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Abstract. We provide a parametrisation of a loxodrome by three specially ar-
ranged cycles. The parametrisation is covariant under fractional linear trans-
formations of the complex plane and naturally encodes conformal properties of
loxodromes. Selected geometrical examples illustrate the usage of parametrisa-
tion. Our work extends the set of objects in Lie sphere geometry—circle, lines and
points—to the natural maximal conformally-invariant family, which also includes
loxodromes.

1. Introduction

It is easy to come across shapes of logarithmic spirals, as on Fig. 1(a), looking
either on a sunflower, a snail shell or a remote galaxy. It is not surprising since the
fundamental differential equation ẏ = λy, λ ∈ C serves as a first approximation
to many natural processes. The main symmetries of complex analysis are build

(a) (b)

Figure 1. A logarithnic spiral (a) and its image under a fractional
linear transformation—loxodrome (b).

on the fractional linear transformation (FLT):

(1)
(
α β
γ δ

)
: z 7→ αz+ β

γz+ δ
, where α,β,γ, δ ∈ C and det

(
α β
γ δ

)
6= 0.

Thus, images of logarithmic spirals under FLT, called loxodromes, as on Fig. 1(b)
shall not be rare. Indeed, they appear in many occasions from the stereographic
projection of a rhumb line in navigation to a preferred model of a Carleson arc in
the theory singular integral operators [5, 7]. Furthermore, loxodromes are orbits
of one-parameter continuous groups of FLT of loxodromic type [3, § 4.3; 38, § 9.2;
39, § 9.2].
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2 V.V. KISIL AND J. REID

This setup motivates a search for effective tools to deal with FLT-invariant
properties of loxodromes. They were studied from a differential geometry point
of view in several recent paper [6, 33–36]. In this work we develop a “global”
description which matches the Lie sphere geometry framework, see Rem. 3.

The outline of the paper is as follows. After preliminaries on FLT and invariant
geometry of cycles (Section 2) we review the basics of logarithmic spirals and
loxodromes (Section 3). A new parametrisation of loxodromes is introduced in
Section 4 and several examples illustrate its usage in Section 5. Section 6 frames
our work within a wider approach [26, 29], which extends Lie sphere geometry.
A brief list of open questions concludes the paper.

2. Preliminaries: Fractional Linear Transformations and Cycles

In this section we provide some necessary background in Lie geometry of cir-
cles, fractional-linear transformations and Fillmore–Springer–Cnops construction
(FSCc). Regretfully, the latter remains largely unknown in the context of com-
plex numbers despite of its numerous advantages. We will have some further
discussion of this in Rem. 3 below.

The right way [38, § 9.2] to think about FLT (1) is through the projective complex
line PC. It is the family of cosets in C2 with respect to the equivalence relation(
w1
w2

)
∼

(
αw1
αw2

)
for all nonzero α ∈ C. Conveniently C is identified with a part

of PC by assigning the coset of
(
z
1

)
to z ∈ C. Loosely speaking PC = C ∪ {∞},

where ∞ is the coset of
(

1
0

)
. The pair [w1 : w2] with w2 6= 0 gives homogeneous

coordinates for z = w1/w2 ∈ C. Then, the linear map C2 → C2

(2) M :

(
w1
w2

)
7→
(
w ′

1
w ′

2

)
=

(
αw1 + βw2
γw1 + δw2

)
, where M =

(
α β
γ δ

)
∈ GL2(C)

factors from C2 to PC and coincides with (1) on C ⊂ PC.
Generic equations of cycle in real and complex coordinates z = x+ iy are:

(3) k(x2 + y2) − 2lx− 2ny+m = 0 or kzz̄− L̄z− Lz̄+m = 0 ,

where (k, l,n,m) ∈ R4 and L = l+in. This includes lines (if k = 0), points as zero-
radius circles (if l2 + n2 −mk = 0) and proper circles otherwise. Homogeneity
of (3) suggests that (k, l,m,n) shall be considered as homogeneous coordinates
[k : l : m : n] of a point in three-dimensional projective space PR3.

