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A B S T R A C T 

We hav e dev eloped a new, fast method of estimating the orbital properties of a binary or triple system using as few as two epochs 

of astrometric data. FOBOS (Few Observation Binary Orbit Solver) uses a flat prior brute force Monte Carlo method to produce 

probability density functions of the likely orbital parameters. We test the code on f ak e observations and show that it can (fairly 

often) constrain the semi-major axis to within a factor of 2–3, and the inclination to within ∼20 
◦ from only two astrometric 

observ ations. We also sho w that the 68 and 95 per cent confidence intervals are statistically reliable. Applying this method to 

triple systems allows the relative inclination of the secondary and tertiary star orbits to be constrained. FOBOS can usually find 

a statistically significant number of possible matches in CPU minutes for binary systems, and CPU hours for triple systems. 

Key words: methods: statistical – binaries: visual. 

1  I N T RO D U C T I O N  

Many (probably the vast majority) of stars form in multiple systems 

(Duch ̂ ene & Kraus 2013 ; Reipurth et al. 2014 ), and so the properties 

of multiple systems (such as the semi-major axis distribution and 

relative inclinations of triple systems) contain a wealth of information 

on star formation (Goodwin 2010 ). Similarly, most stars seem to form 

planetary systems, and exoplanet orbits will contain information on 

the formation and dynamical evolution of planetary systems (Winn & 

F abryck y 2015 ). Therefore, it is important and useful to constrain 

the orbital properties of stars and planets. 

Orbital parameters can be found from observations co v ering mul- 

tiple epochs of velocity and/or astrometric data. Several orbital fitting 

tools have been developed recently, including BATMAN (Kreidberg 

2015 ) and RADVEL (Fulton et al. 2018 ) (which are set up to use only 

transit light curves and radial velocity measurements respectively), 

as well as ORBITIZE! (Blunt et al. 2020 ) and EXOSOFT (Mede & 

Brandt 2017 ). 

Unfortunately, what we most often have for the vast majority 

of multiple systems is a single epoch of observations from which 

extracting the orbital parameters of individual systems is impossible. 

Potentially usefully, we may sometimes have a second epoch from 

follo w-up observ ations. 

We have developed a new orbital parameter finder – FOBOS 

(Fe w Observ ation Binary Orbit Solver). FOBOS is designed to find 

confidence limits for orbital parameters with only two epochs of 

observation. We will show that it is sometimes possible to strongly 

constrain the orbital parameters of binary or triple systems with only 

two epochs. FOBOS can be used with a second epoch from follow-up 

observations, and we also hope it will act as an incentive to obtain 

a second epoch on what are currently single-epoch observations. 

FOBOS is also extremely quick – often finding (sometimes quite 

⋆ E-mail: rhoughton1@sheffield.ac.uk 

tight) confidence limits for binary systems in a handful of CPU 

minutes, or triples in CPU hours. With more than two epochs of data 

FOBOS can often become significantly more constraining. 

In this paper, we describe the method used by FOBOS and use f ak e 

observations of multiple systems to illustrate how well it can estimate 

orbital parameters. We also test FOBOS on two binary systems which 

have previously had their orbital parameters fit using well established 

methods. 

2  M E T H O D S  

FOBOS uses a (flat prior) brute force Monte Carlo approach written in 

FORTRAN90 and OMP parallelized to estimate the orbital parameters 

of binary and triple systems using as few as two observations of 

a system. As we will show, just two epochs of observations can 

sometimes tightly constrain orbital parameters in binary and triple 

systems, and three or more epochs can narrow these constraints 

even further. The majority of the testing in this paper is done on 

stellar systems, although in Section 7 we show that this approach 

also works for lower mass (brown dwarf) companions. For planetary 

triple systems, one would need to alter the stability condition used 

later for triple systems. 

The method works by generating fake systems with a random 

set of orbital parameters, projecting them into 2D, and comparing 

the positions of the companion star(s) at the different epochs to 

establish whether the orbital parameters of the f ak e system match 

the observations (to within the observational errors). We show that 

the error estimates are statistically reliable (i.e. the actual parameters 

are within the 68 and 95 per cent confidence limits as often as would 

be expected). A full breakdown of how the code works is given in 

Section 2.1 . 

An orbit is characterized by three unchanging physical parameters: 

the semi-major axis a , eccentricity e , and the inclination of system 

relative to the observer, i . There are also two ‘instantaneous’ orbital 

© 2022 The Author(s) 
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Figure 1. Diagram of a triple system. The diagram depicts the orbit of 

secondary and tertiary stars around a primary star. Each orbit is inclined with 

an inclination i relative to an observer and rotated through an angle φ about 

an axis perpendicular to the line of sight. The true anomaly of each star is 

measured from periastron, assuming periastron is coincident with the line of 

sight for φ = 0 ◦. 

properties: the phase of the orbit (the true anomaly), ν, and the 

orientation of the system, φ. 

The true anomaly, ν, we define such that when ν = 0 ◦, the 

companion star is at periastron (i.e. at closest approach to the 

primary). Similarly, φ = 0 ◦ is defined such that the semi-major 

axis of the system is along the line of sight. The definitions i , φ, and 

ν are illustrated in Fig. 1 . 

Often, stellar orbits will be parametrized by the longitude of 

periastron, ω, and the longitude of the ascending node/node position 

angle, �. As we are producing f ak e observations of physical systems, 

and are aiming to constrain only the physical parameters of the 

system, we use φ as a single orientation term instead of ω and �. 

F or an y two epochs of observations at times t 1 and t 2 , the secondary 

(or tertiary) stars are separated by a distance s 1 and s 2 (in au) from 

the primary, with (arbitrary) position angles θ1 and θ2 , differing by 

an angle �θ . Note that s 1 , s 2 , and �θ will have some observational 

uncertainty associated with them, and s 1 and s 2 in au depend on the 

distance and the uncertainty associated with it. 

We assume that we can ignore the precession of an orbit, so the 

only parameter which is a function of time is the true anomaly, ν( t ). 

The true 3D separation at a time t , r ( t ), for a system with parameters 

a , e , and ν( t ) is given by 

r( t) = 
a(1 − e 2 ) 

1 + e cos ν( t) 
. (1) 

The on-sky separation at a given time, s ( t ), is related to the true 

3D separation, r ( t ), and instantaneous angles ν( t ), φ, and i via 

s( t) = r( t) (1 − sin 2 ( φ + ν( t)) sin 2 i ) 1 / 2 . (2) 

We also need the orbital period, P : 

P = 

√ 

a 3 

m 1 + m 2 
. (3) 

Note that to calculate the orbital period of the system, we also need 

to know the masses of the primary and companion stars (which may 

have significant observational uncertainties, particularly for lower 

mass companions). 

Therefore, in the simplest case of two epochs of observations, we 

have a known time difference � t = t 2 − t 1 , a change of on-sky angle 

�θ , and two separations, s 1 and s 2 . These are related to the change 

in ν and s between observations which depend on P , a , e , φ, and i . 

Table 1. Definitions of the physical and instantaneous orbital parameters 

along with their allowed ranges. 

