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Societal Impact Statement

Intervention strategies that involve supplementing crop-lands with silicon have sig-

nificant scope for carbon capture and drought mitigation, offering wide-ranging soci-

etal impacts. These include contributing to decarbonisation goals, enhancing food

security, providing economic benefits and reducing environmental damage associated

with intensive agronomic practices. This article highlights emerging evidence that

suggests elevated atmospheric CO2 and water limitation may impair silicon accumula-

tion in plants. While this does not negate the outlined societal benefits, we argue that

these limitations must be thoroughly quantified and incorporated into large-scale

implementation plans to ensure the reliability and effectiveness of silicon interven-

tion strategies.

Summary

Silicon accumulation in plants is increasingly recognised as playing an important func-

tional role in alleviating environmental stresses. Most research to date has focussed

on relieving agronomic stresses in crops, including pest and pathogen damage, soil

salinity and drought. Recently, attention has turned to large-scale silicon application

to agricultural landscapes as a potential anthropogenic climate change mitigation

strategy. This includes silicon fertilisation to enhance soil carbon storage through

advanced weathering of silicates, or by incorporating carbon in phytoliths in plant tis-

sues. While these geoengineering approaches have potential, they could also present

significant challenges. This article explores the opportunities and limitations for

silicon-based interventions in mitigating the impacts of rising atmospheric carbon

dioxide levels and increased incidences of drought. We argue that despite the prom-

ise of silicon supplementation in reducing plant stress under climate change, research

paradoxically shows that these very climate conditions can significantly impede sili-

con accumulation in plants. We propose a framework to guide the development of

silicon intervention strategies to mitigate climate change and the research questions

that should be addressed to ensure their effectiveness under future environmental

conditions.
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1 | BACKGROUND AND SCOPE

Anthropogenic climate change and environmental harm more gen-

erally present significant challenges for current and future human

societies. Since pre-industrial periods, we have witnessed significant

increases in atmospheric CO2 concentrations, accompanied by

changes in the frequency of extreme weather, with more unpre-

dictable precipitation often leading to both floods and extended

periods of drought (Easterling et al., 2000; IPCC, 2023). Plants and

soils not only serve as key indicators of climate change, revealing

detrimental impacts such as reduced crop productivity and soil

degradation, but they also offer significant opportunities to mitigate

environmental stresses. Supplementing plants with silicon via soil

application, for example, has long been advocated for agronomic

benefits, including improved yield together with enhanced resil-

ience to biotic (e.g., pests and diseases) and abiotic (e.g., drought

and salinity) stresses (Debona et al., 2017; Guntzer et al., 2012;

Haynes, 2017b).

While there is a broad consensus that silicon accumulation has

the capacity to alleviate a diverse range of biotic and abiotic stresses,

the precise mechanisms underpinning the functional role of silicon in

plants (Coskun et al., 2019) and its consistency for mitigating stress

are still debated (Thorne et al., 2020). Despite this, many plant species,

such as grasses (Poaceae), accumulate significant amounts of biogenic

silicon, which is taken up from the soil as bioavailable orthosilicic acid

(H4SiO4) via both passive and active mechanisms (Ma &

Yamaji, 2015). The Poaceae contain many important agricultural crops

(Carey & Fulweiler, 2016), with just three species (rice, wheat and

maize) providing around 42% of human calories globally (Deutsch

et al., 2018). Silicon is transported via the xylem and deposited as

silica (SiO2) in various plant tissues (Raven, 1983). While silicon is the

second most abundant element in the Earth's crust, the bioavailable

form, orthosilicic acid, can become deficient in many agricultural soils

(Clymans et al., 2011), and there is growing interest in whether this

could be remedied with silicon supplementation strategies (Haynes,

2017a). These endeavours were traditionally framed in an agricultural

context, but researchers are now considering whether applying silicon

at scale could assist in managing anthropogenic climate change at the

landscape level (Beerling et al., 2018; Song et al., 2013; Taylor

et al., 2017; Thorne et al., 2020).