The homogeneous form of cycle’s equation (3) for z = [w1 : w2] can be written1

using matrices as follows:

(4) kw1w̄1 − L̄w1w̄2 − Lw̄1w2 +mw2w̄2 =
(
−w̄2 w̄1

)(L̄ −m
k −L

)(
w1
w2

)
= 0.

From now on we identify a cycle C given by (3) with its 2× 2 matrix
(
L̄ −m
k −L

)
,

this is called the Fillmore–Springer–Cnops construction (FSCc) . Again, C shall be
treated up to the equivalence relation C ∼ tC for all real t 6= 0. Then, the linear
action (2) corresponds to some action on 2× 2 cycle matrices by the intertwining
identity:

(5)
(
−w̄ ′

2 w̄ ′
1

)(L̄ ′ −m ′

k ′ −L ′

)(
w ′

1
w ′

2

)
=
(
−w̄2 w̄1

)(L̄ −m
k −L

)(
w1
w2

)
.

1Of course, this is not the only possible presentation. However, this form is particularly suitable
to demonstrate FLT-invariance (8) of the cycle product below.
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Explicitly, for M ∈ GL2(C) those actions are:

(6)
(
w ′

1
w ′

2

)
=M

(
w1
w2

)
, and

(
L̄ ′ −m ′

k ′ −L ′

)
= M̄

(
L̄ −m
k −L

)
M−1 ,

where M̄ is the component-wise complex conjugation of M. Note, that FLT M (1)
corresponds to a linear transformation C 7→ M(C) := M̄CM−1 of cycle matrices
in (6). A quick calculation shows thatM(C) indeed has real off-diagonal elements
as required for a FSCc matrix.

This paper essentially depends on the following

Proposition 1. Define a cycle product of two cycles C and C ′ by:

(7) 〈C,C ′〉 := tr(CC̄ ′) = LL̄ ′ + L̄L ′ −mk ′ − km ′.

Then, the cycle product is FLT-invariant:

(8) 〈M(C),M(C ′)〉 = 〈C,C ′〉 for any M ∈ SL2(C) .

Proof. Indeed:

〈M(C),M(C ′)〉 = tr(M(C)M(C ′))

= tr(M̄CM−1MC̄ ′M̄−1)

= tr(M̄CC̄ ′M̄−1)

= tr(CC̄ ′)

= 〈C,C ′〉 ,

using the invariance of trace. �

Note that the cycle product (7) is not positive definite, it produces a Lorentz-
type metric in R4. Here are some relevant examples of geometric properties
expressed through the cycle product:

Example 2. (1) If k = 1 (and C is a proper circle), then 〈C,C〉/2 is equal to
the square of radius of C. In particular 〈C,C〉 = 0 indicates a zero-radius
circle representing a point.

(2) If 〈C1,C2〉 = 0 for non-zero radius cycles C1 and C2, then they intersects
at the right angle.

(3) If 〈C1,C2〉 = 0 and C2 is zero-radius circle, then C1 passes the point rep-
resented by C2.

In general, a combination of (6) and (8) yields that a consideration of FLT in C
can be replaced by linear algebra in the space of cycles R4 (or rather PR3) with an
indefinite metric, see [12] for the latter.

A spectacular (and needed later) illustration of this approach is orthogonal
pencils of cycles. Consider a collection of all cycles passing two different points
in C, it is called an elliptic pencil. A beautiful and non-elementary fact of the Eu-
clidean geometry is that cycles orthogonal to every cycle in the elliptic pencil fill
the entire plane and are disjoint, the family is called a hyperbolic pencil. The state-
ment is obvious in the standard arrangement when the elliptic pencil is formed
by straight lines—cycles passing the origin and infinity. Then, the hyperbolic
pencil consists of the concentric circles, see Fig. 2. For the sake of completeness,
a parabolic pencil (not used in this paper) formed by all circles touching a given
line at a given point, [24, Ex. 6.10] contains further extensions and illustrations.
See [39, § 11.8] for an example of cycle pencils’ appearance in operator theory.

