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Abstract
Software systemswith large parameter spaces, nondeterminism and
high computational cost are challenging to test. Recently, software
testing techniques based on causal inference have been success-
fully applied to systems that exhibit such characteristics, including
scientific models and autonomous driving systems. One signifi-
cant limitation is that these are restricted to test properties where
all of the variables involved can be observed and where there are
no interactions between variables. In practice, this is rarely guar-
anteed; the logging infrastructure may not be available to record
all of the necessary runtime variable values, and it can often be
the case that an output of the system can be affected by complex
interactions between variables. To address this, we leverage two
additional concepts from causal inference, namely effect modifica-
tion and instrumental variable methods. We build these concepts
into an existing causal testing tool and conduct an evaluative case
study which uses the concepts to test three system-level require-
ments of CARLA, a high-fidelity driving simulator widely used in
autonomous vehicle development and testing. The results show
that we can obtain reliable test outcomes without requiring large
amounts of highly controlled test data or instrumentation of the
code, even when variables interact with each other and are not
recorded in the test data.

CCS Concepts
• Software and its engineering→ Software testing and debug-
ging; • Computing methodologies → Simulation evaluation;
Modeling methodologies; • Computer systems organization
→ Embedded and cyber-physical systems.
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1 Introduction
Complex software systems appear in a broad range of applications
such as computational models, autonomous driving systems, and
cyber-physical systems. These have several fundamental character-
istics that make them difficult to test, notably large input spaces,
nondeterminism, and uncontrollable behaviour. Furthermore, long
runtimes and high computational cost often limit the number of
tests that can be feasibly executed.

Causal reasoning is increasingly being applied to address these
testing challenges [15, 21, 43]. Well-established in fields such as
epidemiology and sociology, the idea is to specify a model of the
expected causal relationships between variables and use this to
identify and remove bias when applying statistical estimation tech-
niques. This enables the expected causal effects to be validated
using pre-existing uncontrolled data rather than requiring a spe-
cially curated dataset, without risking test outcomes being made
unreliable by a biased data generation process.

However, there are two essential challenges that have not been
considered by previous work on causality-based testing: (1) Non-ob-
servability: Key variables that are required to evaluate correctness
properties may not be observable. When testing relationships be-
tween software inputs and outputs, we need to account for other
inputs and internal variables to isolate the causal effect of interest.
If any of those variables are missing from the test data (e.g. if they
are not logged during execution), this can lead to biased and un-
reliable test outcomes. (2) Interacting variables: Software outputs
may depend on combinations of interacting variable values. So far,
causal relationships between variables have only been considered
in isolation, neglecting faults involving interactions.

We perform an evaluative case study [44] to investigate how two
additional concepts from causal inference — effect modification and
instrumental variable methods [29] — can address these challenges.
Effect modification allows us to reason about the causal effects
of interacting variables. Instrumental variable methods allow us
to adjust for variables that are missing from the test data. While
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these are both well-established causal inference techniques, this is
the first work to explicitly apply them to a software engineering
context. Our main contributions are as follows:
• We apply effect modification from causal inference to reason
about interactions between variables when testing software.

• We apply instrumental variable methods from causal inference
to reason about unobservable variables when testing software.

• We perform an evaluative case study considering three testing
requirements in the context of the CARLA high-fidelity driving
simulator [17]. The results show that the above techniques can
yield reliable test outcomes for software with interacting and
unobservable variables.
The remainder of this paper is structured as follows. Section 2

introduces the CARLA simulator and the testing challenges we con-
sider in this work. Section 3 gives background on causal software
testing and the essential elements of causal inference that we use
in this work. For a more comprehensive introduction, we refer the
reader to [29, 41]. Section 4 lays out the design of our evaluative
case study. Section 5 shows how we used causal inference to test
our three requirements. Section 6 provides answers to our research
questions. Section 7 discusses potential threats to validity and our
chosen mitigation strategies. Section 8 highlights key related works.
Finally, Section 9 concludes the paper.

2 Testing Challenges
In this section, we outline the main testing challenges considered
in this paper in the context of a motivating example concerning
automated driving system (ADS) testing. While the testing chal-
lenges we consider in this work are not unique to the field of ADS
testing, they are particularly pronounced here, which makes it an
ideal context within which to explore our research questions.

2.1 Motivating Example: CARLA Driving
Simulator

CARLA [17] is a popular open-source high-fidelity driving simula-
tor developed to support the development, training, and validation
of ADSs. The CARLA GitHub repository [4] has over 10,000 stars
and over 3,000 forks at the time of writing. CARLA provides a wide
range of configurable driving scenario entities, such as weather
conditions, traffic lights, non-playing character (NPC) vehicles (i.e.
traffic), and pedestrians. This makes CARLA the state-of-the-art
“system” [33] for simulation-based ADS testing.

The CARLA leaderboard [3] is a benchmark for evaluating ADSs.
Its V1.0 SENSOR track, which restricts ADSs to sensor inputs (e.g.
cameras), has 36 entrants at the time of writing. ADSs are scored
on their ability to drive predefined driving scenarios from start
to end in a given time. Penalties are applied for infractions, such
as collisions or running red lights. To enable a fair comparison,
these penalties must be implemented correctly. If CARLA were a
conventional software system, this would be trivial to test: wewould
simply commit each infraction and check that the correct penalty
was applied. Unfortunately, CARLA exhibits four characteristics
that make this impractical – nondeterminism, limited observability,
interactions between parameters, and long runtimes.

Nondeterminism CARLA can produce different behaviours for
different runs of the same input configuration. For example, pedes-
trian movement is completely random, even for the same seed [1].
Since CARLA cannot spawn an agent if their spawn point is occu-
pied, we may end up with fewer pedestrians than specified if they
move into each other’s spawn points. This means that the impact
of particular configurations can only be studied statistically using
multiple runs. Nondeterminism also raises issues of controllability
[19]: we cannot reliably elicit particular behaviours. This makes it
hard to isolate the effect of any particular input.
Observability CARLA has a large number of configuration pa-
rameters and internal variables, many of which are not logged by
default. This means that, not only are we unable to control certain
aspects of the simulation directly, but we cannot even observe them.
For example, CARLA does not record how many pedestrians and
NPC vehicles were successfully spawned into the simulation. Again,
this makes it hard to isolate the effects of particular inputs.
Interaction Much of CARLA’s behaviour depends on complex
interactions between parameters. For example, the numbers of
pedestrians and NPC vehicles both affect how long it takes to drive
a particular scenario, with the delay caused by increasing the num-
ber of pedestrians being compounded by busy roads, since more
vehicles will have to stop to allow pedestrians to cross, causing
longer traffic jams and greater disruption. This interaction further
adds to the difficulty in isolating the effect of any individual input.
Execution Time andComputational CostCARLA requires high-
end hardware [4], and is time-consuming and computationally de-
manding to execute. Furthermore, CARLA tends to run slower than
real time: it takes longer than 1 second of real-world time to run
1 second of the simulation. For example, the driving scenarios we
collected as part of this study took an average of around 13 minutes
to execute. The longest took over two hours, even though it was
still only a few minutes of simulation time. Thus, a tester can only
consider a small fraction of potential test executions, especially if
configurations need to be run repeatedly to mitigate nondetermin-
ism. Since the events that are of interest from a testing perspective
(e.g., collisions) tend to occur relatively rarely, a premium is placed
on the ability to extrapolate as much useful information as possible
from the few test executions that can be collected.