In this opinion piece, we focus on the predicted rises in atmo-

spheric CO2 levels and occurrences of drought. We initially consider

how silicon supplementation via geoengineering may both mitigate

CO2 rises via increased carbon sequestration and improve drought

tolerance in plants. We then consider how these two drivers

(i.e., higher CO2 and water scarcity) affect silicon accumulation in

plants. We argue that the physiological constraints in the plants

ability to accumulate silicon under these changed environmental

conditions should also be considered when we evaluate the

potential benefits of silicon supplementation for climate change

mitigation.

2 | CARBON SEQUESTRATION USING

SILICON SUPPLEMENTATION

The silicon cycle begins with the weathering of silicon, primarily as

silicate minerals, from rocks. These minerals are then transported by

rivers to oceans, where they are taken up by marine organisms such

as diatoms. The death of these organisms, and to a lesser extent their

photosynthetic activity while alive, and their deposition on the ocean

floor sequesters carbon. In the process, this connects the silicon cycle

to the carbon cycle through carbon storage in marine sediments

(Cornelis et al., 2011). Additionally, the weathering of rocks, whereby

atmospheric CO2 reacts with rainwater and soil minerals

(e.g., calcium and magnesium) to produce carbonates, is an important

natural mechanism for carbon capture (Song et al., 2014). There is

global interest in how this weathering process, and carbon capture,

can be accelerated by supplementing soils with silicon-rich sub-

stances (silicates) to increase the availability of calcium and magne-

sium, which subsequently react with atmospheric CO2 to form soil

carbonates (Beerling et al., 2020; Beerling et al., 2024; Kelland

et al., 2020; Taylor et al., 2017). At least 13 recent, or current,

enhanced weathering rock trials are underway across the globe

(Figure 1) although it is notable that these are absent from the global

South.

Beyond enhanced rock weathering, carbon capture can be

achieved by increasing plant growth and photosynthesis, which

draws down more CO2 from the atmosphere (Beerling et al., 2024,

Kelland et al., 2020). This process increases soil organic matter

production and promotes its stabilisation and persistence, reducing

carbon loss through decomposition and erosion and ultimately pro-

moting carbon storage (Figure 2). Persistence may be enhanced when

organic material in the plant is locked up in silicon-rich phytoliths

during phytolith formation, referred to as phytolith-occluded carbon

(PhytOC), which are highly resistant to decay and mineralisation,

thereby creating a stable carbon sink (Parr & Sullivan, 2005; Song

et al., 2017). The PhytOC fraction in soils is small compared with the

main pool of carbon, however, with a recent estimate of carbon

sequestration as PhytOC each year being 11–190 Tg C year�1, repre-

senting between <1% and 13% of total carbon sequestration in soils

globally (de Tombeur et al., 2024). Calculating percentages of Phy-

tOC in phytoliths and differing assumptions regarding the dissolution

of phytoliths in the soil complicate the issue (Hodson, 2019), but sili-

con fertilisation may at least increase PhytOC sequestration

(e.g., Huang et al., 2020).
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3 | SILICON ACCUMULATION IN PLANTS

UNDER ELEVATED CO2

Several studies have investigated the impacts of elevated CO2 on sili-

con accumulation in plants. Although these findings largely stem from

a small number of research teams, most report significant declines in

silicon accumulation under elevated CO2. All but two studies consid-

ered the Poaceae, with most focusing on C3 species, although there

were some examples of C4 species (e.g., Frew et al., 2017; Johnson &

Hartley, 2018).

There are several possible mechanisms explaining why plant sili-

con accumulation is generally lower under elevated CO2. Firstly, it

may relate to rates of gas exchange, with silicon uptake being partly

driven by the transpiration stream and stomatal conductance and

partly by active uptake (McLarnon et al., 2017). Therefore lower sto-

matal conductance and transpiration rates under elevated CO2 are

associated with improved water use efficiency (DeLucia et al., 2012)

and may contribute to lower silicon uptake. Whenever this has been

explored, however, there was no relationship between these

physiological parameters and Si accumulation (e.g., Biru et al., 2021).