This picture trivialises a bit in the language of cycles. A pencil of cycles (of
any type!) is a linear span tC1 + (1 − t)C2 of two arbitrary different cycles C1
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Figure 2. Orthogonal elliptic (green-dashed) and hyperbolic
(red-solid) pencils of cycles. Left drawing shows the standard
case and the right—generic, which is the image of the standard
pencils under FLT.

and C2 from the pencil. Again, this is easier to check for the standard pen-
cils. A pencil is elliptic, parabolic or hyperbolic depending on which inequality
holds [24, Ex. 5.28.ii]:

(9) 〈C1,C2〉2 S 〈C1,C1〉 〈C2,C2〉 .

Then, the orthogonality of cycles on the plane is exactly their orthogonality
as vectors with respect to the indefinite cycle product (7). For cycles in the stan-
dard pencils this is immediately seen from the explicit expression of the product
〈C,C ′〉 = LL̄ ′ + L̄L ′ −mk ′ − km ′ in cycle components. Finally, linearization (6) of
FLT in the cycle space shows that a pencil (i.e. a linear span) is transformed to
a pencil and FLT-invariance (8) of the cycle product guarantees that the orthogo-
nality of two pencils is preserved.

Remark 3. A sketchy historic overview (we apologise for any important omission!)
starts from the concept of Lie sphere geometry, see [4, Ch. 3] for a detailed presen-
tation. It unifies circles, lines and points, which all are called cycles in this context
(analytically it is already in (3)). The main invariant property of Lie sphere ge-
ometry is tangential contact. The first radical advance came from the observation
that cycles (through their parameters in (3)) naturally form a linear or projective
space, see [32; 37, Ch. 1]. The second crucial step is the recognition that the cycle
space carries out the FLT-invariant indefinite metric [4, Ch. 3; 17, § F.4]. At the
same time some presentations of cycles by 2 × 2 matrices were used [17, § F.4;
37, Ch. 1; 38, § 9.2]. Their main feature is that FLT in C corresponds to a some
sort of linear transform by matrix conjugation in the cycle space. However, the
metric in the cycle space was not expressed in terms of those matrices.

All three ingredients—matrix presentation with linear structure and the in-
variant product–came happily together as Fillmore–Springer–Cnops construction
(FSCc) in the context of Clifford algebras [8, Ch. 4; 9]. Regretfully, FSCc have
not yet propagated back to the most fundamental case of complex numbers,
cf. [38, § 9.2] or somewhat cumbersome techniques used in [4, Ch. 3]. Inter-
estingly, even the founding fathers were not always strict followers of their own
techniques, see [10].

A combination of all three components of Lie cycle geometry within FSCc fa-
cilitates further development. It was discovered that for the smaller group SL2(R)
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there exist more types—elliptic, parabolic and hyperbolic–of invariant metrics in
the cycle space [18; 22; 24, Ch. 5]. Based on the earlier work [17], the key con-
cept of Lie sphere geometry—tangency of two cycles C1 and C2— was expressed
through the cycle product (7) as [24, Ex. 5.26.ii]:

〈C1 + C2,C1 + C2〉 = 0 for C1,C2 normalised such that 〈C1,C1〉 = 〈C2,C2〉 = 1.

(Furthermore, C1 + C2 is the zero-radius cycle representing the point of contact.)
FSCc is useful in consideration of the Poincaré extension of Möbius maps [29] and
continued fractions [28]. In theoretical physics FSCc nicely describes conformal
compactifications of various space-time models [15; 20; 24, § 8.1]. Last but not
least, FSCc is behind the Computer Algebra System (CAS) operating in Lie sphere
geometry [19,26]. FSCc equally well covers not only the field of complex numbers
but rings of dual and double numbers as well [24]. New usage of FSCc will be
given in the following sections in applications to loxodromes.

3. Fractional Linear Transformations and Loxodromes

In aiming for a covariant description of loxodromes we start from the following
definition.

Definition 4. A standard logarithmic spiral (SLS) with parameter λ ∈ C is the
orbit of the point 1 under the (disconnected) one-parameter subgroup of FLT of
diagonal matrices

(10) Dλ(t) =

(
±eλt/2 0

0 e−λt/2

)
, t ∈ R.

Remark 5. Our SLS is a union of two branches, each of them is a logarithmic spiral
in the common sense. The three-cycle parametrisation of loxodromes presented
below will becomes less elegant if those two branches need to be separated. Yet,
we draw just one “positive” branch on Fig. 3 to make it more transparent.

