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ABSTRACT 

This work presents the integration of mechanobiological models to predict the natural evolution of 

bone modeling and remodeling processes to obtain the architecture of trabecular bone from the 

embryonic stage in mammalians. Bone modeling is simulated in two and three dimensions using a 

reaction-diffusion mechanism with parameters in Turing space. This approach involves the 

interaction of two molecular factors (VEGF and MMP13) released by hypertrophic chondrocytes 

that diffuse and interact within a hyaline cartilage matrix. The bone remodeling process follows the 

model proposed by Komarova et al., employing a set of differential equations to describe autocrine 

and paracrine interactions between osteoblastic and osteoclastic cells, determining cellular 

dynamics and changes in bone mass. Bidimensional and tridimensional results for a cartilage portion 

predict morphological self-organization parameters between VEGF and MMP13, similar to those 

present in the architecture of immature trabecular bone. These findings suggest that the dynamic 

properties of molecular factors play a crucial role in the temporal self-organization of bone 

mineralization metabolism, leading to a heterogeneous trabecular architecture characteristic of 

primary trabecular bone. Through the three-dimensional bone remodeling model performed on the 

surface of trabeculae, it is established that equilibrium in population dynamics leads to 

asynchronous homeostatic remodeling for bone renewal, culminating in the formation of secondary 

trabecular bone. 
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1.0 INTRODUCTION 

The development of morphology and the mechanical adaptation of immature trabecular bone (bone 

modeling) are carried out through endochondral ossification. In this complex and not fully 

understood process, an embryonic cartilage mold is gradually replaced by bone tissue, contributing 

to its longitudinal growth  [1], [2]. Cartilaginous cells undergo differentiation, hypertrophy, and 

apoptosis during endochondral ossification. Additionally, blood vessels invade the growth cartilage 

from the ossification zone of the growth plate, facilitating essential processes that supply nutrients 

and oxygen. As a result, cartilaginous cells (hypertrophic chondrocytes) die, and interstitial tissue is 

replaced with bone tissue. Ultimately, the calcified cartilaginous matrix transforms into the primary 

spongiosa, the initial stage of bone formation [3]. The primary spongiosa consists of calcified 

cartilage located in the ossification zone of the growth plate. Osteoblasts begin depositing osteoid 

concentrically around the invading blood vessels, forming the first true bony trabeculae, the 

secondary spongiosa, while chondroclasts resorb the primary spongiosa. This new bone, in turn, is 

modified by the combined action of osteoclasts and osteoblasts through modeling and remodeling 

processes to form mature trabeculae. In the process of cartilage matrix ossification, sequential 

changes in cartilaginous cells are highly regulated by the secretion or production of different 

systemic and local factors, which regulate the behavior of these cells in the growth cartilage and 

cells such as osteoblasts and osteoclasts in the calcified matrix [4], [5], [6]. The relationship between 

molecular factors and their influence on trabecular bone production has yet to be fully understood 

[7], [8], as well as the presence of certain morphological patterns that give rise to the architecture 

of immature trabecular bone in mammalians. 

Once the bone tissue is formed, it is continuously remodeled throughout life. Bone achieves its 

increase in size and shape through growth and subsequent modeling [9]. From the point of view of 

computational biomechanics, several works have developed models to explain and understand this 

process entirely [10], [11], [12], [13]. Bone modeling is defined as the ability of bone tissue to adapt 

to mechanical loads caused by continuous bone resorption and formation. It is most noticeable 

during growth and development and primarily serves to shape and reshape the bone or change the 

position of its surface related to its central axis. If this process co-occurs at different points, the 

morphology of the bone can be altered. Resorption and formation are closely linked during bone 

remodeling, occurring sequentially at the same site. In contrast, during bone modeling, resorption 

and formation can occur independently, either separately or simultaneously at different locations 

[14], [15]. 

