
This is a repository copy of Secured cost-effective anonymous federated learning with 
proxied privacy enhancement for personal devices.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/id/eprint/225850/

Version: Accepted Version

Article:

Brennaf, M., Yang, P. orcid.org/0000-0002-8553-7127 and Lanfranchi, V. (2025) Secured 
cost-effective anonymous federated learning with proxied privacy enhancement for 
personal devices. IEEE Internet of Things Journal. ISSN 2327-4662 

https://doi.org/10.1109/JIOT.2025.3569200

© 2025 The Author(s). Except as otherwise noted, this author-accepted version of a 
journal article published in IEEE Internet of Things Journal is made available via the 
University of Sheffield Research Publications and Copyright Policy under the terms of the 
Creative Commons Attribution 4.0 International License (CC-BY 4.0), which permits 
unrestricted use, distribution and reproduction in any medium, provided the original work is
properly cited. To view a copy of this licence, visit 
http://creativecommons.org/licenses/by/4.0/

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse 

This article is distributed under the terms of the Creative Commons Attribution (CC BY) licence. This licence 
allows you to distribute, remix, tweak, and build upon the work, even commercially, as long as you credit the 
authors for the original work. More information and the full terms of the licence here: 
https://creativecommons.org/licenses/ 

Takedown 

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by 
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request. 

mailto:eprints@whiterose.ac.uk
https://doi.org/10.1109/JIOT.2025.3569200
https://eprints.whiterose.ac.uk/id/eprint/225850/
https://eprints.whiterose.ac.uk/


SPECIAL ISSUE ON DISTRIBUTED EDGE INTELLIGENCE EMPOWERED INTERNET-OF-VEHICLES 1

Secured Cost-effective Anonymous Federated

Learning with Proxied Privacy Enhancement for

Personal Devices
Muhammad S. Brennaf, Po Yang, Vitaveska Lanfranchi

AbstractÐPrivacy concerns have escalated due to companies’
misuse of user data and the occurrence of data breaches and leaks
worldwide. Uploading personal data from personal devices to a
central server over the network poses a danger in obtaining an
inference. Hence, a different approach is needed for this scenario.
Federated learning enables collaborative training on devices
while maintaining the privacy of user data. Federated learning
originally aimed to address privacy concerns but is vulnerable
to certain privacy attacks. Although certain privacy-enhancing
strategies are available, researchers are actively seeking a more
effective option. This research suggests two privacy improvement
methods using proxies as a better option for personal devices in a
federated learning environment, achieving good performance and
cost effective without accuracy loss. We studied and assessed how
the methodology compared to other methodologies. Finally, we
discussed how this proposed technique can address the limitations
of other techniques and possible collaborations with them.

Index TermsÐencryption, federated learning, privacy, proxy

I. INTRODUCTION

O
N-DEVICE training and inference have gained popular-

ity as a prevailing trend, such as using IoT devices to

obtain inference. Nevertheless, this pattern also gives rise to

a research dilemma in which data stored on personal devices

are often segregated due to many privacy concerns. Casually

uploading a user’s data for the purpose of making an inference

can be subject to various risks, such as security breaches,

violation of privacy regulations, or failure to ensure privacy

protection for sensitive information. Alternatively, if we train

an ML model on the device, it may result in erroneous infer-

ence because of its limited data and computational capability.

Federated learning, which was proposed by [1], offers a

way out from these obstacles. By engaging in its collaborative

learning, users can train together to generate a superior global

model and attain a high level of accuracy. The utilisation of ag-

gregation in federated learning empowers users to privately do

machine learning tasks on their own gadgets, hence obviating

the necessity of transmitting private information to a central

server. Nevertheless, the technique is not completely secure

from privacy attacks. [2] shows that a server employing a

membership inference attack was able to determine the identity

of a client by analysing their gradient changes.

Several privacy enhancement algorithms have been sug-

gested to add privacy protection. These include 1) Differential

The authors are with the School of Computer Science, The University
of Sheffield, Sheffield, S10 2TN UK e-mail: msbrennaf1@sheffield.ac.uk;
po.yang@sheffield.ac.uk; v.lanfranchi@sheffield.ac.uk.

privacy [3], which involves noises to protect personal infor-

mation; 2) Secure aggregation [4], which allows to securely

aggregate model parameters; and 3) Homomorphic encryption

[5], which enables calculations to be performed on encrypted

data. Nevertheless, there are certain limitations associated

with them in specific scenarios, such as differential privacy’s

accuracy loss [6], secure aggregation’s dropout concern [7],

and homomorphic encryption’s extensive computation [8], [9].

This work introduces a novel approach called anonymous

federated learning with proxied privacy enhancement, which

serves as an alternate method to enhance privacy in federated

learning environments. This method allows for collaborative

learning while maintaining privacy, as it ensures that the server

does not gains knowledge about the model updates’ source.

This is particularly useful for personal devices with unique

properties. The key contributions we have made include:

• We propose two novel proxy-based privacy-preserving

ways that leverage proxy-based anonymisation to ensure

privacy in anonymous federated learning. The methods

enable providing strong security guarantees, low compu-

tational cost, and no impact on model accuracy, making

them practical for resource-constrained IoT devices.

• We conduct an extensive empirical evaluation of robust-

ness, scalability and efficiency of our proposed methods

across multiple real-world datasets and FL scenarios. Our

results demonstrate a significant reduction in communi-

cation overhead and memory usageÐreducing client-side

storage by up to 60%, while maintaining model accuracy.

• We analyse the interoperability of our methods with dif-

ferential privacy, secure aggregation, and homomorphic

encryption, showing how these methods can be combined

to enhance security and usability in FL environments.

Our proposed approach offers a practical and deployable

privacy-preserving solution for federated learning in IoT and

edge computing contexts by balancing privacy, efficiency, and

scalability. We also tackle key privacy risks in FL, such as col-

lusion attacks, client tracing, and content integrity abuses. Our

proposed solution effectively neutralises these threats, ensuring

privacy protection while maintaining system performance.

II. BACKGROUND RESEARCH

A. Federated Learning

Google introduced federated learning (FL) [1], [10], [11]

as an innovative method for addressing issues related to data

security and privacy. Federated learning is a decentralised



SPECIAL ISSUE ON DISTRIBUTED EDGE INTELLIGENCE EMPOWERED INTERNET-OF-VEHICLES 2

approach to ML where multiple users with distributed data

work together to address an ML task [2], [12]. This framework

operates in a collaborative manner, with the training and

testing procedures taking place on the client’s side rather than

on the server’s side. Initially, the server will select a subset of

clients and allocate them a global model for a certain task.

Subsequently, each client trains the model on their device

by utilising their respective private records. Later, the client

transmits their model updates, not the data, to the server. The

server aggregates the incoming parameter updates and then

generates a new global model. Following that, the process is

iterated for another cycle until it achieves a specific threshold

or fulfils the requirements, such as achieving high accuracy.