SLS is the solution of the differential equation z ′ = λz with the initial value
z(0) = ±1 and has the parametric equation z(t) = ±eλt. Furthermore, we ob-
tain the same orbit for λ1 and λ2 ∈ C if λ1 = aλ2 for real a 6= 0 through
a re-parametrisation of the time t 7→ at. Thus, SLS is identified by the point
[<(λ) : =(λ)] of the real projective line PR. Thereafter the following classification
is useful:

Definition 6. SLS is
• positive, if <(λ) · =(λ) > 0;
• degenerate, if <(λ) · =(λ) = 0;
• negative, if <(λ) · =(λ) < 0.

Informally: a positive SLS unwinds counterclockwise, a negative—clockwise.
Degenerate SLS is the unit circle if =(λ) 6= 0 and the punctured real axis R \ {0} if
<(λ) 6= 0. If <(λ) = =(λ) = 0 then SLS is the single point 1.

Definition 7. A logarithmic spiral is the image of a SLS under a complex affine
transformation z 7→ αz + β, with α, β ∈ C. A loxodrome is an image of a SLS
under a generic FLT (1).

Obviously, a complex affine transformation is FLT with the upper triangular

matrix
(
α β
0 1

)
. Thus, logarithmic spirals form an affine-invariant (but not FLT-

invariant) subset of loxodromes. Thereafter, loxodromes (and their degenerate
forms—circles, straight lines and points) extend the notion of cycles from the Lie
sphere geometry, cf. Rem. 3.
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By the nature of Defn. 7, the parameter λ and the corresponding classification
from Defn. 6 remain meaningful for logarithmic spirals and loxodromes. FLTs
eliminate distinctions between circles and straight lines, but for degenerate lox-
odromes (<(λ) · =(λ) = 0) we still can note the difference between two cases of
<(λ) 6= 0 and =(λ) 6= 0: orbits of former are whole circles (straight lines) while
latter orbits are only arcs of circles (segments of lines).

The immediate consequence of Defn. 7 is

Proposition 8. The collection of all loxodromes is a FLT-invariant family. Degener-
ate loxodromes—(arcs of) circles and (segments) of straight lines—form a FLT-invariant
subset of loxodromes.

As mentioned above, SLS is completely characterised by the point [<(λ) : =(λ)]

of the real projective line PR extended by the additional point [0 : 0]2. In the
standard way, [<(λ) : =(λ)] is associated with the real value λ̃ := 2π<(λ)/=(λ)

extended by ∞ for =(λ) = 0 and symbol 0
0 for the <(λ) = =(λ) = 0 cases. Ge-

ometrically, a = exp(λ̃) ∈ R+ represents the next point after 1, where the given
SLS branch meets the real positive half-axis after one full counterclockwise turn.
Obviously, a > 1 and a < 1 for positive and negative SLS, respectively. For a
degenerate SLS:

(1) with =(λ) 6= 0 we obtain λ̃ = 0 and a = 1;
(2) with <(λ) 6= 0 we consistently define a = ∞.

In essence, a loxodrome Λ is defined by the pair (λ̃,M), where M is the FLT
mapping Λ to SLS with the parameter λ̃. While λ̃ is completely determined by Λ,
a map M is not.

Proposition 9. (1) The subgroup of FLT which maps SLS with the parameter λ̃ to
itself consists of products Dλ̃(t)Rε, ε = 0, 1 of transformations Dλ̃(t) = Dλ(t),
λ = λ̃+ 2πi (10) and branch-swapping reflections:

(11) R =

(
0 −1
1 0

)
: z 7→ −z−1 .

(2) Pairs (λ̃,M) and (λ̃ ′,M ′) define the same loxodrome if and only if
(a) λ̃ = λ̃ ′;
(b) M = Dλ̃(t)R

εM ′ for ε = 0, 1 and t ∈ R.

Remark 10. Often loxodromes appear as orbits of one-parameter continuous sub-
group of loxodromic FLT, which are characterised by a non-real trace [3, § 4.3;
38, § 9.2; 39, § 9.2]. In the above notations such a subgroup is MDλ̃(t)M

−1,
thus the common presentation is not much different from the above (λ̃,M)-
parametrisation.

