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We discuss several seemingly assorted objects: the umbral calculus, generalised transla-
tions and associated transmutations, symbolic calculus of operators. The common framework
for them is representations of the Weyl algebra of the Heisenberg group by ladder operators.
Transporting various properties between different implementations we review some classic
results and new opportunities.

Dedicated to 100th anniversary of Ivan Aleksandrovich Kipriyanov’s birth

То и это, и вон то,
вместе с этим тоже
—всё равно всегда выходит
как одно и то же.

Считалочка

I. INTRODUCTION: THE BESSEL OPERATOR

Let us start from the celebrated singular Bessel differential operator [1, §1.3], [2, §2.2.2], [3,
§1.4.1] given by:

Bν =
d2

dt2
+

ν

t

d

dt
= t−ν d

dt
tν

d

dt
. (1)

Due to importance of this operator in theoretical and applied settings there are many different
approaches to study Bν and corresponding boundary value problems. Main tools are various in-
tegral transforms [1–3] intertwining Bν with some other operators, which are more accessible for
certain reasons. The special rôle of such integral transforms is often indicated by calling them
transmutations [4].

For example, the Poisson operator is defined for a summable function f(t) by

[Pνf ](x) =
2Γ(ν+1

2 )√
πΓ(ν2 )x

ν−1

x
∫

0

(x2 − t2)
ν

2
−1 f(t) dt. (2)

It transmutes (in other words intertwines) the Bessel operator with the second derivative:

Pν ◦ Bν =
d2

dx2
◦ Pν . (3)

Another example is a Fourier-style decomposition over eigenfunctions of Bν—the Hankel transform
defined by:

[Hνf ](λ) =

∞
∫

0

f(t) j ν−1

2

(
√
λt) tν dt, (4)
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where j ν−1

2

(
√
λt) is the solution of the boundary value problem:

Bνj ν−1

2

(
√
λt) = −λj ν−1

2

(
√
λt), and j ν−1

2

(0) = 1, j′ν−1

2

(0) = 0. (5)

The Hankel transform transmutes Bν with the operator of multiplication:

Hν ◦ Bν = (−λI) ◦ Pν .

Furthermore, it is fruitful [5, 6] to extend the harmonic analysis analogy with Hν and introduce
the generalised translations T y

t such that functions j ν−1

2

(
√
λt) plays the rôle of characters—just like

exponents for ordinary translations:

T y
t jν(λt) = jν(λy) jν(λt). (6)

There are numerous structural similarities between ordinary and generalised translations [5, 7]. The
correspondence between two resembles the umbral calculus [8, 9], that is the technique of dealing
with combinatorial quantities pn as “shadows” of power monomials xn. This intriguing magic may
be turn into a solid theory through a systematic usage of certain linear operators, see [8, 9] and
§II C below.

In this paper the umbral calculus is unfolded through representations of the Weyl algebra by
ladder operators. Covariant transforms intertwine properties of corresponding objects from various
representations. It allows us to propagate results and methods from one setting to another. We
extend the scope through umbral interpretation of generalised shifts and transmutations. Such
connections highlight some gaps and missed opportunities which usually remain in blind spots if
the topics are treated in the traditional isolated manner.

The paper outline is as follows. We are collecting required preliminary material in Section II.
The central place is occupied by representations of Weyl algebra of the Heisenberg group by lad-
der operators, which are introduced in §II A. Then, we remind basics on the covariant (Berezin)
transform and Perelomov’s coherent states in §II B. The intertwining properties of the covariant
transform are foundations of the umbral principle presented in §II C. Convenient complements are
the Fourier transform to the momentum picture §II D and the adjoint action of the ladder operators
§II E. The final bit is a special case of shift invariant delta operator and the resulting binomial in
§II F.

Sufficiently equipped by the previous preparations we interpret several examples through ladder
operators in Section III. The combinatorial umbral calculus is our first example in §III A. We extend
it to the Delsarte–Levitan’s generalised translations and associated transmutations in §III B. These
are illustrated by the cases of higher order delta operators—the second derivative in §III B 1 and
the Bessel operator Bν (1) in §III B 2. Finally, we discuss an application of symbolic calculus of
operators which stems out from the calculus of pseudo-differential operators (PDO) in §III C.

The final Section IV summarises our finding and proposes an extended interpretation of the
umbral principle, see illustration (47). We also indicate further developments and opportunities
generated by the described connections.

II. PRELIMINARIES

Representation theory, in particular of the Heisenberg group [10], is behind many important
calculations in analysis [11–13] and we provide some of its basics in the present section. The group-
theoretical foundations of coherent states/wavelets are well-known and widely appreciated [14, 15].
We can widen the applicability of the approach [16] if it is extended to the Banach spaces [17, 18].
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A. Abstract representation of the Weyl algebra and the Heisenberg group

Let an infinite-dimensional vector space E have a basis {pn}, n = 0, 1, 2, . . .. Then, one can
define the following associated objects:

1. The linear map Q : E → E such that:

Qpn = pn−1, for n > 0 and Qp0 = 0. (7)

In a combinatorial context Q is called delta operator or simply delta.

