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Abstract

Causal reasoning is a promising and increasingly popular approach

for testing complex software systems that cannot be tested us-

ing conventional approaches. This involves using a causal model

and previous execution data to estimate and validate causal rela-

tionships between variables. To produce accurate causal estimates

and reliable test outcomes, current approaches rely on users to

specify the equational relationships between variables or sacrifice

explainability for automation by using black-box estimation. In

this paper, we present a hybrid between genetic programming and

linear regression to automatically infer human-readable non-linear

equations that can be used to evaluate causal test cases. Our results

show that our technique tends to produce more accurate causal

estimates and more reliable test outcomes than either technique

used in isolation.
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1 Introduction

Complex software systems are increasingly being applied in critical

applications such as computational modelling, autonomous driving,

and cyber-physical systems. Such systems tend to exhibit several

fundamental characteristics that make them difficult to test using

traditional techniques, notably uncontrollable behaviour, nonde-

terminism, and extremely complex relationships between inputs

and outputs. This makes it difficult to predict the output of sys-

tems prior to running them, and to judge whether the observed

behaviour is actually correct. Furthermore, these systems tend to
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have long runtimes and high computational cost, which limits the

number of tests that can be feasibly executed.

Causal reasoning is increasingly being applied to address these

testing challenges [8]. The idea is to specify a model of the ex-

pected causal relationships between variables and use statistical

estimation techniques to validate these relationships. Critically, the

model is used to automatically identify which variables need to

be adjusted for in order to remove bias when estimating causal ef-

fects. This enables the expected causal effects to be validated using

pre-existing runtime data rather than requiring a specially curated

dataset, without risking the causal effect estimates and subsequent

test outcomes being biased by the data generation process.

However, we may still get inaccurate causal effect estimates if an

unsuitable estimation technique is used. For example, the Causal

Testing Framework [5] provides an automated suite of causal testing

tools and supports a range of estimation techniques. The default

technique is standard linear regression, which implicitly assumes

that the variables under investigation are related linearly and do

not interact with each other. If this is not the case, the causal effect

estimates and resulting test outcomes will not be reliable: tests may

fail without a fault, or worse, may leave faults undetected. While

this can be mitigated by using more complex regression equations,

the tester must specify these equations themselves, which requires

detailed and extensive knowledge of the system under test. Given

the complex and often exploratory nature of the systems to which

this kind of testing is intended to be applied [5], testers may not

have sufficient knowledge to do this.

While black-box estimation techniques can automatically learn

complex relationships between variables, their results are not ex-

plainable, and they tend to require large amounts of training data. In

this paper, we present a hybrid approach between genetic program-

ming and linear regression to automatically discover non-linear

relationships and interaction between variables, without sacrificing

explainability. Our main contributions are as follows:

• A technique based on genetic programming and linear regression

for discovering the relationships between variables in a dataset.

• An extension to the Causal Testing Framework [5] which imple-

ments this technique.

• An experimental evaluation of our technique consisting of 300

randomly generated expressions, and 2 causal test cases for real

computational models taken from [5].

The remainder of this paper is structured as follows. Section 2

introduces a motivating example and necessary background for

our work. Section 3 presents our approach. Section 4 discusses our

empirical evaluation. Section 5 summarises related work. Finally,

Section 6 concludes the paper and gives ideas for future research.
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2 Background

This section discusses the necessary background for this work. We

first present a motivating example, and then use this to introduce

the techniques of causal testing and genetic programming.

2.1 Motivating Example

Covasim [13] is an agent-based epidemiological model that was

used to inform COVID-19 policy decisions in several countries.

However, Covasim has several characteristics that make it partic-

ularly challenging to test using conventional techniques. Firstly,

there are 64 unique input parameters, many of which are com-

plex objects or statistical distributions with their own parameters.