Parameter Symbol Range Units 

Semi-major axis a a min –a max au 

Eccentricity e 0–1 –

Inclination i 0–90 deg 

Orientation φ 0–360 deg 

Mean anomaly M 0–360 deg 

2.1 Parameter constraints 

FOBOS samples from uniform distributions of parameters without 

any other prior assumptions on the form of the semi-major axis or 

eccentricity distributions. 

An absolute lower limit on the semi-major axis a min is given by 

half of the projected on sky separation of the primary and companion 

star. This is because the true distance of the star has a maximum in 

a highly eccentric ( e ∼ 1) system, such that r max ∼ 2 a . If the system 

is inclined, we observe a projected separation s that is almost al w ays 

smaller than the true distance. Therefore, a min = s /2. As this method 

requires at least two observations that will usually have different 

separations, a min is calculated using the largest value. 

Another highly constraining feature of this method involves 

calculating the on-sky velocity of the star, v obs , based on the distance 

it has mo v ed in the time between observations. The on-sky velocity 

is a lower limit on the star’s true orbital velocity. 

The companion star reaches it’s maximum orbital velocity, v max , 

at periastron, so for an orbit with parameters a and e 

v max = 

√ 

G ( m 1 + m 2 ) 

a 

(1 + e) 

(1 − e) 
. (4) 

Due to the fact that v obs is a lower limit on the speed of the 

companion star, it is only possible for it to have orbital parameters 

that satisfy 

a < 
G ( m 1 + m 2 ) 

v 2 obs 

(1 + e) 

(1 − e) 
. (5) 

By assuming that it is extremely unlikely for our observed system 

to have an eccentricity of e � 0.98, equation ( 5 ) can be used to give 

a probable upper limit on the semi-major axis of the companion 

a max = 100 ×
G ( m 1 + m 2 ) 

v 2 obs 

for e < 0 . 98 . (6) 

For systems with very large on sky velocities, this can be highly 

constraining. This gives a useful upper limit on the semi-major axis, 

as by reducing the possible range of parameter space to be sampled. 

In the event that the simulation manages to find no solutions, the 

limit on the semi-major axis can be remo v ed to allow sampling of 

extremely high eccentricities at larger- a than previously allowed. 

Note that equation ( 5 ) also contains the masses of the stars. We 

use the upper limit on the masses to determine a max , as these give the 

largest possible value of a max . 

2.2 Orbital parameter generation 

At the beginning of each iteration of the Monte Carlo simulation, we 

select random values for each of the orbital parameters as described 

abo v e, which are within the ranges shown in Table 1 . 

In order to a v oid any biases in the posterior PDFs, this method 

assumes flat uniform priors when selecting the semi-major axis, 

eccentricity, orientation, and mean anomaly values. The inclination is 
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selected such that it is uniform in sin i , meaning that i is preferentially 

closer to edge-on (0 ◦) than face-on (90 ◦) (as would be expected from 

observing a random distribution of inclinations in 3D). 

The true anomaly is generated from a distribution that is uniform 

in time. We calculate ν by first selecting a random value between 0 

and 2 π for the mean anomaly M of the star. This is then converted to 

the true anomaly, ν, by solving Kepler’s equation using the Newton–

Raphson method; this requires equation ( 7 ) to be solved numerically 

to find the value of the eccentric anomaly, E , via 

E − e sin ( E) = M, (7) 

and then 

tan 
(ν

2 

)

= 

√ 

(1 + e) 

(1 − e) 
tan 

(

E 

2 

)

. (8) 

Once all five parameters have been selected/calculated for our test 

system, we can mo v e on to producing a ‘f ak e’ observation. 

We assume the set of parameters corresponds to the first obser- 

vation at time t 1 and we rotate and project the system to find the 

separation s ( t 1 ). 

If the test separation s ( t 1 ) does not match the observed first 

separation to within the observational errors the parameters are 

rejected as a possible match and we restart the process. 1 

If the test separation is a possible match to the observed system 

we can then proceed to advance the system forward in time. This is 

done by calculating the period P of the orbit, then dividing the time 

between the epochs of observation by P to calculate the fraction of an 

orbit through which the secondary star will mo v e in time � t . Since M 

is uniformly distributed in time we can calculate M 2 at time t 2 from 

M 2 = M 1 ±
2 π�t 

P 
. (9) 

Note that the companion could be moving in either direction 

around it’s orbit, hence the ±, and in elliptical orbits an equal change 

in ±M will almost certainly not correspond to an equal change in 

±ν. Note that the companion is allowed to have multiple orbits in 

time � t (which will occur if � t > P ). 

The two ne w v alues of the mean anomaly are converted to true 

anomalies using the same process as outlined abo v e. These two new 

sets of parameters are projected on to the sky to see if either of the 

sets of s ( t 1 ), s ( t 2 ), and �θ match their observed counterparts within 

the observational errors. 

The final probability density function is calculated from all 

matches found for a particular set of observations (ideally at least 

1000 matches, and never less than 300 – this is discussed further in 

Section 4.2 ). 

2.3 A note on degeneracies 

As our observations are a projection on to the sky, the orientation 

and inclination are ‘degenerate’. The inclination may be such that the 

secondary is either in front of or behind the primary and we would 

have no way of knowing which. Therefore, an inclination of 20 ◦ could 

correspond to either plus 20 ◦, or minus 20 ◦. Similarly, the orientation 

could be such that e.g. periastron was on the near side of the primary, 

or on the far side, and we would not be able to distinguish this. These 

degeneracies mean that it is often impossible to tell the direction of 

1 It might seem that also testing if it fits s ( t 2 ) would be sensible, but this makes 

essentially no difference to the speed of the code as it makes the algorithm 

slightly more time-consuming. 

motion (e.g. clockwise versus anticlockwise) of the orbit from only 

a two epochs (the exception would be an almost face-on orbit). 

For binaries, the fact that orientation, inclination, and direction 

are degenerate does not matter at all. Ho we ver, in triple systems 

the de generac y in inclination and the direction of the orbit can be 

important and will be discussed in Section 4.2 . 

2.4 Errors on obser v ed quantities 

The code compares the separations and position angles of the f ak e 

system to an observation. When running the code, a match will 

be triggered if both separations and the angle match within the 

observational errors. For the example systems tested in this paper, 

we apply a blanket error of 5 per cent to each separation and angle. 

This value was chosen as it represents an upper limit of typical 

observational errors. Unsurprisingly, smaller errors in the observation 

tend to tighten the constraints on a system while increasing the time 

to find solutions. 

We assume that the possible true values of the observations fall 

uniformly within the assigned observational errors. We could fold 

the observational errors more cleverly into the PDFs by weighting 

‘hits’ by their closeness to the observed values – however, while the 

confidence ranges we find for some systems can be really quite small, 

they are too large to justify the extra complexity of doing this. 

We have assumed in our tests that observed systems will have 

a good Gaia distance available, or be within a cluster/star forming 

region with a good distance estimate. The distance can be included 

as an extra parameter to find the best fit for this as well. If this is 

worth doing very much depends on how large the uncertainty in the 

distance is compared to the uncertainty in the angular separations 

and angular shift. 