B. Further Privacy Protections

Essentially, federated learning is designed to tackle the

privacy issues that users may have. However, the studies

of [13] and [14] demonstrate that relying solely on feder-

ated learning does not sufficiently ensure protection against

privacy breaches, namely membership inference attacks [2],

[15]. Three commonly used privacy-preserving techniques are

available to add more privacy guarantee to the FL users:

1) Differential Privacy: Proposed by [3], this method em-

ploys a contrasting approach to safeguarding data. While

traditional methods aim to keep data completely confidential,

differential privacy adopts a contrasting approach by permit-

ting the disclosure of data with a certain level of added

noise. The goal is to offer a general comprehension without

specifying details: Pr[A(D) ∈ S] ≤ eϵPr[A(D′) ∈ S]
[18] mentioned that conditions for differential privacy

are when ªϵ-differential privacy is satisfied by a randomised

procedure A(D) when all datasets D and D′, which vary by

just a record, as well as all sets S ∈ R, which R is the A range

and ϵ is a non-negative value that represents the privacy budget

score.º Thus, no particular information in the collection has a

major effect on the algorithm’s output distribution.

This strategy has numerous benefits, including the ability to

facilitate sharing and establish a privacy budget. Nevertheless,

in certain applications, such as healthcare, where accuracy and

privacy are of utmost importance, differential privacy may not

be the preferred approach due to the noised inference and

accuracy drawback. Additionally, there is a potential for a

stationary user base to experience data leakage [16], [17].

2) Secure Aggregation: The methodology proposed by [4]

utilises Shamir’s Secret Sharing [19] as its fundamental basis.

The objective is to ensure that the server only has access

to aggregated data rather than individual contributions. This

technique allows clients to confidentially exchange a secret,

such as a model update, with the aggregator. The aggregator,

however, gains no knowledge other than the aggregate value.

This technique becomes a favourable choice to consolidate

model parameters securely in machine learning. However, the

secret-sharing aspect of Secure Aggregation poses a scaling

difficulty. An increase in the number of clients results in a

corresponding increase in the level of complexity [20]. Power-

limited equipment, including personal gadgets, might also face

issues related to synchronisation and dropout [21]. Moreover,

collusion might occur when the server conspires with some

clients to obtain other clients’ confidential information [7].

3) Homomorphic Encryption: The technique described by

[5] intends to mitigate the risk of privacy breaches during

processing of user data. Most of the confidential information

are encrypted, but occasionally it needs to be decrypted to

perform some operations, posing a potential privacy threat to

the original data. Homomorphic encryption was specifically

developed to enable the processing of data while maintaining

its encrypted state, considered to be the ’Holy Grail’ in cryp-

tography [22]. Nonetheless, Fully Homomorphic Encryption is

characterised by its high computing demands [23], resulting

in processing speeds that are 1,000 to 1,000,000 times slower

than similar plaintext operations and potentially as low as

one operation per second [9]. Furthermore, calculation in a

complex FL aggregation with distinct user public keys adds

more challenge to it. Enabling FHE on portable and personal

devices remains problematic due to the limited resources

available and is currently regarded as unfeasible [8], [24].

C. Additional Privacy Guarantee Through Anonymity

Oblivious DNS over HTTPS (ODoH) [25] is a cutting-edge

internet technology that aims to safeguard user privacy while

maintaining optimal performance. Research conducted by [26]

in Fig. 1 demonstrates that it exhibited strong performance in

real-life simulations. In comparison to other privacy-focused

DNS alternatives, the left image illustrates that ODoH reduces

query time by fifty percent or more. The figure on the right

indicates that ODoH consistently performs well under both

normal and low-latency settings. These aspects are significant

as privacy and performance seldom coexist harmoniously.

Fig. 1. Network response time (left) and impact (right) of ODoH [26]

Federated learning with proxy, drawing inspiration from

ODoH, holds the potential to provide clients with enhanced

anonymity and stronger privacy assurances. In contrast to ear-

lier privacy enhancement methods, this method is anticipated

to be devoid of any accuracy drawbacks, dropout problems,

or computationally burdensome disadvantages. The primary

function of the proxy is to obfuscate the sources’ identity.

This measure will mitigate adversary attacks, such as a reverse

engineer attack, to disclose the origin through the content of

the transmitted data. The underlying principle is that the server

possesses knowledge of the needed data (i.e. model updates)

but lacks awareness of the origin. Conversely, the proxy is

aware of the source’s identity but not the content. In this

context, the content is concealed using an encryption method.



SPECIAL ISSUE ON DISTRIBUTED EDGE INTELLIGENCE EMPOWERED INTERNET-OF-VEHICLES 3

Several studies have been conducted on the implementation

of anonymisation techniques in the field of ML. [25] devised a

technique for obfuscating user identity during internet access

by utilising a fortified intermediary server within an encrypted

transaction. [27] presented a method for pseudonymisation in

Recommendation-as-a-Service (RaaS) that involves using two

layers of proxy. ProxyFL [28] facilitates the exchange of mod-

els via proxy in a decentralised FL system while also including

differential privacy to enhance privacy. FedKAD by [29] offers

an FL framework that utilises local Knowledge Aggregation

on high-level feature maps and Knowledge Distillation.

III. METHODOLOGY

We utilise a reliable intermediary proxy in our experiments

to facilitate anonymous federated learning. To bolster the

safety of information and prevent the proxy from accessing the

content, we utilise encryption techniques such as symmetric

and asymmetric encryption. Symmetric encryption utilises

one key for both the encryption and decryption processes.

Conversely, asymmetric encryption utilises a pair of keys

consisting of a public key and also a private one. Symmetric

encryption is renowned for its superior speed and efficiency

in computation, while asymmetric encryption is acknowledged

for its heightened level of security and conveniency in distribu-

tion. Furthermore, a compression technique may be employed

to reduce the communication cost, particularly for personal

devices with restricted bandwidth. This work introduces two

approaches: Two-Stage Communication (2SC), which follows

a server-client-server pattern, and Three Stage Communication

(3SC), which follows a client-server-client-server pattern.

A. Two-stage Communication (2SC)

Fig. 2. Two-stage communication anonymised federated learning

Fig. 2 and Algorithm 1 describe Two-Stage Communication.

The aggregate function is based on the original FedAvg

algorithm [10]. In general, the server generates a public key

(PK) and a secret key (SK). The server selects certain clients

for the training round and sends the PK along with the global

model to the clients. The client trains the model on their local

device and sends their encrypted (i.e. using the given PK)

model update to the server through an arbitrary proxy. The

Algorithm 1 Two-Stage Communication. The users

are denoted by U , indexed by u, and anonymised into x. The

server determines the selection of the aggregation function and

the specifications for model training.