2.2 Limitations of Existing Techniques
Within the research literature on ADS testing, the notion of faulty
behaviour is often restricted to faults that are easily detectable, such
as obvious driving violations (e.g. collisions or running a red light)
[49, 55, 56]. The authors are not aware of any testing approaches
that can test behaviour against more nuanced requirements (e.g.
“The model of ego-vehicle should not affect how often it crashes.”).
We suspect that this is at least partially because of the practical
challenges that this would entail (as mentioned above).

In principle, statistical metamorphic testing (SMT) [25] provides
a framework within which to test such properties. The SMT ap-
proach involves repeatedly running the software under two (or
more) configurations and performing statistical tests on the result-
ing output data. For example, we would run the ADS several times
with two different ego-vehicles, and perform a hypothesis test to in-
vestigate whether either ego-vehicle had significantly more crashes.

593



Using Causal Inference to Test Systems with Hidden and Interacting Variables: An Evaluative Case Study EASE ’25, June 17–20, 2025, Istanbul, Turkiye

This is similar to A/B testing [48], where different groups of users
are assigned different versions of software to see which performs
better. The main limitation of these approaches is that all variables
must be carefully controlled in the manner of a laboratory exper-
iment. This may not always be possible, especially when testing
relationships between different software outputs. Furthermore, test
data must be collected separately for each property being tested,
meaning that large amounts of test data are often required.

3 Causal Testing
Several recent techniques apply the model-based statistical frame-
work of causal inference (CI) [41] to test software. This Causal
Testing excels for testing properties of nondeterministic systems
where it is difficult to obtain large numbers of carefully controlled
executions, such as computational models [15] and ADSs [21].

As with SMT, multiple runs of the software are used to draw
statistical conclusions about the relationships between program
inputs, outputs, and internal variables. However, CI explicitly sepa-
rates the collection and analysis of test data by employing domain
knowledge supplied by the tester in the form of a causal model
that specifies the expected causal relationships between program
variables. This means that the test cases can be evaluated using
pre-existing runtime data rather than specially curated test data.

Causal Testing applies to properties framed as the effect of a
treatment on an outcome, and has four main steps: (1) Specify the
Causal Model, (2) Collect Test Data, (3) Define Causal Test Cases,
and (4) Evaluate the Causal Test Cases. These are elaborated in the
following sub-sections. In principle, everything except the initial
formation of the causal model can be (semi-)automated.

3.1 Specify the Causal Model
The first step is to specify the expected causal relationships between
variables in the system using a directed acyclic graph (DAG), exem-
plified in Figure 1. Nodes represent variables, and an edge 𝑋 → 𝑌

represents the domain knowledge that 𝑋 may have a direct causal
effect on 𝑌 . The absence of such an edge means that 𝑋 definitely
does not have a direct causal effect on 𝑌 . A causal DAG should
include all inputs, outputs, and internal variables that are relevant
to the properties being tested, even if they cannot be controlled
or observed. By analysing paths in a DAG [41], it is possible to
identify which variables must be adjusted (controlled for) to isolate
the causal effect of 𝑋 on 𝑌 . We provide an example in Section 5.

Causal DAGs form an intuitive model of the system under test
and are widely used in fields such as epidemiology and sociology
[29], where they are often hand-drawn by domain experts. As with
anymodel-based testing technique, drawing aDAG requires domain
knowledge since it forms part of the test oracle [10]. However,
causal DAGs are much lighter weight than traditional models, such
as finite state machines [14]. They do not specify the precise form
of the relationships between variables, merely their existence.

3.2 Collect Test Data
The second step is to collect test data. A major benefit of Causal
Testing is that this data can be “observational”, i.e., collected without
needing to tightly control the inputs. The advantage of this from a
software engineering standpoint is that the same test data can be

reused to test multiple properties [15], without requiring carefully
controlled test data generation. For example, it would be valid to use
pre-existing log data recorded during normal use. The important
limitation is that the test data must satisfy the positivity assumption,
which is fundamental to CI [29]. Formally, this means that the
probability of each treatment (typically an input configuration) of
interest must be non-zero. Intuitively, this means that test outcomes
are more accurate and reliable if the test data achieves a good
coverage of the input space.

3.3 Define Causal Test Cases
The next step is to encode the properties to be tested as causal
test cases. These are intuitively similar to metamorphic relations
[12] in that we observe the effect of changing a particular variable.
Definition 1 formalizes this, and is slightly adapted from [15].
Definition 1. Given a causal DAG 𝐺 representing the expected
causal relationships between variables of the system under test, a
causal test case is a triple (𝑋,𝑌, 𝐸), where 𝑋 and 𝑌 are nodes in
𝐺 , respectively referred to as the treatment and outcome. 𝐸 is the
expected causal effect of 𝑋 on 𝑌 , serving as the test oracle [10].

For example, to test that the model of the ego-vehicle does not
affect the number of infractions it commits, we would define our
treatment variable 𝑋 to be the model of the car, the outcome 𝑌 to
be the number of infractions, and the expected causal effect 𝐸 of 𝑋
on 𝑌 to be zero (indicating no effect).

3.4 Evaluate the Causal Test Cases
The final step is to use CI to evaluate each test case. There are three
sub-steps to this.

Identification: First, the DAG is used to identify which variables
need to be adjusted to remove bias. This is done by automatically
searching for “backdoor paths” in the DAG and variables which
can be controlled to close them [41]. A common source of bias is
confounding, where a third variable 𝑍 has causal paths to both the
treatment 𝑋 and the outcome 𝑌 , which can introduce a spurious
correlation between 𝑋 and 𝑌 , even if there is no direct causal link
between them. To adjust for this, 𝑍 (and other sources of bias) are
controlled for by including them as features in the estimation step
(below) so that their values are properly taken into account.