In our tests we also assume that the masses are known to a much 

greater accuracy than the uncertainty in the angular separations and 

angular shift, and so any error can be neglected. This will often 

not be the case and the masses of the primary and companion(s) 

can be included as extra parameters to be sampled. This will add 

computational expense as we now have two or three new parameters 

to include. 

The impact of real observational errors (including the astrometric 

errors and errors on masses/distances) is discussed further in Sec- 

tion 7 . 

2.5 Selection effects 

In order to estimate orbital parameters FOBOS requires an on-sky 

motion to be observed. Rather obviously, this means that if a system’s 

orbital parameters are such that the companion’s motion is too small 

to be observed we cannot estimate it’s orbital parameters (other than 

extremely weak constraints based on it not being observed to mo v e). 

This means we are only able to estimate the orbital parameters 

of a biased subset of systems with the ‘right’ orbital parameters. 

On a system-by-system basis this is not important – if a companion 

is observed to move we can obtain confidence limits on its orbital 

parameters. Ho we v er, o v er a population of binary or triple systems 

we will miss particular configurations of parameters. We will address 

this in a future paper (Houghton & Goodwin, in preparation) in which 

we examine populations and biases. 

3  TESTING  O N  BI NARY  SYSTEMS  

We tested FOBOS on 60 f ak e observations of binary stellar systems. 

We show that we find the correct values for parameters within the 

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/m
n
ra

s
/a

rtic
le

/5
1
3
/2

/2
6
3
5
/6

5
7
3
8
9
2
 b

y
 g

u
e
s
t o

n
 2

4
 A

p
ril 2

0
2
5



2638 R. J. Houghton and S. P. Goodwin 

MNRAS 513, 2635–2651 (2022) 

68 per cent and 95 per cent confidence intervals as often as we would 

expect. We also show that sometimes FOBOS is surprisingly good at 

constraining orbital parameters (and when it cannot, it is statistically 

reliable in telling us so). 

The orbital parameters, masses, and time between epochs for each 

of the synthetic binaries used to test our code are available online. 

The semi-major axis values are randomly distributed in the range 

4–450 au and the other orbital parameters within the ranges shown 

in Table 1 for each system. The time between epochs for each of 

the systems is ∼2–12 yr, and the masses of the primaries are m 1 = 

0.2 − 1.4 M ⊙ and of secondaries m 2 = 0.016 − 0.7 M ⊙. 

The only constraint we apply on selecting binary systems to test 

is that the companion star must have moved a distance greater than 

1 per cent of the initial separation s 1 between observations such 

that it’s motion on the sky is clearly visible. While it is possible 

to constrain orbital parameters from an observation of no apparent 

motion, these constraints are extremely weak (the main constraint is 

that the on-sky velocity is too small to have been observed which 

rules-out some, usually close, orbital configurations). 

Each of the test systems ran on a 6 core / 12 thread CPU and the 

simulation ended when the number of possible matches exceeded 

50 000. The performance of the code is discussed in Section 5 , but 

often solution PDFs can be found in minutes. 

We found that 45/60 (75 per cent) simulations correctly identified 

the semi-major axis of the binary within the 68 per cent confidence 

range, and 58/60 (97 per cent) within the 95 per cent confidence 

range. Similarly, the true inclination of the system is within the 

68 per cent range for 41/60 (68 per cent) of test systems and 

95 per cent confidence range for 57/60 (95 per cent) of systems. The 

eccentricity has 35/60 (58 per cent) and 59/60 (98 per cent) within 

the 68 per cent and 95 per cent confidence intervals respectively. 

The key point here is that FOBOS gets the ‘wrong’ answer as often 

as one would expect. 

3.1 General performance 

We find that FOBOS is often good at constraining orbital parameters, 

with the eccentricity being the most difficult parameter to constrain. 

Typically, we find that FOBOS is able to indicate if the eccentricity 

is likely to be ’low’, ’intermediate’, or ’high’. This can be seen from 

the full table of 68 and 95 per cent confidence intervals (for all 60 

test systems) that is available online. 

The 68 per cent confidence limits on the semi-major axis are often 

within a factor of < 3 (21/60 systems), mostly within a factor of 5 

(40/60 systems), and in only 2 cases a factor of 10 or more. Given 

the difficulty in constraining eccentricity there is usually a ‘floor’ of 

a factor of 2 on constraining the semi-major axis. 

FOBOS is often very good at constraining the inclination of the 

system – in 26/60 systems the 68 per cent confidence limits are less 

than 20 ◦, and only 1/60 is beyond 40 ◦. 

3.1.1 System B17 

An example of the ability of FOBOS to find tight constraints on orbital 

parameters is system B17. Fig. 2 shows the on sky projection of 

system B17 at the two epochs. Note that the position angles are com- 

pletely arbitrary – only the change in position angle, �θ , is important. 

This binary system has a maximum projected separation of s = 

57.3 au, meaning that the lower limit on the semi-major axis is a min = 

28.6 au. The time between observations was 7.43 yr, during which the 

star mo v ed a distance of 5.45 au on the sk y. Therefore, the observ ed 

on sky velocity of the star was 0.73 au yr −1 , or v obs = 3 . 49 km s −1 . 

Figure 2. On sky projection of system B17 at two epochs. The position of 

the companion star at the first and second epochs of observation are marked 

as 1 and 2 respectively, with the direction of the star’s on sky motion shown 

by the arrow. The primary star is located at (0,0) in both observations. The 

axes are in au. 

The velocity gives an upper limit of a max = 7 930 au to the semi- 

major axis using equation ( 6 ). This upper limit is for the extreme 

case of the system being observed face-on while the companion is 

at periastron in a very highly eccentric orbit. (Note that we will 

usually quote results to three significant figures, for real data this 

should obviously depend on the relative size of the errors on various 

quantities.) 

Fig. 3 shows the resulting probability density functions for semi- 

major axis (left-hand panel), eccentricity (middle), and inclination 

(right-hand panel) – as a histogram (top), and CDF (bottom). The 

68 per cent confidence ranges are shown by the grey shaded regions 

and the true value of the semi-major axis, eccentricity, and inclination 

are shown by the purple dashed-lines in each panel. For the semi- 

major axis the black-dotted line shows the maximum observed 

separation. 

In this case, FOBOS has performed extremely well. The 68 per cent 

confidence limits for a are 47.0–.6 au (true value 63.2 au), for e , 0.00–

0.37 (true value 0.12), and for i , 35.4–60.2 ◦ (true value 53.0 ◦). 

Corner plots are useful to examine the connection between 

different parameters. In Fig. 4 we show the corner plot for system 

B17 – note that as well as a , e , and i , FOBOS can also estimate the 

instantaneous orbital parameters φ (orientation), and ν or M (phase). 