Run on the server:

initialise gm0, PK, and SK

for each round i = 1, 2, ... do

Ui ← (arbitrary set of clients)

for each client u ∈ Ui concurrently do

ex
i+1 ← UserTrain(u, gmi, PK)
gmx

i+1 ← decrypt(ex
i+1, SK)

end for

gmi+1 ← run an aggregate function for all gmx

i+1

end for

UserTrain(u, gm, PK): // Run on client u

gm← run a model training locally

e← encrypt(gm,PK)
P ← (an arbitrary proxy)

S ← (the server’s address)

ProxyForward(P, e, S)

ProxyForward(P, e, S): // Run on proxy P

remove source’s identity

forward e to S

proxy then strips the source’s identity before forwarding the

content to the destination. Subsequently, the server aggregates

the decrypted (i.e. using the SK) incoming model update to

create a new global model and be ready for the next round.

Users are accountable for choosing a reliable or arbitrary

proxy to minimise the chances of collusion between the proxy

and server. Validation of each request is required by both the

server and proxy. Subsequently, a response is expected from

them to indicate the success or failure of a request. In the

beginning of the process, the server can send the global model

and their public key directly to the clients for various reasons:

1) Redundancy: The server does not require the necessity

to hide their identity from the clients.

2) Reduce collusion risk: Selecting specific proxies by the

server can heighten the likelihood of collusion between

them and possibly compromise the user’s identity.

3) Prevent adversary attacks: Proxy’s unawareness of the

server’s public key serves as a safeguard against any

manipulation or falsification to the transmitted data.

B. Three-stage Communication (3SC)

Unlike the 2SC approach, the 3SC scheme initiates with

a request from voluntary clients to the server, explained by

Fig. 3 and algorithm 2. The server first creates a training

round key pair (PKs and SKs) and shares the public key

PKs with all clients. Eligible clients can choose whether or

not to participate in the training session and the volunteers

create a key pair (PKu and SKu). The client then sends

their encrypted (using the server’s PKs) public key (PKu) to

the server through an arbitrary proxy. The proxy removes the



SPECIAL ISSUE ON DISTRIBUTED EDGE INTELLIGENCE EMPOWERED INTERNET-OF-VEHICLES 4

Fig. 3. Three-stage communication anonymised federated learning

Algorithm 2 Three-Stage Communication. The users

are denoted by U , indexed by u, and anonymised into x. The

server determines the selection of the aggregation function and

the specifications for model training.

Run on the server:

initialise gm0, PKs, and SKs

for each round i = 1, 2, ... do

initialise PKi, and SKi

Ui ← (arbitrary set of voluntary clients)

for each client u ∈ Ui concurrently do

ePKu ← RequestModel(u, PKs)
PKu ← decrypt(ePKu, SKs)
eGMu

i
← encrypt(gmi, PKu)

ex
i+1 ← UserTrain(u, eGMu

i
, PKi)

gmx

i+1 ← decrypt(ex
i+1, SKi)

end for

gmi+1 ← run an aggregate function for all gmx

i+1

end for

RequestModel(u, PKs): // Run on client u

initialise PKu and SKu

e← encrypt(PKu, PKs)
P ← (an arbitrary proxy)

S ← (the server’s address)

ProxyForward(P, e, S)

UserTrain(u, eGMu, PKi): // Run on client u

gm← decrypt(eGMu, SKu)
gm2 ← run a model training locally using gm

e← encrypt(gm2, PKi)
P ← (an arbitrary proxy)

S ← (the server’s address)

ProxyForward(P, e, S)

ProxyForward(P, e, S): // Run on proxy P

remove source’s identity

forward e to S

client’s identity before sending the content to the target. Once

receiving it, the server creates a model training key pair (PKi

and SKi), then send the PKi and current global model in

encrypted form (using client’s PKu) back to the client through

the proxy. Using SKu, the client decrypt the response, train the

global model on their device, and send the encrypted (using

server’s PKi) model update to the server through a trusted

proxy. Subsequently, the steps are similar to the 2SC.

While the 2SC provides simpler, faster, and less expense in

computation and communication, the later offers more secu-

rity through stronger encryption measures and can withstand

against dropout, participation abuse, and client collusion.

IV. EXPERIMENTS

Several experiments are carried out to understand how the

methodology performs in different test scenarios. Each exper-

iment will be evaluated according to the purpose, primarily

in computation and communication efficiency to suit personal

restricted device conditions. While accuracy is measured, the

goal is not to achieve high accuracyÐrather to show there

is no accuracy drawback compared to the basic FL. We do

not do a thorough examination of memory utilisation, as our

objective is to gain a broader insight of implementation on

constrained personal devices. The whole test report can be

accessed through: https://s.id/ieeeiot.

A. Interoperability and Compatibility Test

This set of experiments aims to ensure compatibility and

interoperability of the methodology across different scenarios:

running in PC, in mobile device, with CPU only, with GPU,

and comparison between vanilla (basic) FL, proxied FL with

symmetric encryption, and proxied FL with asymmetric en-

cryption. The tests are simulated using instances of modern

web browsers, which have extensive compatibility across

various platform and sufficient access to utilise the machine’s

resources, such as memory, sensors, and GPU [42]. The proxy

and server will operate on a PC, while the clients will operate

on a smartphone and a PC, representing personal devices.

In our experiments, we utilise TensorFlow.js1 and DISCO.js

[30] for the learning platform backbone, FedAVG [10] for

the aggregation algorithm, and an optimised CNN model

by Chris’s [31] with MNIST from Kaggle dataset1 for the

training rounds. Symmetric AES and asymmetric key pair1

are selected for encryption scenarios. We employ around 10

mainstream web browsers, including Chrome, Edge, Firefox,

as well as their mobile version (e.g. Chrome Mobile), and their

developer version (e.g. Firefox Nightly), added with Samsung

Mobile. Testing on mobile phone involves a smaller set of data

compared to the PC in order to generate faster results.

Based on the results shown in Tables I and II, the accuracies

are mainly consistent and preserved due to no data modifi-

cation nor noise introduced. No package lost was recorded

(package lost results in decryption failure). The amount of time

required for all mode operations is generally similar, except on

GPU tests. Moreover, the encrypteds are slightly 2-6% slower

but cost 1.5 to 2.4 in bandwidth compared to the basic FL.

1https://gist.github.com/senoyodha/9e964ec18155ebecef14ea21a539430f



SPECIAL ISSUE ON DISTRIBUTED EDGE INTELLIGENCE EMPOWERED INTERNET-OF-VEHICLES 5

TABLE I
VANILLA AND PROXIED FEDERATED LEARNING ON PC

PC Trn. Val. Test Time Comm.