Estimation: Next, we use the test data to estimate the causal
effect, with 95% confidence intervals [40]. This involves using a sta-
tistical estimator, such as regression. In this work, we estimate unit
Average Treatment Effect (ATE), which represents the change in
the outcome𝑌 we would expect to see if we increased the treatment
𝑋 by 1. In a linear setting with𝑌 = 𝑎𝑋 +𝑏𝑍 +𝑐 (where 𝑎, 𝑏, and 𝑐 are
constant coefficients), this is given by 𝑎. To test non-linear relation-
ships, one can add extra terms (e.g. powers, reciprocals, interaction
terms) or use a machine learning model [36] if the equational form
is not known. The advantage of CI is that the identification step
automatically identifies the relevant features from the DAG instead
of factoring in all of the (potentially irrelevant) features in the data.

Comparison: Finally, the causal effect estimate is checked against
the expected causal effect 𝐸 to determine the test outcome. At the
coarsest level, we can simply check for the presence or absence of
a causal effect. For unit ATE (defined above), there is deemed to
be a causal effect if the confidence intervals do not contain zero. A
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causal DAG can act as a test oracle in itself, and can be automatically
transformed into a suite of causal tests that validate the specified
causal effects and independence relations [16]. It is also possible to
make the test oracle more precise by, for example, checking for a
positive or negative causal effect, or even a specific value.

3.5 Handling Interaction and Unobservable
Variables

Previous Causal Testing research has been limited to the analysis
of causal effects between pairs of variables in systems where all
relevant variable values are recorded in the test data. However, two
additional challenges still present a barrier to its broader application:
interaction and unobservable variables.

3.5.1 Interaction and Effect Modification. Many software faults
manifest themselves as interactions between multiple variables
[37], where several variables may need to take particular values.
When this is the case, the causal effect of one variable on the out-
come is modified by another variable. In CI, this is known as effect
modification [29]: the actual relationship 𝑋 → 𝑌 is changed, de-
pending on the value of a third variable 𝑍 . The CI solution to this
is to include an interaction term as an additional feature when es-
timating causal effects. For example, we may use the regression
equation 𝑌 = 𝑎𝑋 +𝑏𝑍 + 𝑐𝑋𝑍 +𝑑 , where 𝑋𝑍 is the interaction term.
In Section 5, we investigate whether this allows us to obtain reliable
test outcomes when variables interact.

3.5.2 Unobservable Variables. Software logs may be incomplete
[11] and may not record every variable during execution. This can
lead to biased, unreliable test outcomes as we may not be able to
adjust for confounding variables by controlling their values. While
we can sometimes instrument programs to provide extra logging,
this may not always be possible.

Instrumental variable (IV) methods [41, 53] from CI provide an
elegant solution to this problem under certain circumstances. As
an example, consider the causal DAG in Figure 1. This shows the
causal relationships between four variables: X, Y, Z, and U (which
is unobserved), along with path coefficients [53] (𝑎, 𝑏, 𝑐 , 𝑑) that
represent the unit ATE of each causal relationship. To estimate the
direct effect of X on Y (𝑏 in Figure 1) in the presence of confounder
U, we would typically need data for U to adjust its biasing effect.

Z X Y

U

a b

c d

Figure 1: General setup for IVs. The unobserved variable U is
highlighted in gray.

Instead, we can use Z as an instrument to calculate 𝑏 without
needing data for U. To do this, we divide the total effect of Z on
Y (𝑎𝑏) by the direct effect of Z on X (𝑎). That is, 𝑎𝑏/𝑎 = 𝑏. This is
possible because Figure 1 satisfies the following three conditions
and operates in a linear setting: (1) there is no arrow between U
and Z, (2) there is an arrow between Z and X, and (3) there is no
direct arrow from Z to Y. Although these assumptions can be restric-
tive, and IV methods tend to give less precise estimates [29], they

nevertheless enable us to draw causal conclusions about relation-
ships between variables, which would otherwise be impossible. In
Section 5.5, we investigate whether IV methods allow us to obtain
reliable test outcomes for systems with unobservable variables but
where the DAG conforms to the above constraints.

4 Research Design
We perform an evaluative case study [44] to gain an in-depth un-
derstanding of how Causal Testing applies to software systems like
CARLA, where interacting and unobservable variables prevent us
from obtaining reliable test outcomes with current techniques. The
case study methodology is well suited to this because our object of
study is a contemporary phenomenon (Causal Testing) that must
be studied in its context (by testing a system) and not in isolation
[45]. Our study design follows the guidelines of Runeson et al. [45].

4.1 Objectives and Research Questions
The goal of this study, stated using the Goal-Question-Metric (GQM)
approach [51], is to “analyse Causal Testing for the purpose of eval-
uation and characterisation of its testing ability with respect to
software systems with nondeterminism and limited controllability
and observability from the point of view of software testers in the
context of ADS testing”. Critically, we are investigating the process
of Causal Testing rather than trying to find faults in individual sys-
tems. Furthermore, the application of Causal Testing to CARLA is
not about generating test scenarios, like many existing ADS testing
studies [49, 55, 56]. Causal Testing is not intended to replace the
existing ADS testing techniques but should instead be considered
complementary. We achieve our goal by answering the following
research questions.
RQ1 Can Causal Testing deliver reliable test outcomes for software
with interacting parameters? To answer RQ1 we examine whether
the use of interaction terms produces more reliable test outcomes.
RQ2 Can Causal Testing deliver reliable test outcomes when using
uncontrolled data? To answer RQ2, we compare causal effect esti-
mates calculated using SMT-style data with those calculated using
a smaller amount of less controlled data.
RQ3 Can Causal Testing deliver reliable test outcomes for software
with unobservable parameters? To answer RQ3, we compare causal
effect estimates calculated using IV methods, traditional adjustment
(which requires the values to be observed), and no adjustment to
investigate how this affects the accuracy of our estimates and the
reliability of test outcomes.
RQ4 Can Causal Testing discover faults under the above circum-
stances? To answer RQ4, we consider the unexpected behaviour we
encountered when testing our requirements.

4.2 Case Selection and Units of Analysis
Our case study is charactesized as single-case and embedded [45].
Our case is the CARLA platform, and we have multiple units of anal-
ysis embedded within this. Our units of analysis are the following
three requirements, which we selected to enable us to investigate
key aspects of Causal Testing and answer our RQs, while still being
relevant to ADS testing.
RE1 (Infraction penalties). The CARLA leaderboard evaluates an
ADS’s ability to drive a set of predefined scenarios from start to end
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in a given time. The DrivingScore is then calculated as the propor-
tion of the route that the ADS managed to complete within its lane,
with penalties being applied for any infractions committed. This is
shown in Equation (1), which is given on the CARLA leaderboard
website [3]. For the leaderboard to be a fair platform, it is crucial
that Equation (1) is implemented correctly. This is hard to test us-
ing traditional techniques as we cannot reliably force particular
infractions without incurring the considerable overhead of building
a custom ego-vehicle and specially controlled driving environment.