According to the above, this article introduces a mathematical model describing the embryonic 

process of bone production and its subsequent remodeling. The modeling starts from a cartilage 

matrix that progresses to woven bone, and it is based on two biological processes: endochondral 

ossification and bone modeling and remodeling. In the first stage, the proposed endochondral 

ossification model is a biochemical framework governed by a reaction-diffusion (R-D) system with 

instabilities in Turing space that seeks to elucidate the formation of patterns that give rise to the 

morphology of the primary spongiosa. The hypothesis for this mathematical model suggests that 

the development of trabecular bone architecture arises from the interaction of two vital molecular 

factors secreted during the hypertrophic state of cartilaginous cells that interact by employing the 

R-D mechanism. These molecular factors carry out processes of degradation of the cartilaginous 

extracellular matrix and calcification of the remaining cartilage matrix, producing the architecture 



of immature bone. Following the model of endochondral ossification, the second stage, the bone 

remodeling model, is presented, which aims to transform the woven bone into a lamellar bone, 

maintain homeostatic mineralization and the structural function of the skeletal system by repairing 

microdamage and adapting the trabecular structure according to biological demands and 

mechanical stimuli. The remodeling process in this study is governed by the model proposed by 

Komarova et al. [11], where a set of differential equations relating autocrine and paracrine 

interactions in perfect equilibrium between osteoblastic and osteoclastic cells determines cellular 

dynamics and changes in bone mass. It occurs asynchronously and on the surface of ossified 

trabeculae. 

This mathematical model provides a foundational understanding of early trabecular formation and 

ossification in embryonic processes. Its primary goal is to replicate early-stage ossification, serving 

as a crucial starting point for understanding the complex mechanisms in early bone development. 

While shedding light on these processes, the paper prompts inquiries into the diverse molecules 

involved in prenatal ossification. Despite some open-ended aspects, this work marks a pioneering 

step toward comprehending the physiological events governing early bone formation. Beyond its 

scientific implications, the model is a practical tool for scientists, modelers, and healthcare 

professionals. It encourages further exploration, generating new ideas to advance understanding of 

the presented hypothesis. 

1.1 Endochondral Ossification Model 

 

In his work “The chemical basis of Morphogenesis” [16], Turing suggested that different chemical 

substances can react and diffuse to produce a heterogeneous spatial pattern in a steady state under 

certain conditions. From this point of view, biological models described by reaction-diffusion 

equations with instabilities in Turing space can form patterns that define the morphology of the 

primary spongiosa [17]. The general equation governing the reaction-diffusion mechanism takes the 

form of equation (1). 𝜕𝐜𝜕𝑡 = 𝛾𝐟(𝐜) + 𝐷∇2𝐜   (1) 

Where 𝐜 is the morphogen concentration vector, 𝑡 denotes the time, 𝐟 represents the kinetic 

reaction, and 𝐷 is the diagonal matrix of positive constant diffusion coefficients, 𝛾 represents the 

relative strength of the reaction terms, indicating that an increase in 𝛾 can represent an increase in 

the speed of a reaction step. The models proposed in this work are related to two-species chemical 

models, 𝐴(𝐱, 𝑡) and 𝐵(𝐱, 𝑡), where 𝐴 and 𝐵 represent the concentrations of the chemical substances 

at spatial position 𝐱 and time 𝑡. The boundary conditions for these models are typically zero flux. 

These models are represented by the system of equations (equation 2), given by: 𝜕𝐴𝜕𝑡 = 𝛾𝐹(𝐴, 𝐵) + 𝐷∇2𝐴 (2a) 𝜕𝐵𝜕𝑡 = 𝛾𝐺(𝐴, 𝐵) + 𝐷∇2𝐵 (2b) 

            

  



Where 𝐹 and 𝐺 are nonlinear kinetic reaction terms. 

Reactive kinetic terms that satisfy the conditions of Turing instability and the diffusion process allow 

for the generation of time-stable and space-unstable patterns. Extensive research efforts have been 

focused on the investigation of kinetic reaction terms based on experimental, theoretical, and 

hypothetical models [16], [18], [19], [20], [21], [22]. The models used in this work for the reactive 

terms belong to the category of hypothetical models as they are derived from a series of 

hypothetically obtained chemical reactions, such as the auto-catalytic trimolecular reactions 

proposed by Schnakenberg [23], [24] involving two chemicals, as shown in equation (3): 

𝑋 𝑘1⇌𝑘2 𝐴,   𝐵 𝑘3→   𝑌,    2𝑋 + 𝑌 𝑘4→   3𝑋 
(3) 

Based on equation (3) and the law of mass action, which describes the relationship between the 

concentrations of reactants and products in a chemical reaction at equilibrium and states that the 

reaction rate is directly proportional to the product of the active concentrations of the reactants, it 

is possible to write the following equations (4): 𝑓(𝐴, 𝐵) =  𝑘2[𝐴] − 𝑘1[𝑋] + 𝑘4[𝑋]2[𝑌],         𝑔(𝐴, 𝐵) =  𝑘3[𝐵] − 𝑘4[𝑋]2[𝑌] (4) 

 

Where 𝑘1, 𝑘2, 𝑘3 and 𝑘4, are positive constants. Assuming an abundance of concentrations A and B, 

they can be treated as constants. 