Fig. 4 shows slightly more subtle information than the individual 

PDFs in Fig. 3 . Semi-major axis and eccentricity are (unsurprisingly) 

related, and we can see that if a is high, then e must be high (far left, 

second panel down). The orientation ( φ, forth row) of the orbit shows 

a slight preference for being close to either φ = 0 ◦ or φ = 180 ◦, but 

could take any value in the 0–360 ◦ range. The phase ( M , bottom row), 

ho we ver, is well constrained to be probably very close to periastron 

( M ∼ 0 ◦). Depending on what one is interested in a particular system 

the instantaneous orbital parameters may be extremely interesting or 

of little use. 

The information in the corner plot can allows us to rule-out partic- 

ular combinations of parameters in a way that is not obvious from the 

individual PDFs. For example, if we were to have extra information 

that made us suspect that a was high (say, > 200 au) then that would 

constrain e to being high ( > 0.4), and i to be quite low ( < 50 ◦). 

3.1.2 System B4 

A much less well constrained system is system B4 whose observation 

is shown in Fig. 5 . It is worth comparing the observations of systems 

B17 and B4 in Figs 2 and 5 . System B4 has mo v ed slightly further 
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Figure 3. The final probability density functions for system B17 show as a histogram (top) and a cumulative distribution function (bottom) for the semi-major 

axis (left-hand panel), eccentricity (middle), and inclination (right-hand panel). The true parameters for the semi-major axis, eccentricity, and inclination are 

shown as the magenta dashed lines on each plot, and the minimum projected separation of the two stars (in au) is shown by the black dotted lines on the 

semi-major axis plots. The shaded regions represent the 68 per cent confidence intervals on each of the orbital parameters. 

than system B17 and the two observations appear to the eye as if they 

are very similar and contain very similar information. Ho we ver, as 

we will see, the data for system B4 is not particularly constraining. 

System B4 has true values of a = 190 au, e = 0.51, and i = 10.4 ◦. 

The minimum semi-major axis was calculated as a min = 12.1 au 

from an on-sky separation of s proj = 24.2 au. The distance moved 

by the star in 10.6 yr corresponds to an on-sky velocity of v obs = 

2 . 39 km s −1 . These values do not appear to be dissimilar to other test 

systems. 

The confidence limits for system B4 are shown in Fig. 6 . Starting 

with the middle and bottom panels: the eccentricity and inclination 

are almost in the 68 per cent confidence limits. The inclination is 

fairly well-constrained as probably 10 ◦–30 ◦. The eccentricity is 

probably less than 0.8, but the exact value would be difficult to 

estimate. 2 

Ho we ver, we fail to correctly find the true semi-major axis of 190 

au with a 68 per cent confidence range of 14–56 au. The true value 

is just outside the 95 per cent confidence range of 14–174 au. The 

corner plot for system B4 is included in the appendix (Fig. A1 ). 

It should be noted that the code has not ‘failed’ – it is just that 

of all the orbital parameters that could have produced the observed 

mo v ement on the sky within the assumed errors, there were many 

with much smaller semi-major axes than what we know to be the 

actual answer. The results are purely probabilistic and need to be 

treated as such: there is a higher probability that this particular 

projection of the motion of the binary on the sky corresponds to 

a system with a low eccentricity and small semi-major axis, rather 

than a relatively eccentric e ∼ 0.5 system with instantaneous orbital 

parameters that cause the projected separation of the stars to be eight 

times lower than the semi-major axis. 

2 The confidence limits are found by finding the smallest range of parameter 

values containing 68 and 95 per cent of the PDFs. This fits peaks well, but in 

the case of the eccentricity distribution here, it does not quite map on to the 

almost flat PDF from 0 to 0.8. This illustrates the usefulness of ‘eyeballing’ 

PDFs. 

4  TRIPLES  

The method outlined abo v e can also be applied to hierarchical triple 

systems. Hierarchical triples are composed of an inner binary and a 

significantly more distant outer tertiary companion. Therefore, we 

can consider a system as being composed of two independent orbits –

the secondary star around the primary (referred to as the inner orbit) 

and the tertiary around the primary (outer orbit). In hierarchical 

triples there needs to be a significant separation between the inner 

and outer orbits for the system to be stable which we sho w belo w is 

a very useful constraint. 

For triple systems, we first assume that the star closest to the 

primary on the sky is the secondary star and the star furthest from 

the primary on the sky is the tertiary star. This is true for the majority 

of observations, but in some cases the tertiary star may appear closer 

to the primary than the secondary. 3 In cases where no fits can be 

found assuming the most probable alignment, it is possible to relax 

this assumption. 

Each orbit will have it’s own set of parameters, defined in the same 

way as for a binary. We use a in , e in , i in , φin , and M in to denote the 

parameters of the inner orbit and a out , e out , i out , φout , and M out for 

the outer orbit. These orbital elements are shown on the diagram in 

Fig. 1 . 

For systems with two companions, the inclination can vary from 

−90 ◦ to + 90 ◦ as one orbit may be inclined abo v e the plane on the 

side of the observer, and the other below. 

Attempting to fit five additional orbital parameters means that 

simulations of triple systems are significantly more computationally 

e xpensiv e. Howev er, we can significantly reduce parameter space by 

excluding all unstable systems. 

3 Only in close-to edge-on systems for a small fraction of its orbit does the 

tertiary have the chance to be closer in the sky to the primary than the 

secondary. One interesting case where this may become moderately likely is 

a system with a close-to face-on secondary and a close-to edge-on tertiary 

near the stability limit. 
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Figure 4. Corner plot of parameters a , e , i , φ, and M for system B17, with solid blue lines representing the true values and the shaded blue regions showing the 

FOBOS 68 per cent confidence intervals. The panels at the top of each column show the probability density functions for each orbital parameter individually and 

all other panels show 2D covariance of each combination of parameters. 

4.1 Stability 

The stability of a triple system is determined by the semi-major 

axes, eccentricities, and the relative inclinations of the secondary 

and tertiary. There is no single empirical stability equation for 

hierarchical triple systems, although there are several widely used 

models including Harrington ( 1972 ); Eggleton & Kisele v a ( 1995 ); 

Valtonen et al. ( 2008 ); Reipurth & Mikkola ( 2012 ). One of the most 

commonly used stability equations is the criteria of Mardling & 

Aarseth ( 1999 ), shown in equation ( 10 ), derived based on the chaotic 

energy and angular momentum interactions between the orbits of the 

two stars 

a out 

a in 
| crit = 

2 . 8 

1 − e out 

(

1 −
0 . 3 i rel 

π

)(

(1 . 0 + q out )(1 + e out ) √ 
1 − e out 

)
2 
5 

, (10) 

where e out is the eccentricity of the outer star, and i rel , is the relative 

inclination between the inner and outer orbits, and 

q out = 
m 3 

m 1 + m 2 
, (11) 
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Figure 5. On sky projection of system B4 at two epochs. Annotations and 

axis units are as in Fig. 2 . 

where m 1 , m 2 , and m 3 are the masses of the primary, secondary, and 

tertiary stars respectively. A system is unstable if 

a out 

a in 
> 

a out 

a in 

∣

∣

∣

∣

crit 

, (12) 

i.e. the ratio of the outer semi-major axis to the inner semi-major 

axis must be greater than the critical value given by equation ( 10 ). 