4. Three-cycle Parametrisation of Loxodromes

Although pairs (λ̃,M) provide a parametrisation of loxodromes, the following
alternative is more operational. It is inspired by the orthogonal pairs of elliptic
and hyperbolic pencils described in Section 2.

Definition 11. A three-cycle parametrisation {C1,C2,C3} of a non-degenerate SLS λ̃
satisfies the following conditions:

(1) C1 is the straight line passing the origin;
(2) C2 and C3 are two circles with their centres at the origin;
(3) Λ passes the intersection points C1 ∩ C2 and C1 ∩ C3; and

2Pedantic consideration of the trivial case <(λ) = =(λ) = 0 will be often omitted in the following
discussion.
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(4) A branch of Λ makes one full counterclockwise turn between intersection
points C1 ∩ C2 and C1 ∩ C3 belonging to a ray in C1 from the origin.

We say that three-cycle parametrisation is standard if C1 is the real axis and C2

is the unit circle, then C3 = {z : |z| = exp(λ̃)}. A three-cycle parametrisation can
be consistently extended to a degenerate SLS Λ as follows:
λ̃ = 0: any straight line C1 passing the origin and the unit circles C2 = C3 = Λ;
λ̃ = ∞: the real axis as C1 = Λ, the unit circle as C2 and C3 = (0, 0, 0, 1) being the

zero-radius circle at infinity.
Since cycles are elements of the projective space, the following normalised cycle

product:

(12) [C1,C2] :=
〈C1,C2〉√

〈C1,C1〉 〈C2,C2〉
is more meaningful than the cycle product (7) itself. Note that, [C1,C2] is defined
only if neither C1 nor C2 is a zero-radius cycle (i.e. a point). Also, the normalised
cycle product is GL2(C)-invariant in comparison to SL2(C)-invariance in (8).

A reader will instantly recognise the familiar pattern of the cosine of angle be-
tween two vectors appeared in (12). Simple calculations show that this geometric
interpretation is very explicit in two special cases of our interest.

Lemma 12. (1) Let C1 and C2 be two straight lines passing the origin with slopes
tanφ1 and tanφ2 respectively. Then C2 = Dx+iy(1)C1 for transformation (10)
with any x ∈ R and y = φ2 − φ1 satisfying the relations:

(13) [C1,C2] = cosy .

(2) Let C1 and C2 be two circles centred at the origin and radii r1 and r2 respectively.
Then C2 = Dx+iy(1)C1 for transformation (10) with any y ∈ R and x =
log(r2) − log(r1) satisfying the relations:

(14) [C1,C2] = cosh x .

Note the explicit elliptic-hyperbolic analogy between (13) and (14). By the way,
both expressions produce real x and y due to inequality (9) for the respective
types of pencils. Now we can deduce the following properties of three-cycle
parametrisation.

Proposition 13. For a given SLS Λ with a parameter λ:
(1) Any transformation (10) maps a three-cycle parametrisation of Λ to another

three-cycle parametrisation of Λ.
(2) For any two three-cycle parametrisations {C1,C2,C3} and {C ′

1,C ′
2,C ′

3} there ex-
ists t0 ∈ R such that C ′

j = Dλ(t0)Cj for Dλ(t0) (10) and j = 1, 2, 3.
(3) The parameter λ̃ = 2π<(λ)/=(λ) of SLS can be recovered form its three-cycle

parametrisation by the relation:

(15) λ̃ = arccosh [C2,C3] and λ ∼ λ̃+ 2πi .

Proof. The first statement is obvious. For the second we take Dλ(t0) : Λ → Λ
which maps C1 ∩ C2 to C ′

1 ∩ C ′
2, this transformation maps Cj 7→ C ′

j for j = 1, 2, 3.
Finally, the last statement follows from (14). �

Note that expression (15) is FLT-invariant. Since any loxodrome is an image of
SLS under FLT we obtain a three-cycle parametrisation of loxodromes as follows.