InfractionPenalty × CompletionScore × (1 − OutsideLane) (1)

RE2 (Ego-vehicle model). Human drivers are expected to adapt
well to new models of vehicles, for example, when they buy a new
car. It would be beneficial if ADSs could also achieve this, as it
would mean they would not need to be retrained every time a new
car was released. Our objective is to test whether the model of the
ego-vehicle has a causal effect on the number of infractions that
occur. This cannot be tested using traditional techniques as it is a
statistical property over multiple runs. While SMT could test this
property, it requires a large amount of highly controlled test data.
RE3 (CARLA version). This case explores a regression testing sce-
nario between different CARLA versions. Our subject ADSs are
designed to run on CARLA v0.9.10.1, but several versions of CARLA
have subsequently been released. Since the changelog [2] does not
suggest that any changes or additional features should significantly
affect performance, the ADSs should run equally well (if not better)
on newer CARLA versions. Here, we test that newer versions of
CARLA do not adversely impact the real-world time taken to simu-
late in-simulation time. As with RE2, this is a statistical property
over multiple runs. Previous approaches to Causal Testing [15]
cannot test this, as there are unobservable variables at play. That is,
the numbers of pedestrians and NPC vehicles are not recorded in
the CARLA logs by default. They are unobserved.

We test our three requirements (the units of analysis) on four
driving agents (which form sub-units of analysis) and analyse the
resulting evidence separately. We used the top two ADSs on the
CARLA leaderboard with available and reusable code: TCP [54] and
CARLA Garage [30]. Each has two kinds of driving agents (privi-
leged and trained), which behave very differently. Privileged agents
have access to “privileged” information such as the road layout and
the locations of the other agents. This makes them excellent dri-
vers who commit very few infractions. Trained agents are machine
learning models trained on data collected by a privileged agent.
They drive using only non-privileged data sources such as image
data and LiDaR. Thus, they typically commit more infractions than
the privileged agents. To make our study as diverse as possible, we
consider one of each kind of agent for each ADS.

5 Data Collection and Analysis
This section presents how we obtained and analysed the evidence
that we will use to answer our RQs in Section 6. Our evidence is
obtained by applying the four steps of causal testing outlined in
Section 3. The first two steps (constructing the DAG and collecting
test data) are shared between the three requirements. The last two
steps (defining and evaluating causal test cases) are unique to each
requirement. In particular, we consider how different estimation

techniques, including interaction and IV methods, lead to different
causal effect estimates and test outcomes. Our replication package1
includes the data and code used to answer the RQs in this paper,
as well as the artefacts (causal DAGs, test code and ADS setup)
required to reproduce the results from fresh executions of CARLA.

5.1 Step 1: Specify the Causal Model
The first step of Causal Testing is to construct a causal DAG to
represent the system. This is shown in Figure 2, and is shared
between our three requirements. We used the CARLA documen-
tation [3, 4] and domain knowledge to determine which variables
were relevant to our three requirements and how they related to
each other. The root nodes (Weather, EgoVehicle, NPCvehicles,
Pedestrians, and RouteLength) represent CARLA configuration
inputs. The other nodes represent outputs, and will be discussed
when we test the relevant requirements. We used the method de-
scribed in [15] to determine the connections between the nodes.
Specifically, we assume that inputs are independent of each other
(since they are chosen by the tester), and prune connections be-
tween the remaining nodes based on our knowledge of the system.

5.2 Step 2: Collect Test Data
The second step of Causal Testing is to collect test data. To evaluate
our requirements, we need each of our four driving agents to drive
multiple models of ego-vehicle (RE2) using multiple versions of
CARLA (RE3). We need to record their infractions (RE1 and RE2)
and the simulation runtimes (RE3).While we can control the version
of CARLA and the model of ego-vehicle, we cannot force infractions
to occur, nor can we control the runtime of the simulation. We must
allow these to happen “naturally”, as they normally would. The
advantage of Causal Testing is that the DAG in Figure 2 allows us
to identify and adjust for any bias this introduces [15].

To generate our test data, we followed the data collection in-
structions on the README page of each ADS, using the provided
driving scenarios for the Town 01 map, which is the simplest of 12
road layouts supported by CARLA. These scenarios are primarily
intended for training and evaluating the respective ADSs. TCP is
distributed with 300 scenarios for Town 01. CARLA Garage has just
132 scenarios, which are distinct from those of TCP. We ran the
scenarios for two versions of CARLA (v0.9.10.1 and v0.9.11) and
two models of ego-vehicle (the default Lincoln MKZ2017 and the
BMW Isetta), terminating execution at the first infraction so that a
maximum of one infraction per scenario is considered.

Crucially, we did not generate the driving scenarios ourselves;
we chose not to apply state-of-the-art ADS test scenario generation
techniques here to maintain focus on the Causal Testing method-
ology as a whole. This means our test data may not achieve the
best coverage or produce the best test outcomes, but it makes it
well suited to evaluate RQ2 as it represents the kind of pre-existing
runtime data with which Causal Testing is intended to be used [15].

To judge the accuracy and reliability of the IV methods we use
to test RE3, we modified the code of TCP to enable the numbers
of pedestrians and NPC vehicles (i.e., traffic participants) to be
customised and recorded. We then randomly spawned between 80
and 200 of each. This was a non-trivial process that required several
1https://github.com/CITCOM-project/carla-case-study
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Requirement 2
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Legend

Figure 2: The causal DAG for all three requirements, with the variables relevant to each requirement highlighted. The specific
causal edges of interest are emboldened for clarity. Unobservable variables are drawn in grey. The dashed edge represents effect
modification. We use the notation proposed in [52] of drawing (dashed) edges from nodes to other edges.

code files to be modified, but it allowed us to perform traditional
adjustment, which we use as a “gold standard” to answer RQ3. It
also enabled us to more effectively investigate RE1 as it yielded
test data with more runs containing an infraction than the default
value of 120. We did not modify CARLA Garage except to change
the model of the ego-vehicle, which is hardcoded.

5.3 RE1: Infraction Penalties
Having drawn the DAG (step 1) and collected test data (step 2), we
now define (step 3) and evaluate (step 4) causal test cases for RE1
to test that the correct penalty is applied for each infraction.