2. The liner map P : E → E such that:

Ppn = ι(n+ 1)pn+1, for n = 0, 1, 2, . . . , (8)

for some scalar ι. In many algebraic considerations, e.g. the umbral calculus, it is common
to take the simplest value ι = 1. For unitarity in a Hilbert space can employs the imaginary
unit ι = i.

3. The linear functional l0 ∈ E∗ defined by:

〈l0, pn〉 = δ0n , for all n = 0, 1, 2, . . . (9)

where δij is the Kronecker delta.

The above operators Q and P satisfy to the Heisenberg commutation relation [P,Q] = −ιI.
Thus, the set {P,Q,−ιI} form a representation of the Weyl Lie algebra h of the Heisenberg group
H. In the quantum mechanical framework the action of P (7) and Q (8) are known as ladder
operators—creation and annihilation, respectively [19–21]. Their action is visualised as follows:

0 ?>=<89:;p0
P ++

Q
oo ?>=<89:;p1

P ++
Qkk ?>=<89:;p2

P ++
Qkk ?>=<89:;p3

P **
Qkk · · ·

Qkk
++ · · ·jj (10)

We can use the standard exponentiation of (7)–(8) to obtain an action of the Heisenberg group.
Specifically:

eyQpn =
∞
∑

k=0

ykQk

k!
pn =

n
∑

k=0

yk

k!
pn−k; (11)

exPpn =

∞
∑

k=0

xkPk

k!
pn =

∞
∑

k=0

(

n+ k

k

)

xk pn+k. (12)

One may notice a difference between (11) and (12): the former is effectively a finite linear com-
bination of pn and the latter is infinite. Thus, eyQ makes sense in the linear space E itself, but
exP needs some additional structure, e.g. a topology to interpret (12) as a convergent series. An
undemanding resolution is the “formal power series” framework, that is a collection of all infinite

series f =
∑∞

0 anpn with f (k) → f if and only if a
(k)
n → an for all n. We will continue to loosely

denote some topological extension of E which supports expansions (11)–(12) by the same letter E.
Once actions (11)–(12) are meaningful, they satisfy to the Weyl commutator relation:

eyQ exP = eιxy exP eyQ.

Thus, we have a representation of the (polarised) Heisenberg group H of the form:

ρ
E
(s, x, y) = e−ιs e−yQ e−xP , (13)

with the composition law reflecting the multiplication on H:

ρ
E
(s, x, y)ρ

E
(s′, x′, y′) = ρ

E
(s+ s′ + xy′, x+ x′, y + y′), (14)
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Example 1. The archetypal model is the linear space of polynomials E, say, in a variable t with
the monomial basis p

n
(t) = 1

n! t
n. Then Q = d

dt , P = ιtI (the operator of multiplication by the
variable) and 〈l0, p〉 = p(0) (the evaluation at 0). An extension of E to a space of power series in t
with rapidly decreasing coefficients allows us to write the representation (13) as:

ρι(s, x, y)f(t) = e−ι(s+x(t−y))f(t− y), (15)

which is a cousin of the Schrödinger representation [19, §1.3].

B. Covariant transform and intertwining properties

There is an extensive literature on the covariant transform (also known as the coherent state
transform and many other names) in general [14, Thm. 8.1.3] and for the Heisenberg group in
particular [19, 21, 22]. To make a long story short we recall here only the bare minimum of
definitions and notations, see provided references for further details.

It is common to consider covariant transform either in inner product spaces or Gelfand triples
(ridged Hilbert spaces) [17]. In the present situation it is more convenient to work in a linear space
and its dual [18, 23].

Definition 2. [24] Let ρ be a representation of a group G in a vector space V. Take a fiducial
functional l ∈ V∗ and denote its pairing with v ∈ V by 〈l, v〉. The covariant transform is the map:

[Wlv](g) = 〈l, ρ(g)v〉, v ∈ V, g ∈ G, (16)

to scalar-valued functions on G. In the case of a Hilbert space V, a fiducial functional is provided
by a pairing with a vector f ∈ V ∼ V∗ known as a mother wavelet or vacuum state [14, 15].

The covariant transform Wl plainly interacts with the left Λ and right R regular representations
of G, which are:

Λ(g) : f(h) 7→ f(g−1h) and R(g) : f(h) 7→ f(hg), where h, g ∈ G.