Secondly, due to its exploratory nature, Covasim suffers from the

oracle problem [3]; the expected behaviour of many modelling

scenarios is unknown. To compound this issue, Covasim is also

nondeterministic: its outputs differ between multiple runs with the

same inputs. This makes it hard to associate particular outcomes

with individual input parameters, meaning that properties must be

evaluated statistically over several runs.

A popular solution to these problems, when testing models like

Covasim, is to test that changing an input in a particular way leads to

a corresponding change in the output [12]. For example, in Covasim,

we might test that increasing the infectiousness (𝛽) of the disease

leads to an increase in the overall number of infections, assuming

all other parameters are kept the same. Statistical Metamorphic

Testing [9] offers a framework for this using statistical tests on

repeated runs of multiple configurations. Unfortunately, this tends

to require many repeats of each of the configurations of interest

in order to give reliable results, which is simply not feasible for

Covasim due to its long runtimes and high computational cost.

2.2 Causal Testing

Causal Testing [5] is a software testing methodology based on

Causal Inference [16]. Here, a causal model and statistical estimator

are used to validate causal properties Ð like the effect of 𝛽 on

infections Ð using existing runtime data rather than the bespoke,

highly controlled test data required for Statistical Metamorphic

Testing. The Causal Testing Framework (CTF) [5] provides a suite

of automated tools for Causal Testing. The Causal Testing workflow

requires three main inputs from the tester: a causal model, causal

test cases, and test data with which to evaluate the test cases.

The causal model takes the form of a directed acyclic graph

(DAG) where nodes represent variables and edges𝑋 → 𝑌 represent

𝑋 having a direct causal affect on 𝑌 . An example for Covasim is

shown in Figure 1. As with any model-based testing technique,

causal DAGs require domain knowledge to draw, but are much

lighter weight than traditional models like finite state machines.

Causal test cases describe the expected causal effect of a treat-

ment variable on an outcome variable. This can be either qualitative

(e.g. increasing 𝛽 should increase the number of infections) or quan-

titative (e.g. increasing 𝛽 from 0.016 to 0.032 should increase the

number of infections by 1000) depending on the tester’s knowledge

of the system under test. Where very little is known about the

expected nature of the specified causal relationships, a causal DAG

can be automatically converted to a set of causal tests to validate

the presence and absence of the specified causal relationships [6].

𝐿

𝐴

𝛽
𝐶𝐻

𝑆𝐶𝑆𝐶𝑊

𝐼

Figure 1: Causal DAG for Covasim testing the causal effect of

𝛽 on infections 𝐼 in location 𝐿 with average population age 𝐴,

susceptibility 𝑆 , and household, school, and workplace con-

tacts𝐶𝐻 ,𝐶𝑆 ,𝐶𝑊 respectively. Reproduced from [5, Figure 7].

The CTF then uses Causal Inference to automatically evaluate

the causal test cases using the provided DAG and runtime data,

which is simply a table with rows representing software runs and

columns representing the variables in the DAG. This has two steps:

identification and estimation. First, the causal DAG is used to iden-

tify which variables need to be adjusted for to estimate the causal

effect without bias. For example, in Figure 1, the effect of 𝛽 on 𝐼

is confounded by the location 𝐿, which determines 𝛽 and several

other factors which all have causal paths to 𝐼 . This must be adjusted

for by controlling for either 𝐿 or all of these other factors, otherwise

what looks like a direct causal effect of 𝛽 on 𝐼 could simply be a

spurious correlation through 𝐿.

To estimate the causal effect, a statistical model is fitted to the

data. Critically, this estimation model is only fitted to features

identified from the DAG in the previous step and not every feature

in the data, as traditional Machine Learning approaches tend to do.

If the estimated causal effect matches the expected causal effect,

then the test case passes, otherwise it fails.

When evaluating causal tests, the CTF performs standard linear

regression of the outcome on the identified features, unless the

tester specifies a more complex estimator. However, this will not

give accurate causal effect estimates or reliable test outcomes if

the variables are not linearly related, or if they interact with each

other. For complex models like Covasim, that are often employed

in an exploratory manner, testers may not precisely know these

relationships in advance [12], so are unlikely to be able to provide

the complex functions necessary to obtain reliable causal estimates.