Another reactive term for generating morphological patterns is based on the glycolysis reaction, 

where a glucose molecule is broken down to supply energy to cellular metabolism. The complete 

model involves several saturation terms, but a simplified model can be derived assuming that the 

chemical concentrations are far from saturation levels, as shown in equation (5): 𝑓(𝐴, 𝐵) =  𝑘1[𝐴] − 𝑘2[𝑋] − 𝑘3[𝑌]2[𝑋],         𝑔(𝐴, 𝐵) =  𝑘2[𝑋] − 𝑘4[𝑌] + 𝑘3[𝑌]2[𝑋] (5) 

 

The glycolysis represents a scheme based on real biological reactions, which is used extensively in 

this work as the base for generating the biological pattern formations. 

1.2 Bone Remodeling Model 

Woven trabecular bone, also known as primary or immature bone, is a type of bone tissue that 

forms during the early stages of development [25] [26]. However, this type of bone is not exclusive 

to early growth; it also forms during the callus stage of fracture repair and in pathological conditions 

such as bone cancer, including osteosarcoma, Paget's disease, fibrous dysplasia, osteomyelitis and 

metabolic bone diseases, such as hyperparathyroidism and osteogenesis imperfecta . Woven bone 

is the result of the complete endochondral process. It has a more disorganized and less structured 

appearance than lamellar bone, the mature bone tissue [2], [27] [28] [26][29][30]. Over time, woven 

bone can be remodeled by specialized cells called osteoclasts and osteoblasts. This remodeling 

process gradually transforms woven bone into lamellar bone, which is mor e organized and 

mechanically more robust [9]. Woven trabecular bone is an initial framework that provides 



structural support during rapid bone growth or repair periods. It later undergoes remodeling to 

become a more organized and mechanically stable lamellar bone. 

Bone remodeling is a complex physiological process that spans multiple spatial and temporal scales 

and is regulated by hormonal and mechanical signals[9]. Imbalances between bone resorption and 

formation processes can lead to various pathologies. Different in-silico models have been developed 

to study the influence of mechanical stimuli on the bone remodeling process, bone diseases, 

implant-bone interactions, and the effects of treatments on bone pathologies[31], [32], [33]. The 

bone remodeling process involves multiple bone interactions among different types of cells and 

cellular factors that respond to various mechanical stimuli and biological conditions to repair bone 

damage and maintain mineral homeostasis [34]. 

The bone remodeling mathematical model used in this study was developed by Komarova et al. [35] 

and is used to facilitate the gradual transformation from woven into lamellar bone. In this model, 

the interaction between autocrine and paracrine factors, between osteoblasts and osteoclasts, and 

the evolution of bone mass are represented by a nonlinear system of ordinary differential equations 

that allows for the calculation of cell population dynamics in a basic multicellular unit (BMU) and 

changes in bone mass at a discrete site on the bone surface. Komarova’s model explicitly involves 

the population of osteoclasts (x1), osteoblasts (x2), and bone mass (Z), with different parameters 

that model the regulation of paracrine and autocrine factors (gii). The mathematical remodeling 

model is presented in the following set of equations: 𝑑𝑥1𝑑𝑡 =  𝛼1𝑥1𝑔11𝑥2𝑔21 − 𝛽1𝑥1 (a) 

(6) 
𝑑𝑥2𝑑𝑡 =  𝛼2𝑥1𝑔12𝑥2𝑔22 − 𝛽2𝑥2 (b) 

𝑑𝑧𝑑𝑡 = −𝑘1𝑦1 + 𝑘2𝑦2, where 𝑦𝑖 = {𝑥𝑖 − 𝑥̅𝑖, 𝑖𝑓 𝑥 > 𝑥̅𝑖0,           𝑖𝑓 𝑥 ≤ 𝑥̅𝑖  

 

Where α1 and α2 represent the differentiation rate of osteoblast and osteoclast precursors, βi is the 

rate of bone degradation process for i = 1,2. The coefficients g11, g22, g12, and g21 describe the 

effectiveness of autocrine (gii) and paracrine (gij) signals regulated by RANK, RANKL, OPG, TGFβ, and 
other factors. In particular, g21 represents the inhibition of osteoclast production by osteoblasts, and 

g12 represents the stimulation of osteoblast production. The exponents gij are positive except for g21, 

which functions as a regulator of the paracrine signal. Equations 6a and 6b describe the behavior of 

bone mass considering the following assumptions: 1. The populations of osteoblasts and osteoclasts 

at equilibrium consist of non-active cells capable of participating in signaling. 2. Higher levels above 

equilibrium are due to the proliferation and activation of cells. 3. The bone resorption and formation 

rates are proportional to the number of active osteoclasts and osteoblasts. 