Secondly, and more likely, is that increases in carbon concentrations

in plant tissue, which frequently occur under elevated CO2 (Robinson

et al., 2012), have a ‘dilution effect’ whereby silicon concentrations

decrease by necessity (Figure 3). Silicon and carbon concentrations

are often negatively correlated in plants due to this ‘dilution effect’

but potentially also because silicon may act as a metabolically cheaper

substitute for carbon-based structural components such as lignin and

cellulose (Raven, 1983). Higher carbon accumulation via increased

photosynthesis under elevated CO2 may therefore make silicon accu-

mulation less advantageous, although the ‘dilution effect’ is likely the

primary cause (Johnson & Hartley, 2018). Regardless, silicification is

likely to have some disadvantages as a structural resource for the

plant compared with carbon (Hodson & Guppy, 2022; Raven, 1983).

4 | DROUGHT ALLEVIATION USING

SILICON SUPPLEMENTATION

There are many studies that demonstrate that silicon supplementation

alleviates drought stress in many plant species (Cooke & Carey, 2023).

These include important cereal crops such as rice (Wang et al., 2019;

Yang et al., 2019) and wheat (Johnson, Chen, et al. 2022; Maghsoudi

et al., 2016), but other plant taxa including legumes (reviewed by

Zhang et al., 2017). However, it should also be noted that several

studies do not observe this effect (see review by Thorne et al., 2020).

A number of plant-based mechanisms have been suggested to

account for drought alleviation, where it occurs, including increased

production of antioxidants, binding and co-precipitation with metal

ions, modification of element uptake, higher hydraulic conductance

and reduced water loss at the leaf surface (e.g., reduced transpiration)

F IGURE 1 The global potential of silicon supplementation as a climate change mitigation strategy. The map shows land cover where the

vegetation has a high proportion of silicon accumulating species (taken from Carey and Fulweiler (2012)), where shades of green reflect extent of

silicon accumulation; (see Carey and Fulweiler (2012) for full details). Locations of current and recent enhanced rock weathering field trials across

the world are also indicated based on information from Forrest and Wentworth (2024).
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F IGURE 2 Enhancing carbon capture through silicon supplementation. Carbon capture is potentially achievable via (1) accelerated

weathering using silicon supplementation, which releases nutrients, improving soil conditions and generating alkaline leachate, which ultimately

leads to the export of dissolved inorganic carbon to the oceans (Beerling et al.,2018). In addition, silicon supplementation could further enhance

carbon capture through (2) increasing plant growth and photosynthesis, thereby increasing CO2 uptake; (3) increasing soil organic matter

deposition; and (4) promoting the stabilisation and persistence of soil organic matter, by reducing loss via decomposition and erosion. This

stabilisation is partly driven by the formation of silicified phytoliths in plant tissues that occlude organic carbon, thereby protecting it from

decomposition.

F IGURE 3 The most plausible

mechanisms by which drought and

elevated atmospheric CO2 impair silicon

uptake and accumulation in plants. The

greater availability of carbon and

increased rates of photosynthesis under

elevated atmospheric CO2 frequently

increase carbon concentrations in leaf

tissues, which leads to a ‘dilution effect’

decreasing the proportion of silicon in

tissues. Drought conditions generally

reduce transpiration rates and mass flow

of water in the plant, likely reducing

passive uptake of silicon.

4 JOHNSON ET AL.
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due to silicification (Debona et al., 2017; Liang et al., 2007). Changes

in photosynthesis, water balance and oxidative stress appear to be

the most significant. These changes may be explained by silicon struc-

tures accumulating in the apoplast (see Debona et al., 2017, Thorne

et al., 2020 for detailed discussions). The ‘apoplastic obstruction

hypothesis’ proposes that silicon supplementation alleviates drought

stress by forming a protective barrier outside of the cells, reducing

water loss by limiting evapotranspiration (Coskun et al., 2019). In addi-

tion to plant-based mechanisms for silicon supplementation alleviating

drought stress, silicon supplementation can also enhance water reten-

tion in the soil especially by increasing water holding capacity and

plant available water (Kuhla et al., 2021; Schaller et al., 2024). Indeed,

it has been argued that this is at least as important as plant-based

mechanisms by which silicon supplementation can alleviate drought

(Kuhla et al., 2021).