Black-box Machine Learning estimation could be used instead, but

this lacks explainability, and may require much more data than is

typically available. In Section 3, we present an approach to auto-

matically infer complex regression equations from the data that

testers can then validate and refine.

2.3 Genetic Programming

The technique we present in Section 3 is based on Genetic Pro-

gramming (GP) [14]. In tree-based GP, functions are represented

as syntax trees where branch nodes represent operators, and leaf

nodes represent variables and constants. GP uses a genetic algo-

rithm to evolve a population of candidate functions over a series of

generations in a manner inspired by natural evolution.

The basic 𝜇 + 𝜆 loop is shown in Algorithm 1. We begin with

a population of 𝜇 random individuals. Each generation, these are

recombined and mutated to form 𝜆 new individuals, with only the 𝜇

fittest individuals continuing on to the next generation. This means

that the population size remains constant between iterations, and

the average fitness of individuals in the population improves as GP
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progresses. Here, an expression’s fitness is an aggregation of the

distances between the predicted outputs and the observed outputs

for each input in the data.

Algorithm 1 Basic 𝜇 + 𝜆 genetic programming algorithm.

1: Generate an initial population of 𝜇 random expressions

2: Evaluate each expression according to the fitness function

3: gen = 0

4: while gen < maxGens ∧ optimal individual not found do

5: gen++

6: Create 𝜆 new individuals by recombining and mutating

expressions from the population

7: Evaluate each expression according to the fitness function

8: Select the fittest 𝜇 expressions for the next generation

One problem with GP is that it can struggle to discover the best

constants and coefficients. This is because the problem is continuous

rather than combinatorial in nature. Our approach in Section 3 uses

a hybrid between linear regression and GP to tackle this.

3 Combining GP and Linear Regression

This section presents our technique to automatically learn equa-

tional relationships between variables from data. We combine GP to

learn the łshapež of the equation and linear regression to learn the

constants. While this concept in itself is not new [11], it has not yet

been applied in a CI context to estimate causal effects. To this end,

we still only consider the variables from the causal identification

step rather than every variable in the dataset so that our equations

produce an unbiased estimate. Furthermore, our technique is able

to work with arbitrarily complex operators and expressions, where

[11] only considers polynomials.

Our approach follows the same basic GP structure outlined in

Algorithm 1. The only difference is that we introduce a repair

operator, which is run on the initial population and each new

individual before it enters the population. Algorithm 2 outlines

our repair operator. The candidate function is first split into its

top level linear components (line 2). For example, the function

𝑦 = log(𝑥1) + sin(𝑥1 + 𝑥2) + 𝑥
3
2 has three components: log(𝑥1),

sin(𝑥1+𝑥2), and 𝑥
3
2 , plus an implicit constant term. The second step

(line 3) uses linear regression to infer the best coefficients for each

component. Finally, the coefficients and components are combined

to form the repaired equation (line 4). For example, the repaired

equation above may be 𝑦 = 5.3 log(𝑥1) + 1.2 sin(𝑥1 +𝑥2) + 2.7𝑥
3
2 + 8.

An investigation into a recursive application of this to handle deeper

non-linear components is left for future work.

Algorithm 2 Linear regression repair operator.

1: function repairOperator(equation, trainingData)

2: components← linearComponents(equation)

3: coefficients← learnCoefficients(components, data)

4: return
∑

𝑖 (coefficients𝑖 × components𝑖 )

We implemented our technique using the Python DEAP frame-

work [7]. Our implementation is available as part of the CTF in

version 8.0.0 and subsequent releases. By default, our implemen-

tation uses a population size 𝜇 = 20 and generates 𝜆 = 10 new

individuals per generation. Each new individual is generated by

recombining two parents, selected via binary tournament selection,

which has been shown to perform well on a number of problems

[15]. Each new individual is then mutated using one of the three mu-

tation operators implemented DEAP, chosen uniformly at random.