5.3.1 Step 3: Define Causal Test Cases. Definition 1 states that a
causal test case has three components: a treatment, an outcome,
and an expected causal effect. We want to test that the infraction
penalty is correct. This corresponds to 𝛼 in Figure 2, which is the
effect of CompletionScore on DrivingScore. Thus, these are our
treatment and outcome, respectively.

There are four possible infractions in the Town 01 map: collisions
with pedestrians, vehicles, and objects, and running red lights. We
define one causal test for each, and one for no infraction. These all
have CompletionScore as the treatment and DrivingScore as the
outcome. The expected causal effect is the corresponding infraction
penalty, taken from the CARLA leaderboard [3] (see Table 1).

5.3.2 Step 4: Evaluate the Causal Test Cases. We can now evaluate
our five causal test cases. As discussed in Section 3, this process
has three substeps: identification, estimation, and comparison to
the expected causal effect.

Identification.The first step is to use Figure 2 to identify sources
of bias that must be adjusted to obtain an unbiased estimate. Figure 2
shows that Infraction is a common cause of CompletionScore
and DrivingScore. To adjust for this, the data are grouped into
strata by Infraction, and each test case is evaluated using the
corresponding stratum. Because some infractions happened more
than others (see Table 1), the strata are not all the same size, which
will affect the resulting estimate.We discuss this further in Section 6.

The dashed edge in Figure 2 shows that OutsideLane is an ef-
fect modifier of CompletionScore on DrivingScore. This stems
from Equation (1), which contains the term ComplectionScore ×
OutsideLane, indicating that the two variables interact. If we do

not adjust for this, our estimates of the infraction penalties will be
biased, potentially leading to unreliable test results.

Estimation. Having identified the sources of bias, we now es-
timate the causal effect 𝛼 . We use the regression model in Equa-
tion (2) for this, where 𝑐 is a constant. This has the same form
as Equation (1) from the CARLA leaderboard website [3], except
that Infraction penalty is replaced with 𝛼1, and a constant term
has been added for completeness2. If the DrivingScore is being
calculated according to Equation (1), the estimated coefficient 𝛼1
(i.e. the unit ATE) should equal the penalty for each infraction, as
discussed in Section 3.

𝛼1 × CompletionScore × (1 − OutsideLane) + 𝑐 (2)

Note that expanding out the bracket in Equation (1) gives the
interaction term CompletionScore×OutsideLane. This is how we
adjust for the effect modification bias. To investigate the importance
of effect modification, we also consider Equation (3), which ignores
the effect modification of OutsideLane. This represents a naive
estimation that only adjusts for confounding (by stratifying the
data). Figure 2 indicates that this should produce a biased estimate.

𝛼2 × CompletionScore + 𝑐 (3)

Expected Effect.We determine the test outcomes by comparing
our estimates for 𝛼1 and 𝛼2 to the expected causal effects, which are
the infraction penalties from the CARLA leader board [3]. Table 1
shows these values, and is divided into two sections. The first
section shows the estimates for 𝛼1 in Equation (2). The second
section shows the estimates for 𝛼2 in Equation (3). Missing entries
correspond to infractions that were never committed. Infractions
that only occurred once did not give sufficient data to estimate
confidence intervals.

Test Outcomes. The top five rows of Table 1 show that the esti-
mates of 𝛼1 in Equation (2) are as expected. The identical confidence
intervals come from the infraction penalty being deterministic, so
there is no variation in the dataset. Thus, the regression model
perfectly fits the data. Every test case that we could evaluate passed
for all four ADSs.

2If we were not adjusting for Infraction by stratification, it would also need a term
in the equation.
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Table 1: Test outcomes with estimated 𝛼1 as per Equation (2), and 𝛼2 as per Equation (3) to 3 decimal places. Failing test cases
are highlighted with an (*) symbol. Missing values are shown with a (-) symbol.

Infraction 𝛼Expected TCP Privileged TCP Trained CARLA Garage Privileged CARLA Garage Trained

Eq
ua
tio

n
(2
)

𝛼
1

No infraction 1.00 1.000[1.000, 1.000] 1.000[1.000, 1.000] 1.000[1.000, 1.000] 1.000[1.000, 1.000]
Red light 0.70 0.700[0.700, 0.700] 0.700[0.700, 0.700] 0.700[-, -] 0.700[0.700, 0.700]
Collisions layout 0.65 0.650[0.650, 0.650] 0.650[0.650, 0.650] - 0.650[0.650, 0.650]
Collisions vehicle 0.60 0.600[0.600, 0.600] 0.600[0.600, 0.600] 0.600[0.600, 0.600] 0.600[0.600, 0.600]
Collisions pedestrian 0.50 - 0.500[0.500, 0.500] - 0.500[-, -]

Eq
ua
tio

n
(3
)

𝛼
2

No infraction 1.00 1.000[1.000, 1.000] 1.024[1.005, 1.043] 1.000[1.000, 1.000] 1.046[0.964, 1.128]
Red light 0.70 0.700[0.700, 0.700] 0.698[0.696, 0.700] 0.700[-, -] 0.700[0.700, 0.700]
Collisions layout 0.65 0.650[0.650, 0.650] 0.650[0.620, 0.680] - * 0.538[0.475, 0.601]
Collisions vehicle 0.60 0.600[0.600, 0.600] 0.604[0.594, 0.614] 0.600[0.600, 0.600] * 0.482[0.372, 0.591]
Collisions pedestrian 0.50 - 0.500[0.500, 0.500] - 0.500[-, -]

The bottom five rows of Table 1 show that ignoring the effect
modification from OutsideLane can lead to unreliable test out-
comes. For the privileged drivers, the results are unaffected because
they never went OutsideLane, thereby nullifying the bias. How-
ever, the estimates for the trained drivers are less precise than for
𝛼1, and two test cases fail because the effect estimates are not close
enough (in this case, within 5%) to the expected value. This is be-
cause Equation (3) does not include an interaction term, meaning
𝛼2 aggregates the infraction penalty and the proportion of the route
spent OutsideLane.

5.4 RE2: Ego-Vehicle Model
Let us now define and evaluate causal test cases for RE2 from
Section 4, which tests that the model of ego-vehicle does not have
a significant effect on the infractions committed.

5.4.1 Step 3: Define Causal Test Cases. As for RE1, we first define
the treatment, outcome, and expected causal effects. We want to test
that the model of EgoVehicle does not impact the Infractions we
observe. Hence, the EgoVehicle is the treatment, and Infraction
is the outcome. Our expected causal effect (𝛽 in Figure 2) is zero,
since a good ADS should intuitively perform equally well on any
vehicle, just as we would expect from a human driver.

5.4.2 Step 4: Evaluate the Causal Test Cases. Having defined our
causal test case, we now carry out identification, estimation, and
comparison to the expected causal effect.

