3.1. Every coloured flip graph is the Cartesian product of coloured
flip graphs associated to cyclic permutations.

Proof. Any permutation can be written as a product of disjoint cycles,
say σ = σs . . . σ2σ1 (where the σi ∈ Sm are single cycle permutations).
Let mi be the size of σi. Let T be a triangulation of a polygon and equip
it with an m-colouring.
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For i ∈ {1, 2, . . . , s} let Di be the union of all triangles of T which
are coloured with a colour appearing in σi. Each Di is a possibly dis-
connected union of triangles of T . Note that if none of the colours of
σi appear in the m-colouring of T , then Di is empty. See Figure 3 for
an illustration with s = 3. Each cycle σi only acts on Di, leaving the
rest of the coloured triangulation fixed. Let Gi be the flip graph of the
mi-coloured region Di. Then the m-coloured flip graph of the polygon is
a cartesian product of the Gi.

7

6

3

Figure 3: A 7-coloured triangulated decagon with two regions D1

(shaded) and D3 (white) for σ as in Example 3.2.

Example 3.2. Consider the triangulation of the decagon of Figure 3.
Let σ = (1, 2, 3, 4)(5)(6, 7) = σ1σ2σ3 be the product of three disjoint
cycles. D1 is the union of six triangles, shaded in grey in the figure. D2

is empty and D3 is the union of two triangles (in white in the figure).
The coloured flip graph is the product of the flip graph of D1 on the four
colours {1, 2, 3, 4}, the trivial flip graph of D2 and of the flip graph of D3

on the two colours {6, 7}.

From now on we will concentrate on the case where σ is a single cycle
of length m. As a consequence of Lemma 3.1 in order to understand the
flip graph of coloured triangulations, it is enough to understand the case
from now on we will assume that σ is a single cycle of length m. The
next result shows that we can reduce the study of flip graphs to the case
with one or two colours.

Lemma 3.3. Let m ≥1 and let σ be a single cycle of length m.
(1) If m is odd, then any two triangulations can be m-coloured in

such a way that they are linked by a sequence of m-coloured flips.
(2) Ifm is even, two triangulations can be T1 and T2 can bem-coloured

in such a way that they are linked by an m-coloured flip sequence if and
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only if they can be 2-coloured in such a way that they are linked by a
2-coloured flip sequence.

Proof. Let T1 and T2 be two triangulations of the same polygon. Let
σ = (1, 2, . . . ,m) be the single cycle permutation changing colour i to
colour i + 1. The idea is to use an uncoloured flip sequence from T1 to
T2 and to replace it with an appropriate coloured sequence.

(1) Let m be odd. Let ν = νs · · · ν1 be a sequence of (uncoloured)
flips such that T2 = ν(T1). For i = 1, . . . , s let di be the diagonal of the
polygon which will be flipped under νi (the diagonal di is a diagonal of the
triangulation νi−1 · · · ν1(T1)). The diagonal di determines a quadrilateral
Di in νi−1 · · · ν1(T1). We write d′i to denote the other diagonal of Di.

We colour all triangles of T1 with colour 1 and do m coloured flips
on D1 (switching between d1 and d′1 and back while doing so). By doing
so, we replace the first flip ν1 by the sequence µd1 . . . µd′1

µd1 with m
terms. The resulting triangulation again has colour 1 on all triangles
but the diagonal d1 got replaced with d′1. Then we iterate, replacing
each uncoloured flip νi = νdi by a sequence µdi . . . µd′i

µdi of length m of
coloured flips. The result of this longer sequence of m-coloured flips is a
coloured version of T2.

(2) Let m be even. Assume first that there are 2-colourings of T1 and
T2 such that there is a 2-coloured flip sequence ν = νs . . . ν1 from T1 to
T2, on the two colours {1, 2}. We construct a coloured flip sequence for
σ = (1, 2, . . . ,m) from ν. As in part (1) of the proof, we denote by di the
diagonal of the polygon which is flipped under νi and we let Di be the
quadrilateral of the polygon determined by di (it is a quadrilateral in the
triangulation νi−1 · · · ν1(T1)). We modify the sequence ν by replacing νi
if needed: If the colour in Di is 1, we keep νi and view it as part of a
σ-flip for the cyclic permutation σ = (1, 2, . . . ,m). If the colour is 2, we
replace νi by the sequence µdi . . . µd′i

µdi with m−1 terms. In both cases,
the effect is to replace the diagonal di by d′i in Di and the resulting
coloured triangulation is the same as νi · · · ν1(T1). We can iterate the
procedure and replace (or keep) νi+1 with the same rule. After going
through all flips of ν, we obtain a coloured flip sequence from T1 to T2

for m colours, where both T1 and T2 are coloured as for the original
2-coloured sequence.

Assume now that there exists a 4-colouring for T1 and T2 and a
4-coloured sequence ν = νs · · · ν1 linking them. We replace every even-
numbered colour in T1, T2 by 2 and any odd-numbered colour by 1. If di
is the diagonal flipped under νi, we define µi to be the same flip, but for
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σ = (1, 2). This provides a 2-coloured flip sequence for the 2-coloured
versions of T1 and T2.