Proposition 14. (1) Any three-cycle parametrisation {C1,C2,C3} of SLS has the
following FLT-invariant properties:
(a) C1 is orthogonal to C2 and C3;
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(b) C2 and C3 either disjoint or coincide3.
(2) For any FLTM and a three-cycle parametrisation {C ′

1,C ′
2,C ′

3} of SLS, three cycles
Cj =M(C ′

j), j = 1, 2, 3 satisfy the above conditions (1a) and (1b).
(3) For any triple of cycles {C1,C2,C3} satisfying the above conditions (1a) and (1b)

there exist a FLT M such cycles {M(C1),M(C2),M(C3)} provide a three-cycle
parametrisation of SLS with the parameter λ̃ (15). FLT M is uniquely defined by
the additional condition that {M(C1),M(C2),M(C3)} is a standard parametri-
sation of SLS.

Proof. The first statement is obvious, the second follows because properties (1a)
and (1b) are FLT-invariant.

For (3) in the degenerate case C2 = C3: any M which sends C2 = C3 to the
unit circle will do the job. If C2 6= C3 we explicitly describe below the procedure,
which produces FLT M mapping the loxodrome to SLS. �

Procedure 15. Two disjoint cycles C2 and C3 span a hyperbolic pencil H as de-
scribed in Section 2. Then C1 belongs to the elliptic E pencil orthogonal to H. Let
C0 and C∞ be the two zero-radius cycles (points) from the hyperbolic pencil H.
Every cycle in E, including C1, passes C0 and C∞, we label those two in such a
way that

• for a positive λ̃ cycle C3 is between C2 and C∞; and
• for a negative λ̃ cycle C3 is between C2 and C0.

Here “between” for cycles means “between” for their intersection points with C1.
Finally, let Cu be any of two intersection points C1 ∩ C2. Then, there exists the
unique FLT M such that M : C0 7→ 0, M : Cu 7→ 1 and M : C∞ 7→∞. We will call
M the standard FLT associated to the three-cycle parametrisation {C1,C2,C3} of the
loxodrome.

Remark 16. To complement the construction of the standard FLT M associated
to the three-cycle parametrisation {C1,C2,C3} from Procedure 15, we can de-
scribe the inverse operation. For the loxodrome, which is the image of SLS
with the parameter λ under FLT M, we define the standard three-cycle parametri-
sation {M(R),M(Cu),M(Cλ)} as the image of the standard parametrisation of the
SLS under M. Here R is the real axis, Cu = {z : |z| = 1} is the unit circle and
Cλ = {z : |z| = exp(λ̃)}.

In essence, the previous proposition says that a three-cycle and (λ,M) parametri-
sations are equivalent and delivers an explicit procedure producing one from an-
other. However, three-cycle parametrisation is more geometric, since it links a
loxodrome to a pair of orthogonal pencils, see Fig. 3. Furthermore, cycles C1, C2,
C3 (unlike parameters λ and M) can be directly drawn on the plane to represent
a loxodrome, which may be even omitted.

5. Applications of Three-Cycle Parametrisation

Now we present some examples of the usage of three-cycle parametrisation of
loxodromes. First, we want to resolve non-uniqueness in such parametrisations.
Recall, that a triple {C1,C2,C3} is non-degenerate if C2 6= C3 and C3 is not zero-
radius.

Proposition 17. Two non-degenerate triples {C1,C2,C3} and {C ′
1,C ′

2,C ′
3} parameterise

the same loxodrome if and only if all the following conditions are satisfied:
(1) Pairs {C2,C3} and {C ′

2,C ′
3} span the same hyperbolic pencil. That is cycles C ′

2
and C ′

3 are linear combinations of C2 and C3 and vise versa.

3Recall that if C2 = C3, then SLS is degenerate and coincide with C2 = C3.
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1
a

Figure 3. Logarithmic spirals (left) and loxodrome (right) with
associated pencils of cycles. This is a combination of Figs. 1 and 2.

(2) Pairs {C2,C3} and {C ′
2,C ′

3} define the same parameter λ̃:

(16) [C2,C3] = [C ′
2,C ′

3] .