Vanilla (CPU) 97.9% 99.5% 99.6% 657s 236.2MB

Vanilla (+GPU) 97.7% 99.2% 99.6% 294s 236.1MB

AES (CPU) 98.1% 99.4% 89.9% 676s 472.4MB

AES (+GPU) 97.6% 99.3% 99.6% 330s 472.4MB

Key Pair (CPU) 98.0% 99.2% 99.6% 683s 557.8MB

Key Pair (+GPU) 97.5% 99.1% 99.6% 456s 557.8MB

TABLE II
VANILLA AND PROXIED FEDERATED LEARNING ON MOBILE DEVICE

Mobile Trn. Val. Test Time Comm.

Vanilla 94.7% 99.2% 95.2% 1,375s 75.0MB

AES 96.5% 99.3% 98.6% 1,441s 149.9MB

Key Pair 96.8% 99.3% 98.9% 1,431s 177.0MB

In summary, excluding communication costs, utilising an

asymmetric key pair would be the optimal choice for a PC for

a superior security. Conversely, it would be more suitable to

employ AES or less complex encoding method for bandwidth

limited mobile cases, while maintaining its privacy. Alterna-

tively, employing more robust encryption methods along with

compression can provide enhanced security and efficiency.

Remarkably, we were unable to deploy the widely used

RSA encryption due to multiple constraints. Crypto.js1 is

primarily intended for server-side NodeJS usage rather than

being compatible with client-side browsers. As a result, the

function to produce the key pair cannot be accessed from

the client side. Additionally, employing the Web Crypto API2

is recommended for cryptographic implementation in this

scenario, yet, its functionality is limited to a secure environ-

ment. Due to a local host being utilised, the installation of

trustworthy SSL certificates is not feasible. Lastly, the gradient

update message surpasses the maximum permissible message

size. While the gradient update size is around 1.88MB, the

maximum allowable message size is 190 bytes in RSA 2048

with SHA-256 encoding [33], which is 10,000 times larger.

B. Compression Against Encryption Test

Encryptions applied provides heightened security, yet, the

data size would increase due to the transformation. This set of

tests aims to reduce the sent data size in order to save user’s

bandwidth by applying a compression layer. The assessment

will be evaluated according to its data size and speed.

Several compression algorithms are compared including LZ,

Pako, FFlate, UZIP, and LZMA with all possible setups (e.g.

string, deflate, gzip, zlib, and encoding compressions) [34].

As for encryption, we utilise Crypto’s symmetric AES and

TweetNaCl’s asymmetric PK (based on the Poly1305 one-time

authenticator with the XSalsa20 stream cypher)1. Similar to

earlier, we employ browser instances to represent clients.

Fig. 4 and 5 display the outcomes of the second experiment,

examining data size, training time, and conversion time. This

experiment only completed one training iteration to produce a

2https://developer.mozilla.org/en-US/docs/Web/API/Web Crypto API

Fig. 4. Data size comparison (encryption against compression)

Fig. 5. Training and conversion time comparison (encryption against browser)

single model update. No Comp. denotes uncompressed data,

whereas No Enc. denotes unencrypted model updates. We

noticed that all compression setups produced convergent size

outputs across all tested browsers, while there are discrepan-

cies in conversion speed. Although encryptions increased data

size by up to 136%, applying LZ-string compression reduced

the data size to even smaller than the original raw data.

Remarkably, other compressions beside LZ-string did not

perform well on PK cases. AES outputs a JSON object and PK

produces data stream bytes. LZ-string generates a transmuted

string, a serialised data that is converted to a higher Unicode,

while the others typically output bytes, resulting in ineffe-

ciency in reducing data size due to byte-to-byte conversion.

On Fig. 5, we performed 45 compression scenarios with

PK but only 24 setups with AES due to data type restrictions.

Hence, the conversion duration is not to be compared for both

encryptions. The raw data was used during the training phase.

Thus, encryptions and compressions did not affect the training

duration, resulting in overlapping lines on AES and PK

trainings. All browsers perform consistently on both training

times, except Chrome Canary. Nonetheless, AES conversion

time is converged in all instances. Notably, Firefoxs cut PK

conversion time by up to 52% compared to other browsers.

C. Measurement of Memory Usage

From the previous experiments, we can see that achieving

the same level of communication cost to the original FL

without accuracy drawback is possible. However, employing

additional techniques on top of the FL framework could



SPECIAL ISSUE ON DISTRIBUTED EDGE INTELLIGENCE EMPOWERED INTERNET-OF-VEHICLES 6

compromise the performance. This set of experiments intends

to evaluate the computation cost by measuring the memory

usage. Taking performance into consideration, we employ the

LZ-string compression and browser’s performance measurer.

Fig. 6. Comparison of conversion time (encryption with compression)

Fig. 7. Comparison of memory heap size (encryption with compression)

Fig. 6 and 7 depict the test results, which spanned the

entire training process and involved numerous combinations of

proxy, encryption, and compression. We assessed conversion

time, training duration, and the cost of communication (in-

coming and outgoing) and computing (memory heap metrics).

We exclude communication time from our assessment

because many operations operate asynchronously, enabling

the machine to execute instructions concurrently with data

transformation and transmission. The research aimed to focus

on the client side, specifically measuring memory utilisation

and bandwidth. We did not document processing time on the

server and proxy sides to maintain anonymity, as it should not

associate a specific request with a particular client.

While using compression can save half of the bandwidth,

it prolongs the overall training time by threefold, mostly

because its procedure takes longer than encryption. Due to

local network operation, emitted data size does not impact

overall time linearly. Further data translations from JSON

objects to data stream bytes, and vice versa, occurred on AES

with LZ-string, rendering it the slowest among the five setups.

Fig. 7 displays the memory consumption during the conver-

sion phase (data transmutation, encryption, and compression),

reversion phase (decryption and decompression), the sum of

both phases and upon completion of the full round. Overall,

AES consumes less memory than PK, while compression

utilises more memory during the conversion phases than

during the reversion phase. Employing encryption will increase

memory utilisation, however, by applying compression we can

reduce the memory heap usage by more than half.

Overall, symmetric AES consumes less memory than asym-

metric PK, while compression utilises more memory in the

conversion phases than in the reversion phase. It is expected

that applying encryption will increase memory usage com-

pared to the original one. Nevertheless, applying compression

can help to cut the memory heap usage by more than half.

Remarkably, in the compression case, the AES encryption

process led to a decrease in memory usage during the reverse

operation, suggesting that the initial encryption and compres-

sion processes required substantial memory but then released

some upon reversal. Suming up conversion and reversal heap

sizes, the utilisation of compression on both encryptions used

memory that was relatively similar, differing by 25.3%. At the

conclusion of the training, memory utilisation across all five

setups is comparable, with a standard deviation of 10%.

D. Real Network Test

All prior tests were conducted in a local network; thus, this

experiment aims to assess the performance of the suggested

technique in a real network environment. 48 tests, 12 clients,

represented by browser instances, will interact with a real

server via two arbitrary anonymising proxies on the internet.