Lemma 3. The covariant transform (16) intertwines the left Λ and right R regular representations
of G with the following actions:

Λ(g) ◦ Wl = Wl ◦ ρ(g) and R(g) ◦ Wl = Wρ∗(g)l for all g ∈ G. (17)

Here ρ∗ is the adjoint representation on V∗, that is 〈l, ρ(g)v〉 = 〈ρ∗(g)l, v〉.

For a subgroup H ⊂ G and its character χ let the fiducial functional l has the covariance
property :

〈l, ρ(h)v〉 = χ̄(h)〈l, v〉, for all h ∈ H and all v ∈ V. (18)

Then, Wl is a Perelomov-style covariant transform [15], that is only a part of the covariant trans-
form (16) allows to recover all values. To this end, we fix a continuous section s : G/H → G, which
is a right inverse to the natural projection p : G → G/H.

Definition 4. [16, §5.1] Let l ∈ V∗ intertwine the restriction of ρ to H with a character χ of H,
cf. (18). Then, the induced covariant transform is:

[Wlv](x) = 〈l, ρ(s(x))v〉, v ∈ V, x ∈ G/H. (19)
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Under our assumptions, the induced covariant transform intertwines ρ with a representation
induced from H by the character χ.

In many cases, e.g. for square integrable representations and an admissible mother wavelet v ∈ V,
the image space of the covariant transform is a reproducing kernel Hilbert space [14, Thm. 8.1.3].
That means that for any function l ∈ WlV we have the integral reproducing formula:

v(y) =

∫

X
v(x) k̄y(x) dx, (20)

where the reproducing kernel ky is the twisted convolution with the normalised covariant transform
Wl(ρ(s(y)

−1)l) for the mother wavelet l [25].

C. Covariant transforms for the Heisenberg group and the Umbral principle

We can observe that for the linear functional l0 (9) the identity holds:

〈l0, exPf〉 = ex〈l0, f〉,

which can be initially verified for f = pn and then extended to the whole E by linearity. Therefore,
there is an induced covariant transform (19) for the subgroup

Hy = {(s, x, 0) | s, x ∈ R} and the respective homogeneous space H/Hy ∼ R. (21)

The representation ρh of H induced from the character χh(s, x, 0) = eιs of Hy coincides with the
Schrödinger representation (15) [21]:

[ρh(s, x, y)f ](u) = e−ι(s+x(u−y))f(u− y).

Then, the induced covariant transform defined by functional l0 (9) and the subgroup Hy (21) maps
E to a space of functions of one variable:

f̃(u) := [W0f ](u) = 〈l0, euQf〉, in particular p̃n(u) = 〈l0, euQpn〉 =
(ιu)n

n!
, (22)

where the last identity follows from (11). The transform W0 intertwines the representation ρ
E

(13)

with the representation ρι (15), in particular:1

W0 ◦ ρE = ρι ◦W0, W0 ◦Q =
d

du
◦W0, W0 ◦P = (ιuI) ◦W0, 〈l0, f〉 = [W0f ](0). (23)

The above relations are the fundamentals of the following principle, cf. §III A below:

Umbral Principle. Any statement on functions of one variable, which is formulated in terms of
a linear combination of derivatives, multiplication by monomials and evaluation at 0, corresponds
to a statement about elements of E expressed through Q, P and l0 according to the vocabulary (23).

Note that the above principle does not require any additional assumptions about the nature
of E or its basis {pn}. Once they are fixed, operators Q (7), P (8) and the functional l0 (9) are
completely defined and the Umbral principle is fully set.

1 The archetypal implementation of a covariant transform and these intertwining relations is the Fock–Segal–
Bargmann transform, cf. [39]. It intertwines the creation and annihilation operators for a quantum harmonic
oscillator with operators of multiplication by the complex variable z and the complex derivative d

dz
, respectively.
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Remark 5. Interestingly, the umbral correspondence W0 (23) is defined only through the exponen-
tiation of the delta Q in (22). Thus, the paired operator P is missing or at least obscured in many
considerations. Therefore, it is tempting to deem the operator P to be optional or even excessive.
However, the importance of P manifests itself through the possibility to define the entire umbral
framework (E, {pn}∞0 ) through the triple (E,P, p0). Indeed, the sequence {pn}∞0 is inductively de-
fined, cf. (12) by pn+1 =

1
ι(n+1)Ppn, n = 0, 1, 2, . . .. On the other hand, there is no way equally well

describe the situation through the delta Q alone, see the example of different Appell polynomials,
which all share the same Q = d

dt , in §III A below. We will meet some more arguments later, e.g. a
usage of the operator P allows an extension of the operator calculus in §III C.