Identification. Figure 2 shows that there is no bias that needs
adjusting for here. EgoVehicle is an input to the software, so there
are no common causes or effect modifiers.

Estimation. Since there are no sources of bias to adjust for,
and we do not have a predefined equation to relate EgoVehicle
and Infraction, we simply fit a model of the form Infraction =

𝛽 × EgoVehicle + 𝑐 , where 𝛽 is the causal effect. We here identify
each Infraction by its numeric penalty rather than its name, as
we did in Section 5.3. Since our test data includes every driving
scenario run with both models of the ego-vehicle, Causal Testing
using the full dataset effectively becomes SMT. To help answer RQ2,
which concerns uncontrolled data, we additionally estimate 𝛽 , using
the first half of the driving scenarios for the Lincoln, and the second
half for the BMW, for each version of CARLA. When the data is
partitioned in this way, no route is driven by both ego-vehicles, so

Table 2: Estimated effect on the infraction penalty of chang-
ing the model of ego-vehicle from the Lincoln MKZ2017 to
the BMW Isetta. Failing test cases are highlighted with (*).

ADS 𝛽 estimate 𝛽 estimate 1/2

TCP trained *-0.111[-0.131, -0.092] *-0.115[-0.143, -0.087]
TCP privileged * 0.0132[0.003,0.023] * 0.018[0.005, 0.031]
CARLA G. trained *-0.112[-0.135, -0.089] * -0.102[-0.133, -0.07]
CARLA G. privileged 0.006[-0.003,0.015] 0.003[-0.01, 0.016]

SMT is not directly applicable. However, we expect Causal Testing
to produce similar estimates that lead to the same test outcomes.

Expected Effect. To determine the test outcomes, we compare
our estimates of 𝛽 to the expected causal effect (i.e., zero). As men-
tioned in Section 3.4, the absence of a causal effect is indicated by
the confidence intervals for the estimate containing zero. Table 2
shows our estimates for each of the four drivers. The second column
shows our estimates calculated using the full dataset, where each
agent drove both vehicles for all scenarios. The last column shows
our estimates calculated using the dataset, where each agent drove
each vehicle for half of the scenarios. As expected, the two columns
show very similar causal effects for each driver.

Test Outcomes. Table 2 shows that the test case for the CARLA
Garage privileged driver passes. The confidence intervals contain
zero, indicating no significant causal effect. The other three drivers
fail. Both trained drivers have a negative effect of around −0.1 with
confidence intervals that do not contain zero. This indicates that the
BMW leads to worse driving than the Lincoln. This is not surprising
as the drivers were only trained in the Lincoln, but the result is still
cause for concern and is discussed further in Section 6.

More surprisingly, the TCP privileged driver seems to drive better
in the BMW than in the Lincoln. While the effect size is very small,
the confidence intervals do not contain zero, so the test case fails.
This is surprising, and we will discuss the underlying causes and
implications of this in Section 6.

5.5 RE3: CARLA Version
We now define and evaluate the causal test case for RE3. This consid-
ers a regression testing scenario to validate that updating CARLA
from v0.9.10.1 to v0.9.11 does not adversely affect the performance.
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5.5.1 Define Causal Test Cases. Our expected causal effect is “not
positive”, as we do not anticipate a slower simulation, but we do
not mind if it speeds it up or stays the same.

Defining the treatment and outcome is a little more complex
than the first two requirements. Simply testing the causal effect
of the CARLAversion on the SystemTime does not incorporate the
actual performance of the simulation, i.e. how much real-world
time it takes to simulate each second of in-simulation time. This
is characterised by the direct causal effect of SimulationTime on
SystemTime. We need to test that this causal effect stays the same
between the versions of CARLA. Thus, SimulationTime is our treat-
ment and SystemTime is our outcome.

5.5.2 Evaluate the Causal Test Cases. Having defined our causal
test case, we now carry out identification, estimation, and compari-
son to the expected causal effect.

Identification. Figure 2 shows that there are three sources of
bias here: the CARLAversion, and the numbers of NPCvehicles
and Pedestrians, as these are all common causes of our treatment
and outcome. The intuition for this is that heavy traffic may lead
to routes taking more simulation time to complete and more real-
world time per time step, as there are more agents to update.

Unlike RE2, SMT is not applicable here since, as mentioned
in Sections 2 and 5.2, we cannot precisely control the values of
NPCvehicles and Pedestrians. Indeed, we are not even able to
observe these values by default, as they are not logged by TCP or
CARLA Garage. This means that we cannot collect the controlled
data necessary to perform SMT.

Estimation. Having established our sources of bias, we can
now estimate the causal effects. Since we are comparing causal
effects between versions of CARLA, we adjust for the bias from
CARLAversion by considering the two versions separately. The ad-
justment for NPCvehicles and Pedestrians is more nuanced, and
we will consider and compare three different estimation methods
here in order to obtain sufficient evidence to answer RQ3.

Firstly, because the values of NPCvehicles and Pedestrians
are not logged by default, we will use IV methods (see Section 3.5.2)
to estimate our causal effect 𝛾 without needing this data. Using
RouteLength as the instrument, we can estimate 𝛾 by dividing its
total causal effect on SystemTime (Equation (4a)) by its direct effect
on SimulationTime (Equation (4b)).

SystemTime = 𝛾𝑠𝑦𝑠 × RouteLength (4a)
SimulationTime = 𝛾𝑠𝑖𝑚 × RouteLength (4b)

𝛾 = 𝛾𝑠𝑦𝑠/𝛾𝑠𝑖𝑚 (4c)

We use RouteLength as the instrument because it matches the
causal structure in Figure 1. That is, there is no edge between
Pedestrians or NPCvehicles and RouteLength, and there is a
path RouteLength → SimulationTime → SystemTime. While we
cannot know for sure that the relationships are linear, the intuition
is that the longer a route is, the more simulation time it should
take, since the ego-vehicle has to travel further, so more wall-clock
SystemTime is required to run the simulation.

Secondly, since we have no way of knowing the true causal effect,
we created an artificial “gold standard” (as discussed in Section 5.2)
by modifying TCP to record the numbers of pedestrians and NPC
vehicles to enable traditional adjustment [41] using Equation (5)

Table 3: Estimated direct causal effect of simulation time
on system time for the different versions of CARLA. This
represents how much real-world time it takes to simulate
one second of the simulation.