TABLE III
PROXIED FL IN LOCAL AND INTERNET ENVIRONMENT

Mode Acc Time Comm. Conv. Heap

AES Local 97.4 111s 27.8MB 22.4% 297.2MB

AES Online 96.9 147s 27.8MB 16.4% 286.7MB

PK Local 97.3 100s 24.8MB 15.0% 275.1MB

PK Online 97.4 126s 24.8MB 11.5% 293.9MB

A total of 48 tests were done, combining AES and PK

encryptions with LZ-string compression in local and online

environments. Table III shows that both local and online

setups for the proposed approach yield roughly similar training

accuracy, communication costs, and heap memory usage. The

main difference is in the training time, with the online setups

took about 26-32% more time than the locals. The internet’s

ratio of conversion time to training time is less than the local

setting’s. This suggests that the network environment, rather

than the data translation process, affects the training’s duration.

E. Scalability Simulation

This fifth set of tests will evaluate the scalability of the

proxied privacy-enhancement, assessing its robustness with

user counts ranging from four to 100. The assessments will be

executed via non-GUI simulations to enhance inference speed.

Fig. 8 and 9 show the average values of 756 simulated

clients, graded relatively (0-100%) to the highest value of

each category. The training duration increases with the rise

in users due to the shared resources in the simulation (not real

devices with dedicated resources). This resource sharing also

affects heap memory usage, which generally exhibits a slight

downward trend. The test with 25 users has heap memory



SPECIAL ISSUE ON DISTRIBUTED EDGE INTELLIGENCE EMPOWERED INTERNET-OF-VEHICLES 7

Fig. 8. Scalability of the proposed method in symmetric AES

Fig. 9. Scalability of the proposed method in asymmetric PK

outliers due to undedicated resource. However, the overall

comparison of heap memory and speed between AES and PK

encryptions are relatively consistent, with PK generally trained

faster and used lower memory compared to AES. The standard

deviation for conversion time is 12.4% in the AES case and

4.2% in the PK case, whereas the communication cost is pretty

similar throughout the tests for both cases. This shows that the

technique yields consistent output irrespective of user scale.

F. Against Other Privacy-Preserving Techniques

The final segment of the experiments aims to compare

the proposed approach with other prevalent privacy enhance-

ments including differential privacy (DP), secure aggregation

(SA), and homomorphic encryption (HE). 120 clients were

employed, applying few configs such as clipping radius (CR),

noise scale (NS), max share (MS), and polymod degree (PD).

Configs were picked to show the trend between them and

the methods. The clipping radius aims to prevent exploding

gradients, whilst the noise scale seeks to perturb data to main-

tain privacy. Both factors affect the accuracy. The maximum

share influences secret sharing’s value among peers. CKKS

with TC128 scheme was used to support float numbers on the

model updates, whereas polymod affects the ring structure for

ciphering. Lastly, our proposed technique was assessed based

on the prior encryptions and compression techniques.

Based on Table IV and Fig. 10, augmenting the clipping

radius and noise scale impaired the accuracy down to 41%. In

the case of secure aggregation, changes in the clipping radius

TABLE IV
COMPARISON OF PRIVACY-PRESERVING TECHNIQUES

Tech. Config Acc Time Comm. Heap

DP CR=0.1, NS=0.1 98.2 313s 236MB 860MB

DP CR=0.5, NS=0.5 41.3 316s 237MB 883MB

SA CR=0.1, MS=1 98 485s 1393MB 164MB

SA CR=0.5, MS=5 97.8 450s 1391MB 200MB

HE CKKS-TC128, 4096 97.5 860s 1949MB 5303MB

HE CKKS-TC128, 32768 97.5 945s 2052MB 5623MB

PC AES, no compress 97.6 218s 472MB 388MB

PC PK, no compress 97.7 282s 558MB 307MB

PC AES, LZ-String 97.9 782s 265MB 266MB

PC PK, LZ-String 97.4 671s 232MB 251MB

Fig. 10. Comparison of privacy-preserving techniques

and max share had minimal impact on accuracy; however, it

increased the heap memory used by 12%. As for homomorphic

encryption, the increase in polymod resulted linearly to train-

ing time, communication cost, and heap memory size. Apply-

ing compression on proxied communication extended training

time but reduced communication cost and heap memory used.

Considering accuracy, only differential privacy has accuracy

drawback. Given the training length, proxied communication

without compression and differential privacy are among the

fastest and can be deemed effective in performance. In terms

of bandwidth, differential privacy and proxied communication

with compression yielded the most efficient outputs, while

other methods incurred costs up to eightfold higher. Lastly

on heap usage, secure aggregation and proxied communica-

tion with compression are regarded as the most efficient in

computation. Based on evaluations, we consider the proxied

communication without compression is the most comprehen-

sive among privacy-preserving methods, exhibiting superior

performance speed and efficiency in communication and com-

putation. Conversely, homomorphic encryption has the slowest

performance and inefficient communication and computation.

V. EVALUATION

A. Mitigating Threats and Risks

1) Accuracy loss: The method does not employ perturbance

or noise, thus, there is no accuracy drawback by default.

Package lost is not seen either in our experiment. Due the

encrypted content being sent, package lost will invalidate the

payload. When it happens, the server will return an invalid

response and the client can resend the data.



SPECIAL ISSUE ON DISTRIBUTED EDGE INTELLIGENCE EMPOWERED INTERNET-OF-VEHICLES 8

2) Server-proxy collusion: Collusion between server and

proxy will undermine the efficacy of anonymisation, exposing

the source’s identity. Server puts bounty for revealed identity is

not uncommon practice. To mitigate this, clients should refrain

from utilising unreliable servers for inference and choose

dependable proxies, with private proxies being preferable.

Clients may also use a distinct proxy for each transmission.

3) Server-client collusion: In some cases, such as secure

aggregation and multi-party computation, a server or aggrega-

tor may conspire with some clients to identify a certain client.

This may occur in 2SC where the server selects participants

and colludes with some counterfeits to determine a specific

client’s updates. To avoid this practice, clients should use the

stronger 3SC technique and avoid employing unreliable server.

4) Client tracing: To trace a client, a server may send

unique public key to each client and try to match the incoming

data with specific decryptor. This adversary can on 2SC

server’s key pair and 3SC model training key pair (server’s

second key). Likewise, the server may also give different

endpoint for each client. This method may jeopardise client

privacy; however, the server may gain some benefits such

as stronger authentication, participation monitoring, dropout

prevention, heterogeneity identification, and imposing training

rules. Nonetheless, this conduct may only be feasible with

few clients due to heavy try-and-match computation. Clients

are advised to ensure the key pair and target URL are public

(not client-specific) and to not reuse previous client’s keys.