This stability condition is valid for stellar mass objects, and for 

prograde orbits. It also ignores a small dependence on the inner 

mass ratio and inner eccentricity. Ho we v er, it pro vides a conserv ati ve 

estimate of the stability of an orbit, occasionally rejecting stable 

orbits in order to ensure no unstable orbits are accepted. 

4.1.1 Generating fake triples 

The code treats a triple system as two individual orbits. In both cases, 

the primary star is at the centre of our co-ordinate system. Each orbit 

is modelled through the same process that is described in detail in 

Section 2 , the first stage of which is generating and projecting the 

inner orbit for both epochs. 

If both separations and the difference in position angle match the 

observation of the secondary star, then the simulation mo v es on to 

the outer orbit. We calculate a lower limit on a out by evaluating 

equation ( 10 ) for the selected values of a in and e out , this ensures that 

all f ak e systems w ould be (hypothetically) stable. 

The vast majority of iterations end without finding a match for the 

inner orbit (full details of the rejection rate for various test systems 

is explored in Section 5 ). When a match is found for the inner orbit, 

1000 orbital configurations for the outer orbit are sampled to look 

for possible matches. 

4.2 Results 

The code was tested on 60 fake triple systems. Each simulation ran 

until 1000 matches had been found or the wall-clock time of the 

simulation exceeded 24 h. The cutoff of 24 h per simulation was an 

arbitrary time limit to ensure all simulations ran in a reasonable time 

frame, and should not be used for real systems. 

Out of these 60 simulations, four of them (T14, T35, T44, T47) 

found between 300 and 1 000 matches, and a further six simulations 

(T5, T18, T42, T46, T50, T56) produced fewer than 300 matches. 

These last six systems are excluded from the following statistics, as 

there were too few solutions to generate reliable probability density 

functions. 

In tests it was found that 300 is an absolute lower limit on the 

number of matches required to have a statistically reliable probability 

density function, and when analysing real systems we would ideally 

want 1000 (or more) matches. 

The true parameters for all of our triple systems are available in 

the online supplementary data. Note that the secondary and tertiary 

inclinations are both selected relative to the plane of the sky – in 

triple systems a much more useful and interesting measure is the 

relative inclination of the two orbits. 

The semi-major axis, eccentricity, and inclination of the inner 

orbit were all within the 68 per cent confidence interval for 44/54 

(81 per cent), 35/54 (65 per cent), and 38/54 (70 per cent) of systems, 

respectiv ely. F or the outer orbit these values are 36/50 (67 per cent), 

32/54 (59 per cent), and 46/54 (85 per cent), respectively. 

FOBOS is usually more ef fecti ve at constraining the orbital param- 

eters in triples compared to binaries due to the stability condition 

ruling-out many possible configurations which could otherwise fit 

the observations. 

4.2.1 System T19 

System T19 is an example of a well constrained triple system. The 

true parameters are a in = 24.5 au, e in = 0.77, and i in = −23.5 ◦, and 

a out = 504 au, e out = 0.10, and i out = −11.0 ◦. The relative inclination 

of the two orbits is 13.5 ◦. The system was observed at two epochs 

which were 8.67 yr apart. 

The maximum projected separations of the secondary and tertiary 

stars were 31.2 and 99.0 au, respectively, and they moved with on-sky 

velocities of 1.69 and 1 . 73 km s −1 . 

Fig. 7 shows the PDFs of the secondary (top) and tertiary (bottom) 

for the semi-major axis (left-hand panels), eccentricity (middle), and 

inclination (right-hand panels). Again, the shaded regions are the 

68 per cent confidence ranges, the purple dashed lines give the true 

value, and the green dotted line in the top panels the maximum 

observed separation. Note that the scales for semi-major axis and 

inclination are different for the secondary and tertiary. 

The true semi-major axes of both the secondary and tertiary 

are within the 68 per cent confidence limits (left-hand panels). 

Interestingly, the semi-major axis of the secondary is found to be 

almost certainly significantly smaller than its projected separation; 

and the semi-major axis of the tertiary as almost certainly much 

larger than its projected separation. Here the stability criterion is 

extremely powerful – if both the inner and outer semi-major axes 

of the components were close to their projected values the system 

would not be stable, hence the code has to mo v e them in and out, 

respectively, to find mutually agreeable fits. 

The eccentricities are fairly well constrained (middle panels). The 

secondary eccentricity must usually be high to see the observed 

velocity shift for a low semi-major axis. The tertiary eccentricity 

cannot be too high to fit the stability criteria (roughly speaking, the 

tertiary periastron needs to be at least about four times the secondary 

apastron), but is relatively weakly constrained as being probably less 

than 0.4. 

Note that the inclinations in the right-hand panels are different to 

those used for binary orbits. In binary orbits the inclination is given 

as a PDF between 0 ◦ and 90 ◦ as the de generac y between e.g. + 45 ◦

and −45 ◦ is unimportant. Ho we v er, in triple systems this de generac y 

can be extremely important as it reflects the relative inclination of 

the companion stars. 
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Figure 6. Probability density functions for system B4. Legend as in Fig. 3 . 

The inclination distributions (the right-hand panels of Fig. 7 ) 

both show two peaks which are roughly symmetric around zero 

degrees. This is because it is roughly equally likely to find solutions 

at plus or minus a particular inclination (the only difference being 

if the companion is in front of or behind the primary). The slight 

discrepancy between the confidence intervals at positive and ne gativ e 

inclinations is due to Poisson noise. There is a relative inclination 

term in the stability condition (equation 10 ) which makes a slight 

difference to the symmetry, but this term is only important if a system 

is very close to the stability limit. 

In the right-hand panels of Fig. 7 we can see that for the tertiary 

the inclination is well constrained at ±8 ◦–18 ◦, whilst the secondary 

is slightly less well constrained at ±11 ◦–42 ◦ (68 per cent confidence 

limits). The quoted confidence intervals are calculated assuming the 

inclinations are symmetric about zero (which is usually the case). 

It is worth mentioning that the relative directions (prograde or 

retrograde) of the orbit could provide extra information if they were 

available. If the inclination is constrained to be close-to face-on then 

the direction of the orbit can be determined. Ho we ver, in the much 

more common case of close-to edge-on orbits relative directions 

cannot be determined. 4 

There are two possible relative inclinations: one in which the 

relative inclination is small (0 ◦–20 ◦ if both are positive or both 

ne gativ e), or quite large (20 ◦–60 ◦ if they are opposite signs). It is 

impossible to know which of these is true for an observed system 

(in system T19 we know that the correct answer is that the relative 

inclination is small). 

We do potentially have a prior expectation in real systems that 

the formation mechanism (e.g. disc fragmentation) should produce 

triples which have similar inclinations. With a population of real 

systems in which many have one possible configuration which is 

closely aligned in inclination we could make statistical/physical 

4 If both stars mo v e in the same direction on the sky (e.g. left to right) they 

may have prograde orbits if they are both on the same side of the primary 

relative to us, or retrograde orbits if they are on opposite sides. Unfortunately, 

from purely astrometric data we have no way of determining which side of 

the primary each companion is. Additional radial velocity data could break 

this de generac y, b ut we assume all we ha ve is astrometric data. 

arguments for one configuration being more likely than the other. 

