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Abstract
Metamorphism is a recently introduced integral transform, which is useful in solving
partial differential equations. Basic properties of metamorphism can be verified by
direct calculations. In this paper, we present metamorphism as a sort of covariant
transform and derive its most important features in this way. Our main result is a
characterisation of metamorphism’s image space. Reading this paper does not require
advanced knowledge of group representations or theory of covariant transform.
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1 Introduction

Metamorphism is the integral transform f (u) �→ ˜̃f (x, y, b, r) defined by [1, 2]

˜̃f (x, y, b, r) = 4√
2r2

∫
R

f (u) exp
(
−π�

(
(r2 − ib)(u − y)2 + 2i(u − y)x

))
du.

(1)

Particular values of ˜̃f (x, y, b, r) encompass many important integral transforms of
f (u), for example:
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• ˜̃f (x, 0, 0, 0) is the Fourier transform.

• ˜̃f (0, y, 0, r) is the Gauss–Weierstrass(–Hille) transform [3].

• ˜̃f (x, y, 0, 1) is the Fock–Segal–Bargmann (FSB) transform [4, S 1.6].

• ˜̃f (x, y, 0, r) is the Fourier–Bros–Iagolnitzer (FBI) transform [4, S 3.3].

• ˜̃f (x, y, b, 1) was used in [5, 6] to treat the Schrödinger equation.

• ˜̃f (0, 0, b, r) is a sort of wavelet transform for the affine group [7, Ch. 12]. Meta-
morphism is a variant of quadratic Fourier (or Fresnel–Fourier [42], or integral
Gauss [43], or linear canonical [44], etc.) transform.

However, the metamorphism is more than just a formal recombination of classical
transforms. For example, it can be used as a sort of transmutation [8, 9] to reduce
the order of a differential equations [1]: e.g., a second-order differential equation can
be transformed to a first order admitting a straightforward solution and transparent
geometrical structure [5, 6].

Basic properties of the metamorphism can be verified by direct calculations—
the path which was intentionally chosen to reduce the amount of prerequisites in the
introductory paper [1]. Yet, a genuine origin of metamorphism is a covariant transform
related to the Schrödinger–Jacobi group [4, 10] as was already presented in the Jupyter
notebooks [2] with respective symbolic computations.

This paper systematically utilises the group theory and covariant transform tech-
nique to reinstall the metamorphism transform from a scratch. Furthermore, some
sister integral transforms are appearing as well. The paper can be seen as a readable
narrative to a Jupyter notebook [2], which will be frequently referred here to replace
some boring calculations. Our main result is a characterisation of the metamorphism
image space in Thm. 5.5.

We made this paper as accessible as possible. Its reading does not require an
advanced knowledge of group representations and the theory of covariant transform.
We provide most of required information with further references to more detailed
presentations if needed.

In Sect. 2, we introduce several groups: the Heisenberg, SL2(R), affine, Schrödin-
ger, and finally our main object—the group SSR. Essential relations between those
groups are presented as well. We describe some (not all) induced representations of
the group SSR in Sect. 3. The corresponding covariant transform and its properties
are described in Sect. 4. Finally, we connect a selection of a fiducial vector with the
properties of the image space of covariant transform in Sect. 5. In particular, the meta-
morphism is defined as the covariant transform with a remarkable fiducial vector—the
Gaussian. Covariant transforms with some other mentioned fiducial vectors are still
awaiting their investigation.

2 Heisenberg, SL2(R), affine, Schrödinger, and SSR groups

We start from a brief account of groups involved in the consideration. An element of
the one-dimensional Heisenberg groupH [4, 11, 12] will be denoted by (s, x, y) ∈ R

3.
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The group law on H is defined as follows:

(s, x, y) · (s′, x ′, y′) = (s + s′ + 1
2ω(x, y; x ′, y′), x + x ′, y + y′),

where

ω(x, y; x ′, y′) = xy′ − x ′y (2)

is the symplectic form [13, Sect. 41] on R
2. The identity element in H is (0, 0, 0),

and the inverse of (s, x, y) is (−s,−x,−y).
There is an alternative form of H called the polarised Heisenberg group Hp with

the group law [4, Sect. 1.2] [14]

(s, x, y) · (s′, x ′, y′) = ( s + s′ + xy′, x + x ′, y + y′).

and the group isomorphism θ : H → Hp given by

� : (s, x, y) → (s + 1
2 xy, x, y).