The strategy to go from a 2-coloured flip sequence to a 4-coloured
flip sequence is illustrated in Figure 4.

1

1

1
ν1 ν2

µd1 µd1

µd′
1

d2

µ2

Figure 4: A flip sequence ν with two colours, translated into a sequence
with four colours (with σ = (1, 2, 3, 4) = (red, yellow, light blue, green))

Example 3.4. We will again consider an example of coloured hexagon
P6 triangulations, with 2 colours and where σ switches the two colours.
In Figure 5, we list all types of connected components of the associated
coloured flip graph.

Figure 5: Connected components of the 2-coloured flip graph of P6 up
to isometry, excluding the isolated points.
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From now on, we restrict to 2-coloured flips, i.e. to the case m = 2.
We will often choose C = {1,−1} and indicate these colours by +,− in
the examples. We often use yellow and red as the two colours.

In the statement of the theorem below, we use the notion of a flip
sequence: a 2-coloured flip sequence µ = µ2 · · ·µ1 (with s > 0) is a
sequence of 2-coloured flips, applied successively.

Theorem 3.5. Let G be the coloured flip graph of Pn+2. Then every
connected component of G is either an isolated point or is of size ≥ n.
Moreover, if T is a triangulation in a non-trivial connected component
and t a diagonal of T , then either t can be 2-coloured flipped or there
exists a 2-coloured flip sequence µ = µ2 · · ·µ1 (where s ≥ 1) such that
t ∈ µ(T ) and such that t can be colour-flipped in µ(T ).

Proof. Let T be a triangulation of Pn+2, with a colouring. We assume
that there is at least one diagonal which can be 2-colour-flipped. We
mark the diagonals of T with a blue or a red dot: a diagonal t is marked
blue if it can be flipped after some (possibly empty, if it can be flipped
immediately) sequence of coloured flips. Diagonals of T which can never
be flipped are marked with a red point. By assumption, at least one
diagonal is marked with a blue dot. If there exists a diagonal with a red
dot, find a triangle with a red and a blue dot on two of its diagonals.
Such a triangle always exists (see Remark 3.6). Call these two diagonals
B and R. The two triangles incident with R must be of different colours,
since otherwise, we can flip it immediately. We now execute a (coloured)
flip sequence in order to flip the edge B. At some point in this sequence
(or at the end of the sequence), the colour of one of the triangles incident
with edge R has changed colour, and at this point, the edge R can be
flipped.

This is a contradiction, hence there can be no red dots and every
edge can be flipped eventually. Hence there are at least n vertices in this
connected component of the coloured flip graph.

Remark 3.6. Consider a triangulation T where at least one diagonal can
be 2-colour flipped. We mark the diagonals of T by a blue dot if the
diagonal can eventually be colour-flipped and with a red dot otherwise
(as in the proof of Theorem 3.5). Then there exists a triangle with a
red and blue dot on two of its sides: We consider the line graph L(T )
of T : it has vertices for the diagonals of T and edges between vertices
t, t′ whenever there is a triangle containing t and t′. We equip this graph
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with the two colours. Since the graph L(T ) is connected, there has to be
an edge between a red and a blue node.

The following result shows that connected components of size n do
exist in the coloured flip graph of Pn+2.

Example 3.7. Consider a fan triangulation T , with alternatingly colou-
red triangles apart from at one end. See Figure 6 for an illustration of
such a fan triangulation of a decagon. Then the connected component
containing T is a single line with n vertices: in every step, only a single
2-coloured flip can be made. Under this, the two triangles of the same
colour move from one side of the fan to the other end of the fan.

Figure 6: A coloured fan triangulation of a decagon.

We recall the notion of a weighting on the vertices of a triangulated
polygon with a 2-colouring from [7].

If we have a coloured triangulation and if △ is a triangle of T , we
denote its colour by s(△). Recall that s(△) ∈ {−1,+1}.

Definition 3.8. A weighting of the polygon P is given by a choice of a
triangulation T and a function p assigning to each vertex of P an element
of {−1, 0, 1} such that there is a 2-colouring of T where for every vertex x
of P , we have p(x) =

∑
x∈△

s(△) mod 3 (the sum is taken over all triangles

incident with the vertex x).

Two weightings of coloured triangulated quadrilaterals are shown in
Figure 8. The statement that flips do not change the weighting already
appears in [7, Text and Figure 3 on page 819]. We include a proof for
completeness.

Lemma 3.9. Any two 2-coloured triangulations which are in the same
connected component of the flip graph have the same weighting.
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Proof. Let p be a weighting of a triangulated polygon with 2-colouring.
If x is a vertex of the quadrilateral where the flip happens, the flip either
changes two triangles with +1 to one triangle with −1 (or vice versa)
or two triangles with −1 to one triangle with +1 (or vice versa). In all
cases, p(x) remains the same. (See Figure 8).

However, there exist 2-colourings which are not flip equivalent but
have the same weighting, see Figure 7 for an example.

−−

−

− −

−+

−

−

−

−−

−

− −

−+

−

−

−

Figure 7: Two triangulations which are not flip equivalent but have the
same weighting

The following statement is mentioned in [7]. We include a proof for
completeness.