These are described as follows:

• mutUniform ś replaces a randomly selected subtree with

a newly generated random subtree.

• mutNodeReplacement ś replaces a randomly chosen oper-

ator in the individual with a new operator of the same arity

(e.g. replacing + with −).

• mutShrink ś replaces a randomly selected subtree with one

of its child nodes, effectively reducing the tree size.

Unlike the approach from [11], which only considers polynomial

functions, our approach supports arbitrarily complex operations

and functional forms, and is fully customisable in this respect. By

default, we consider logs, reciprocals, and interaction terms (i.e.

terms of the form 𝑥1𝑥2) when evolving functions. Users can also

specify the maximum polynomial order to be considered, and sup-

ply a list of additional operators, which may include any python

function (including user-defined functions). We leave an investiga-

tion into the accuracy and scalability of our tool with respect to the

operators used for future work. However, where users do not know

the relevant operators, they can use polynomial approximation [17]

by iteratively increasing the degree until a suitably accurate fit to

the training data is obtained.

4 Evaluation

This section describes our experimental evaluation comparing the

performance of our technique to GP and linear regression in iso-

lation. The aim is to infer equations that lead to accurate causal

effect estimates and reliable test outcomes. Our research questions

are as follows:

RQ1(Accuracy) What factors affect the ability of our approach to

accurately model causal relationships?

RQ2(Test Outcomes) Do the functions fitted by our technique

lead to reliable causal test outcomes?

RQ3(Practicality) Is our technique practical to apply in a realistic

setting?

4.1 Experimental Setup

Our evaluation consists of two studies. The first addresses RQ1

by investigating how the number of variables, the amount of data,

and the amount of noise within the data affect the accuracy of

our approach, using randomly generated synthetic datasets. Our

second study addresses RQ2 by using our technique to perform

causal testing on two real computational models. We answer RQ3

as a meta-analysis of both studies. All our code and experimental

data are available in our replication package1.

1Replication package available at https://github.com/Luca0414/SURE-project
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In both studies, we compare our technique to two baseline ap-

proaches: standard linear regression and GP without our regression-

based repair operator. We chose these baselines since standard lin-

ear regression is the current default behaviour of the CTF, and our

approach extends GP. We do not consider state-of-the-art black-box

Machine Learning techniques here as they do not produce human-

readable equations, thereby removing the possibility of manual

inspection and validation by the user.

We ran both our approach and baseline GP for 100 generations,

and used the default configuration values of 𝜇 = 20 and 𝜆 = 10. Of

course, there may be configurations which lead to better outcomes.

We discuss this threat to validity further in Section 4.3. Additionally,

we seeded the baseline standard linear regression equation into the

initial population of both techniques, meaning that their final result

is guaranteed to fit the data at least as well.

4.1.1 Study 1: Exploring accuracy for random expressions. Webegan

by generating 30 random expressions containing each number of

variables between 1 and 10, to give 300 expressions in total. Our

expressions took the form
∑𝑁
𝑖=1 𝑓𝑖 (𝑥𝑖 ) +𝑐 where 𝑐 is a constant, and

𝑓𝑖 (𝑥𝑖 ) is an expression that references 𝑥𝑖 and may reference other

variables. Each 𝑓𝑖 (𝑥𝑖 ) is built by randomly combining variables with

the operators +, ×, sin, cos, tan, log, reciprocal, square, cube, and

square root2, and gave our approach and baseline GP access to

all of these operators. An investigation into how our technique

behaves when it is not given access to all of the operations used by

the system under test is desirable future work.

For each expression, we generated a dataset of 1000 executions

with inputs sampled independently from U(0, 100). We then gen-

erated two noisy datasets by adding a noise term sampled from

U(−𝑦𝜖,𝑦𝜖) to each output𝑦 in the data for 𝜖 = 0.1 and 𝜖 = 0.25. The

original dataset represents 𝜖 = 0. We ran our approach with each

dataset and a random sample of 10, 50, 100, and 500 data points.