The special linear group SL2(R) is the group of 2 × 2 matrices with real entries
and the unit determinant [15, 16]. The group law on SL2(R) coincides with the matrix
multiplication. A matrix A ∈ SL2(R) acts on vectors in R

2 by a symplectomorphism,
i.e., an automorphisms of the symplectic form ω (2)

ω(A(x, y); A(x ′, y′)) = ω(x, y; x ′, y′).

Therefore, the transformation θA : H → H

θA : (s, x, y) → (s, A(x, y))

is an automorphism of H [4, Sect. 1.2]. The corresponding polarised automorphism
θ
p
A = � ◦ θA ◦ �−1 : Hp → Hp is

θ P
A (s, x, y) =

(
s + 1

2 (acx
2 + 2bcxy + bdy2), ax + by, cx + dy

)
,

where A =
(
a b
c d

)
.

Upper triangular matrices in SL2(R)with positive diagonal entries form a subgroup
A. We parameterise it by pairs (b, r) ∈ R

2+ with b ∈ R and r > 0 as follows:

(
1 b
0 1

) (
r 0
0 1/r

)
=

(
r b/r
0 1/r

)
. (3)

The subgroup is isomorphic to the affine group of the real line also known as the ax+b
group [17].
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For a group acting by automorphism on another group, we can define their
semi-direct product. The model case is the affine group itself, where dilations act
as automorphisms of shifts. Formally, let G and H be two groups and assume
θ : H → Aut(G), where θh is an automorphism of G corresponding to h ∈ H .
The semi-direct product of G by H denoted by G � H is the Cartesian product of
G × H with the group law

(g1, h1) · (g2, h2) = (g1θh1(g2), h1h2), (4)

where (g1, h1), (g2, h2) ∈ G × H .
The semi-direct product of the Heisenberg group and SL2(R) is called Schrödinger

group S, which is the group of symmetries of the Schrödinger equation [18, 19] and
parabolic equations [20] with applications in optics [21, 22]. In the context of number
theory, it is also known as the Jacobi group [10].

Our main object here is the group G := Hp � A, which is the semi-direct product
of the Heisenberg group Hp and the affine group A (3) acting by symplectic automor-
phism of Hp. Thus, G is a subgroup of the Schrödinger group. It can be also called
shear–squeeze–rotation (SSR) group [2] by three types of transformations of Gaussian
coherent states. A subgroup ofG without squeeze (i.e., r = 1 in (3)) is called the shear
group and it was used in a similar context in [5, 6]. This nilpotent step 3 group is also
known as the Engel group [23].

Let (s, x, y, b, r) ∈ G where (s, x, y) ∈ Hp and (b, r) ∈ A. Explicitly, the group
law (4) on G is [2]

(s, x, y, b, r) · (s′, x ′, y′, b′, r ′) = (s + s′ + xr−1y′ − 1
2 b (r−1y′)2,

x + r x ′ − br−1y′, y + r−1y′, b + b′r2, rr ′).

There is a convenient matrix realisation of G [2]

(s, x, y, b, r) =

⎛
⎜⎜⎝
1 −yr (x + by)/r 2s − yx
0 r −b/r x
0 0 1/r y
0 0 0 1

⎞
⎟⎟⎠ .

The corresponding solvable Lie algebra g has a basis {S, X ,Y , B, R}, with the
following non-vanishing commutators:

[X ,Y ] = S, [X , R] = −X , [Y , R] = Y , [Y , B] = X , [R, B] = 2B. (5)

Clearly, the group G is non-commutative.

3 Induced representations from the group G

In this section, we construct several induced representations of the groupG, which are
required for our study. First, we recall the general scheme of induced representations.
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For simplicity, only inductions from characters of subgroups are considered and it
is sufficient for our present purposes. For further details and applications of induced
representations, see [7, 24–27].

3.1 Induced representation from a subgroup character

Let G be a group and H be a subgroup of G. The space X = G/H of the left cosets
gH of the subgroup H is given by the equivalence relation: g ∼ g′ if there exists
h ∈ H , such that g = g′h. We define the natural projection p : G → X , such that
p(g) = gH .

Let us fix a section s : X → G, such that p ◦ s = I , where I is the identity map on
X . An associated map r : G → H by

r(g) = s(p(g))−1 · g. (6)

provides the unique decomposition of the form [28, Sect. 13.2]

g = s(p(g)) · r(g), for any g ∈ G.