There have been several field evaluations of whether silicon can

alleviate water stress (Maghsoudi et al., 2016; Schaller et al., 2021,

Johnson, Chen, et al., 2022), generally with good indications that sili-

con fertilisation could be a useful large-scale intervention strategy.

Thorne et al. (2020) conducted a global cost–benefit analysis and con-

cluded that silicon fertilisation may be beneficial in many agronomic

situations, but potentially economically infeasible for smallholder

farmers in the global south. Viewed in the context of climate change

mitigation, however, silicon intervention may offer societal benefits

that extend beyond the established agronomic advantages. These

broader impacts should be taken into account in future cost–benefit

analyses.

5 | IMPACTS OF DROUGHT ON SILICON

ACCUMULATION

Silicon accumulation occurs through both energy-demanding

active uptake and passive uptake, the latter being strongly influenced

by the transpiration stream (Deshmukh & Bélanger, 2016; Ma &

Yamaji, 2015). Drought conditions, which reduce transpiration (Farooq

et al., 2012), likely also cause declines in passive Si uptake (Figure 3).

The relative importance of passive and active uptake will depend par-

tially on plant species, with those accumulating >1% of dry mass in

their tissues being reliant on active as well as passive uptake

(Deshmukh & Bélanger, 2016). Drought may also limit active uptake,

because significant resources may be needed for silicon uptake at a

time when reduced transpiration is limiting photosynthesis.

Experimental studies suggest that water limitation generally

inhibits silicon accumulation, though some grass species seem able to

retain the ability to accumulate silicon under drought conditions

(Quigley & Anderson, 2014 Johnson, Vandegeer, et al., 2023). The

extent and nature of drought stress, and the level of silicon supple-

mentation, appear to be important in determining whether droughts

impact silicon uptake. In wheat, Ma et al. (2016) found that leaf silicon

concentrations declined by 22% under moderate drought stress and

15% under severe stress. With silicon supplementation, silicon con-

centrations were 16% lower in moderately stressed plants, while

severely stressed plants maintained levels comparable to well-watered

controls. Patterns in drought may influence silicon uptake; barley

plants experiencing sustained drought showed considerable declines

in silicon accumulation, but this was alleviated to some extent when

the drought was followed by a deluge event (Wade et al., 2022). The

amount of silicon supplementation may also be important for deter-

mining the extent of drought alleviation. In wheat, drought reduced

silicon levels by 44% without supplementation. However, the reduc-

tion became progressively smaller as silicon supplementation levels

increased (Alzahrani et al., 2018).

6 | POTENTIAL SOURCES OF SILICON FOR

INTERVENTION STRATEGIES

While not extensively used in agronomic practices, there are several

options for silicon supplementation (see Zellner et al., 2021 for

details), which could pave the way for scaling up silicon supplemen-

tation as a climate change mitigation strategy (Zhang et al., 2018). A

comprehensive review of silicon fertilisers, including practicalities,

advantages and disadvantages, is provided by Haynes (2017b) along

with commercial suppliers listed by Zellner et al. (2021). A number

of solid silicon sources have been identified as being suitable for cli-

mate mitigation strategies, based on feasibility and availability. In

brief, these include wollastonite (a natural calcium silicate), calcium

silicate slag (a byproduct of the phosphate and steel production)

and diatomaceous earth mined from sedimentary rocks (Haynes,

2017b). The latter contain fossilised diatoms, which can vary signifi-

cantly in silicon composition depending on diatom species (Zellner

et al., 2021). Beerling et al. (2018), advocate the use of basalt,

which is an abundant and fast-weathering rock with appropriate

mineral chemistry. They highlight its additional benefits for crop

production and soil health. Furthermore, the logistics for its use

already exist because similar applications (e.g., crushed limestone)

are often applied to crop-lands to reverse soil acidification associ-

ated with intensive cropping.