Driver CARLA v0.9.10.1 CARLA v0.9.11

IV
methods

(Equation 4)

TCP trained 4.470[4.401, 4.569] 6.829[6.766, 6.886]
TCP privileged 3.886[3.837, 3.938] 6.306[6.253, 6.364]
Garage trained 6.412[6.199, 6.595] 8.522[8.312, 8.767]
Garage Privileged 7.751[7.389, 8.100] 8.383[8.114, 8.617]

Gold
standard

(Equation (5))

TCP trained 4.523[4.437, 4.609] 6.677[6.605, 6.749]
TCP privileged 3.838[3.759, 3.918] 6.180[6.101, 6.259]
Garage trained 6.779[6.696, 6.861] 9.009[8.875, 9.143]
Garage Privileged 7.162[6.883, 7.441] 7.814[7.398, 8.231]

No
adjustment
(Equation (6))

TCP trained 4.522[4.437, 4.607] 6.682[6.611, 6.753]
TCP privileged 3.832[3.755, 3.909] 6.182[6.104, 6.260]
Garage trained 6.779[6.696, 6.861] 9.009[8.875, 9.143]
Garage Privileged 7.162[6.883, 7.441] 7.814[7.398, 8.231]

to compute estimates that are as accurate as possible. We gained
the same data for CARLA Garage by manual code inspection, re-
vealing that it always spawns 120 NPC vehicles and either zero or
one pedestrian, depending on the driving scenario. In both cases,
the information was time-consuming to obtain, and may not be
obtainable at all in the general case.

SystemTime = 𝛾 × SimulationTime+
𝑐1 × Pedestrians + 𝑐2 × NPCvehicles + 𝑐3

(5)

Finally, we consider Equation (6), which ignores the confounding
effect of Pedestrians and NPCvehicles. Figure 2 indicates that
this should give a biased estimate. This may be more accurate (i.e.
closer to traditional adjustment) than IV methods, if the bias is
sufficiently weak. However, this cannot be determined in advance.

SystemTime = 𝛾 × SimulationTime + 𝑐 (6)

Expected Effect. We now determine the test outcomes by com-
paring estimates of 𝛾 between CARLA versions. Table 3 shows the
estimated direct causal effect of SimulationTime on SystemTime,
i.e. how long it takes to simulate one second of time in simulation
(𝛾 in Figure 2). We here expect the causal effect to be zero.

Test Outcomes. In Table 3, the first four rows show the esti-
mates for 𝛾 calculated using IV methods. This shows that CARLA
0.9.11 is slower for all four drivers. The confidence intervals for the
corresponding estimates between different versions of CARLA do
not overlap, so the test cases all fail.

The second four rows show that classical adjustment gives simi-
lar estimates, although the confidence intervals between CARLA
versions for the CARLA Garage privileged driver overlap very
slightly, leading to a passing test result. For the other drivers, there
is no overlap and test cases still fail.

The final four rows show that the biased estimates calculated
without adjustment are very close to those calculated with classical
adjustment and produce the same test outcomes. We will discuss
this further in Section 6.3

599



Using Causal Inference to Test Systems with Hidden and Interacting Variables: An Evaluative Case Study EASE ’25, June 17–20, 2025, Istanbul, Turkiye

6 Analysis and Answers to Research Questions
This section answers our RQs using the evidence from Section 5.

6.1 RQ1 Can Causal Testing deliver reliable test
outcomes for software with interacting
parameters?

In RE1, the infraction penalty is the direct causal effect of the
CompletionScore on the DrivingScore. The proportion of the
route spent OutsideLane interacts with the CompletionScore, in-
troducing a source of bias. We used an interaction term in the estima-
tor to adjust for this, allowing us to validate the penalties for each
infraction. When we estimated the causal effects without adjusting
for this bias, two test cases for the CARLA Garage trained driver
failed (even though they should have passed) because the causal
effect estimates were not within 5% of the expected effect.

Interaction between parameters can cause tests to fail when
there is no fault. Causal Testing enables us to isolate direct causal
effects, even when variables interact.

6.2 RQ2 Can Causal Testing deliver reliable test
outcomes when using uncontrolled data?

In RE1, we stratified our test data by Infraction to adjust for
its bias. To achieve a similar result using SMT, we would need to
control which infraction the ego-vehicle committed each test run.
This is impossible here due to the non-controllability of CARLA and
the ADSs under test, meaning that some infractions did not occur
often enough in the test data for us to calculate confidence intervals.
This highlights an inherent property of using uncontrolled data:
we can only test aspects of behaviour that are covered by the data.

In RE2, we discovered an unexpected direct causal link between
the model of ego-vehicle and the infraction penalty for three of the
four driving agents we tested (i.e. the choice of ego-vehicle model
has a causal effect on the infractions committed). Here, causal
testing essentially reduces to SMT because there is no confounding
between the treatment and outcome. However, without the DAG
in Figure 2, we would have no way to confirm this, so would not
have been able to draw a causal conclusion. We also investigated
the ability of Causal Testing to obtain reliable test outcomes from
uncontrolled data by evaluating the same test cases using just half
of our test data, where no route was driven by both models of the
ego-vehicle. Where SMT is not directly applicable to this data, the
causal tests all led to the same test outcomes as the full dataset.

We used the same test data for all three of our requirements.
We also used the same test scripts to validate four separate driving
agents. While it was computationally expensive to collect test data
from each driver, the effort required to test all four systems was no
more than testing just one.

Observing sufficiently many inputs is critical to estimate causal
effects. However Causal Testing allows us to use less (and less
controlled) test data than would be needed for SMT. It also enables
us to reuse the same test data to test multiple requirements.

6.3 RQ3 Can Causal Testing support the testing
of software with unobservable variables?

In RE3, we investigated the simulation performance of two ver-
sions of CARLA. As with RE1, SMT cannot be applied here as the
causal effect of SimulationTime on SystemTime is confounded
by the numbers of Pedestrians and NPCvehicles, which are not
recorded in the logs by default. Since we have no way of know-
ing the true causal effect, we recorded their values to enable us to
use traditional adjustment as an artificial “gold standard” to com-
pare estimates calculated using IV methods and without any form
of adjustment. IV methods gave a median error of 0.31, and no
adjustment gave 0.001. Since our estimates represent how many
real-world seconds it takes to simulate one second of simulation
time, these errors are barely perceptible.

While the estimates produced without adjustment are closer
to the gold standard, the IV estimates still produce reliable test
outcomes. In the general case, where we could not obtain the values
of confounding variables, we would have no way of knowing which
estimate is more accurate. However, IV methods produce causally
valid and sufficiently accurate estimates as they adjust for the bias
without needing to know the values of the confounders.

Causal Testing enables unbiased causal effect estimates to be
calculated when we cannot observe certain variables, as long as
certain assumptions are satisfied.