Thus, X is a left homogeneous space with the G action as follows:

g−1 : x → g−1 · x = p (g−1 ∗ s(x)), (7)

where ∗ is the multiplication of G and · is the action of G on X from the left.
Supposeχ : H → T be a character of the subgroup H . Let Lχ

2 (G) be aHilbert space
of functions on G with a G-invariant inner product and the H -covariance property
[29]

F(gh) = χ̄ (h) F(g), for all g ∈ G, h ∈ H . (8)

The space Lχ
2 (G) is invariant under the left regular representation by G-shifts

�(g) : F(g′) → F(g−1g′), where g, g′ ∈ G. (9)

The restriction of � to the space Lχ
2 (G) is called the induced representation from the

character χ .
An equivalent form of the induced representation can be constructed as follows [28,

29]. We define a lifting Lχ : L2(X) → Lχ
2 (G) as the map

[Lχ f ](g) = χ(r(g)) f (p(g)). (10)

The pulling P : L2χ (G) → L2(X) given by

[PF](x) = F(s(x)). (11)
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Clearly, P ◦ Lχ = I on L2(X). From (10), (11), the induced representation ρ :
L2(X) → L2(X) is defined by the formula

ρχ(g) = P ◦ �(g) ◦ Lχ ,

where �(g) is the left regular representation (9). The representation ρχ explicitly is

[ρχ(g)](x) = χ̄ (r(g−1 s(x))) f (g−1 · x), (12)

where g ∈ G and x ∈ X and g−1 · x is defined by (7). For a G-invariant measure μ

on X the representation, (12) is unitary on the space L2(X , μ)

3.2 Derived representations

In this subsection, G is a Lie group with the corresponding Lie algebra g. Let ρ be
a representation of G in a Hilbert space H, and the derived representation of X ∈ g
denoted as dρX is given by

dρXφ = d

dt
ρ(exp(t X))φ |t=0, (13)

where the vector φ ∈ H is such that the vector function g → ρ(g)φ is infinitely-
differentiable for any g ∈ G. These vectors are called smooth and constitute a linear
subspace, denotedD∞, ofHwhich is dense inH. It is easy to show thatD∞ is invariant
under ρ(g) [15, S 6.1]. IfH is L2(R

n), then the space D∞ contains the Schwartz space,
which is a dense subspace of L2(R

n).
Also, we define the Lie derivative LX for X ∈ g as the derived right regular

representation [15, S 6.1], that is

[LX F](g) = d

dt
F(g exp(t X)) |t=0, (14)

for any differentiable function F on G.

3.3 Left regular representation of groupG

The left and right invariant Haar measures of the group G are given by

dl(s, x, y, b, r) = ds dx dy db
dr

r3
,

dr (s, x, y, b, r) = ds dx dy db
dr

r
.

Thus, the groupG is non-unimodular with the modular function
(s, x, y, b, r) = 1
r2
.
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We extend the action (9) of G on itself by left shifts to the left regular unitary
representation on the linear space of functions L2(G, dl):

[�(s, x, y, b, r)F](s′, x ′, y′, b′, r ′) = F(s′ − s + x(y′ − y) − 1
2b(y

′ − y)2,

1

r
(x ′ − x) + b

r
(y′ − y), r(y′ − y),

1

r2
(b′ − b),

r ′

r
),

(15)

where (s, x, y, b, r), (s′, x ′, y′, b′, r ′) ∈ G.
This representation is reducible, i.e., there are �-invariant proper subspaces in

L2(G, dl). In particular, many types of induced representations of G are realised as
restrictions of the left regular representations (15) to some subspaces with a covariance
property (8). We describe here two of them—called the quasi-regular type representa-
tion and the Schrödinger type representation—together with equivalent forms on the
respective homogeneous spaces.

3.4 Quasi-regular representation of the groupG

Let

Z = {(s, 0, 0, 0, 1), s ∈ R}

be the centre of the group G. The space of left cosets X = G/Z can be parametrised
by

R
4+ = {(x, y, b, r) ∈ R

4 : r > 0}.

Consider the natural projection and the section maps

p(s, x, y, b, r) → (x, y, b, r),

s(x, y, b, r) → (0, x, y, b, r). (16)

We calculate the respective map r (6) as follows:

r(s, x, y, b, r) = s(p(s, x, y, b, r))−1(s, x, y, b, r)

= (s, 0, 0, 0, 1).

Let χ� : Z → T be an unitary character of Z :

χ�(s, 0, 0, 0, 1) = e2π i�s,

definedby aparameter� ∈ R. In quantummechanical framework,� is naturally associ-
atedwith the Planck constant [4, 27, 29, 30]. The corresponding induced representation
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ρ̃ : L2(R4+) → L2(R
4+) is [2]

[ρ̃(s, x, y, b, r) f ](x ′, y′, b′, r ′)

= e2π i�(s+x(y′−y)−b(y′−y)2/2)

× f ( 1r (x
′ − x) + b

r (y′ − y), r(y′ − y), 1
r2

(b′ − b), r ′
r ).