Theorem 3.10. Given a weighting of a triangulation, there is at most
one way to colour it to match the weighting.

Proof. Since any triangulation must contain a triangle with 2 of its sides
being sides of the polygon, there is a vertex which is only contained
in one triangle. At this vertex, if the value is zero then there is no
such colouring, and if it is −1 or +1 then this determines the colour of
the triangle. Consider removing this triangle, and subtracting off the
value it contributes to the neighbouring triangles to give a valuation and
triangulation for a (n−1)-gon, repeat until we either reach a contradiction
or have completely coloured the shape. Hence if the colouring exists, it
must be unique (see Figure 8).

Theorem 3.11. Any cycle in the coloured flip graph is of even length.

Proof. Let T be a 2-coloured triangulation, let X be the number of trian-
gles marked + in this triangulation. After every flip, X either increases
or decreases by 2, hence every flip changes X by ±2. Therefore, if we
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−+

− +

+

+

flip

−+

− +

-

-

Figure 8: Example of quadrilateral valuation

reach T again after a sequence of coloured flips, this sequence has to have
even length, since the number of triangles marked with a + will be equal
to X again.

3.1. Structure of the flip graph

In this section, we show properties of the flip graph. In particular, we
prove the existence of hypercubes in the flip graph.

Definition 3.12. Let t, t′ be two diagonals in a triangulation of a convex
polygon. If two quadrilaterals have disjoint interiors, we say that the
quadrilaterals are disjoint. In this case, we say that the flips of t and of
t′ are independent.

A triangulated convex n + 2-gon has n triangles and since two in-
dependent flips require two disjoint quadrilaterals, there can be at most
⌊n2 ⌋ independent flips in any triangulation of Pn+2.

Example 3.13. Let T be a fan triangulation of Pn+2 where each face
is assigned the same colour (see Figure 9 for an example). There are
⌊n2 ⌋ independent flips in this case: We start by choosing the first two
triangles on the left in T . The we continue, choosing quadrilaterals close
to the previous one, but independent. We end up with ⌊n2 ⌋ disjoint
quadrilaterals (and possibly one left over triangle). So this coloured
triangulation reaches the upper bound of possible independent flips.

Proposition 3.14. Let T be a 2-coloured triangulation of a convex poly-
gon. Let G be the connected component of the flip graph containing T .
Assume that there are k > 1 diagonals in T which can be 2-coloured
flipped and whose quadrilaterals are pairwise disjoint. Then G contains
a k-dimensional hypercube.
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Figure 9: A flip graph of the monochromatic n + 2-gon, n ≥ 8 contains
4 disjointquadrilaterals.

Proof. Denote that k diagonals of T which can be flipped independently
by 1, 2, . . . , k. For any i ̸= j, 1 ≤ i, j ≤ k, the flips µi and µj commute.
We consider all the triangulations which can be reached from T by ar-
bitrary 2-coloured flips of these k diagonals. In the subgraph of the flip
graph they define, each of them has degree k. So they form a subgraph
isomorphic to a k-dimensional hypercube as claimed.

Corollary 3.15. For n ≥ 8, the 2-coloured flip graph of Pn+2 contains
a connected component which is not planar.

Proof. Consider the fan triangulation where every triangle is coloured
with the same colour. Let G be the connected component of the coloured
flip graph which contains this coloured fan triangulation. Since n ≥ 8,
there is a sub-polygon with the same structure as the fan decagon (see
figure 8). Hence there are at least four quadrilaterals which can be
flipped independently, given by the thick lines. Therefore, G contains a
4-dimensional hypercube by Proposition 3.14. Denote this by Q4. Since
Q4 has the complete bipartite graph K3,3 as a subgraph, and the latter
is not planar, G cannot be planar.

Notation. We consider two k-dimensional hypercubes in a connected
component of the flip graph to be distinct if they are disjoint or if their
intersection is a union of hypercubes of smaller dimension.

Lemma 3.16. Suppose T that is a fan triangulation of a convex (n+2)-
gon where all triangles have the same colour. Let G be the connected
component of the coloured flip graph that contains T . Then

(i) if n is even, then G contains a n
2 -dimensional hypercube, meeting

at least one disjoint1 (n2 − 1)-dimensional hypercube;

1apart from the common vertex with coloured triangulation T .
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(ii) if n is odd, then G contains n+1
2 hypercubes of dimension n−1

2 ,
meeting at the vertex with coloured triangulation T .

Proof. We label the vertices of Pn+2 so that the fan is based at vertex
1 and that there are two “boundary triangles” with vertices 1, 2, 3 and
n+ 1, n+ 2, 1.

(i) When we assume n to be even, the maximum number of indepen-
dent coloured flips is n

2 . We reach this if we group pairs of adjacent
triangles into quadrilaterals starting at the boundary, i.e. with
the quadrilateral on the vertices 1, 2, 3, 4 and continuing with ad-
jacent triangles, see Example 3.13. If instead we group the pairs
of adjacent triangles of T starting the quadrilateral on the vertices
1, 3, 4, 5, we only get n

2 − 1 disjoint quadrilaterals and find a hy-
percube based on n

2 − 1 independent flips. These two hypercubes
meet at the monochromatic fan triangulation.

