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Abstract

The question in the title is ambiguous. At least the understanding of words essentially different

and function theory should be clarified. We discuss approaches to do that. We also present a new
framework for analytic function theories based on group representations.

1 Introduction

The classic heritage of complex analysis is contested between several complex variables theory and hy-
percomplex analysis. The first one was founded long ago by Cauchy and Weierstrass themselves and
sometime thought to be the only crown-prince. The hypercomplex analysis is not a single theory but
a family of related constructions discovered quite recently [3, 6, 7] (and rediscovered up to now) under
hypercomplex framework.

Such a variety of theories puts the question on their classification. One could dream about a
Mendeleev-like periodic table for hypercomplex analysis, which clearly explains properties of different
theories, relationship between them and indicates how many blank cells are waiting for us. Moreover,
because hypercomplex analysis is the recognized background for classic and quantum theories like the
Maxwell and Dirac equations, such a table could play the role of the Mendeleev table for elementary

particles and fields. We will return to this metaphor and find it is not very superficial.
To make a step in the desired direction we should specify the notion of function theory and define the

concept of essential difference. Probably many people agree that the core of complex analysis consist of

1.1. The Cauchy-Riemann equation and complex derivative ∂
∂z
;

1.2. The Cauchy theorem;

1.3. The Cauchy integral formula;

1.4. The Plemeli-Sokhotski formula;

1.5. The Taylor and Laurent series.

Any development of several complex variables theory or hypercomplex analysis is beginning from analogies
to these notions and results. Thus we adopt the following

Definition 1.1 A function theory is a collection of notions and results, which includes at least analogies
of 1.1–1.5.

http://arxiv.org/abs/2409.20358v1
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Of course the definition is more philosophical than mathematical. For example, the understanding of an
analogy and especially the right analogy usually generates many disputes.

Again as a first approximation we propose the following

Definition 1.2 Two function theories is said to be similar if there is a correspondence between their
objects such that analogies of 1.1–1.5 in one theory follow from their counterparts in another theory. Two
function theories are essentially different if they are not similar.

Unspecified “correspondence” should probably be a linear map or something else and we will look for its
meaning soon. But it is already clear that the similarity is an equivalence relation and we are looking
for quotient sets with respect to it.

The layout is following. In Subsection 2.1 the classic scheme of hypercomplex analysis is discussed
and a possible variety of function theories appears. But we will see in Subsection 2.2 that not all of them
are very different. Connection between group representations and (hyper)complex analysis is presented
in Section 3. It could be a base for classification of essentially different theories.

2 Abstract Nonsense about Function Theory

In this Section we repeat shortly the scheme of development of Clifford analysis as it could be found
in [3, 6]. We examine different options arising on this way and demonstrate that some differences are
only apparent not essential.

2.1 Factorizations of the Laplacian

We would like to see how the contents of 1.1–1.5 could be realized in a function theory. We are interested
in function theories defined in Rd. The Cauchy theorem and integral formula clearly indicates that the
behavior of functions inside a domain should be governed by their values on the boundary. Such a
property is particularly possessed by solutions to the second order elliptic differential operator P

P (x, ∂x) =
d∑

i,j=1

aij(x)∂i∂j +
d∑

i=1

bi(x)∂i + c(x)

with some special properties. Of course, the principal example is the Laplacian

∆ =
d∑

i=1

∂2

∂x2i
. (2.1)

2.1. Choice of different operators (for example, the Laplacian or the Helmholtz operator) is the first
option which brings the variety in the family of hypercomplex analysis.

The next step is called linearization. Namely we are looking for two first order differential operators
D and D′ such that

DD′ = P (x, ∂x).

The Dirac motivation to do that is to “look for an equation linear in in time derivative ∂
∂t
, because the

Schrödinger equation is”. From the function theory point of view the Cauchy-Riemann operator should
be linear also. But the most important gain of the step is an introduction of the Clifford algebra. For
example, to factorize the Laplacian (2.1) we put

D =

d∑

i=1

ei∂i (2.2)
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where ei are the Clifford algebra generators:

eiej + ejei = 2δij, 1 ≤ i, j ≤ d. (2.3)

2.2. Different linearizations of a second order operator multiply the spectrum of theories.

Mathematicians and physicists are looking up to now new factorization even for the Laplacian. The
essential uniqueness of such factorization was already felt by Dirac himself but it was never put as a
theorem. So the idea of the genuine factorization becomes the philosophers’ stone of our times.