(17)

It is called the quasi-regular type representation on L2(R
4+). One can check that ρ̃ is

unitary and we will discuss its reducibility below.

3.5 Schrödinger type representation of the groupG

Let

H1 = {(s, x, 0, b, r), s, x, b ∈ R, r ∈ R+}

be a subgroup of G, which is a semi-direct product of a maximal abelian subgroup of
H and the affine group A. The space of the left cosets G/H1 is parameterized by R.
We define the natural projection p : G → R and a section map s : R → G by

p(s, x, y, b, r) = y,

s(y) = (0, 0, y, 0, 1).

The respective map r (6) is

r(s, x, y, b, r) = s(p(s, x, y, b, r))−1(s, x, y, b, r)

= (s, x, 0, b, r).

Let χ�λ : H1 → T be a character H1

χ�λ(s, x, 0, b, r) = e2π i�s rλ+ 1
2 ,

where � ∈ R, λ ∈ iR. For simplicity, we will consider here the case of λ = 0 only.
The induced representation on L2(R) is [2]

[ρ(s, x, y, b, r) f ](u) = √
r e2π i�(s+x(u−y)−b(u−y)2/2) f (r (u − y)). (18)

Remark 3.1 The structure of this representation can be illuminated through its
restrictions to the following subgroups:

• The affine group A, i.e., the substitution s = x = y = 0. The restriction is the
co-adjoint representation of the affine group [24, Sect. 6.7.1] [17]

[ρ(0, 0, 0, b, r) f ](u) = √
r eπ i� b u2 f (r u).
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Through the Fourier transform, it is unitary equivalent to the quasi-regular rep-
resentation of the affine group, which is the keystone of the wavelet theory and
numerous results in complex and harmonic analysis [17].

• The Heisenberg group, that is r = 1 and b = 0. The restriction is the celebrated
Schrödinger representation [4, 29]

[ρ(s, x, y, 0, 1) f ](u) = e2π i�(s+x(u−y)) f (u − y),

which plays the crucial rôle in quantum theory.
• The third subgroup is the Gabor group with b = 0. The representation is

[ρ(s, x, y, r , 0) f ](u) = e2π i�(s+x(u−y))r
1
2 f (r (u − y)).

It is involved in Gabor analysis and Fourier–Bros–Iagolnitzer (FBI) transform [4,
S 3.3].

• Finally, the shear group corresponding to r = 1. The restriction is

[ρ(s, x, y, 1, b) f ](u) = e2π i�(s+x(u−y)−b(u−y)2/2) f (u − y),

It was employed in [5, 6] to reduce certain quantumHamiltonians to the first-order
differential operators.

In view of the mentioned connections, we call representation (18) as Schrödin-
ger type representation. It is irreducible, since its restriction to the Heisenberg group
coincides with the irreducible Schrödinger representation [4, 29].

The derived representation (13) of the Schrödinger type representation (18) is

dρX = 2π i�uI , dρB = −π i�u2 I ,

dρY = − d

du
, dρR = 1

2 I + u
d

du
,

dρS = 2π i�I . (19)

It is easy to check that the above sets of operators (19) represents commutators (5) of
the Lie algebra g of the group G.

4 Covariant transform

The covariant transform plays a significant rôle in various fields of mathematics and
its applications [4, 7, 17, 29, 31–33]. We present here some fundamental properties of
the covariant transform which have implications for the metamorphism transform.

4.1 Induced covariant transform

Let G be a group and let ρ be a unitary irreducible representation of the group G
in a Hilbert space H. For a fixed unit vector φ ∈ H, called here a fiducial vector
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(aka vacuum vector, ground state, mother wavelet, etc.), the covariant transformWφ :
H → L(G) is [7, Sect. 8.1], [31, 32]

[Wφ f ](g) = 〈 f , ρ(g)φ〉, where f ∈ H and g ∈ G. (20)

Here, L(G) is a certain linear space of functions on G usually linked to some addi-
tional conditions. The common focus is on L(G) = L2(G, dμ)—the square integrable
functions with respect to a Haar measure dμ, for this, we need a square-integrable
representation ρ and an admissible fiducial vector φ [7, Ch. 8]. However, many top-
ics in analysis prompt to study other situations, e.g., related to Hardy-type invariant
functionals [17, 34], Gelfand triples [35], Banach spaces [36], etc.