7 | FUTURE CHALLENGES

As discussed earlier, increased weathering of silicate rocks may

amplify carbon sequestration helping to mitigate rising atmospheric

CO₂. However, shifts in the silicon cycle due to climate change could

also alter marine ecosystems, impacting their role in carbon absorp-

tion and affecting overall climate regulation. Such changes could

include altered river exports of silicon due to weathering or plant

uptake rates. Additionally, while elevated atmospheric CO2 may

reduce silicon accumulation in terrestrial plants (Table 1), this phe-

nomenon is, to our knowledge, not yet accounted for in the modelling

of silicon–carbon cycles (Tréguer et al., 2021). We propose that this is

an important factor that should be parameterised in future models.

Conducting more empirical studies covering a wider range of plant

taxa would help establish robust parametrisation. In particular, grasses

JOHNSON ET AL. 5
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that use the C3 photosynthetic pathway tend to show larger

responses to elevated CO2 than those using the C4 cycle

(e.g., increased carbon assimilation rates of 33% and 25% for C3 and

C4 grass species, respectively) (Wand et al., 1999). This suggests that

silicon accumulation in C4 plants may be less impacted by elevated

CO2; however, most studies to date have considered C3 plants, so this

is difficult to resolve (Table 1).

While silicon supplementation can alleviate the adverse effects of

drought, drought conditions may simultaneously impair silicon accu-

mulation in plants. This aspect tends to be either overlooked or deem-

phasised, with greater focus placed on findings that support silicon's

role in alleviating drought. Nonetheless, plant silicon concentrations

are frequently measured under drought conditions and reported in

the literature, which is now potentially large enough for quantitative

meta-analysis. Such analysis could address whether drought impairs

silicon accumulation differently depending on whether plant species

rely. on passive uptake versus those that also use active uptake.

Another important question is whether drought stress is improved by

applying progressively higher levels of silicon or whether there is a

threshold to the benefits delivered by silicon supplementation. More-

over, there may be sufficient data to also determine whether there

are differences between cultivars or genotypes of the same species.

Rice cultivars, for example, showed considerable variation in their

recovery responses from salinity stress when supplemented with sili-

con (Thorne et al., 2022).

Other climatic factors, such as rising air temperatures, undoubt-

edly play a role in plant silicon uptake with a general trend for higher

uptake under warmer conditions (Brightly et al., 2020; Johnson, Van-

degeer, et al., 2023). Silicon supplementation may, in turn, alleviate

the adverse impacts of heat stress in plants (Liang et al., 2007). There

are, however, far fewer studies addressing either of these research

questions, and we are unaware of any attempts or proposals to

develop silicon intervention strategies to mitigate the effects of rising

temperatures. Although this opinion piece does not address rising

temperatures for these reasons, we acknowledge this as a significant

research gap worthy of further exploration.

TABLE 1 Studies reporting the impact of elevated CO2 concentrations on plant silicon accumulation. The elevated treatment of CO2

indicated, together with plant species (all but Fulweiler et al. (2014) and Johnson et al. (2018) used Poaceae species), whether silicon supply was

controlled in potted soil (PS), hydroponic (H) or field (F) conditions, the tissues where silicon concentrations were measured and the overall

response under elevated CO2 concentrations. Downward red arrows reflect significant declines in plant tissue silicon concentration under

elevated CO2 (with approximate % decreases), while horizontal grey arrows reflect no overall effect of elevated CO2.

CO2

concentration Plant species

Was Si

manipulated?

Tissues

measured

Silicon

levels Reference

640 and

800 ppm

Phalaris aquatica (C3) Yes (PS) Foliar Si (%DM) Ryalls et al. (2017)

640 ppm Saccharum spp. (C4) Yes (PS) Foliar Si (%DM) ➲ Frew et al. (2017)

640 ppm Saccharum spp. (C4) Yes (PS) Root Si (%DM) ➲

640 ppm Pasture grasses (eight species)a (C3/

C4)

No (PS) Foliar Si (%DM) Johnson and Hartley (2018)

640 ppm Brachypodium distachyon (C3) Yes (H) Foliar Si (%DM) Biru et al. (2020)