Employing a second or third layer of proxies (e.g. Client-Proxy

1-Proxy 2-Server), similar to Tor network, will enhance more

anonymity to the source’s identity, in the sacrifice of speed.

5) Content integrity: A threat may arise in the 2SC ap-

proach if the server sends the key to the client via a proxy

rather than directly. By swapping with their own key, the

proxy can read and alter the transmitted data from both sides.

This may also occur in the 3SC method if the client employs

the same proxy for both the model request and update trans-

missions. Clients are advised to utilise proxies in a rotating

manner, using a distinct proxy for each communication, and

opt for a private or reliable proxy. Using a simple encoding

algorithm that allow the proxy to break should also be avoided.

6) Dropout and exploitation: Applying a voluntary system

for capable clients in the 3SC method can mitigate dropout

risks and participation abuse. In the case that the chosen proxy

is non-responsive, the client may use an alternative proxy.

B. Optimised Configurations

Putting personal device in context, evaluation of the exper-

iments mainly focuses on communication cost, computation

overhead, and speed. While there is limitation for the pro-

posed method to excel in all three criteria, there are some

combinations to achieve specific needs:

1) Higher security: Applying a robust encryption such as

asymmetric encryption, avoiding key reuse, and employing

rotating reliable or private proxies will enhance data security.

2) Higher performance and low communication cost:

The use of effective compression methods, such as LZ-string

compression, minimises computation and communication cost.

3) Faster inference and limited resource: Implementing

compression prolongs training time, particularly when com-

bined with robust encryption. A simpler encryption method

without compression enhances inference speed and is suitable

for devices with limited computational resources.

C. Privacy Enhancement Techniques Benchmark

We evaluate and benchmark the four privacy enhancements,

including ours, based on aspects referring to Fig. 11:

Fig. 11. Benchmark between privacy enhancement techniques

1) Accuracy and Privacy: Differential privacy’s accuracy

is compromised by data perturbation [17], while there is no

accuracy loss on other methods due to no noise added.

In regards to privacy, differential privacy faces challenges

with gradual leaking and potential data leakage in a stationary

user base [16], [17]. secure aggregation is ineffective in cross-

silo and few-client configurations [4], [23], whilst homomor-

phic encryption is considered the pinnacle of cryptography,

offering the utmost privacy protection [22], [35]. Our proposed

methodology focuses on achieving strong privacy through

the use of a trusted proxy alongside secure encryptions like

XSalsa20 and Poly1305, as utilised in our studies [36], [37].

2) Computation and Communication Cost: Differential pri-

vacy is efficient in communication and features a faster con-

vergence as it is independent from a third party [38], but

used more memory heap. Conversely, secure aggregation is

more memory efficient [20] but expensive in communication

because it involves additional aggregator and frequent inter-

actions [39]. It also faces difficulties on implementation in a

geographically distributed setting [40]. Present homomorphic

encryption remains computationally inefficient due to the



SPECIAL ISSUE ON DISTRIBUTED EDGE INTELLIGENCE EMPOWERED INTERNET-OF-VEHICLES 9

extensive computing needed for the ciphering process [8],

[9], [24]. This method is also deemed inefficient in terms

of transmission cost when the size of the output data is up

to more than five times (in our case, 20 times) larger than

the initial data size [23], [41]. Although the methodology we

propose involves another layer of communication, but unlike

secure aggregation, it does not require additional interactivity

in the side of client. This methodology can achieve the same

degree of bandwidth size on the user’s side as the original

federated learning when compression is applied, as in our

experiment. While the heap memory usage is comparable to

the original, the technique is slow in inference and consumes

up to 10 times more memory than the original throughout

the process. Hence, we believe that this methodology requires

enhancement, particularly in terms of computational efficiency.

3) Scalability and Working with Fewer Clients: Differential

privacy is more suitable for larger user bases due to its

greater generalisation and less customisation [17]. However,

this method is ineffective with few clients due to noise in-

jection, making it unreliable for providing accurate inferences

with small data amount [6]. Secure aggregation is scalable

but faces constraints when dealing with a small number of

clients due to its main emphasis on large-scale architectures

[20]. Current homomorphic encryption is not ready for broad

adoption due to its significant computational load [8], [9] and

communication costs [23], but it is fine with few clients. Our

experiments show that our method run efficiently with both

small and large user bases due to its simplified configuration,

influenced by the operations of Oblivious DOH [25].

4) Collusion and Dropout: Collusion poses a significant

risk for the proposed approach and Secure Aggregation. Other

techniques are not vulnerable to this adversary as they do not

involve a third party. Collusion may happen between aggre-

gator and clients in secure aggregation case [7], and between

server-proxy and server-client in our suggested method. Both

cases aim to disclose certain clients’ data. Similarly, if a party,

such as a hacker, has access to both the proxy and the server,

they can reveal a user’s identity and content. Our mitigation

varies from Secure Aggregation in that we can lessen the

danger of collusion by selecting an arbitrary proxy.

If the server provides a ºbountyº for disclosing source’s

identity, the proxy may be tempted to reveal source’s identity

in return for rewards. Therefore, it is recommended to use a

trusted or private dedicated proxy to prevent collusion issues.

Mitigation of the risks is detailed on the previous sub-chapter.

Unlike others, secure aggregation is affected by dropout and

synchronisation issues [7]. Our approach utilises a voluntary

system based on the 3SC algorithm, avoiding those issues.

D. Collaboration Between Approaches

Each privacy-preservation methods possesses its own advan-

tages and limitations. Combining various methods can enhance

privacy and security outcomes. The integration of differential

privacy and proxy ensures privacy protection internally via

perturbation and externally through anonymisation. Substitut-

ing the aggregator with a proxy in secure aggregation can

streamline the process and provide a safer aggregation method.

Homomorphic encryption features a robust algorithm that is

mathematically proven and does not require an anonymisation

process. However, proxies can facilitate the distribution of keys

between servers and clients to enhance management efficiency.

VI. CONCLUSION

From our experiments and analysis, we can make inferences.

Firstly, privacy-preserving techniques that maintain accuracy

are an essential objective, particularly on personal devices with

limited capabilities, followed by efficiency in computation

and communication. Our proposed methodology has proven

effective in meeting the specified criteria; however, further

enhancements are necessary to expedite inference. While

individual privacy enhancements have drawbacks and limits,

combining many methods can synergistically preserve privacy

while maintaining accuracy effectively and efficiently. This

is particularly crucial in the personal device domain, where

accuracy, privacy, and efficiency are all paramount.