6.4 RQ4 Can Causal Testing reveal faults in
software with interacting and unobservable
parameters?

While testing RE2, we discovered two inconsistencies. Firstly, the
trained agents performed worse when driving ego-vehicles that
they were not trained on. This is concerning, as it suggests that
expensive training data needs to be collected for every new vehicle.

Secondly, we discovered that the TCP privileged agent performs
slightly better when driving the BMW rather than the Lincoln,
which is unexpected as the privileged agent is not a trained model,
so it should drive all vehicles equally well. Inspecting the driving
scenarios revealed that the ego-vehicle is sometimes spawned al-
ready committing an infraction (e.g. just in front of a red light). The
BMW experiences this less because it is smaller than the Lincoln.
While this behaviour is unexpected, we do not call it a “bug”, as
neither CARLA nor TCP is doing anything wrong. It is just that
some of TCP’s driving scenarios represent unrealistic behaviour.

In RE3, we discovered a significant decrease in performance be-
tween CARLA v0.9.10.1 and CARLA v0.9.11. Although the cause
of this is beyond the scope of this paper, it suggests either a re-
gression or an omission from the changelog [2]. Without Causal
Testing, we would not be able to obtain reliable test outcomes for
this requirement because we cannot control (or even observe, by
default) the numbers of pedestrians and NPC vehicles within the
simulation. We would, therefore, only be able to conclude that the
CARLA version was associated with a change in runtime.

Causal Testing can discover faults in software with interacting
and unobservable parameters.
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7 Threats to Validity
External validity: We carried out an evaluative case study by test-
ing three requirements surrounding ADS testing. We chose this
setting because it addresses the challenges posed in previous work
on Causal Testing [15, 21] (see Section 2). As discussed in Sec-
tion 3, Causal Testing can, in principle, test any behaviour framed
as the effect of treatment on an outcome. While underlying CI has
been shown to be generally applicable [9], including for investigat-
ing complex non-linear relationships between variables, a broader
study is required to establish the circumstances under which Causal
Testing is applicable in the general case.

Internal validity: We selected our three requirements for their
relevance to our research questions and drew the associated DAG
ourselves. This leads to the risk that the success of the approach has
been biased: that our chosen requirements favour the technique.
This is an intrinsic risk to any case study and is integral to our
future work. However, it is worth noting that we did not control
the test data; the driving scenarios formed part of the training data
for TCP and Carla Garage. The fact that the same routes could be
used to address all three test objectives is a testament to a core
attribute of CI (and Causal Testing) – the fact that the approach
used to analyse a test set is independent of the data.

8 Related Work
ADS Testing. There is a wealth of literature on ADS testing [49,
50, 55, 56]. A key research topic in this area is the generation of
driving scenarios that lead to misbehaviour [27, 57], with several
recent techniques [21, 31] employing causal reasoning. Our RQ2
showed Causal Testing is complementary to such approaches, as
the generated scenario data can be used to explain why particular
scenarios failed, and reused to test additional causal relationships.
Along these lines, Han and Zhou [26] use metamorphic tests to
answer questions like “Would the ego-vehicle still have crashed
into an object if it had been further away?”. While such questions
are clearly causal, they are answered via the controlled collection
of new data, where our approach can use existing data.

Machine Learning-Inferred Models of Tested Behaviour.
In this work, we used causality-informed linear regression models
to estimate causal effects. This relates to a significant body of work
on machine learning approaches for inferring models from test exe-
cutions. Such approaches often use off-the-shelf algorithms, such as
linear regression [5], support vector regression [13], and ensemble
models [27]. Machine learning approaches have also been applied
to ADSs to estimate the probability of safety violations [38, 39]. A
key limitation of these approaches is that the challenges outlined
in Section 2 — namely, nondeterminism, observability, interaction,
and long execution times — typically prevent us from collecting
a sufficiently large and diverse set of executions to characterise
the underlying behaviour. Norden et al. [39] tackle this by limiting
execution time, but this is not always feasible.

Causality in Software Engineering. Causal reasoning is in-
creasingly being applied in a range of software engineering contexts
[22, 47]. The technique of Causal Testing was originally published
in Clark et al. [15], with subsequent papers proposing techniques to
automatically generate metamorphic test cases from causal DAGs
[16] and measure test adequacy [18].

Causal reasoning is also popular in the field of fault localisation.
For example, Johnson et al. [32] explain the root cause of faulty
software behaviour by mutating existing tests to form a suite of
minimally different tests that are not fault-causing. The test suites
are then compared to understand why a fault occurred. Several
techniques also employ CI, using the program dependence graph
as a DAG [6–8, 24, 42, 46].

The great advantage of Causal Inference is the fact that it can
be applied to observational data, without the need for a controlled
experiment. In this context, it has also been shown to be a valuable
tool for empirical software engineering. Recent work by Furia et al.
[20] has shown how it can bemore precise at analysing programmer
performance than purely predictive techniques.

Automatic Generation of DAGs. While manual creation of
DAGs is widely accepted in fields such as epidemiology, causal dis-
covery [35] aims to automatically learn causal structures from data
by exploiting asymmetries that separate association from causation
[23]. The ADS scenario generation techniques mentioned above
[21, 31] all employ causal discovery rather than relying on the user
to supply the DAG. However, a fundamental weakness of this from
a testing point of view is that inferred DAGs represent the actual
system rather than its intended behaviour, so it will reflect any bugs
in the implementation. Causal DAGs have also been generated via
static analysis of source code [34, 42].

9 Conclusion
Testing nondeterministic software with uncontrollable and unob-
servable variables, such as ADSs, can be challenging due to the
difficulty in obtaining test data. In this paper, we investigated how
two ideas from CI — effect modification and instrumental variables
— can be used to tackle these problems.

We performed an evaluative case study by testing three require-
ments of the CARLA driving simulator and two associated ADSs.
Our results indicate that the above techniques can facilitate the test-
ing of properties for which we could not otherwise obtain reliable
outcomes using uncontrolled observational data. Interaction terms
in statistical estimators allow us to isolate direct causal effects in
the presence of effect modification. IV methods enable us to adjust
for bias from variables that do not appear in the test data, although
the accuracy will vary from system to system. Furthermore, the
main benefit of Causal Testing identified in [15], namely that we
can obtain useful test results using observational data not collected
expressly for testing, still applies in this new context. A more ex-
tensive study to investigate the limitations and generalisability of
the approach is desirable future work.

As identified in [15, 16], the main barrier to Causal Testing is the
domain knowledge necessary to draw the causal DAG. A promising
direction for future research is the creation of (semi-)automated
tools to assist developers with this process. Another line of research
would be to investigate the applicability of IV methods for testing
concurrent systems, where logging can hide faults [28].
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