The main property of (20) is that Wφ intertwines the representation ρ on H and
the left regular action � (9) on G

Wφ ◦ ρ(g) = �(g) ◦ Wφ, for all g ∈ G. (21)

A representation ρ is square-integrable if, for some φ ∈ H, the map Wφ : H →
L2(G, dg) is unitary for a left Haar measure dg on G. Some representations are not
square-integrable, but can still be treated by the following modification of covariant
transform by Perelomov [31]. Let H be a closed subgroup of the group G and the
corresponding homogeneous space is X = G/H . Let, for some character χ of H , a
fiducial vector φ ∈ H is a joint eigenvector

ρ(h) φ = χ(h)φ, for all h ∈ H . (22)

Then, the respective covariant transform satisfies the covariant property, cf. (8)

[Wφ f ](gh) = χ(h)[Wφ f ](g).

Thus, the image space of Wφ belongs to the induced representation by the character
χ of the subgroup H . This prompts to adopt the covariant transform to the space
of function on the homogeneous space X = G/H . To this end, let us fix a section
s : X → G and a fiducial vector φ ∈ H satisfying (22). The induced covariant
transform from the Hilbert space H to a space of functions Lφ(X) is

[Wφ f ](x) = 〈 f , ρ(s(x))φ〉, where x ∈ X .

Then, the induced covariant transform intertwines ρ and ρ̃—an induced representation
from the character χ of the subgroup H , cf. (21)

W ρ
φ ◦ ρ(g) = ρ̃(g) ◦ W ρ

φ , for all g ∈ G. (23)

In particular, the image space Lφ(G/H) of the induced covariant transform is invariant
under ρ̃. Induced covariant transforms for the Heisenberg group [27] and the affine
group [17] are the most familiar examples.
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4.2 Induced covariant transform of the groupG

On the same way as above, we can calculate the induced covariant transform of G.
Consider the subgroup Z of G, which is Z = {(s, 0, 0, 0, 1), s ∈ R}. For the Schrö-
dinger type representation (18), any function φ ∈ L2(R) satisfies the eigenvector
condition ρ(s, 0, 0, 0, 1)φ = e2π i�sφ with the character χ(s, 0, 0, 0, 1) = e−2π i�s ,
cf. (22). Thus, the respective homogeneous space is G/Z  R

4+ and we take the
above section s : G/Z → G : s(x, y, b, r) = (0, x, y, b, r) (16). Then, the induced
covariant transform is

(x, y, b, r) = 〈 f , ρ(s(x, y, b, r))φ〉
= 〈 f , ρ(0, x, y, b, r)φ〉
=

∫
R

f (u) ρ(0, x, y, b, r) φ(u) du

=
∫

R

f (u) e−2π i�(x(u−y)−b(u−y)2/2) r
1
2 φ(r(u − y)) du

= √
r
∫

R

f (u) e−2π i�(x(u−y)−b(u−y)2/2) φ(r(u − y)) du.

(24)

From (23), Wφ intertwines the Schrödinger type representation (18) with quasi-
regular (17).

The last integral in (24) is a composition of five unitary operators L2(R
2) → L2(R

2)

applied to a function F(y, u) = f (y)φ(u) in the space L2(R) ⊗ L2(R)  L2(R
2):

1. The unitary operator R : L2(R2) → L2(R
2) based on the dilation

R : F(y, u) → √
r F(y, ru), where r > 0.

2. The change of variables T : L2(R2) → L2(R
2)

T : F(y, u) → F(u, u − y).

3. The operator of multiplication by an unimodular function ψb(x, y) = eπ i�b(u−y)2

Mb : F(y, u) → eπ i�b(u−y)2 F(y, u), where b ∈ R.

4. The partial Fourier transform u → x in the second variable

[F2F](y, x) =
∫

R

F(y, u) e−2π i�xu du.

5. The multiplication M by the unimodular function e2π i�xy .

Thus, we can writeWφ as

[Wφ f ](x, y, b, r) = [(M ◦ F2 ◦ Mb ◦ T ◦ R) F](x, y), (25)
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and obtain

Proposition 4.1 For a fixed r0 ∈ R+ and b0 ∈ R, themap f ⊗φ → [Wφ f ](·, ·, b0, r0)
is a unitary operator from L2(R) ⊗ L2(R) onto L2(R

2).

Also, the induced covariant transform preserves the Schwartz space, that is, if
f , φ ∈ S(R), then Wφ f (·, ·, b0, r0) ∈ S(R2). This is because the S(R2) is invariant
under the all five above components of Wφ f in (25).