After one made a choice 2.1 and 2.2 the following turns to be a routine. The equation

D′f(x) = 0,

plays the role of the Cauchy-Riemann equation. Having a fundamental solution F (x) to the operator
P (x, ∂x) the Cauchy integral kernel defined by

E(x) = D′F (x)

with the property DE(x) = δ(x). Then the Stocks theorem implies the Cauchy theorem and Cauchy
integral formula. A decomposition of the Cauchy kernel of the form

C(x− y) =
∑

α

Vα(x)Wα(y),

where Vα(x) are some polynomials, yields via integration over the ball the Taylor and Laurent series1. In
such a way the program-minimum 1.1–1.5 could be accomplished.

Thus all possibilities to alter function theory concentrated in 2.1 and 2.2. Possible universal algebras
arising from such an approach were investigated by F. Sommen [22]. In spite of the apparent wide
selection, for operator D and D′ with constant coefficients it was found “nothing dramatically new” [22]:

Of course one can study all these algebras and prove theorems or work out lots of exam-
ples and representations of universal algebras. But in the constant coefficient case the most
important factorization seems to remain the relation ∆ =

∑
x2j , i.e., the one leading to the

definition of the Clifford algebra.

We present an example that there is no dramatical news not only on the level of universal algebras
but also for function theory (for the constant coefficient case). We will return to non constant case in
Section 3.

2.2 Example of Connection

We give a short example of similar theories with explicit connection between them. The full account
could be found in [9], another example was considered in [20].

Due to physical application we will consider equation

∂f

∂y0
= (

n∑

j=1

ej
∂

∂yj
+M)f, (2.4)

where ej are generators (2.3) of the Clifford algebra and M = Mλ is an operator of multiplication from
the right-hand side by the Clifford number λ. Equation (2.4) is known in quantum mechanics as the
Dirac equation for a particle with a non-zero rest mass [1, §20], [2, §6.3] and [14]. We will specialize our
results for the case M =Mλ, especially for the simplest (but still important!) case λ ∈ R.

1Not all such decompositions give interesting series. The scheme from Section 3 gives a selection rule to distinguish
them.
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Theorem 2.1 The function f(y) is a solution to the equation

∂f

∂y0
= (

n∑

j=1

ej
∂

∂yj
+M1)f

if and only if the function

g(y) = ey0M2e−y0M1f(y)

is a solution to the equation

∂g

∂y0
= (

n∑

j=1

ej
∂

∂yj
+M2)g,

where M1 and M2 are bounded operators commuting with ej .

Corollary 2.2 The function f(y) is a solution to the equation (2.4) if and only if the function ey0Mf(y)
is a solution to the generalized Cauchy-Riemann equation (2.2).

In the caseM =Mλ we have e
y0Mλf(y) = f(y)ey0λ and if λ ∈ R then ey0Mλf(y) = f(y)ey0λ = ey0λf(y).

In this Subsection we construct a function theory (in the sense of 1.1–1.5) for M-solutions of the
generalized Cauchy-Riemann operator based on Clifford analysis and Corollary 2.2.

The set of solutions to (2.2) and (2.4) in a nice domain Ω will be denoted by M(Ω) = M0(Ω) and
MM(Ω) correspondingly. In the case M =Mλ we use the notation Mλ(Ω) = MMλ

(Ω) also. We suppose
that all functions from Mλ(Ω) are continuous in the closure of Ω. Let

E(y − x) =
Γ(n+1

2
)

2π(n+1)/2

y − x

|y − x|n+1 (2.5)

be the Cauchy kernel [6, p. 146] and

dσ =

n∑

j=0

(−1)jejdx0 ∧ . . . ∧ [dxj ] ∧ . . . ∧ dxm.

be the differential form of the “oriented surface element” [6, p. 144]. Then for any f(x) ∈ M(Ω) we have
the Cauchy integral formula [6, p. 147]

∫

∂Ω

E(y − x) dσy f(y) =

{
f(x), x ∈ Ω
0, x 6∈ Ω̄

.