D. The momentum picture and the Fourier transform

In some circumstances it is preferable to have an intertwining property with operators Q and
P swapped in comparison to (23). In the physical language: to use momenta of a particle instead
of its coordinates in the configuration space. To this end we replace the functional l0 (9) by a
functional m invariant under the operator euQ

〈m, euQf〉 = 〈m, f〉 . (24)

Then, the respective induced covariant transform:

[Wmf ](v) = 〈m, evPf〉, intertwines Wm ◦ Q = (−ιvI) ◦ Wm, and Wm ◦ P =
d

dv
◦Wm. (25)

The above consideration is purely formal because the functional (24) does not have a non-trivial
bounded action on the basis pn of E. Indeed, euQp1 = p1 + up0 and we shall have 〈m, p1〉 =
〈m, p1〉 + u〈m, p0〉 for all u. Boundedness on pn implies 〈m, p0〉 = 0, which can be extended to
〈m, pn〉 = 0 for all n by induction.

Yet, such a non-zero functional may exist on a certain subspace of the extended space E. For
example, if Q = d

dt and euQ : f(t) 7→ f(t+ u), cf. Ex. 1, a shift-invariant functional is:

〈m, f〉 =
∞
∫

−∞

f(t) dt for f ∈ L1(R).

Then, the induced covariant transform Wm (25) effectively becomes the Fourier transform:

[Wmf ](v) =

∞
∫

−∞

e−ιvtf(t) dt,

It intertwines the Schrödinger representation ρι (15) with itself through an automorphism of H [10],
[19, §1.3]. On the level of the Weyl algebra representation spanned by operators Q = d

dt , P = ιtI
from Ex. 1 the automorphism acts as follows:

Wm : Q 7→ −P, and Wm : P 7→ Q , therefore [WmP,WmQ] = [P,Q] = −ιI.

The above discussed incompatibility of the averaging functional m and the basis {pn} is just another
reason why it is preferable to set the umbral framework through operators Q and P rather than
trough a specific basis {pn}, cf. Rem. 5.
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E. Adjoint action, resolution of the identity and binomial formula

We define adjoint ladder operators E∗ → E∗ in the usual way:

〈Q∗l, f〉 = 〈l,Qf〉, 〈P∗l, f〉 = 〈l,Pf〉 for all f ∈ E and l ∈ E∗. (26)

Then, the sequence {lk}∞0 ⊂ E∗ is inductively produced starting from the functional l0 (9):

ln+1 = Q∗ln, n = 0, 1, 2, . . . . (27)

Note, that the passage to adjoint operators swaps the creation and annihilation rôles of ladder
operators.

The properties (9) and (26) implies bi-orthogonality of sequences {pn}∞0 and {lk}∞0 :

〈lk, pn〉 = δkn. (28)

Therefore, we have the following resolution of the identity written in the Dirac bra-ket notation:

I =

∞
∑

k=0

|pk〉 〈lk| , that is f =

∞
∑

k=0

〈lk, f〉 pk, for all f ∈ E. (29)

The last identity for f = pn directly follows from (28) and then extends to all elements by linearity.
One can attempt an unitarisation trick : define a map F : E → E∗ by the rule F : pn 7→ ln for

all n. Say, if E is a space of polynomials in a single variable, we may look for a measure µ, which
implements (28) in the form:

〈Fpk, pn〉 =
∫

pk(t) pn(t) dµ(t) = δkn. (30)

That is the classical approach to the orthogonal polynomials from ladder operators [20]. Let we
have two abstract representations (E, {pn}∞0 ,Q,P, l0) and (Ẽ, {p̃n}∞0 , Q̃, P̃ , l̃0). Then we may define
the correspondence E → Ẽ similarly to the resolution of identity (29):

V =
∞
∑

k=0

|p̃k〉 〈lk| , that is f =
∞
∑

k=0

〈lk, f〉 p̃k, for all f ∈ E. (31)

Clearly, (27) implies V : pk 7→ p̃k for all k = 0, 1, 2, . . ..
Similarly we can define generating function between two representations (E, {pn}∞0 ) and

(Ẽ, {p̃n}∞0 ):

F (s, t) =

∞
∑

k=0

k! p̃k(s) pk(t), which intertwines QtF (s, t) = P̃sF (s, t). (32)

In most cases the generating function is taken for (Ẽ, {p̃n}∞0 ) being the archetypal model (E, {p
n
}∞0 )

from Ex. 1, that is:

F (s, t) =

∞
∑

k=0

skpk(t), such that QtF (s, t) = sF (s, t). (33)
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F. Shift invariance, binomial formula and operator calculus

There is a particular but still important situation of a translation-invariant delta Q.