(ii) If n is odd, we “ignore” one of the two triangles of T and pair
all other triangles to form quadrilaterals, in the same way as in
part (i). The triangles we pick for this have vertices 1, 2ℓ, 2ℓ + 1
where 1 ≤ ℓ ≤ n+1

2 . The remaining triangles form n−1
2 disjoint

quadrilaterals and so we get n−1
2 independent flips in each case,

giving n−1
2 hypercubes of dimension n−1

2 , meeting at the coloured
triangulation T as their common vertex.

Note that a version of Lemma 3.16 can be proved for more gene-
ral triangulations: the number of disjoint quadrilaterals in an arbitrary
2-coloured triangulations gives a lower bound on the dimension of ma-
ximal dimensional hypercubes it contains.

To get the minimal number of independent flips in a monochromatic
triangulation, one considers a triangulation with as many “ear triangles”
as possible (an ear triangle is a triangle formed by two boundary segments
and one diagonal). This way, the number of independent quadrilaterals
stays as small as possible. We choose a triangulation built with nested
sequence of ear triangles: first draw the diagonals (1, 3), (3, 5), etc.,
ending with (n − 1, n + 1). Then the diagonals (1, 5), (5, 9), etc. There
are ⌊n+2

2 ⌋ ear triangles in such a triangulation. Around half of them will
not get matched when forming independent quadrilaterals, depending on
the factors of n. A lower bound on the dimension of the largest hypercube
in a monochromatic triangulation of this shape is ⌊n+1

3 ⌋.



16 Flip graphs of coloured triangulations

Example 3.17. We illustrate Lemma 3.16 by showing for the monochro-
matic fan triangulation of Pn with 6 ≤ n ≤ 9 in Figures 10, 11, 12 and 13.
In each figure from left to right, the first graph is the original triangula-
tion, and then are the possible hypercubes of different dimensions, and
the last one is the combination of all these hypercubes. We number the
diagonals in T , and the numbers on edges of the k-dimensional cube
represents a flip of that diagonal. The black points represent the fan
triangulation.

1
2

3

2

3 3

1

1

3 3

1

1

2

Figure 10: The connected component with the monochromatic fan
triangulation of the hexagon contains two shown 1-dimensional and
2-dimensional cubes.

1

2 3

4
4

4

4

1 1 1

2 2

3

3

Figure 11: The connected component with the monochromatic fan trian-
gulation of the heptagon with three 2-dimensional cubes.

4. Observations and a conjecture

We conclude this paper by a number of observations and a conjecture.
Let Pn+2 be a convex n+ 2-gon.

Observation 1. For n ≤ 4 any connected component of the 2-coloured
flip graphs of Pn+2 is either a tree, or obtained from adding leaves onto
a 4-cycle. See Appendix 2. For n > 4, this is not true anymore. An
example is a component for n = 7 in Figure 14.
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1

2

3
4

5 2

2

2

4 4 4

5 5

1

1

3

3

3

3
5

5 5

5

1

1 1

1

3

3

3

3
5

5 5

5

51

1 1

1

1

2

2

2

4

4

4

Figure 12: The connected component with the monochromatic fan trian-
gulation of the octagon has a 3-dimensional cube.

Observation 2. There are connected components of the flip graph which
do not have any leaves, see e.g. Figure 14 for n = 7 or Appendix 2 in
the case of n = 6.

In the examples we considered, no two triangulations in a connected
component contained two triangles with the same vertices but with dif-
ferent colours. See for example Figure 14 for an illustration. We suspect
that this could be true in general:

Conjecture 2. In a connected component of the 2-coloured flip graph,
a triangle cannot appear in the same position but with different colours.

APPENDIX

1. Proof of Theorem 2.11

We recall the statement of Theorem 2.11 from the Introduction: the Four-
Colour Theorem holds if and only if for any two triangulations of a convex
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1

2
3 4

5

6

5 5

2

2

5

3

1

2

4

6

5

3

1

2

4

6

Figure 13: The connected component with the monochromatic fan trian-
gulation of nonagon contains four 3-dimensional cubes.

Figure 14: A connected component of the flip graph for coloured nonagon
triangulations which contains no fans, and has minimum cycle size 20.

polygon, one can 2-colour them in a way that there exists a sequence of
2-coloured flips linking the two triangulations. This result by Gravier and
Payan motivates the notion of coloured mutation. The work of Gravier
and Payan has appeared in French in 2002. For the convenience of the
reader, we illustrate their reasoning in this section. We first recall the
notions needed. In this section, we will use ‘signed triangulations’ to refer
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to 2-coloured triangulations in order to distinguishing from the notion of
a colour in the 4-colour theorem.

Figure 15: A connected component for the heptagon, which has three
leaves of two different triangulation types.

Definition 1.1. Let P be a convex polygon. We introduce the following
definitions:

� Let T be a triangulation of P . We write D(T ) for the set of all
diagonals of T and F(T ) for its faces (the triangles).

� A sub-polygon S ⊂ P is a polygon whose vertices are a subset of
those of P , and which respects the cyclic order of the vertices of P .