Theorem 2.3 (Cauchy’s Theorem) Let f(y) ∈ MM(Ω). Then

∫

∂Ω

dσy e
−y0Mf(y) = 0.

Particularly, for f(y) ∈ Mλ(Ω) we have

∫

∂Ω

dσy f(y)e
−y0λ = 0,

and ∫

∂Ω

dσye
−y0λ f(y) = 0,

if λ ∈ R.
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Theorem 2.4 (Cauchy’s Integral Formula) Let f(y) ∈ MM(Ω). Then

ex0M

∫

∂Ω

E(y − x) dσy e
−y0Mf(y) =

{
f(x), x ∈ Ω
0, x 6∈ Ω̄

. (2.6)

Particularly, for f(y) ∈ Mλ(Ω) we have

∫

∂Ω

E(y − x) dσy f(y)e
(x0−y0)λ =

{
f(x), x ∈ Ω
0, x 6∈ Ω̄

.

and ∫

∂Ω

E(y − x)e(x0−y0)λ dσy f(y) =

{
f(x), x ∈ Ω
0, x 6∈ Ω̄

.

if λ ∈ R.

It is hard to expect that formula (2.6) may be rewritten as

∫

∂Ω

E ′(y − x) dσy f(y) =

{
f(x), x ∈ Ω
0, x 6∈ Ω̄

with a simple function E ′(y − x).
Because an application of the bounded operator ey0M does not destroy uniform convergency of func-

tions we obtain (cf. [6, Chap. II, § 0.2.2, Theorem 2])

Theorem 2.5 (Weierstrass’ Theorem) Let {fk}k∈N be a sequence in MM(Ω), which converges uni-
formly to f on each compact subset K ∈ Ω. Then

2.1. f ∈ MM(Ω).

2.2. For each multi-index β = (β0, . . . , βm) ∈ Nn+1, the sequence {∂βfk}k∈N converges uniformly on each
compact subset K ∈ Ω to ∂βf .

Theorem 2.6 (Mean Value Theorem) Let f ∈ MM(Ω). Then for all x ∈ Ω and R > 0 such that the
ball B(x,R) ∈ Ω,

f(x) = ex0M
(n+ 1)Γ(n+1

2
)

2Rn+1π(n+1)/2

∫

B(x,R)

e−y0Mf(y) dy.

Such a reduction of theories could be pushed even future [9] up to the notion of hypercomplex differ-
entiability [15], but we will stop here.

3 Hypercomplex Analysis and Group Representations — To-

wards a Classification

To construct a classification of non-equivalent objects one could use their groups of symmetries. Classical
example is Poincaré’s proof of bi-holomorphic non-equivalence of the unit ball and polydisk via comparison
their groups of bi-holomorphic automorphisms. To employ this approach we need a construction of
hypercomplex analysis from its symmetry group. The following scheme is firstly presented here (up to
the author knowledge) and has its roots in [13, 11, 10].

Let G be a group which acts via transformation of a closed domain Ω̄. Moreover, let G : ∂Ω → ∂Ω
and G act on Ω and ∂Ω transitively. Let us fix a point x0 ∈ Ω and let H ⊂ G be a stationary subgroup
of point x0. Then domain Ω is naturally identified with the homogeneous space G/H . Till the moment
we do not request anything untypical. Now let
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• there exist a H-invariant measure dµ on ∂Ω.

We consider the Hilbert space L2(∂Ω, dµ). Then geometrical transformations of ∂Ω give us the represen-
tation π of G in L2(∂Ω, dµ). Let f0(x) ≡ 1 and F2(∂Ω, dµ) be the closed liner subspace of L2(∂Ω, dµ)
with the properties:

3.1. f0 ∈ F2(∂Ω, dµ);

3.2. F2(∂Ω, dµ) is G-invariant;

3.3. F2(∂Ω, dµ) is G-irreducible.

The standard wavelet transform W is defined by

W : F2(∂Ω, dµ) → L2(G) : f(x) 7→ f̂(g) = 〈f(x), π(g)f0(x)〉L2(∂Ω,dµ)

Due to the property [π(h)f0](x) = f0(x), h ∈ H and identification Ω ∼ G/H it could be translated to
the embedding:

W̃ : F2(∂Ω, dµ) → L2(Ω) : f(x) 7→ f̂(y) = 〈f(x), π(g)f0(x)〉L2(∂Ω,dµ), (3.1)

where y ∈ Ω for some h ∈ H . The imbedding (3.1) is an abstract analog of the Cauchy integral formula.
Let functions Vα be the special functions generated by the representation of H . Then the decomposition
of f̂0(y) by Vα gives us the Taylor series.