640 ppm B. distachyon (C3) Yes (H) Root Si (%DM) ➲

640 ppm B. distachyon (C3) Yes (H) Foliar Si (%DM) ➲ Biru et al. (2021)

640 ppm Lolium arundinaceum (C3) Yes (H) Foliar Si (%DM) Biru et al. (2023)

640 ppm B. distachyon (C3) Yes (H) Foliar Si (%DM) Hall et al. (2020)

640 ppm B. distachyon (C3) Yes (PS) Foliar Si (%DM) Biru et al. (2022)

640 ppm Triticum aestivum (C3) Yes (H) Foliar Si (%DM) Johnson, Cibils-Stewart, et al.

(2022)

640 ppm T. aestivum (C3) Yes (PS) Foliar Si (%DM) Biru et al. (2024)

590 ppm L. arundinaceum (C3) Yes (PS) Foliar Si (%DM) Johnson et al. (2023)

640 ppm Medicago sativa (C3) Yes (PS) Foliar Si (%DM) ➲ Johnson et al. (2018)

500–700 ppm Oryza sativa (C3) No (F) Foliar Si (%DM) * Gória et al. (2013)

600–680 ppm O. sativa (C3) No (F) Foliar Si (%DM) Kobayashi et al. (2006)

700 ppm O. sativa (C3) Partially (F) Panicle Si (ratio) Takahashi et al. (2008)

600 ppm Six tree speciesb (C3) No (F) Foliar Si (%DM) ➲ Fulweiler et al. (2014)

aSpecies tested: Microlaena stipoides, Chloris gayana, Lolium rigidum, Dactylis glomerata, Lolium perenne, L. arundinaceum, Bothriochloa macra and

Austrodanthonia bipartita.
bSpecies tested: Pinus taeda, Cornus florida, Cercis canadensis, Acer rubrum, Liquidambar styraciflua and Ulmus alata.

*Effects reported without displaying data.

Disclaimer: The New Phytologist Foundation remains neutral with regard to jurisdictional claims in maps and in any institutional affiliations.
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8 | CONCLUSIONS

Rice, wheat and maize are major silicon-accumulating grass species,

highlighting the potential utility of supplementing crop-lands with sili-

con at a global scale. However, further cost–benefit analyses are

needed. For example, in rice, silicon supplementation proved benefi-

cial for high-yield cultivars under mild salinity stress but was not cost

effective for low-yielding cultivars (Thorne et al., 2022). Non-

agricultural systems such as grasslands and savannas, which host

many high silicon accumulating plant species and account for signifi-

cant amounts of terrestrial landmass (Figure 1), could also be consid-

ered for silicon supplementation strategies (Carey & Fulweiler, 2012).

Silicon intervention strategies offer significant potential for car-

bon capture and drought mitigation. However, paradoxically, the very

drivers that these strategies aim to address—increased atmospheric

CO2 and water scarcity—may also impair silicon accumulation in

plants. Gaining a deeper insight into these physiological constraints to

plant silicon accumulation is crucial for understanding terrestrial sili-

con dynamics in the context of global climate change. Research priori-

ties could include (1) more empirical studies addressing the impacts of

elevated CO2 on silicon accumulation, with a focus on incorporating

more diverse plant groups (e.g., C4 species); (2) quantitative meta-

analysis of existing works measuring silicon uptake under drought to

identify key influencing factors, such as uptake capacity and geno-

type; and (3) further field testing and cost–benefit analyses that spe-

cifically include the benefits of climate change mitigation of silicon

supplementation. We are also reliant on data from field trials from the

Northern Hemisphere (see Figure 1), but climatic impacts and eco-

nomic constraints are likely different for the Global South and should

be taken into consideration. Addressing these research priorities could

help parametrise approaches such as dynamic carbon budget models

that predict the potential carbon drawdown and quantitative contri-

bution to atmospheric carbon removal. We conclude that environ-

mental constraints on plant silicon accumulation, specifically elevated

CO2 and drought, must be thoroughly quantified and incorporated

into large-scale implementation plans to ensure the reliability and

effectiveness of silicon intervention strategies for climate change

mitigation.
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