To test the prediction of counterfactual outcomes Ð outcomes that

correspond to inputs not in the original dataset Ð we generated an

additional 100 such inputs from U(0, 100).

We measure accuracy in terms of the normalised root mean

square error (NRMSE) between the reference outputs 𝑌 from the

observed dataset and the values 𝑋 predicted by the fitted equation.

NRMSE is defined as RMSE/max (𝑌 )−min (𝑌 ), where RMSE is defined

as
√︁

∑

𝑛

𝑖=1 (𝑥𝑖−𝑦𝑖 )
2/𝑛, where 𝑛 is the number of data points in 𝑋 and

𝑌 . A lower NRMSE indicates a lower error and better performance.

Typically, the NRMSE gives a value between 0 and 1, however, if

the values 𝑋 predicted by the fitted equation fall well outside of

the range of 𝑌 , the value can be arbitrarily high.

4.1.2 Study 2: Causal testing of computational models. To inves-

tigate how our approach fits into the broader workflow of Causal

Testing described in Section 2, we applied our technique to evaluate

two causal properties published by Clark et al. [5], which form part

of the tutorial for the CTF along with the data necessary to evaluate

them. Our first causal property revisits the motivating example

from Section 2 and studies the effect of 𝛽 on the total number of

2We omitted minus and divide to mitigate the risk of generating trivial expressions
like 𝑥𝑖 − 𝑥𝑖 and 𝑥𝑖/𝑥𝑖 that syntactically reference 𝑥𝑖 but do not use it meaningfully.
We omitted exponentials and powers higher than 3 to mitigate numerical overflow.
This limits the generality of our results, but is a necessary mitigation when generating
random expressions.

infections in Covasim. We define one causal test case for each of

the 156 countries supported by Covasim, and use the gold standard

established by Clark et al. [5] as our expected causal effect. Using

the hand-crafted regression equation shown in Equation (1) (with

two internal splines on 𝛽), Clark et al. [5] could estimate the change

in infections to within a 5.5% margin of error for the vast majority

of countries.

𝐼 ∼ log 𝑆 + log(𝑆)2 + log𝐶𝑊 + log𝐶𝑊
2+

log𝐶𝑆 + log𝐶𝑆
2 + log𝐶𝐻 + log𝐶𝐻

2+

𝛽 log𝐶𝑊 + 𝛽 log𝐶𝑆 + 𝛽 log𝐶𝐻 + 𝛽 log 𝑆 + 𝛽 + 𝑐

(1)

Our second property concerns a Poisson line tessellation model,

which generates lines positioned and oriented at random within

a sampling window of a given width𝑊 and height 𝐻 to form a

tessellation of polygons. The specified intensity 𝐼 of the process

controls the number of lines that are drawn. For a given sampling

window, doubling the intensity should increase the number of

polygons per unit area by a factor of 4. Using the hand-crafted

regression equation shown in Equation (2), Clark et al. [5] tested

this property with𝑊 = 𝐻 for integers 1 to 10 and intensities 1 to 2,

2 to 4, 4 to 8, and 8 to 16, giving a total of 40 test cases. They found

that the increase was actually slightly less than a factor of 4 when

lower values of 𝐼 were used with small sampling windows.

𝑃𝑢 ∼𝑊 +𝑊
−1 + 𝐼 + 𝐼2 (2)

We used the causal effect estimates and test outcomes from

[5] as a gold standard to which we compared our technique and

the two baseline approaches. We measured the reliability of test

outcomes using the balanced classification rate (BCR), defined as
2×sensitivity×specificity/sensitivity+specificity. This gives the harmonic

mean of the sensitivity (the proportion of tests which should pass

that do pass) and the specificity (the proportion of tests which

should fail that do fail), with a higher BCR indicating more reliable

test outcomes. We use BCR, rather than simply the proportion of

passing tests, since some of our test cases are expected to fail due

to known inconsistencies. That is, the small proportion of Covasim

countries that Clark et al. [5] could not estimate to within a 5.5%

margin of error, and the small sampling windows of Poisson for

which doubling the intensity did not yield the expected increase in

polygons per unit area.