Note that the induced covariant transform (24) does not define a square-integrable
function on G/Z ∼ R

4+. To discuss unitarity, we need to introduce a suitable inner
product. In general, we can start from a probabilitymeasureμ onR

2+, that is
∫

R
2+ dμ =

1. Then, we define the inner product

〈 f , g〉μ =
∫

R
4+
f (x, y, b, r) g(x, y, b, r)

� dx dy dμ(b, r)√
2r

, (26)

for f , g ∈ Lφ(R4+). The factor � in the measure � dx dy√
2r0

makes it dimensionless;

see discussion of this in [5, 30]. Important particular cases of probability measures
parametrised by (b0, r0) ∈ R

2+ are

dμ(b0,r0)(b, r) = δ(b − b0) δ(r − r0) db dr , (27)

where δ(t) is the Dirac delta. The respective inner products becomes

〈 f , g〉(b0,r0) =
∫

R2
f (x, y, b0, r0) g(x, y, b0, r0)

� dx dy√
2r0

. (28)

From now on, we consider Lφ(R4+) as a Hilbert space with the inner product (26) or
specifically (28). The respective norms are denoted by ‖ · ‖μ and ‖ · ‖(b0,r0).

Using the above inner product, we can derive from Proposition 4.1 the following
orthogonality relation:

Corollary 4.2 Let f , g, φ, ψ ∈ L2(R), then

〈Wφ f ,Wψg〉μ = 〈 f , g〉 〈φ,ψ〉,

for any probability measure μ, in particular (27) with fixed (b0, r0) ∈ R
2+.

Corollary 4.3 Letφ ∈ L2(R) have a unite norm. Then, the induced covariant transform
Wφ is an isometry from L2(R) to Lφ(R4+) and its inverse is given by the adjoint
operator—contravariant transform

f (u) =
∫

R
4+
F(x, y, b, r) [ρ(s(x, y, b, r))φ](u)

� dx dy dμ(b, r)√
2r

, (29)
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where F ∈ Lφ(R4+). In particular

f (u) =
∫

R2
F(x, y, b0, r0) [ρ(s(x, y, b0, r0))φ](u)

� dx dy√
2r0

. (30)

Proof For f ∈ L2(R), we have

‖ f ‖L2(R) = ‖ f ⊗ φ‖L2(R2) = ‖Wφ f ‖μ,

which follows from isometry L2(R
2) → L2(R

2) in Prop. 4.1. Then, verification of
formulae (29)–(30) is a technical exercise. ��

A reader may note that (30) with φ(u) = 4
√
2e−π� u2 is essentially the inverse Fock–

Segal–Bargmann transform.

5 Image spaces of the covariant transforms

Clearly, not every function on R
4+ is a covariant transform (24) of a function from

L2(R). In this section, we discuss the image space of the covariant transform.

5.1 Right shifts and covariant transform

Let R(g) be the right regular representation of the groupG, which acts on the functions
defined in the group G as follows:

R(g) : f (g′) → f (g′ g), where g ∈ G.

In contrast to the intertwining property of the covariant transform for the left regular
representation (21), the right shift satisfies the relation

R(g)[Wφ](g′) = [Wφ](g′ g)
= 〈 f , ρ(g′ g)φ〉
= 〈 f , ρ(g′)ρ(g)φ〉
= [Wρ(g) φ f ](g′).

That is, the covariant transform intertwines the right shift with the action of ρ on the
fiducial vector φ. Therefore, we obtain the following result, which plays an important
rôle in exploring the nature of the image space of the covariant transform.

Corollary 5.1 [37] Let G be a Lie group with a Lie algebra g and ρ be a representation
of G in a Hilbert space H. Let a fiducial vector φ be a null solution, Aφ = 0,
for the operator A = ∑

j a j dρX j , where dρX j are the derived representation of
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some X j ∈ g and a j are constants. Then, for any f ∈ H, the wavelet transform
[Wφ f ](g) = 〈 f , ρ(g)φ〉 satisfies

D(Wφ f ) = 0, where D =
∑
j

a jLX j .

Here, LX j are the left invariant fields (Lie derivatives) (14) on G corresponding to
X j .

Illustrative examples are the classical spaces of analytical functions: the Fock–Segal–
Bargmann space and the Hardy space; see [33, 38] for details.

Remark 5.2 It is straightforward to extend the result of Cor. 5.1 from a linear combi-
nation of elements in the Lie algebra g to an arbitrary polynomial from the enveloping
algebra of g or even to more general functions/distributions, cf. [33, Cor. 5.8].

5.2 Characterisation of the image space for the groupG

The above Cor. 5.1 can be used to construct covariant transforms with desired proper-
ties through purposely selected fiducial vectors. We are illustrating this for the group
G. First, we need to compute the Lie derivatives (14) reduced to the representation
space of the quasi-regular representation (17); see [2]

LX = r∂x , LB = r2 ∂b,

LY = 1
r (−2π i�x I − b ∂x + ∂y), LR = r ∂r ,

LS = −2π i�I . (31)

One can check that those Lie derivatives make a representation of the Lie algebra of
the group G [2].