Proposition 6. Let E be a space of function on the real line, let Q commute with all translations
T y : f(t) 7→ f(t+ y), y ∈ R and 〈l0, f〉 = f(0). Then

pn(t+ y) =

n
∑

k=0

pn−k(y) pk(t). (34)

Therefore, we can express the translation T y = ey
d

dt as a function of Q:

T yf =

∞
∑

k=0

pk(y)Qkf. for any f ∈ E. (35)

A proof begins from an application of (29) to T ypn(t) = pn(t+ y):

pn(t+ y) =

∞
∑

k=0

〈lk, T ypn〉 pk(t) =
∞
∑

k=0

〈Q∗kl0, T
ypn〉 pk(t) =

∞
∑

k=0

〈l0,QkT ypn〉 pk(t)

=

∞
∑

k=0

〈l0, T yQkpn〉 pk(t) =
n
∑

k=0

〈l0, T ypn−k〉 pk(t) =
n
∑

k=0

pn−k(y) pk(t),

where the series obviously terminates at k = n. Then, (35) for f = pn is exactly (34), thereafter
(35) for a general f ∈ E follows from linearity.

In the archetypal case of Ex. 1 with pn(t) =
1
n!t

n identity (34) turns out to be the celebrated
binomial formula:

(t+ x)n

n!
=

n
∑

k=0

xn−k

(n− k)!

tk

k!
or (t+ x)n =

n
∑

k=0

(

n

k

)

xn−k tk. (36)

Yet, (34) remains valid for numerous polynomials of binomial types, see below.
Now let us turn to some examples of the above abstract scheme.

III. VARIOUS IMPLEMENTATIONS

We start from the original version of the umbral calculus and then extend the scope by some
new illustrations.

A. Finite Operator (Umbral) Calculus

As it often happens, the umbral calculus started from some particular observations in specific
circumstances. Thereafter, it took several iterations to separate an abstract core from technical
aspects [26] and recognise the rôle of the Heisenberg group [20, 27–33] in the construction. Here we
are moving the opposite direction: from the abstract scheme of §II A to its specific implementations.

It is common in combinatorics to take pn to be a polynomial of degree n. Alternatively, it can
be requested that the delta operator Q sends the first order monomial to a constant: Qt = c [34].
Thereafter, some additional assumptions are employed as well, e.g. in the reverse historical order:
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• If a delta Q commutes with shifts then {pn} is called a Sheffer sequence.

• If Q = d
dt then {pn} is a sequence of Appell polynomials (thus, they are special case of Sheffer

polynomials)

• If Sheffer polynomials satisfy 〈l0, pn〉 = pn(0) then {pn} are called sequences of binomial type.
As we already know, such {pn} shall satisfy to the binomial formula (34), which can be taken
as their alternative definition and, clearly, is the source of their name.

Notably, the only Appell polynomials of binomial type are monomials pn(t) =
1
n!(ιt)

n from Ex. 1.
That is the Appell and binomial type polynomials are two different branches springing from the
archetypal model and still covered by the same umbrella of Sheffer polynomials.

Example 7. There are numerous sequences of polynomials covered in the literature, cf. [9, 26]:

pn(t) Q P 〈l0, f〉

Monomials 1
n! t

n d
dt tI f(0)

Lower factorials 1
n!(t)n = 1

n!t(t− 1)(t− 2) · · · (t− n+ 1) f(t+ 1)− f(t) (8) f(0)

Upper factorials 1
n!t

(n) = 1
n!t(t+ 1)(t+ 2) · · · (t+ n− 1) f(t)− f(t− 1) (8) f(0)

. . . . . . . . . . . . . . .

with more classical names to follow: the Abel polynomials, the Touchard polynomials, Appell
sequences, Hermite polynomials, Bernoulli polynomials, etc. In many cases the simplest description
of the operator P is given by the references to (8). Yet a sort of analytic expressions may be
elaborated sometimes as well.

We illustrate the Umbral principle here with one example only. Rewrite the binomial for-
mula (36) using the operator d

dx :

e(y
d

dx
)x

n

n!
=

n
∑

k=0

yk

k!

xn−k

(n− k)!
=

n
∑

k=0

yk

k!

(

dk

dxk
xn

n!

)

.

Then an application of the Umbral principle (e.g. the covariant transform) for Appell polynomials
pn with Q = d

dx gives the identity:

pn(t+ y) = eyQpn(t) =
n
∑

k=0

yk

k!
Qkpn(t) =

n
∑

k=0

yk

k!
pn−k(t).

More illustrations can be found in [9, 26].