� S − x denotes the sub-polygon induced by all vertices except x.

� A signed triangulation of P is a 2-coloured triangulation T of the
polygon, i.e. a pair {T, s}, where s : F(T ) → {+1,−1} is a
2-colouring of the triangles of T . Let s be the signed triangula-
tion obtained from s by changing all signs. We write (T, s) to
denote the class {{T, s}, {T, s}}.

� A signed flip is a 2-coloured flip of a diagonal of a signed triangu-
lation.

� We recall the definition of a weighting of P (Definition 3.8) and
introduce a notation suitable with the other terms of this section:
The pair {T, p} where p : V (T ) → {−1, 0,+1} is a function on the
vertices of T (or of P ) is called a weighting of T is there exists a
2-colouring s of T such that for every vertex x of T we have p(x) =∑
t∈F(T )

s(t) mod 3. Similarly as before, if {T, p} is a weighting and
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s a 2-colouring giving rise to it, we write {T, p} for the weighting
associated to s. We use (T, p) to denote the valuation p of T , up
to exchanging s with s.

� A valuation of T is a pair (T, v), where v : D(T ) → {0, 1} assigns
0 or 1 to every diagonal of T .

� A colouring of T is a pair (T, col), where col is a 4-proper colouring
of the vertices of T (i.e., no two vertices adjacent under T share
the same colour). We will often use the letters a, b, c, d to indicate
the four colours of a colouring. We only consider colourings up to
permutation of colours.

Let {T, s} be a signed triangulation. The signs determine a weighting
of T by definition. There is a natural way to associate a valuation (T, v)
to any signed triangulation {T, s} if a diagonal is incident with two trian-
gles of the same sign, its valuation is set to be 0. Otherwise, its valuation
is set to be 1. By definition, this procedure associates the same valuation
v to {T, s}. So we can naturally assign a valuation (T, v) to (T, s).

Example 1.2. See Figure 16 for an example of a signed triangulation
T of heptagon, with associated weighting (on the left), valuation (in the
middle) and with a colouring for T (on the right).

Notice that “signed triangulations, weighting, valuation and colou-
ring” are equivalent notions, up to taking the opposite signs/weights:

1. (T, s) ≡ (T, p). Weightings and 2-colourings are equivalent by defi-
nition.

2. (T, s) ≡ (T, v). Any signed triangulation (T, s) gives a valuation
(T, v) as we have explained above (for any diagonal xy ∈ T ,
v(xy) = 0 if and only if the two triangles adjacent to xy have
the same sign). Conversely, any valuation (T, v) gives rise to two
signed triangulations {T, s} and {T, s}.

3. (T, v) ≡ (T, col). Given a valuation (T, v), we construct a 4-colou-
ring col of the vertices of P compatible with T , denoted by col(T, v):
Choose a vertex of degree 2 in T . Such a vertex lies in a triangle
which has two boundary edges (every triangulation has at least
two such triangles). We colour the three vertices of this triangles in
three different colours. We proceed as follows: for any quadrilateral
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Figure 16: A signed triangulation of heptagon with weighting, valuation,
colouring.

with vertices xyzt, formed by two adjacent triangles sharing the
common diagonal yt, we colour x, z in the same colour if and only
if the diagonal yt is valued 1 under v. Starting with the above
triangle, we thus obtain a colouring of T with (up to) four colours.
The colouring col(T, v) is unique up to permutation of the colours.

Reciprocally, starting from (T, col), we get a valuation of T by
setting a diagonal of any quadrilateral to be 0 if and only if the
four vertices of the quadrilateral this diagonal determines are all
coloured differently.

By the above, it makes sense to write (T, ε) where ε is in {s, p, v, col}
as these are all equivalent.

Remark 1.3. Let T be a triangulation of a polygon. We comment on the
effect of a flip on the notions weighting, valuation and colouring. See
Figure 17 for an illustration.

� Any flippable diagonal has valuation 0. If we flip it, the new diago-
nal also has valuation 0 while the diagonals bounding the corres-
ponding quadrilateral change their valuation.
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� The weighting of the vertices remains unchanged under flips.

� Any colouring for T is still a colouring for the new triangulation.

+

−

0

+ +

−

−

− −

+

−

+
flip

+

−

0

+ +

−

−

+

+

+

−

+

a

b

d

b a

d

c1

0 0

1

flip

a

b

d

b a

d

c0

1 0

1

Figure 17: The effect of a signed flip on weighting, valuation, colouring.

Note that a 3-colour colouring of a triangulation corresponds to the
case where each diagonal has value 1, and such signed triangulation is
called alternating. Alternating signed triangulations are isolated vertices
in the flip exchange graph and so they are not of interest for us.

Definition 1.4. Let (T, ε) and (T ′, ε′) be two signed triangulations of
the same polygon. We write (T, ε) ∼ (T ′, ε′) if there exists a sequence of
2-coloured flips from (T, ε) to (T ′, ε′). This sequence may be empty (i.e.
we allow T = T ′ with ε = ε′). One can check that ∼ is an equivalence
relation, we denote the class of (T, ε) by [T, ε].