Ho we v er, in an y single system considered in isolation it is impossible 

to distinguish. 

We show the corner plot for system T19 in Fig. 8 . This is a 

much ‘busier’ plot than for a binary system as we have many more 

parameters all of which are related to each other. Depending on what 

exactly one is interested in about a particular system, different parts 

of this plot will be more or less useful. For example, the orientation, 

φin , of the inner orbit is very well constrained to be around 70 ◦ or 

290 ◦ (these are symmetric, the difference being if periastron is in 

front or behind the primary). This might be very useful information 

on the system (or not). 

4.2.2 System T25 

For system T25 we show the semi-major axis, eccentricity, and 

inclination PDFs for the secondary and tertiary in Fig. 9 . System 

T25 shows some interesting features. The semi-major axis histogram 

shows a sharp peak centred on the projected separation of the 

secondary, whilst the true value lies outside the 68 per cent confidence 

interval and barely within the 95 per cent confidence interval. Also, 

the PDF for the inclination of the system does not show the same bi- 

modality as the vast majority of the other systems, as we cannot con- 

strain the values at all well, and the 68 per cent confidence interval is 

very large (essentially, the code cannot fit close-to face-on orbits, but 

anything less than about ±45 ◦ has a roughly equal probability). How- 

ever, it does a remarkably good job of constraining the tertiary orbit. 

Some of the more subtle interesting features of this system become 

apparent when we examine the corner plot. The PDF of a in and e in 
is shown in Fig. 10 and has an unusual structure. There are many 

possible solutions for a in ∼ 20–50 au and low eccentricity, and then 

the possible solutions diverge into two distinct branches when e in � 

0.2 – with fits found at low- a and high- e , or high- a and intermediate- 

e . The possible fits have been coloured red when the system is close 

to apastron ( M ∼ 180 ◦), and blue if the system is close to periastron 

( M ∼ 0/360 ◦). Which ‘branch’ is followed clearly depends on where 

in its orbit the system is placed. 

This shows that despite the true value of the semi-major axis falls 

in the tail of the PDF of possible semi-major axes, it is still in a well- 
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Figure 7. Histograms and cumulative distribution functions for semi-major axis, eccentricity, and inclination for the secondary (‘a’, top), and tertiary (‘b’, 

bottom) stars system T19. The grey shaded regions show the 68 per cent confidence interval for each parameter. The magenta dashed lines represent the true 

value of each orbital parameter and the black dotted line shows the maximum projected separation of the primary and secondary star out of the two observations. 

populated region of a –e parameter space. Again this shows the value 

of examining the corner plots rather than just relying on parameters 

reduced to a single dimension. 

5  TIMIN G  

Our code uses a brute-force Monte Carlo method to randomly gener- 

ate f ak e binary or triple systems, with parameters drawn from uniform 

distributions (for inclination this is uniform in sin i ). This method 

samples the total available parameter space as comprehensively as 

possible, but due to the vastness of this parameter space, we require 

a huge number of iterations. The code written is in FORTRAN90 and 

OMP parallelized to run on multiple cores. 

The average CPU time per iteration over multiple simulations 

is ∼34 ns, and is very similar when testing on both binary and 

triple systems (a typical triple system is usually rejected after 

only modelling the inner binary making the time per iteration very 

similar). 

The number of iterations required to find an appropriate number of 

matches varies significantly from system to system. F or e xample, the 

simulation for system B38 ran for 11.2 min and found one match for 

every 42 000 f ak e systems tested (a match being found every 13 ms), 

but system B8 ran for 35.7 s and found one match every 4.47 × 10 6 

iterations (a match was found every 0.12 ms). 

The majority of binary simulations have a wall-time of ∼1–

12 min, and run for ∼10–160 CPU min. The simulation that produced 

the results in Fig. 3 took 8 min 53 s to run, sampling a total of 

1.9 × 10 12 f ak e systems. From these, 51 293 matches were found with 

separations and position angles within the errors. This corresponds 

to a rejection rate of o v er 99.99999 per cent. 
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Figure 8. Corner plot for triple system 19, with solid blue lines representing the true orbital parameters (available in online data) and the blue shaded regions 

showing the FOBOS 68 per cent confidence intervals. Sample size of 1000 matches. 

Due to the five additional orbital parameters that must be found 

to fit a triple system, the time taken to produce a sufficient number 

of matches for each triple simulation was significantly longer on 

average than for binaries. It also varied significantly from system to 

system, from a minimum of ∼2.22 min wall-time, to less than 300 

matches being found in 24 h of wall-time. 

6  MULTI-EP OCH  OBSERVATIONS  

We have concentrated above on estimating the orbital parameters 

from a bare minimum of data in just two epochs of observation. 

Ho we v er, e xtra information from a third epoch can sometimes 

(unsurprisingly) significantly impro v e our estimates. With more 

than two epochs of data we go through the procedure outlined 

abo v e to fit the first two epochs, and then repeat to fit any further 

epochs. 

We tested the code on 20 additional f ak e systems with three epochs 

of observations each. This showed that an additional data point can 

sometimes be very constraining (not al w ays, sometimes a third epoch 

makes very little dif ference). The observ ation of one such system is 

shown in Fig. 11 . The secondary has mo v ed a significant distance 

between each observation suggesting we are seeing a reasonable 

fraction of its orbit (and that its period is not too many times greater 

than the time between epochs). 
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Figure 9. Histograms and cumulative distribution functions for semi-major axis, eccentricity, and inclination for the secondary (‘a’, top) and tertiary (‘b’, 

bottom) stars in system T25. Legend as in Fig. 7 . 

This system had a maximum projected separation of 13.8 au, 

from which the lower limit on the semi-major axis was calculated 

as a min = 6.9 au. The three epochs of observation were separated by 

7.31 and 11.45 yr (so it was observed over an 18.76 yr time-scale), 

giving the companion star an observed on sk y v elocity of v obs = 1.20 

au yr −1 (5.72 km s −1 ) between the first and second epochs and 

v obs = 1.27 au yr −1 (6.03 km s −1 ) between the second and third 

epochs. The upper limit on the semi-major axis for this system was 

therefore a max = 3 764 au. 

In Fig. 12 we show the PDFs (as CDFs) for the semi-major axis, 

eccentricity, and inclinations of the system using all three epochs (top 

row), and using each pair of epochs (bottom row). The true values 

are given by the red dashed lines, and the 68 per cent confidence 

limits by the greyed regions. The projected separation is shown by 

the green dotted line for the semi-major axis. 

The most striking feature of Fig. 12 is how much a third epoch 

is able to constrain all three orbital parameters in this case. Fig. 13 

shows the corner plot of semi-major axis, eccentricity, and incli- 

nation, with histograms featured in the top plot of each column and 

parameter cov ariances sho wn in the other panels. This highlights how 

tightly each parameter is constrained using the three epoch method 

when one sees how small the ranges of a , e , and i are. 