(3) The elliptic-hyperbolic identity holds:

(17)
arccosh

[
Cj,C ′

j

]
arccosh [C2,C3]

≡ 1
2π

arccos [C1,C ′
1] (mod 1) ,

where j is either 2 or 3.

Proof. Necessity of (1) is obvious, since hyperbolic pencils spanned by {C2,C3}

and {C ′
2,C ′

3} shall be both the image of concentric circles centred at origin un-
der FLT M defining the loxodrome. Necessity of (2) is also obvious since λ̃ is
uniquely defined by the loxodrome. Necessity of (3) follows from the analysis of
the following demonstration of sufficiency.

For sufficiency, letM be FLT constructed through Procedure 15 from {C1,C2,C3}.
Then (1) implies that M(C ′

2) and M(C ′
3) are also circles centred at origin. Then

Lem. 12 implies that the transformation Dx+iy(1), where x = arccosh [C2,C ′
2] and

y = arccos [C1,C ′
1] maps C ′

1 and C ′
2 to C1 and C2 respectively. Furthermore, from

identity (16) follows that the same Dx+iy(1) maps C ′
3 to C3. Finally, condition (17)

means that x + i(y + 2πn) = a(λ̃ + 2πi) for a = x/λ̃ and some n ∈ Z. In other
words Dx+iy(1) = Dλ̃(a), thus Dx+iy(1) maps SLS with the parameter λ̃ to it-
self. Since {M(C1),M(C2),M(C3)} and {M(C ′

1),M(C ′
2),M(C ′

3)} are two three-cycle
parametrisations of the same SLS, {C1,C2,C3} and {C ′

1,C ′
2,C ′

3} are two three-cycle
parametrisations of the same loxodrome. �

See Fig. 4 for an animated family of equivalent three-cycle parametrisations of
the same loxodrome (also posted at [27]). Relation (17), which correlates elliptic
and hyperbolic rotations for loxodrome, regularly appears in this context. The
next topic provides another illustration of this.

Procedure 18. To verify whether a loxodrome parametrised by three cycles {C1,C2,C3}

passes a point parametrised by a zero-radius cycle C0 we perform the following
steps:
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(1) Define the cycle

(18) Ch = tC2 + (1 − t)C3 , where t = −
〈C0,C3〉

〈C0,C2 − C3〉
,

which belongs to the hyperbolic pencil spanned by {C2,C3} and is orthog-
onal to C0, that is, passes the respective point.

(2) Find cycle Ce from the elliptic pencil orthogonal to {C2,C3} which passes
C0. Ce is the solution of the system of three linear (with respect to param-
eters of Ce) equations, cf. Ex 2:

〈Ce,C0〉 = 0 ,

〈Ce,C2〉 = 0 ,

〈Ce,C3〉 = 0 .

(3) Verify the elliptic-hyperbolic relation:

(19)
arccosh [Ch,C2]

arccosh [C2,C3]
≡ 1

2π
arccos [Ce,C1] (mod 1) .

Proof. Let M be the standard FLT associated to {C1,C2,C3} from Procedure 15.
The point C0 belongs to the loxodrome if the transformation Dλ̃(t) for some
t moves M(C0) to the intersection M(C1) ∩ M(C2). But Dx+iy(1) with x =
arccosh [Ch,C2] and y = arccos [Ce,C1] maps M(Ch) → M(C2) and M(Ce) →
M(C1), thus it also maps M(C0) ⊂ M(Ch) ∩M(Ce) to M(C1) ∩M(C2). Condi-
tion (19) guaranties that Dx+iy(1) = Dλ̃(x/λ̃), as in the previous Prop. �

Our final example considers two loxodromes which may have completely dif-
ferent associated pencils.

Procedure 19. Let two loxodromes are parametrised by {C1,C2,C3} and {C ′
1,C ′

2,C ′
3}.

Assume they intersect at some point parametrised by a zero-radius cycle C0 (this
can be checked by Procedure 18, if needed). To find the angle of intersection we
perform the following steps:

(1) Use (18) to find cycles Ch and C ′
h belonging to hyperbolic pencils, spanned

by {C2,C3} and {C ′
2,C ′

3} respectively, and both passing C0.
(2) The intersection angle is

(20) arccos [Ch,C ′
h] − arctan

(
λ̃

2π

)
+ arctan

(
λ̃ ′

2π

)
,

where λ̃ and λ̃ ′ are determined by (15).