4.2 Results and Discussion

We now present the results of our studies. Our full dataset, process-

ing code, and plots are available as part of our replication package.

4.2.1 RQ1 (Accuracy). Figure 2 shows how the number of variables,

size of training dataset, and noise factor 𝜖 affect the NRMSE of

both the fit and counterfactual predictions for our technique and

the two baselines. In the interest of visual clarity, we only show

the outcomes for 1, 5, and 10 variable equations, since the other

variables tell a similar story. We also omit outliers with NRMSE

greater than 1 (the highest typical value for NRMSE), as some of

these were extremely large, resulting in distorted plots. For the

linear regression plot in Figure 2a, we removed 246 of our 4500

total data points. In Figure 2b, we removed 270 linear regression

outliers, 235 GP outliers, and 293 hybrid outliers.
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(a) Boxplots showing how the number of variables, size of dataset, and 𝜖 affect the fit to the training data.

1 5 10

Number of variables

0.0

0.2

0.4

0.6

0.8

1.0

N
R
M
S
E

10 50 100 500 1000

Number of data points

0.0

0.2

0.4

0.6

0.8

1.0
N
R
M
S
E

0 0.1 0.25

Epsilon

0.0

0.2

0.4

0.6

0.8

1.0

N
R
M
S
E

(b) Boxplots showing how the number of variables, size of training dataset, and 𝜖 affect the counterfactual outcome predictions.

Figure 2: Graphs showing how the number of variables, size of dataset, and 𝜖 affect NRMSE.

Figure 2a shows that our hybrid approach typically achieves the

best fit to the data, with a Friedman test, and subsequent post-hoc

Nemenyi tests confirming the statistical significance (i.e. 𝑝 < 0.05)

of this. A Spearman R test reveals a very weak (although statistically

significant) positive correlation between the number of variables

and the NRMSE for all three techniques. That is, as the number of

variables increases, the fit becomes very slightly worse. There is a

similar weak correlation between 𝜖 and NRMSE. For the amount

of data, the correlation is negative, indicating that the fit improves

as we collect more training data. While this correlation is slightly

stronger than the other two, it is still relatively weak.

Figure 2b tells a similar story for counterfactual predictions, with

Friedman and Nemenyi tests indicating that our technique tends to

produce significantly better results. Spearman R tests indicate simi-

lar weak correlations for all three techniques in terms of number

of variables, data size, and 𝜖 . This indicates that our technique is

more robust to small datasets, noise and large numbers of variables

than either of the baseline techniques. However, our technique did

occasionally produce less accurate counterfactual predictions than

the baselines, especially for the smallest datasets. When taken in

conjunction with Figure 2a, this indicates that our technique may

be more susceptible to overfitting than the baseline techniques.

Answer to RQ1: Our technique achieves a better fit to the data

and a better predictive accuracy (i.e. a more accurate causal effect

estimate) than the baseline techniques. Although it is slightly

more susceptible to overfitting, our technique is generally more

robust to small datasets, noise and large numbers of variables.

4.2.2 RQ2 (Test outcomes). Figure 3 shows how the three tech-

niques performed when executing causal test cases for Covasim

and the Poisson process. Our technique typically achieved the best

fit to the test data, leading to more accurate causal effect estimates

and more reliable test outcomes. Friedman and Nemenyi tests con-

firm the statistical significance of these relationships.

Figure 3a shows that no technique managed to fit the Covasim

data as well as the original hand-crafted equation used by Clark et al.