The 68 per cent confidence limits on the semi-major axis have 

fallen from about 8–20 au to 12.3–14.3 au. The true value of the semi- 

major axis for this system is 15.8 au, falling outside the 68 per cent 

confidence interval but within the 95 per cent confidence interval of 

12.1–18.6 au. 

Similarly, the true inclination of 23.5 ◦ falls at the lower end of the 

68 per cent confidence interval (23.5 ◦–26.8 ◦) and comfortably within 

the 95 per cent limits of 21.0 ◦–28.3 ◦. The true eccentricity value of 
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Figure 10. Zoom in of corner plot of the semi-major axis versus eccentricity 

solutions for system T25. The blue points on the bottom left-hand plot 

represent all systems for which the mean anomaly is M < 90 ◦ or M > 

270 ◦ (i.e. the star is closer to periastron) and the red points for 90 ◦ < M < 

270 ◦ (the star is closer to apastron). 

Figure 11. On sky projection of a binary system with three epochs of 

observation. The position of the star at the first, second, and third epoch is 

marked by the numbers 1, 2, and 3, respectively. The primary star is centred 

on (0,0) for all observations and the axes given in au. 

0.49 falls within both the 68 per cent (0.44–0.50) and 95 per cent 

(0.41–0.54) confidence intervals. 

The reason an extra epoch is so much more constraining for this 

system is that we have three epochs spanning ∼19 yr of a ∼50 yr 

total period. Hence the third epoch requires a large on-sky motion in 

a very particular direction from any fits to the first two epochs which 

‘pins down’ the orbit extremely well. When we test on systems where 

three epochs only co v er a small fraction of an orbit and have large 

observational errors we find that the third epoch can sometimes add 

very little to the constraints from just two. 

7  C O M PA R I S O N S  

It is worth comparing FOBOS to some other orbit-fitting codes. Note 

that FOBOS is deliberately designed to be used in situations where we 

have minimal astrometric data only. Other codes are often designed to 

use many more epochs with extra (e.g. velocity) information gained 

from a sustained and detailed observing program. If such additional 

data exists we suggest using these codes rather than FOBOS . 

We used FOBOS to constrain the orbits of sev eral observ ed binary 

systems and compared our results to various Bayesian Markov Chain 

Monte Carlo fitting methods. In this section, we present our results for 

the binary systems 2MASS J01033563-5515561 (Blunt et al. 2017 ) 

and HD 206893 B (Ward-Duong et al. 2021 ), using two epochs of 

astrometric observations for the 2MASS binary and four epochs of 

astrometric observations for HD 206893 B. 

The true observational errors on the separations, position angles, 

and distances were used to determine whether a particular set of 

orbital parameters is a match to the observations. The impact of the 

size of the observational errors is discussed later in this section. 

7.1 2M 0103-55 (AB) b 

2MASS J01033563-5515561 (AB) b (hereafter 2M 0103-55 (AB) 

b) is a 12-14 Jupiter mass companion orbiting the low mass binary 

system 2M 0103-55 (AB). The astrometric data for this system was 

acquired by Delorme et al. ( 2013 ) and analysed using the Orbits for 

the Impatient (OFTI) method (Blunt et al. 2017 ). Blunt et al. ( 2017 ) 

used two epoch of relative astrometry taken ∼10 yr apart (see their 

table 10) to generate the orbital parameter posteriors for 2M 0103-55 

(AB) b. The same two astrometric data points were used as the input 

for FOBOS . 

The separations quoted in this table are measured relative to the 

barycentre of the system 2M 0103-55 (AB). The errors on the position 

angles (PA) corresponds to the relative error on the observations 

between the two epochs, and both PA measurements have an 

additional error of ±0.4, dominated by systematic uncertainties. A 

distance of d = 47 . 2 ± 3 . 1 pc (obtained using the parallax quoted 

in Blunt et al. 2017 , table 2) was used to convert the separations 

from milliarcseconds to au. The masses of the host binary system 

(treated as a single object) and the low mass companion were 

taken to be M AB = 0 . 36 ± 0 . 04 M ⊙ and M b = 0 . 012 ± 0 . 001 M ⊙, 

respectively. 

Using OFTI, Blunt et al. ( 2017 ) find median values for the semi- 

major axis, eccentricity, and inclination to be a = 104 . 92 au , e = 

0.1233, and i = 123.6 ◦, and 68 per cent confidence intervals of 79 −
149 au , 0.09–0.59, and 119 ◦–144 ◦, measured relative to the system 

being edge-on at 90 ◦. As mentioned earlier, FOBOS defines edge-on 

as 0 ◦, so this corresponds to an inclination range of 29 ◦–54 ◦ using 

the FOBOS frame of reference. These results are shown in Fig. 14 by 

the green vertical lines and green-shaded regions, respectively. 

FOBOS calculates the 68 per cent confidence intervals for the semi- 

major axis, eccentricity, inclination as 59.1–173.8 au, 0.01–0.52, and 

19.9 ◦–44.7 ◦, respectively; these ranges are indicated on Fig. 14 by 

the grey shaded regions. The median values for all three orbital 

parameters fall within the FOBOS 68 per cent confidence intervals 

and we see a significant o v erlap between all of the FOBOS and OFTI 

68 per cent confidence intervals. 

The widths of the confidence intervals for eccentricity ( ∼0.5) and 

inclination ( ∼25 ◦) calculated using FOBOS match those quoted by 

Blunt et al. ( 2017 ), but the FOBOS semi-major axis range is ∼1.6 times 

larger than the OFTI range. For the inclination, the 68 per cent C. 

I. is a comparable width to that calculated by OFTI, but shifted to 

slightly lower values. 

The FOBOS simulation of 2M 0103-55 produces o v er 50 000 

solutions within the 1 σ observational errors calculated by Delorme 

et al. ( 2013 ) in a wall-time of ∼30 s. 
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Figure 12. Cumulative distribution for a binary system with three epochs of observation. The top three plots show the PDFs using all three epochs together. 

The bottom plots show the PDFs from each possible pair of observations (blue: epochs 1 and 2, orange: epochs 2 and 3, and red: epochs 1 and 3). The grey 

shaded regions represent the 68 per cent confidence interval for each CDF. 

Figure 13. Corner plot of the semi-major axis, eccentricity, and inclination 

for the system shown in Fig. 11 . The true value of each parameter is indicated 

by the solid vertical blue line. 

7.2 HD 206893 B 

Further tests were carried out on HD 206893 B – a 12-40 Jupiter mass 

companion orbiting in the debris disc of its FV5 type host star. A 

detailed analysis of the physical and orbital properties of HD 206893 

B was presented in Ward-Duong et al. ( 2021 ), using a total of nine 

astrometric observations from previous VLT/SPHERE, VLT/NaCo 

studies of the system (Delorme et al. 2017 ; Milli et al. 2017 ; 

Grandjean et al. 2019 ) and new Gemini Planet Imager (Macintosh 

et al. 2008 ) observations. These data points are given in table 9 of 

Ward-Duong et al. ( 2021 ). 