Secondly, our tests demonstrate that it is feasible to achieve

equivalent communication costs between our suggested en-

crypted anonymous privacy enhancement and the original

federated learning through the utilisation of compressions on

the model updates. Clients can enjoy enhanced privacy and

data protection with anonymity and encryption without com-

promising their bandwidth. Additionally, using compression

when applying encryption can reduce memory usage by up

to 60% compared to setups without compression. However,

the drawback is that the overall training duration increases

when compression is implemented, causing a slowdown of

up to 1.7 times. When implementing compression procedure,

we suggest utilising Public-key asymmetric encryption instead

of AES symmetric encryption for various advantages: 1) Re-

duce communication expenses and data volume; 2) Accelerate

training iterations; and 3) Enhance security and safety. Com-

pression is advised for personal devices to conserve bandwidth

and memory when quick inference is not the main need.

Thirdly, every method has their risks and threats, for exam-

ple, collusion between server-proxy-client, client tracing, and

content alteration in our case. We have discussed how to mit-

igate these challenges in previous chapter. Our methodology

currently cannot simultaneously achieve quick inference, band-

width efficiency, and low memory usage. However, we have

discussed previously options for specific needs. For example,

applying compression can save memory and bandwidth, while

without it will have good balance on speedy inference and

fairly efficient in communication and computation.

Finally, the suggested methodology shows promising perfor-

mance, surpassing popular techniques in certain parameters.

Nonetheless, potential collaborations across methodologies

exist to enhance robustness in privacy preservation and client

data security, while achieving high accuracy, fast inference,

and computation and communication efficient. We strongly be-

lieve that this research deserves further exploration and study

due to its introduction of a novel approach for conducting

anonymous federated learning via proxy on personal devices.

REFERENCES

[1] Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and
Blaise Aguera y Arcas. 2017. Communication-efficient learning of deep



SPECIAL ISSUE ON DISTRIBUTED EDGE INTELLIGENCE EMPOWERED INTERNET-OF-VEHICLES 10

networks from decentralised data. In Artificial intelligence and statistics.
PMLR, 1273±1282.

[2] Peter Kairouz, H Brendan McMahan, Brendan Avent, AurÂelien Bellet,
Mehdi Bennis, Arjun Nitin Bhagoji, Kallista Bonawitz, Zachary Charles,
Graham Cormode, Rachel Cummings, et al . 2021. Advances and open
problems in federated learning. Foundations and Trends® in Machine

Learning 14, 1±2 (2021), 1±210.
[3] Cynthia Dwork, Aaron Roth, et al . 2014. The algorithmic foundations

of differential privacy. Found. Trends Theor. Comput. Sci. 9, 3-4 (2014),
211±407.

[4] Keith Bonawitz, Vladimir Ivanov, Ben Kreuter, Antonio Marcedone, H
Brendan McMahan, Sarvar Patel, Daniel Ramage, Aaron Segal, and
Karn Seth. 2017. Practical secure aggregation for privacy-preserving
machine learning. In proceedings of the 2017 ACM SIGSAC Conference

on Computer and Communications Security. 1175±1191.
[5] Craig Gentry. 2009. Fully homomorphic encryption using ideal lattices.

In Proceedings of the forty-first annual ACM symposium on Theory of

computing. 169±178.
[6] Robin C Geyer, Tassilo Klein, and Moin Nabi. 2017. Differentially

private federated learning: A client level perspective. arXiv preprint

arXiv:1712.07557 (2017).
[7] Swanand Kadhe, Nived Rajaraman, O Ozan Koyluoglu, and Kannan

Ramchandran. 2020. Fastsecagg: Scalable secure aggregation for privacy-
preserving federated learning. arXiv preprint arXiv:2009.11248 (2020).

[8] Cem Dilmegan. 2022. What is Homomorphic Encryption? Benefits
& Challenges [2022]. (April 2022). https://research.aimultiple.com/
homomorphic-encryption/ (Accessed on 24/02/2024).

[9] Wei Wang, Yin Hu, Lianmu Chen, Xinming Huang, and Berk Sunar.
2013. Exploring the feasibility of fully homomorphic encryption. IEEE

Trans. Comput. 64, 3 (2013), 698±706.
[10] Jakub Konečn ‘y, H Brendan McMahan, Felix X Yu, Peter RichtÂarik,

Ananda Theertha Suresh, and Dave Bacon. 2016. Federated learn-
ing: Strategies for improving communication efficiency. arXiv preprint

arXiv:1610.05492 (2016).
[11] Jakub Konečn ‘y, H Brendan McMahan, Daniel Ramage, and Peter

RichtÂarik. 2016. Federated optimization: Distributed machine learning for
on-device intelligence. arXiv preprint arXiv:1610.02527 (2016).

[12] Qiang Yang, Yang Liu, Yong Cheng, Yan Kang, Tianjian Chen, and Han
Yu. 2019. Federated learning. Synthesis Lectures on Artificial Intelligence

and Machine Learning 13, 3 (2019), 1±207.
[13] Ligeng Zhu, Zhijian Liu, and Song Han. 2019. Deep leakage from

gradients. Advances in Neural Information Processing Systems 32 (2019).
Manuscript submitted to ACM

[14] Luca Melis, Congzheng Song, Emiliano De Cristofaro, and Vitaly
Shmatikov. 2019. Exploiting unintended feature leakage in collaborative
learning. In 2019 IEEE Symposium on Security and Privacy (SP). IEEE,
691±706.

[15] Reza Shokri, Marco Stronati, Congzheng Song, and Vitaly Shmatikov.
2017. Membership inference attacks against machine learning models. In
2017 IEEE symposium on security and privacy (SP). IEEE, 3±18.

[16] Johannes Gehrke, Edward Lui, and Rafael Pass. 2011. Towards privacy
for social networks: A zero-knowledge based definition of privacy. In
Theory of cryptography conference. Springer, 432±449.

[17] Morten Dahl. 2016. Differential Privacy for the Rest of Us Ð by Morten
Dahl Ð Snips Blog Ð Medium. Medium (July 2016). https://medium.
com/snips-ai/differential-privacy-for-the-rest-of-us-665e053cec17 (Ac-
cessed on 18/02/2024).

[18] Olivia Choudhury, Aris Gkoulalas-Divanis, Theodoros Salonidis, Issa
Sylla, Yoonyoung Park, Grace Hsu, and Amar Das. 2019. Differential
privacy-enabled federated learning for sensitive health data. arXiv preprint

arXiv:1910.02578 (2019).
[19] di Shamir. 1979. How to share a secret. Commun. ACM 22, 11 (1979),

612±613.
[20] Keith Bonawitz, Hubert Eichner, Wolfgang Grieskamp, Dzmitry Huba,

Alex Ingerman, Vladimir Ivanov, Chloe Kiddon, Jakub Konečn ‘y,
Stefano Mazzocchi, Brendan McMahan, et al . 2019. Towards federated
learning at scale: System design. Proceedings of Machine Learning and

Systems 1 (2019), 374±388.
[21] Justin Patriquin. 2019. Federated Learning with Secure

Aggregation in TensorFlow Ð by Justin Patriquin Ð
Cape Privacy (Formerly Dropout Labs) Ð Medium.
Medium (December 2019). https://medium.com/dropoutlabs/
federated-learning-with-secure-aggregation-in-tensorflow-95f2f96ebecd
(Accessed on 16/02/2024).