Now, we are looking for a covariant transform Wφ : L2(R) → L2(R
4+) with the

image space annihilated by a generic linear combination of Lie derivatives (31). To
this end, the fiducial vector φ shall be a null solution of the following differential
operator composed from the derived Schrödinger type representation (19):

dρiEs S+Ex X+iEyY+iEbB+Er R

= (Eru − iEy)
d

du
+ (π�(Ebu

2 + 2iExu − 2Es) + 1
2 Er )I ,

(32)

where Es , Ex , Ey , Eb and Er are arbitrary real coefficients. This equation has two
different solutions depending on a value of Er . If Er = 0 (which requires Ey �= 0 for
non-trivial operator (32)), then a generic solution of (32) is [2]

φ0(u) = C exp

(
π�

(
2i

Es

Ey
u + Ex

Ey
u2 − i

Eb

3Ey
u3

))
, (33)
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where Ex < 0 for square integrability of φ0 and the constant C is determined from
the normalisation condition ‖φ0‖2 = 1. We have here a sort of Airy beam [39], which
was employed in [6] in the context of the share group, i.e., the absence of dρR in (32).

For Er �= 0, we find the generic solution in the form [2]:

φ1(u) = C (Eru − iEy)
− 1

2+2π�Es/Er−π�Ey(2Ex Er+EbEy)/E3
r

× exp

(
−π�

(
i(2Ex Er + EbEy)

E2
r

u + Eb

2Er
u2

))
.

(34)

Again, for φ1 ∈ L2(R), we need �Eb
Er

> 0 and a proper normalising constant C .
A detailed study of all arising covariant transforms is still awaiting further work.

Here, we concentrate on some special aspects which appear in this extended group
setting for the most traditional fiducial vector—the Gaussian. First, we note that it
steams from both solutions (33) and (34):

• For Er = 0 letting Es = Eb = 0, Ex = −1, and Ey = 1 with C = 4
√
2 in φ0 (33)

produces

φ(u) = 4
√
2e−π� u2 with the identity dρ−X+iY φ = 0, (35)

i.e., φ is annihilated by the Heisenberg group part of G.
• For Er = 1, substitution of Es = 1

4π�
, Ex = Ey = 0 and Eb = 2 with C = 4

√
2

into the vacuum φ1 φ1 (34) again produces

φ(u) = 4
√
2e−π� u2 with the identity dρi/(4π�)S+2iB+R φ = 0, (36)

i.e., φ is also annihilated by the affine group part of G.

Let us introduce the covariant transform Wφ : L2(R) → L2(R
4+) (24) with the

fiducial vector φ (35)–(36):

[Wφ f ](x, y, b, r) = √
r
∫

R

f (u) e−2π i�(x(u−y)−b(u−y)2/2) φ(r(u − y)) du

= 4√
2r2

∫
R

f (u) e−2π i�(x(u−y)−b(u−y)2/2) e−π�r2(u−y)2 du

= 4√
2r2

∫
R

f (u) exp
(
−π�

(
(r2 − ib)(u − y)2 + 2i(u − y)x

))
du.

(37)

That is, we obtained a representation of themetamorphism (1) as a covariant transform:
˜̃f = Wφ f . Now, the notation ˜̃f can be explained as the double covariant transform
for the Heisenberg and the affine groups simultaneously. The image space Lφ(R4+)

of the metamorphism is a subspace of square-integrable functions on L2(R
4+, ‖ · ‖μ),

see (26).
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Remark 5.3 Another feature of the Gaussian as a fiducial vector is that an extension of
the group G to the full Schrödinger group does not add a value. Indeed, the Iwasawa
decomposition SL2(R) = ANK [15, Sect. III.1] [16, Sect. 1.1] represents SL2(R) as
the product of the affine subgroup AN and the compact subgroup K . Yet, the Gaussian
is invariant under the action of the phase-space rotations produced by K . Thus, we get
the same set of coherent states from the actions of the group G and the Schrödinger
group.

From the annihilation property (35) by the derived representation dρ−X+iY and

Cor. 5.1, we conclude that L−X−iY ˜̃f = 0 for any f . Using (31), we find [2]

C1 = −LX − iLY

= 1

r

(
(r2 − ib) ∂x + i ∂y + 2x�π I

)
.