B. Delsarte–Levitan’s generalised translations

Now we link the umbral principle with generalised translations proposed by Delsarte and exten-
sively investigated by Levitan, cf. [7], [2, §2.2], [3, §3.4.3]. We present an adaptation of the original
Delsarte’s approach, which is well tuned to our theme.
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Let L be a linear operator on a space E(R) of functions in one variable. We also assume that
for some neighbourhood Ω of 0 and for any scalar λ ∈ Ω there is a unique non-zero solution φ(λ, t)
of the eigenvalue problem:

{

Ltφ(λ, t) = λφ(λ, t) (where Lt acts in variable t);

φ(λ, 0) = 1.
(37)

Furthermore, let φ(λ, t) be analytic at λ = 0 and generates functions φn(t) in the power expansion:

φ(λ, t) =

∞
∑

n=0

λn φn(t) such that (37) implies Lφn = φn−1 and φn(0) = δ0n. (38)

In other words, the collection (E(R), {φn}∞0 ) provides the abstract representation of the Heisenberg
group from §II A with Q = L and 〈l0, f〉 = f(0). Furthermore, in this setting the decomposition (38)
is an implementation of the generating function (33).

Changing the boundary conditions φ(λ, 0) = 1 in (38) we get different umbral sequences {φn}∞0
for the same operator L. This corresponds to various Appell polynomials for the same Q = d

dt in
the classic umbral setting outlined above.

If L commutes with all ordinary translations ey
d

dt : f(t) 7→ f(t+ y), then ey
d

dt =
∑∞

0 φk(y)L
k
t

by (35). If translation-invariance of L is not assumed then the previous formula defines the umbral
version for the generalised translation T y

t :

[T y
t f ](t) =

∞
∑

0

φk(y)L
kf(t). (39)

By induction the intertwining property (33) of the generating function φ(λ, t) =
∑∞

0 λkφk(t) (38)
implies Lkφ(λ, t) = λkφ(λ, t), therefore, cf. (6):

[T y
t φ](λ, t) =

∞
∑

k=0

φk(y)L
kφ(λ, t) =

∞
∑

k=0

φk(y)λ
kφ(λ, t) = φ(λ, y)φ(λ, t). (40)

That is, the generating function F (s, t) (33) is a character of the generalised translation (39). Now
we turn to specific examples of generalised translations.

1. Second order derivative

To begin with, we can drop one of the main assumption of the umbral calculus in combinatorics
that pn is a polynomial of degree n. For example, let us consider even-order monomials pn(t) =
(−1)n t2n

(2n)! , n = 0, 1, 2, . . . and the linear space E2 spanned by them. The second derivative Q = −d2

dt2

has the action Qpn = pn−1 for n > 1 and Qp0 = 0. Therefore, to have the commutator [P,Q] = I
we can define a linear operator P by the rule

Ppn = (n+ 1)pn+1, that is Pt2n = − 1

2(2n + 1)
t2n+2.

Alternatively, we can employ antiderivatives and get an analytic expression, cf. [32]:

[Pf ](t) = −1
2t

t
∫

0

f(s) ds for f ∈ E2. (41)
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It is known as a connection between eQ and the (Gauss–)Weierstrass transform [35]. Therefore,
exponentiation of Q leads to the diffusion semigroup:

euQf(t) =
1

2
√
πu

∞
∫

−∞

f(s) e−(t−s)2/(4u) ds.

Since the functional l0 is the evaluation 〈l0, f〉 = f(0), the covariant transform is:

f̃(u) = 〈l0, euQf〉 =
1

2
√
πu

∞
∫

−∞

f(s) e−s2/(4u) ds. (42)

This formula also follows from the observation that the intertwining property (23) between Q = d2

dt2

and d
du requires the integral kernel k(u, t) = 1

2
√
πu

e−t2/(4u), which is the fundamental solution of the

heat equation dk
du = d2k

dt2 .
We can use the same approach to find the intertwining operator with the momentum repre-

sentation, cf. §II D, to avoid a challenging exponentiation of the antiderivative operator (41) as

required by (25). To intertwine operator Q = d2

dt2 and vI a kernel k(v, t) shall satisfy to the equa-

tion vk = d2k
dt2

with the initial values k(v, 0) = 1 and k′t(v, 0) = 0. The same answer appears as the
generating function (33):

k(v, t) = cos
(√

vt
)

=

∞
∑

k=0

(−v)k t2k

(2k)!
and the transform is f̂(v) =

∞
∫

−∞

f(t) cos
(√

vt
)

dt . (43)

The operator Q = −d2

dt2 can be viewed as an “umbra” for a generic Schrödinger operator d2

dt2 +V (t)I,
see [36] for a related discussion with a usage of the orthogonalisation (30).

2. Bessel operator and umbral calculus

Let Q = Bν is the singular Bessel differential operator (1). The umbral sequence is formed by
even-order monomials with a tailored scaling, cf. (41):

pn(t) =
t2n

4n n! Γ(n+ ν−1
2 )

with Pt2n =
t2(n+1)

2(2n + ν + 1)
or [Pf ](t) = 1

2s
1−ν

t
∫

0

sν ·f(s) ds. (44)

The umbral functional is again the evaluation 〈l0, f〉 = f(0). Alternatively, an umbral sequence is
formed by fractional powers:

pn(t) =
t2n+1−ν

4n n! Γ(n+ 1−ν
2 )

with Pt2n+1−ν =
t2n+3−ν

2(2n + 3− ν)
or [Pf ](t) = 1

2

∫ t

0
s · f(s) ds.