Proof. A loxodrome intersects any cycle from its hyperbolic pencil with the fixed
angle arctan(λ̃/(2π)). This is used to amend the intersection angle arccos [Ch,C ′

h]
of cycles from the respective hyperbolic pencils. �

Corollary 20. Let a loxodrome parametrised by {C1,C2,C3} passes a point parametrised
by a zero-radius cycle C0 as in Procedure 18. A non-zero radius cycle C is tangent to the
loxodrome at C0 if and only if two conditions holds:

〈C,C0〉 = 0 ,

arccos [C,Ch] = arctan
(
λ̃

2π

)
,

(21)

where Ch is given by (18) and is λ̃ is determined by (15).
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Proof. The first condition simply verifies that C passes C0, cf. Ex 2. Cycle C, as
a degenerated loxodrome, is parametrised by {Ce,C,C}, where Ce is any cycle
orthogonal to C and Ce is not relevant in the following. The hyperbolic pencil
spanned by two copies of C consists of C only. Thus we put C ′

h = C, λ̃ ′ = 0 in (20)
and equate it to 0 to obtain the second identity in (21). �

6. Discussion and Open Questions

It was mentioned at the end of Section 4 that a three-cycle parametrisation
of loxodromes is more geometrical than their presentation by a pair (λ,M). Fur-
thermore, three-cycle parametrisation reveals the natural analogy between elliptic
and hyperbolic features of loxodromes, see (17) as an illustration. Examples in
Section 5 show that various geometrical questions are explicitly answered in term
of three-cycle parametrisation. Thus, our work extends the set of objects in Lie
sphere geometry—circle, lines and points—to the natural maximal conformally-
invariant family, which also includes loxodromes. In practical terms, three-cycle
parametrisation allows to extend the library figure for Möbuis invariant geome-
try [26] to operate with loxodromes as well.

It is even more important, that the presented technique is another implementa-
tion of a general framework [26, 29], which provides a significant advance in Lie
sphere geometry. The Poincaré extension of FLT from the real line to the upper
half-plane was performed by a pair of orthogonal cycles in [29]. A similar ex-
tension of FLT from the complex plane to the upper half-space can be done by a
triple of pairwise orthogonal cycles. Thus, triples satisfying FLT-invariant properties
(1a) and (1b) of Prop. 14 present another non-equivalent class of cycle ensembles
in the sense of [29]. In general, Lie sphere geometry can be enriched by considera-
tion of cycle ensembles interrelated by a list of FLT-invariant properties [29]. Such
ensembles become new objects in the extended Lie spheres geometry and can be
represented by points in a cycle ensemble space.

There are several natural directions to extend this work further, here are just
few of them:

(1) Link our “global” parametrisation of loxodromes with differential geom-
etry approach from [6, 33, 36]. Our last Cor. 20 can be a first step in this
direction.

(2) Consider all FLT-invariant non-equivalent classes of three-cycle ensem-
bles on C: pairwise orthogonal triples (representing points in the upper
half-space [29]), triples satisfying properties (1a) and (1b) of Prop. 14 (rep-
resenting loxodromes), etc.

(3) Extend this consideration for quaternions or Clifford algebras [13,30]. The
previous works [34, 35] and availability of FSCc in this setup [8, Ch. 4; 9]
make it rather promising.

(4) Consider Möbius transformations in rings of dual and double numbers [2,
21–25,29,31]. There are enough indications that the story will not be quite
the same as for complex numbers.

(5) Explore further connections of loxodromes with
• Carleson curves and microlocal properties of singular integral oper-

ators [1, 5, 7]; or
• applications in operator theory [38, 39].

Some combinations of those topics shall be fruitful as well.
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Birkhäuser, Basel, 2001. ↑1, 11

http://arxiv.org/a/kisil_v_1


CONFORMAL PARAMETRISATION OF LOXODROMES 13

[8] Jan Cnops. An introduction to Dirac operators on manifolds. Progress in Mathematical Physics,
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