(38)

The operator C1 is called the first Cauchy–Riemann-type operator. Similarly from (35),

we conclude that C2 ˜̃f = 0 for the second Cauchy–Riemann type operator [2]

C2 = − i

4π�
LS − 2iLB + LR

= 2r2 ∂b + ir ∂r − 1
2 i I .

(39)

It is convenient to view operators C1 and C2 as the Cauchy–Riemann operators for the
following complexified variables:

w = b + ir2 and z = x + (b + ir2)y = x + wy. (40)

Remark 5.4 As was pointed out in [38], the analyticity conditions C1 ˜̃f = 0 (38) and

C2 ˜̃f = 0 (39) are consequences ofminimal uncertainty properties of thefiducial vector.
The first condition (38) follows from the celebrated Heisenberg–Kennard uncertainty
relation [4, 38]:


φ(M) · 
φ(D) ≥ h

2

for the coordinate M = dρiX and momentum D = dρiY observables in the Schrödin-
ger representation (19). The second condition (39) is due to the similar minimal joint
uncertainty of the Gaussian state for the Euler operator dρ1/(4π�)S−iR = −iu d

du and
the quadratic potential dρiB = π�u2 I .

Besides the two operators C1 and C2 which are based on the special properties (35)–
(36) of the Gaussian, we can note a couple of polynomial identities in the Schrödinger
type representation of the Lie algebra g. Indeed, using (19), one can check

(
dρX

)2 + 2 dρS dρB = 0, and dρX dρY + dρY dρX + 2 dρS dρR = 0.
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(41)

These relations express the affine subalgebra generators B and R through the Heisen-
berg ones X and Y . That is related to so-called quadratic algebra concept [40, S 2.2.4].
Because operators in (41) annihilate any function, including the fiducial vector of the
metamorphism, Rem. 5.2 implies that the image space Lφ(R4+) is annihilated by the
second-order differential operators [2]

S1 =
(
LX

)2 + 2LS LB = r2(4π i� ∂b − ∂2xx ) ; (42)

and

S2 = LX LY + LY LX + 2LS LR

= −4π ir� ∂r − 2b ∂2xx + 2 ∂2xy − 4π ix� ∂x − 2π i� I .
(43)

The identities S1
˜̃f = 0 and S2

˜̃f = 0 are called the first and second structural con-
ditions. Their presence is a notable difference between covariant transforms on the
group G and the Heisenberg group.

Of course, the list of annihilators is not exhausting and the above conditions are not
independent. If S1F = 0 for a function F satisfying both the Cauchy–Riemann-type
operators (38)–(39), then the function F has to be in the kernel of S2 (43) as well; see
[2].

It was shown [1] that a generic solution of two differential operators (38)–(39) is

[G f2](z, w) := √
r e−π i�x2/w f2(z, w), (44)

where f2 is a holomorphic function of two complex variables z and w (40). Addition-
ally, the structural condition S1 (42) applied to G f2 (44) produces a parabolic equation
for f2

4π ihw∂w f2(z, w) − w∂2zz f2(z, w) + 4π ihz∂z f2(z, w) + 2π ih f2(z, w) = 0. (45)

which is equivalent through a change of variables [41, 3.8.3.4]

(z, w, f2) →
(
z

w
,
1

w
,

1√
w

f2

)
.

to the free particle Schrödinger equation. The above discussion allows us to
characterise the image space of the metamorphism:

Theorem 5.5 A function F(x, y, b, r) on R
4+ is the metamorphism (37) of a function

f ∈ L2(R) if and if only F satisfies to the following conditions:

1. F(x, y, b, r) is annihilated by operators C1 (38), C2 (39), and S1 (42).
2. F(·, ·, b0, r0) is square-integrable in the sense of the inner product 〈·, ·〉(b0,r0) (28)

for some (b0, r0) ∈ R
2+.
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Proof The necessity of both conditions was discussed above. For sufficiency, let a
function G is annihilated by C1, C2 and S1. If G(x, y, b0, r0) = 0 for all (x, y) ∈ R

2,
then the initial value problem for the parabolic equation (45) implies G ≡ 0 on R

4+.
Now, based on the square integrability of F , we use contravariant transform expres-

sion (30) to construct a function f ∈ L2(R). Then, G := F − ˜̃f is annihilated by
operators C1, C2, S1 and G(x, y, b0, r0) = 0 for all (x, y) ∈ R

2. Thus, G ≡ 0 (as

explained above) and therefore F = ˜̃f on R
4+. ��

Although the Gaussian and the metamorphism based on it are genuinely remarkable
in many respects, other covariant transforms (24) with fiducial vectors (33) and (34)
deserve further attention as well.
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