In this case the umbral functional is 〈l0, f〉 = limt→0(t
ν−1f(t)).

We are continuing with the first umbral sequence (44). The generating function (33) is also a solu-
tion of the eigenvalue problem (37), which is given by the normalised Bessel functions j ν−1

2

(
√
st) (5):

j ν−1

2

(
√
st) =

∞
∑

k=0

(−s)k t2k

4k k! Γ(k + 1−ν
2 )

. (45)
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A pairing invariant under the action eyBν for all real y is

〈g, f〉 =
∞
∫

0

g(t) f(t) tν dt.

The respective induced covariant transform
〈

j ν−1

2

(
√
st), f(t)

〉

is the Hankel transform (4).

Thereafter, we can define a generalised translation T y
t (39) for the Bessel operator Bν . Then, the

generating function j ν−1

2

(
√
st) has the character property (40), which takes the form (6). Since the

Hankel transform (4) represents elements of E as superpositions of the normalised Bessel functions
we can write an integral representation of the generalised translations T y

t . Finally, the Poisson
operator (2) is the intertwining operator (3) between two umbral schemes generated by the Bessel
operator and the second derivative considered in the previous paragraph.

C. PDO type calculus of operators

An important tool to study boundary value problems with the Bessel operator Bν (1) is a
generalised convolution [1, §1.3], [2, §2.2.3], [3, §3.4.3]. It can be defined through the Hankel
transform Hν (4) treated as a sort of the Fourier transforms:

Hν(f ∗ g) = Hν(f) · Hν(g).

Equivalently, the operator of convolution Cf : g 7→ f ∗ g is an integral operator of the generalised
translations (6):

[Cfg](t) =
∞
∫

0

f(y) [T y
t g](t) y

ν dy =

∞
∫

0

f(y)

∞
∑

k=0

φk(y) [Bk
νg](t) y

ν dy.

Clearly, this line of thoughts is applicable to any other umbral framework as well. From general
principles, a large class of operators commuting with Q is contained in a weak closure of powers
Qk, cf. Prop. 6. Yet, we can use the umbral calculus to get a larger class of operators on E as
integrated representations of ρ

E
(13). That is, for a suitable kernel k(x, y) we define the operator

of relative convolution [25, 37]:

ρ(k) =

∫ ∫

k(x, y) eyQ exP dxdy. (46)

Of course, the expression is only meaningful if the operator P is defined at all, it adds another
reason for consideration of P along with Q to already presented in Rem. 5. The corresponding
calculus of operators is well known [19, 38, 39]. In particular, the composition formula for two
operators is

ρ(k1)ρ(k2) = ρ(k1♮k2), where [k1♮k2](x, y) =

∫ ∫

k1(x
′, y′) k2(x− x′, y − y′) eπi(x

′y−y′x) dx′ dy′,

and k1♮k2 is called the twisted convolution for the Heisenberg group. A further facilitation is
provided through considering operators of the form a(P,Q) := ρ(â) (46) with a kernel being the
Fourier transform of a function a(x, y). If ρ is the Schrödinger representation (15) then the operator
ρ(â) is a pseudodifferential operator (PDO) a(P,Q) with the symbol a(x, y) [19, 38, 39].

For other umbral frameworks we obtain different realisations of operators (46). However, all of
them enjoy the same set of properties which are inherited from PDO through the Umbral principle.
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To make this approach successful for a specific class of operators one needs to make a suitable choice
of an umbral model. On one hand selected operators P and Q need to be accessible themselves,
on the other hand P and Q shall be sufficiently versatile to represent the desired class of operators
as PDO a(P,Q) with a manageable type of symbols a(x, y). A similar dilemma is elaborated for a
different PDO-like calculus of operators in [40, 41].