Figure 14. Corner plot for the orbit of 2M 0103-55 (AB) b with respect to 2M 

0103-55 (AB). The top panels of each column show the FOBOS probability 

distribution functions for semi-major axis (left-hand side), eccentricity 

(middle), and inclination (right-hand side). The green solid lines on these 

panels show the OFTI median values and the green shades regions show their 

68 per cent confidence intervals (Blunt et al. 2017 ; table 20). The grey shaded 

regions are the FOBOS 68 per cent confidence intervals. 

HD 206893 B has a Gaia distance of d = 40 . 77 ± 0 . 059 pc and the 

host star and companion star have masses of M A = 1 . 31 ± 0 . 01 M ⊙
and M B = 0 . 11 ± 0 . 01 M ⊙, respectively. 

Using a Bayesian MCMC method, Ward-Duong et al. ( 2021 ) find 

the semi-major axis of the system to be 10 . 4 + 1 . 8 
−1 . 7 au and an eccentricity 

of 0 . 23 + 0 . 13 
−0 . 16 . 

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/m
n
ra

s
/a

rtic
le

/5
1
3
/2

/2
6
3
5
/6

5
7
3
8
9
2
 b

y
 g

u
e
s
t o

n
 2

4
 A

p
ril 2

0
2
5



2648 R. J. Houghton and S. P. Goodwin 

MNRAS 513, 2635–2651 (2022) 

Figure 15. Corner plot showing the probability density functions for semi- 

major axis (top left-hand side), eccentricity (top middle), and inclination 

(right-hand side) for the low mass companion HD 206893 B. The other 

panels in the figure show the covariances of each of these parameters. The 

solid green lines show the most probable values for each orbital parameter 

obtained by Ward-Duong et al. ( 2021 ) and the green shaded regions represent 

their 1 σ error ranges. The grey shaded regions are the FOBOS 68 per cent 

confidence intervals. 

They also find a inclination of 145 . 6 ◦+ 13 . 8 ◦

−6 . 6 ◦ , corresponding to 

55 . 6 ◦+ 13 . 8 ◦

−6 . 6 ◦ using our definition. Their most probable values and 1 σ

ranges are shown in Fig. 15 by the green vertical lines and shaded 

regions, with the inclination values being shifted down by 90 ◦ to 

match our definition of inclination. The corner plot showing their 

posterior distributions and covariances is shown in their table 10. 

We tested the FOBOS Multi-Epoch code on the four 

SPHERE/IRDIS observations. Using a 6 core/12 thread processor, 

∼1000 matches to the observations for this system are found in a wall- 

time of ∼60 min. These results were used to generate the probability 

distribution functions (top panels) and covariances (other panels) 

shown in Fig. 15 . 

We calculate the 68 per cent confidence intervals for semi-major 

axis, eccentricity, and inclination as 8.8–11.9 au, 0.02–0.34, and 

45.0 ◦–58.1 ◦. These ranges are represented by the grey shaded regions 

on the top panels of Fig. 15 . The top left-hand panel of the plot shows 

that our confidence interval for a o v erlaps with the range from Ward- 

Duong et al. ( 2021 ) almost exactly. The FOBOS confidence interval 

extends to slightly lower values than the Ward-Duong CI and the PDF 

shows the same minimum at ∼0.2 followed by a peak at ∼0.3, before 

tailing off almost completely for values � 0.5. The FOBOS 68 per cent 

CI for inclination is 1.5 times smaller than the Ward-Duong et al. 

( 2021 ) value and shifted to a slightly smaller inclination range, 

with the median value falling in the region where the two ranges 

o v erlap. 

A sample of 200 orbits which fit the four VLT/SPHERE observa- 

tions are shown in Fig. 16 . The colour of the orbit represents whether 

the inclination of HD 206893 B is closer to edge-on (0 ◦, bluer orbits) 

or face-on (90 ◦). 

Figure 16. Subsample of 200 randomly selected orbital fits for HD 206893 

B using the four epochs of VLT/SPHERE astrometric observations (black 

circles). The observational errors on the measurements are plotted as error 

bars on the black points, but are too small to be noticeable on this scale. 

The lighter/yellower orbits correspond to systems with inclinations closer to 

face-on (90 ◦) and the darker/bluer orbits closer to edge-on (0 ◦). The primary 

star is located at (0,0). 

7.3 Obser v ational errors 

Comparing the results for 2M 0103-55 (AB) b and HD 206893 

B, we see that HD 206893 B is much more highly constrained by 

FOBOS . This is almost completely due to the additional epochs of data 

available for HD 206893 B. Ho we ver, we also found a dif ference 

in results depending on whether the four GPI observations or the 

four SPHERE observations were used. Fitting the GPI observations 

resulted in a semi-major axis confidence interval that was ∼2.5 times 

larger than the equi v alent results using the SPHERE observations, 

and a ∼1.7 times increase in the inclination range. 

There are two reasons why the VLT/SPHERE observations are 

much better at constraining the orbital parameters than the GPI 

observations. First, two of the GPI observations were obtained within 

one month of each other and their 1 σ error ranges o v erlap for both 

separation and position angle. Secondly, the fourth data point has 

1 σ errors that are ∼2 times larger than the errors for all other data 

points. This emphasizes the importance of obtaining data points with 

small observational errors o v er a long enough time-scale that we see 

the companion exhibit significant on-sky motion. 

8  C O N C L U S I O N S  

The FOBOS is a (usually) very f ast w ay of finding statistically 

reliable confidence limits on the orbital parameters of binary and 

triple systems from as little as two epochs of purely astrometric 

data. This allows orbital parameters to be estimated from limited 

astrometric data (such as from follo w-up observ ations on systems) 

from which it might not have previously been considered possible to 

extract estimates of the orbital parameters. 

FOBOS uses a brute force Monte Carlo approach with flat priors 

to search parameter space for solutions that produce fits to within 

the observational errors of the astrometric observations. It can find 
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significant numbers of possible matches usually in a few CPU 

minutes for binary systems, or a few CPU hours for triple systems. 

FOBOS has been tested on a large sample of f ak e binary and triple 

samples to pro v e its reliability for systems with known parameters. 

Some pairs of observations can be very constraining, while others 

may contain little information. Unsurprisingly, smaller observational 

errors usually allow FOBOS to be more constraining. The 68 and 

95 per cent confidence limits are statistically reliable (and so tight 

constraints can be statistically trusted). We have also tested FOBOS 

on two observed binary systems, showing that the results generally 

agree with fits from other well-established orbital fitting codes. 

FOBOS has applications in finding orbital solutions for binary and 

triple systems studied as part of multiplicity surv e ys, and can also be 

applied to directly imaged exoplanets. 
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APPENDI X  A :  A D D I T I O NA L  C OVA R I A N C E S  

Fig. A1 shows the probability distribution functions (top panels of 

each column) and parameter covariances for test system B4, and 

Fig. A2 shows these properties for system T25. 
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Figure A1. Corner plot showing orbital parameter covariances for test system B4. See Fig. 4 . 
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Figure A2. Corner plot for triple system 25. Sample size of 1011 matches. See Fig. 8 . 

This paper has been typeset from a T E X/L A T E X file prepared by the author. 
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