[5]. This is not surprising, since the original equation is extremely

complex, and we did not include splines in the set of operations

considered by either our technique or baseline GP. For Poisson,

our technique typically managed to find an even better fit than

the original equation used by Clark et al. [5]. In both cases, the

baseline GP approach was rarely able to evolve an equation with a

better fit than the seeded baseline regression equation, which seems

to represent a local optimum. This explains its extremely narrow

interquartile range. By contrast, our hybrid approach has a much

wider interquartile range as it was often able to find a much better

fitting equation, but occasionally, like the baseline GP, got stuck in

the local optimum of the seeded baseline regression equation.

Figure 3b shows that our technique produced more accurate

causal effect estimates than both baseline techniques. For the Pois-

son process model, neither of the baseline techniques was able to

fit a model that gave an NRMSE in the typical [0, 1] range, indi-

cating that these models did not fit the data well at all and gave

predictions well outside of the observed range of values. The reason

for this is that the Poisson process is highly non-linear and has a

lot of interaction between variables, meaning that standard linear

regression is not a suitable estimator here. While the baseline GP

1398



FSE Companion ’25, June 23ś28, 2025, Trondheim, Norway Luca Devlin and Michael Foster

Covasim Poisson

System

0.00

0.01

0.02

0.03

0.04

0.05

0.06

N
R
M
S
E

Linear regression

Genetic programming

Hybrid approach

Original equation

(a) NRMSE of fit to the data.

Covasim Poisson

System

0.0

0.2

0.4

0.6

0.8

1.0

C
a
u
sa
l
E
ff
ec
t
E
st
im

a
te

N
R
S
M
E

Linear regression

Genetic programming

Hybrid approach

0

50

100

150

200

250

(b) Causal effect estimate NRMSE with re-

spect to the original estimates from [5].

Covasim Poisson

System

0.0

0.2

0.4

0.6

0.8

1.0

T
es
t
O
u
tc
o
m
e
B
C
R

Linear regression

Genetic programming

Hybrid approach

(c) Test outcome BCR with respect to the

original outcomes from [5]

Figure 3: Test outcomes for the causal tests from [5].

was able to evolve some of these characteristics into the population,

the coefficients from our repair operator are critical here.

Figure 3c shows that the more accurate causal effect estimates

from our technique translate to a higher BCR, indicating more reli-

able causal test outcomes. For Covasim, our technique achieved a

BCR of just above 0.5. However, for the Poisson model, our tech-

nique typically achieved a BCR above 0.75 and up to 0.9 in some

cases. This difference in performance is likely due to the fact that

Covasim has much more complex relationships between more vari-

ables. There are also many more test cases to consider here: 156 in

comparison to just 40 for Covasim.

Answer to RQ2: For both the Covasim and Poisson test cases,

our technique produced equations that fit the data better than

either of the baselines. This led to more accurate causal effect

estimates and more reliable test outcomes.

4.2.3 RQ3 (Practicality). Looking back at Figure 2, while all three

techniques scale quite well with respect to the number of variables,

the amount of training data, and noisy data, our hybrid approach

tends to scale better. As noted for RQ1, the exception to this is for

datasets containing just 10 software runs, where our technique has

a tendency to overfit the data. However, once our technique has

sufficient data Ð somewhere between 10 and 50 datapoints in our

evaluation Ð it tends to outperform the baseline approaches, even

for relatively small datasets.

While a controlled benchmarking study is outside the scope of

this evaluation, we did record the time taken by each technique to

fit the data3. In all cases, baseline linear regression has a negligi-

ble runtime in comparison to the other two techniques. In most

cases, our approach was slightly slower than baseline GP, which is

explained by the extra step of our repair operator.

Figure 4 shows that the runtime of both baseline GP and our

hybrid approach increases exponentially with the size of the data

set, and Spearman R tests show a statistically significant strong

positive correlation here. While this does limit the scalability of our

approach, Figure 2 shows that we can typically obtain reasonably

accurate fits and predictions even from relatively small datasets.

Since causal testing is typically applied in situations where data

collection is very expensive and time-consuming [5], it is likely

that this would be the limiting factor rather than the fitting time.

3We ran our experiments on HPC using 4GB of memory and a single 2GHz CPU core
per run.