Now we are ready to prove Theorem 2.11 which we reformulate as
follows:

Theorem 1.5. Let (T, v) ̸= (T ′, v′) be signed triangulations of P . Then
(T, v) ∼ (T ′, v′) if and only if col(T, v) = col(T ′, v′) and it uses 4 colours.

Proof of =⇒ of Theorem 1.5. Using Remark 1.3 one can see that a colou-
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red flip does not change the colouring of the vertices. Iterating, we
get that (T, v) ∼ (T ′, v′) implies col(T, v) = col(T ′, v′). Since we as-
sumed that the two triangulations are different, the sequence of signed
flips needed to go from (T, v) to (T ′, v′) is not empty, i.e. the flip graph
is not a single point and there is at least one diagonal valued with 0.
Hence col(T, v) uses four colours.

To prove the converse of the theorem, we first show three lemmas. We
have to study the vertices of P and their neighbours. In a triangulated
polygon any vertex of P has neighbours on the boundary and potentially
neighbours through diagonals of the triangulation. When dealing with
the former, we refer to them as neighbours along the boundary (or on
the boundary).

Lemma 1.6. Let (T, ε) be a signed triangulation of a polygon P and x
a vertex of P . Assume that the two neighbours of x along the boundary
are the only two neighbours of x with the same colour. Then x has 3 or
4 neighbours, and p(x) = 0.

Proof. Clearly, x cannot have only 2 neighbours in this case as in that
case, these would belong to a common triangle with x.

Suppose for contradiction that the vertex x has at least five neigh-
bours. Then the two neighbours on the polygon are not the only two
neighbours of the same colour in T : we can only colour three neigh-
bours of x with distinct colours (different from the colour of x). And
we would have at least three vertices of the same colour or another pair
of neighbours with the same colour. Hence x cannot have more than 4
neighbours.

In case x has three neighbours, these four vertices span a quadrilateral
(with x) and the diagonal ending at x has value 1 as the other end must
be of a different colour. In particular, the two triangles incident with x
have opposite sign and x has weight 0.

In case x has four neighbours, the two neighbours which are linked to
x by diagonals must be of two different colours which are also different
from the colour of x. In particular, both these diagonals have value 0.
Therefore, x is incident with three triangles of the same sign and the
weight p(x) is 0 (mod 3).

Lemma 1.7. Let (T, ε) be a signed triangulation of P and x a vertex
of P . If x has no two neighbours of the same colour, then x has 2 or 3
neighbours and the weight p(x) of x is not 0.
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Proof. It is clear that x can only have 2 or 3 neighbours as if there are
more, there would be at least two of them with the same colour. In case
x has only two neighours, it is incident with only one triangle and so
p(x) is 1 or 2 (mod 3).

So assume that x has three neighbours. In the quadrilateral spanned
by x and its three neighbours, T has a diagonal connecting x with the
fourth vertex, say y. The vertices x and y have to be of different colour
and so all four vertices of this quadrilateral are of different colours. Hence
the diagonal xy has value 0. So the two triangles at x are of the same
sign and the weight p(x) is in {1, 2} mod 3.

Lemma 1.8. Let (T, ε) be a signed triangulation of a polygon P . Let x
be a vertex of P . Then p(x) = 0 if and only if its two neighbours on P
have the same colour.

Proof. It is enough to consider the full subgraph of the triangulated
polygon induced by x (it consists of x, of all vertices connected with x
and of all boundary edges and diagonals connecting them). The idea is
to use induction on the degree of the vertex x.

(1) If x has no two neighbours of the same colour, then x has degree
2 or 3 and p(x) ̸= 0 by Lemma 1.7.

(2) If the two neighbours of x on the polygon are the only neighbours
of x with the same colour, then x has degree 3 or 4 and p(x) = 0 by
Lemma 1.6.

With (1) and (2) we have covered all cases where x has degree 2 or 3
(in degree 3, if there are vertices of the same colour among the neighbours
of x, they have to be on the boundary, for a colouring to be valid).

So the result holds for vertices x of degree ≤ 3.

(3) It remains to check the general situation. Let y1, y2, . . . , yr be
the neighbours of x, with y1 and yr being along the boundary and where
r ≥ 4. See left hand picture of Figure 18.

Since r ≥ 4, there are vertices among the yi of the same colour. Pick
yi, yj , i < j − 1 of the same colour such that there are no two vertices
of the same colour among yi+1, . . . , yj−1. Consider the triangulated sub-
polygon on the vertices x, yi, yi+1, . . . , yj . Using the same argument as
in Lemma 1.6, we find that either j = i + 2 or j = i + 3 and that the
triangles incident with x and that p(x) = 0 in this subpolygon (there are
either two triangles of opposite signs or three triangles of the same sign).

We then identify yi with yj , getting a new polygon P ′, reducing the
degree of x in it, see right hand side of Figure 18. So in the polygon
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x

y1

y2

yr

yr−1

yj

yi

x

y1
y2

yr

yr−1

yj ≡ yi

Figure 18: The neighbourhood of x in P and in P ′

P ′, the weight of x is 0 if and only if the two neighbours y1 and yr on
the boundary have the same colour. Since the region between yi and yj
contributes by 0 to the weight, the claim holds.