[22] David J Wu. 2015. Fully homomorphic encryption: Cryptography’s holy
grail. XRDS: Crossroads, The ACM Magazine for Students 21, 3 (2015),
24±29.

[23] Chengliang Zhang, Suyi Li, Junzhe Xia, Wei Wang, Feng Yan, and Yang
Liu. 2020. BatchCrypt: Efficient homomorphic encryption for Cross-
Silo federated learning. In 2020 USENIX annual technical conference

(USENIX ATC 20). 493±506.
[24] Wei Wang, Yin Hu, Lianmu Chen, Xinming Huang, and Berk Sunar.

2013. Exploring the feasibility of fully homomorphic encryption. IEEE

Trans. Comput. 64, 3 (2013), 698±706.
[25] Eric Kinnear, Patrick McManus, Tommy Pauly, Tanya Verma, and

Christopher A. Wood. 2022. RFC 9230 - Oblivious DNS over HTTPS.
IETF (April 2022). https://datatracker.ietf.org/doc/rfc9230/ (Accessed on
25/02/2024).

[26] Sudheesh Singanamalla, Tanya Verma. 2020. Improving DNS Privacy
with Oblivious DoH in 1.1.1.1. Cloudflare (December 2020). https://blog.
cloudflare.com/oblivious-dns/ (Accessed on 21/01/2025).

[27] Guillaume Rosinosky, Simon Da Silva, Sonia Ben Mokhtar, Daniel
NÂegru, Laurent RÂeveillère, and Etienne Rivière. 2021. PProx: efficient
privacy for recommendation-as-a-service. In Proceedings of the 22nd

International Middleware Conference. 14±26.
[28] Shivam Kalra, Junfeng Wen, Jesse C Cresswell, Maksims Volkovs, and

Hamid R Tizhoosh. 2021. ProxyFL: Decentralized Federated Learning
through Proxy Model Sharing. arXiv preprint arXiv:2111.11343 (2021).

[29] Hongrui Shi, Valentin Radu, and Po Yang. 2023. Distributed Training
for Speech Recognition using Local Knowledge Aggregation and Knowl-
edge Distillation in Heterogeneous Systems. In Proceedings of the 3rd

Workshop on Machine Learning and Systems. 64±70.
[30] EPFL. 2022. epfml/disco: Decentralized & federated privacy-preserving

ML training, using p2p networking, in JS. https://github.com/epfml/disco.
(Accessed on 10/02/2024).

[31] Chris Deotte. 2021. 25 Million Images! [0.99757] MNIST Kaggle. https:
//www.kaggle.com/code/cdeotte/25-million-images-0-99757-mnist. (Ac-
cessed on 10/02/2024).

[32] Mozilla. 2023. Performance: measureUserAgentSpecificMemory()
method - Web APIs Ð MDN. https://developer.mozilla.org/en-US/
docs/Web/API/Performance/measureUserAgentSpecificMemory(̇2023).
(Accessed on 06/02/2024).

[33] Maarten Bodewes. 2016. hash - What is the maximum size
of the plaintext message for RSA OAEP? - Cryptography
Stack Exchange. https://crypto.stackexchange.com/questions/42097/
what-is-the-maximum-size-of-the-plaintext-message-for-rsa-oaep.
(Accessed on 10/02/2024).

[34] Muhammad Senoyodha Brennaf, Po Yang, and Vitaveska Lanfranchi.
2023. Communication Efficient on Symmetric and Asymmetric Encrypted
Anonymous Federated Learning. In 2023 IEEE International Confer-

ence on Cryptography, Informatics, and Cybersecurity (ICoCICs). IEEE,
133±138.

[35] Wencheng Yang, Song Wang, Hui Cui, Zhaohui Tang, and Yan Li.
2023. A Review of Homomorphic Encryption for Privacy-Preserving
Biometrics. Sensors 23, 7 (2023), 3566.

[36] Nicky Mouha and Bart Preneel. 2013. Towards finding optimal differ-
ential characteristics for ARX: Application to Salsa20. Cryptology ePrint

Archive (2013).
[37] Daniel J Bernstein. 2011. Extending the Salsa20 nonce. In Workshop

record of Symmetric Key Encryption Workshop, Vol. 2011.
[38] Wei-Ning Chen, Ayfer Ozgur, Graham Cormode, and Akash Bharadwaj.

2023. The communication cost of security and privacy in federated fre-
quency estimation. In International Conference on Artificial Intelligence

and Statistics. PMLR, 4247±4274.
[39] Wenliang Du, Yunghsiang S Han, and Shigang Chen. 2004. Privacy-

preserving multivariate statistical analysis: Linear regression and classi-
fication. In Proceedings of the 2004 SIAM international conference on

data mining. SIAM, 222±233.
[40] Qiang Yang, Yang Liu, Tianjian Chen, and Yongxin Tong. 2019.

Federated machine learning: Concept and applications. ACM Transactions

on Intelligent Systems and Technology (TIST) 10, 2 (2019), 1±19.
[41] Saransh Gupta, Rosario Cammarota, and Tajana ŠimuniÂc Rosing. 2022.

Memfhe: End-to-end computing with fully homomorphic encryption in
memory. ACM Transactions on Embedded Computing Systems (2022).

[42] M. Brennaf, P. Yang, V. Lanfranchi, ºA Comparative Analysis of
Federated Learning Techniques on On-Demand Platforms in Supporting
Modern Web Browser Applications,º in 2023 IEEE 22nd International

Conference on Trust, Security and Privacy in Computing and Communi-

cations (TrustCom), 2023, pp. 2601±2606.


	Introduction
	Background Research
	Federated Learning
	Further Privacy Protections
	Differential Privacy
	Secure Aggregation
	Homomorphic Encryption

	Additional Privacy Guarantee Through Anonymity

	Methodology
	Two-stage Communication (2SC)
	Three-stage Communication (3SC)

	Experiments
	Interoperability and Compatibility Test
	Compression Against Encryption Test
	Measurement of Memory Usage
	Real Network Test
	Scalability Simulation
	Against Other Privacy-Preserving Techniques

	Evaluation
	Mitigating Threats and Risks
	Accuracy loss
	Server-proxy collusion
	Server-client collusion
	Client tracing
	Content integrity
	Dropout and exploitation

	Optimised Configurations
	Higher security
	Higher performance and low communication cost
	Faster inference and limited resource

	Privacy Enhancement Techniques Benchmark
	Accuracy and Privacy
	Computation and Communication Cost
	Scalability and Working with Fewer Clients
	Collusion and Dropout

	Collaboration Between Approaches

	Conclusion
	References