Figure 4 also shows that runtime increases slightly with the num-

ber of variables. However, while Spearman R tests show that this

correlation is statistically significant for both baseline GP and our

technique, it is relatively weak. There is no statistically significant

correlation between 𝜖 and runtime.

Figure 5 shows the runtime for the two causal test cases from

study 2. Since the Poisson dataset contained 1000 data points, the

results are comparable to Figure 4. For Covasim, both our technique

and baseline GP took around 5 minutes to fit the data from [5],

which contained over 4500 points. While this is a long time in

comparison to the original regression used by Clark et al. [5], we

still deem it to be acceptable given the amount of time and domain

expertise required to formulate their equation.

Answer to RQ3: Although it took the longest, our approach

still ran in a reasonable time, especially in the context of the

amount of time and expertise required to hand-craft a regression

equation.

4.3 Threats to Validity

The main threat to validity is that we only evaluated our tech-

nique on two real software systems. Consequently, our results may

not generalise to other kinds of software systems. This threat is

mitigated somewhat by the fact that the two real systems differ

greatly in size, complexity, and application, but further investiga-

tion on a wider variety of systems and operations is desirable future

work. In the same vein, our 300 randomly generated equations were

constructed using a limited set of common mathematical opera-

tions. While this was necessary in order to ensure the feasibility

of our evaluation, our results may not generalise to more complex

equations. An investigation into how our technique performs with

different operations is left to future work.

Another threat to validity is that the baseline GP and our hybrid

approach are subject to configuration parameters that we did not

spend time optimising.While this mitigates the internal threat to va-

lidity of overfitting the results to the systems considered here, there

may be more suitable configurations, meaning the behaviour of

the techniques is misrepresented. Without an extensive parameter-

optimisation investigation, it is impossible to mitigate this.
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Figure 4: Boxplots showing how the number of variables, size of dataset, and 𝜖 affect the fitting time for the random datasets of

study 1.

Covasim Poisson

System

0

100

200

300

R
u
n
ti
m
e
(s
ec
o
n
d
s)

Linear regression

Genetic programming

Hybrid approach

Original equation

Figure 5: Fitting time for the causal test cases from study 2.

5 Related Work

There is a wealth of literature on the prediction of software outputs

from existing runtime data using standard techniques such as linear

regression [2], support vector regression [4], and ensemble models

[10]. There are also several existing works that hybridise linear

regression with GP. Iba et al. [11] use a repair operator similar to

ours. However, they only consider polynomial expressions, and do

so in a feedforward manner, meaning the order of components will

affect their inferred coefficients. Our approach does not have these

limitations. Arnaldo et al. [1] learn compound models that involve

both symbolic GP execution and numeric multiple regression trans-

forms. While this supports arbitrary operations, the coefficients for

each component are not directly learnt in the same way.

6 Conclusions and Future Work

Causal testing is a promising and increasingly popular way to test

complex software systems by using statistical models to estimate

causal effects from pre-existing runtime data. For the most accurate

and explainable results, users should ideally know the equational

form of the relationships between the variables they are testing.

However, this is often infeasible for the kinds of system that causal

testing is typically applied to.

In this work, we presented a hybrid approach between GP and

linear regression that is able to automatically fit non-linear equa-

tions to data and discover interactions between variables. We imple-

mented this as an extension to the CTF [5] and evaluated it using

300 random target expressions and two existing causal test cases

from real computational models in the literature. Our results show

that our hybrid approach fits more accurate functions than either

GP or linear regression alone and is more robust to noisy data, small

datasets, and large numbers of variables.

Future work includes an investigation into the robustness of

our technique to unknown operators, and a more comprehensive

evaluation on more real systems with different characteristics. Fur-

thermore, a study into how the inferred functions can be validated,

and the burden on the user in comparison to hand-crafting functions

themselves is highly desirable. Finally, the ability to perform more

complex regression, such as spline regression, is highly desirable.
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