Proof of ⇐= of Theorem 1.5. Assume that there exists a polygon P and
two triangulations (T, v) and (T ′v′) of P which provide a counterexample.
Let P be minimal with this property. The polygon P has at least 5
vertices (one can check that the theorem is true for 4 vertices). So
col(T, v) = col(T ′, v′), this colouring uses all four colours, and there is no
sequence of signed flips between these two signed triangulations. Among
the vertices of T of degree 2 we choose a vertex x with the property
that T − x (the triangulated polygon without the triangle at x) is still
coloured with four colours. Such a vertex always exists as P has at least
5 vertices and among them at least two vertices of degree 2. At least one
of them satisfies this condition (if one removes a degree 2 vertex y and
the remaining colouring only uses 3 colours, one replaces y by another
degree 2 vertex in T ). Since all four colours are present in T − x, there
exists a diagonal with valuation 0.

If there exists a signed triangulation T ′′ in the equivalence class [T ′, v′]
where x has degree 2, then by minimality of the size of P , we know that
for the polygon P − x we have (T − x, v) ∼ (T ′′ − x, v′′). But then
(T, v) ∼ (T ′′, v′′) and the latter is in the equivalence class of (T ′, v′), so
(T, v) ∼ (T ′, v′), a contradiction.

So we can assume that x has degree ≥ 3 in every triangulation in
[T ′, v′].

We partition this equivalence class into two sets T1 and T2. We will
show that these are both empty, thus proving that no counter-example
to the implication ⇐ exists.

We define T1 to be the set of all signed triangulations in [T ′, v′] having
a diagonal of value 0 incident with x. The set T2 are the ones where every
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diagonal at x has value 1. These are the signed triangulations which are
alternating on the subpolygon induced by x and all its neighbours in T ′.
(Since the degree of x is at least 3 for any signed triangulation in [T ′, v′],
there is always at least one diagonal at x).

Claim: T1 is empty:
From the elements of T1 choose a signed triangulation (T ′′, v′′) where
x has minimal degree (this degree is ≥ 3 as we have seen). The two
neighbours of x (along the boundary of the polygon) are adjacent in T
(as x has degree 2 in T ) and so have different colour. By Lemma 1.8,
this means that p′′(x) ̸= 0, where p′′ is the weighting of (T ′′, v′′). This
weighting is the same as that of (T ′, v′) and as that of (T, v) as their
colourings are the same. If there is a diagonal of value 1 incident with x,
say xyk (for some k), we flip a diagonal with value 0 next to this diagonal.
Then the diagonal xyk has value 0. In this new triangulation, the degree
of x has gone down by one and we reach a contradiction. So all diagonals
at x must have value 0. We flip the first such diagonal at x (e.g. going
clockwise through these diagonals). The result is a triangulation where
either x has degree 2 (contradicting that the vertex x has degree > 2
for all elements of [T ′, v′]) or it has degree 3 and no diagonal of value 0
incident with it, implying that p′′(x) = 0 (a contradiction to p′′(x) ̸= 0)
or the resulting triangulation is an element of T1 where x has smaller
degree. Figure 19 illustrates the first two of these cases. In all three
cases, this leads to a contradiction. Therefore, T1 is empty.

Claim: T2 is empty:
Recall that the signed triangulation of the subpolygon induced by x and
its neighbours in T ′ is alternating (all diagonals at x have value 1). For
any (Q, ε) an element of T2, we write P (Q) the maximal alternating
subpolygon (maximal by inclusion) which contains x and its neighbours.
Let (T ′′, v′′) be an element of T2 which minimizes the size of P (T ′′). As
P (T ′′) is maximal as alternating signed polygon, the boundary edges of
P (T ′′) which are diagonals in the original triangulated polygon have to
have value 0. Since col(T ′′, v′′) = col(T ′, v′) and all four colours appear,
there exists at least one diagonal of value 0 (so such a boundary edge of
P (T ′′) has to exist). If we flip this diagonal, we obtain a new triangula-
tion S. If this diagonal is incident with two edges (two diagonals or one
diagonal and a boundary edge) at x, S belongs to T1 (see Figure 20 for
an illustration). However, T1 is empty.

Otherwise, S belongs to T2 with P (S) smaller than P (T ′′) (see Fi-
gure 21 for an illustration), also a contradiction. So T2 is empty.
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Figure 19: Examples where x becomes a vertex of degree 2 respectively
of degree 3.
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Figure 20: Example with S ∈ T1
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Figure 21: Example with S ∈ T2
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2. Connected components of flip graphs

In this appendix, we describe the connected components of the 2-coloured
flip graphs of Pn+2 for n ≤ 6. We omit the isolated vertices.

� n = 2. There is only one type of (non-trivial) connected compo-
nents.

◦ ◦

� n = 3. There is only one type of connected components.

◦ ◦ ◦

� n = 4. There are four different shapes of connected components.

◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦

◦
◦ ◦ ◦ ◦

◦
◦

◦ ◦ ◦

� n = 5. The seven shapes of the different connected components
are:

◦
◦ ◦
◦ ◦ ◦
◦ ◦ ◦ ◦ ◦ ◦

◦
◦
◦ ◦
◦ ◦ ◦
◦ ◦ ◦ ◦ ◦

◦
◦ ◦
◦ ◦ ◦
◦ ◦ ◦ ◦

◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦

◦
◦ ◦
◦ ◦ ◦
◦ ◦
◦

◦
◦ ◦ ◦ ◦
◦

� n = 6. The 26 shapes of the different connected components are:
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◦

◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦

◦ ◦
◦ ◦ ◦

◦
◦ ◦

◦
◦

◦ ◦

◦
◦ ◦

◦ ◦ ◦
◦ ◦ ◦ ◦ ◦ ◦

◦
◦ ◦

◦ ◦ ◦
◦ ◦

◦
◦

◦
◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦

◦ ◦ ◦ ◦ ◦ ◦

◦ ◦
◦ ◦ ◦ ◦
◦ ◦ ◦ ◦
◦ ◦

◦
◦

◦ ◦ ◦
◦ ◦ ◦ ◦ ◦ ◦ ◦

◦
◦

◦
◦ ◦
◦ ◦ ◦
◦ ◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦

◦

◦
◦
◦
◦ ◦
◦ ◦ ◦
◦ ◦ ◦ ◦ ◦ ◦
◦ ◦ ◦
◦ ◦
◦
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◦
◦
◦ ◦
◦ ◦
◦ ◦ ◦

◦
◦ ◦ ◦

◦
◦ ◦ ◦ ◦ ◦ ◦

◦
◦

◦
◦
◦
◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦
◦

◦ ◦
◦ ◦ ◦

◦
◦ ◦ ◦

◦
◦ ◦ ◦

◦
◦
◦

◦
◦ ◦ ◦ ◦ ◦ ◦ ◦

◦
◦
◦

◦
◦

◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦
◦

◦ ◦ ◦ ◦ ◦
◦ ◦
◦

◦
◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦ ◦
◦ ◦ ◦

◦ ◦ ◦
◦ ◦

◦

◦
◦ ◦ ◦ ◦
◦ ◦ ◦ ◦
◦ ◦ ◦

◦ ◦ ◦

◦
◦ ◦ ◦

◦ ◦ ◦ ◦ ◦
◦ ◦ ◦

◦
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◦
◦ ◦ ◦ ◦ ◦

◦ ◦ ◦ ◦ ◦
◦

◦
◦ ◦
◦
◦ ◦
◦ ◦ ◦
◦ ◦ ◦ ◦
◦ ◦ ◦
◦ ◦
◦

◦
◦ ◦ ◦ ◦ ◦

◦

◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦
◦ ◦ ◦

◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦
◦ ◦
◦

◦ ◦ ◦
◦ ◦ ◦

◦ ◦ ◦
◦ ◦ ◦

◦ ◦ ◦
◦ ◦ ◦

◦ ◦ ◦
◦ ◦ ◦

◦ ◦ ◦
◦ ◦ ◦

◦ ◦ ◦
◦ ◦ ◦

◦ ◦ ◦
◦ ◦ ◦ ◦

◦ ◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦
◦ ◦ ◦

◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦
◦ ◦ ◦
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◦
◦ ◦ ◦ ◦

◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦
◦ ◦ ◦ ◦

◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦

◦ ◦ ◦
◦ ◦

◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦

◦ ◦ ◦ ◦
◦ ◦ ◦

◦ ◦ ◦
◦ ◦ ◦

◦ ◦ ◦
◦ ◦ ◦ ◦

◦ ◦ ◦ ◦
◦ ◦ ◦ ◦

◦ ◦ ◦
◦ ◦ ◦ ◦

◦ ◦ ◦
◦

◦ ◦ ◦
◦ ◦ ◦ ◦

3. Codes for component sizes

The following tables show the number of connected components for the
flip graph, for the square, pentagon, hexagon, heptagon, octagon, and
nonagon. They were found using a computer search, after generating all
triangulations using the same recursive method as Figure 2, and then
testing which pairs differ by a flip.
Square: n = 2
size 1 2
number 4 2

Pentagon: n = 3
size 1 3
number 10 10

Hexagon: n = 4
size 1 4 5 6
number 28 16 12 12



K. Baur, D. Bergerova, J. Voon, L. Xu 33

Heptagon: n = 5
size 1 5 6 9 10 12
number 84 14 28 42 14 42

Octagon: n = 6
size 1 6 7 8 10 12 13 14 15 16 18
number 264 16 16 16 16 64 8 8 16 32 32

Octagon, continued
size 19 20 21 22 23 26 28 29 32 34 36
number 64 40 16 32 32 16 8 16 2 8 4

Nonagon
size 1 7 9 13 15 17 18 21 23 27 28 29
number 858 18 36 36 54 36 36 18 72 126 72 6

Nonagon, continued
size 31 32 33 34 35 36 37 38 41 42 44
number 54 36 18 72 18 108 36 72 36 36 36

Nonagon, continued
size 45 46 53 55 57 59 61 66 70 71 79
number 108 36 54 36 18 54 36 36 36 18 6
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