IV. DISCUSSION AND CLOSING REMARKS

In this paper we present umbral calculus foundations through representations of the Heisenberg
group. Although this approach was around for a while [20, 27–33, 42] it largely remains out of the
mainstream theory [9, 43]. The discussed viewpoint on the umbral techniques covers some additional
areas, e.g. generalised translations [1–3, 5, 7]. Such inclusion rewards the umbral approach with
a removal of some unessential limitations, e.g. on the degree of a delta operator. Thus, it is
stimulating to consider the umbral calculus not just as a one-way road to replicate some results from
the archetypal model of power series to other situations. A more fruitful umbral ideology creates
a hub, which facilities all-to-all exchanges between various umbral implementations, schematically
depicted as follows:

❴❴ ❴ ❴ ❴ ❴ ❴ ❴ ❴ ❴ ✤✤
✤

✤
✤✤

❴ ❴ ❴ ❴ ❴ ❴ ❴ ❴ ❴❴
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❏

))
P

❘

��

✘
✚
✢
✤
✦
✩

✫

· · ·

��

· · ·

yy�� ��

�� ��

�� ��

�� ��
Archetypal

model
vv

MC

❏
▼

ii ❘

MA

{{
MB

))

UU ::

22 · · ·pp

�� ��
�� ��Implementation A

WA

::

MB◦WA

00

SS

✘
✚
✢

✤
✦
✩
✫

�� ��
�� ��Implementation B

.

WB

ii

MA◦WBpp

(47)

Here the contravariant transform MA : E → EA is the adjoint of the covariant transform WA :
EA → E. Then, the transmutation TBA = MB ◦ WA : EA → EB intertwines respective ladder
operator:

TBA ◦ QA = QB ◦ TBA and TBA ◦ PA = PB ◦ TBA.

Such construction of transmutations falls within the composition method [2, Ch. 5], [3, Ch. 6].
Now we can formulate the extension of the original Umbral Principle.

Umbral Principle (Extended). For any two implementations of the umbral model intertwining
operators (transmutations) MB ◦ WA and MA ◦ WB (47) allow us to exchange scopes, problems,
ideas, methods, results, etc. between those implementations.

Here are few examples of such cross-fertilisation:

• The generalised translations for the Bessel operators shows that the umbral delta operator
shall not be restricted by the condition that it reduces the order of polynomials by one. It will
be interesting to see if the Bessel operator (1) may be useful as a delta in some combinatorial
and enumeration problems.

• The generalised translations T y naturally create respective convolutions. Yet, we can trans-
port a technique for calculus of larger classes (not necessarily T y-invariant) operators from
the theory of PDO [19, 38, 39] generated by the archetypal umbral model from Ex. 1.
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• It is possible to transport the idea of the Feynman path integral from quantum mechanics to
combinatorics using the umbral framework [42]. It may be interesting to see the meaning of
path integrals for generalised translations as well as other umbral implementations.

Despite of the exceptional rôle of the Heisenberg group in the analysis [10] an umbral approach
may be build on other group representations as well. The next natural candidate to implement a
sort of ladder actions (7)–(8) would be the group SL2(R). Indeed, for a given basis pn of a linear
space E there are many essentially different possibilities to chose sequences of numbers an, bn, cn
such that the extended set {Q,P,Z} of linear operators defined by [44, 45]

Qpn = anpn−1, Ppn = bnpn+1, Zpn = cnpn (48)

make a representation of the Lie algebra of SL2(R):

[Q,P] = λZ, [Z,Q] = λ−Q, [Z,P] = λ+P, for some scalars λ, λ−, λ+. (49)

A graphical illustration of action (48) is:

0 ?>=<89:;p0
P ++

Q
oo

Z

�� ?>=<89:;p1
P ++

Qkk

Z

�� ?>=<89:;p2
P ++

Qkk

Z

�� ?>=<89:;p3
P **

Qkk

Z

��
· · ·

Qkk
++ · · ·jj (50)

where, in comparison to (10), the reflexive arrows for Z-action are added. Such ladders include much
more than just the unitary representations of SL2(R) by the discrete holomorphic series [44, 45].
The additional representations have various applications, e.g. for quasi-exact solvable quantum
systems [46].

Interestingly, the Heisenberg ladder (10) can be a source of some SL2(R) representations of the
form (50) through the quadratic algebra concept [47, §2.2.4]. Indeed, if [P,Q] = −ιI then operators
P2 = P2, Q2 = Q2 and Z2 = PQ satisfies commutators (49) and form a metaplectic representation
of SL2(R) [19, 44]. Therefore, the even-numbered elements of the ladder (10) becomes nodes of the
action (50) depicted as follows:

0 ?>=<89:;p0
P ++

P2

##

Q
oo

PQ

��
p1

P ++
Qkk ?>=<89:;p2

P ++
Qkk

P2

##

Q2

cc

PQ

��
p3

P ++
Qkk ?>=<89:;p4

P **
Qkk

P2

##

Q2

cc

PQ

��
· · ·

Qkk
++ · · ·jj

Q2

cc (51)

A transition in the opposite direction—from the SL2(R)-action (50) to its embedding in an extended
ladder (51)—can be viewed as a sort of factorisation of a second-order operator. This provides a
more detailed resolutions, say, for the Bessel operator Bν (1).

Overall, the umbral approach in the context of SL2(R) may be an exciting topic with an extensive
exchange of ideas between various fields and deserves a further study.
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