The scheme is inspired by the following interpretation of complex analysis.

Example 3.1 Let the domain Ω be the unit disk D, ∂D = S. We select the group SL(2,R) ∼ SU(1, 1)
acting on D via the fractional-linear transformation:

(
a b
c d

)
: z 7→

az + b

cz + d
.

We fix x0 = 0. Then its stationary group is U(1) of rotations of D. Then the Lebesgue measure on S

is U(1)-invariant. We obtain D ∼ SL(2,R)/U(1). The subspace of L2(S, dt) satisfying to 3.1–3.3 is the
Hardy space. The wavelets transform(3.1) give exactly the Cauchy formula. The proper functions of
U(1) are exactly zn, which provide the base for the Taylor series. The Riemann mapping theorem allows
to apply the scheme to any connected, simply-connected domain.

The conformal group of the Möbius transformations plays the same role in Clifford analysis. One usu-
ally says that the conformal group in Rn, n > 2 is not so rich as the conformal group in R2. Nevertheless,
the conformal covariance has many applications in Clifford analysis [4, 19]. Notably, groups of conformal
mappings of open unit balls Bn ⊂ Rn onto itself are similar for all n and as sets can be parametrized by
the product of Bn itself and the group of isometries of its boundary Sn−1.

Theorem 3.2 [12] Let a ∈ Bn, b ∈ Γn then the Möbius transformations of the form

φ(a,b) =

(
b 0
0 b∗−1

)(
1 −a
a∗ −1

)
=

(
b −ba

b∗−1a∗ −b∗−1

)
,

constitute the group Bn of conformal mappings of the open unit ball Bn onto itself. Bn acts on Bn tran-
sitively. Transformations of the form φ(0,b) constitute a subgroup isomorphic to O(n). The homogeneous
space Bn/O(n) is isomorphic as a set to Bn. Moreover:

3.1. φ2
(a,1) = 1 identically on Bn (φ−1

(a,1) = φ(a,1)).
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3.2. φ(a,1)(0) = a, φ(a,1)(a) = 0.

Obviously, conformal mappings preserve the space of null solutions to the Laplace operator (2.1) and
null solutions the Dirac operator (2.2). The group Bn is sufficient for construction of the Poisson and
the Cauchy integral representation of harmonic functions and Szegö and Bergman projections in Clifford
analysis by the formula [11]

K(x, y) = c

∫

G

[πgf ](x)[πgf ](y)dg, (3.2)

where πg is an irreducible unitary square integrable representation of a group G, f(x) is an arbitrary
non-zero function, and c is a constant.

The scheme gives a correspondence between function theories and group representations. The last are
rather well studded and thus such a connection could be a foundation for a classification of function the-
ories. Particularly, the constant coefficient function theories in the sense of F. Sommen[22] corresponds
to the groups acting only on the function domains in the Euclidean space. Between such groups the
Moebius transformations play the leading role. On the contrary, the variable coefficient case is described
by groups acting on the function space in the non-point sense (for example, combining action on the
functions domain and range, see [13]). The set of groups of the second kind should be more profound.

Remark 3.3 It is known that many results in real analysis [16] several variables theory [17] could
be obtained or even explained via hypercomplex analysis. One could see roots of this phenomenon in
relationships between groups of geometric symmetries of two theories: the group of hypercomplex analysis
is wider.

Returning to our metaphor on the Mendeleev table we would like recall that it began as linear ordering
with respect to atomic masses but have received an explanation only via representation theory of the
rotation group.

Our consideration provides a ground for the following

Conjecture 3.4 Most probably there is the only constant coefficient function theory on the Euclidean
space or at most there are two of them.
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