The terms 𝑥𝑖̅ represent the equilibrium populations of osteoclasts and osteoblasts, respectively, and 

z represents bone mass. The equilibrium points of the model are given by: 



𝑥̅1 = (𝛽1𝛼1) 1−𝑔22𝛾 (𝛽2𝛼2) 𝑔21𝛾  (7) 

𝑥̅2 = (𝛽1𝛼1) 𝑔12𝛾 (𝛽2𝛼2) 1−𝑔11𝛾  (8) 

 

Where 𝛾 =  𝑔12𝑔21 − (1 − 𝑔11)(1 − 𝑔22). Stability analysis was performed at the equilibrium 

point by studying the linearization using the Taylor series. 

According to the above, during endochondral ossification, hypertrophic chondrocytes undergo 

hypertrophy and eventually die. Blood vessels, osteoclasts, bone marrow cells, and osteoblasts 

invade the cartilaginous extracellular matrix constructed by chondrocytes. The osteoblasts deposit 

bone using the remaining cartilaginous matrix as a scaffold. From this process, the hypothesis of the 

controlled interaction of two molecular signals that diffuse and chemically react in the cartilaginous 

extracellular matrix is proposed, leading to the formation of immature trabecular bone from the 

growth cartilage, similar to previous studies [17]. From a bone and mechanical modeling point of 

view, the effect of mechanical stimulus on bone remodeling is not included because there is no 

significant stress on the growing structure at this stage of bone formation. Applying this stimulus 

will result in bone remodeling at later stages of embryonic development. Consequently, the 

existence of a reaction-diffusion system involving two key molecules, such as VEGF and MMP13, is 

assumed, which can lead to a stable pattern in time but unstable in space. These three-dimensional 

patterns resemble the architecture of trabecular bone that occurs during the endochondral 

ossification process. 

2.0 MATERIALS AND METHODS 

The proposed model in this research is outlined in Figure 1. This model consists of two stages 

according to the biological process of embryonic bone development. The model begins with an 

initial concentration of substances promoting ossification and a three-dimensional representation 

of a growth plate cartilage model incorporating a defined number of precursor bone cells. These 

cells migrate through blood vessels in the metaphysis to reach the ossification zone. The first stage 

of the model aims to recreate the bone mineralization metabolism associated with a self-organized 

spatial and temporal system using a reaction-diffusion equations system, considering the kinetic 

reaction of glycolysis for two substances as a reacting term. The second stage establishes a bone 

remodeling process based on Komarova’s model [35], intending to transform immature bone into 

lamellar or mature bone. These stages are explained in detail below. 

2.1 Description of the Endochondral Ossification Model  

The proposed regulatory model for the endochondral ossification process is schematized in Figure 

2 and is based on an activator-substrate reaction-diffusion (RD) system [18][21]. This process is 

modeled considering that the reaction terms (synthesis of soluble extracellular factors) depend on 

the reactant concentration and hypertrophic chondrocytes in the cartilaginous matrix. Accordingly, 

the main hypothesis of this work is supported by the idea that the origin of the patterns that give 

rise to the architecture of trabecular bone could correspond, from a mathematical point of view, to 

the morphological patterns that arise in Turing space when two chemical reactants interact. 



 

 

Figure 1. Flow chart of the model coupling endochondral ossification and bone remodeling. Stage 

1: bone mineralization metabolism. a. Cubic domain of epiphyseal growth cartilage. b. Endochondral 

ossification phase. This part of the model employs the regulatory model, the RD equations system, 

to obtain 2D and 3D results. Stage 2: Bone remodeling process. c. Set of coupled differential 

equations employed for modeling bone remodeling. d. Woven trabecular bone architecture 

obtained in stage 1 for the cubic domain. The black circle indicates the interest zone for the 

remodeling process, and the red circles indicates the potential specific zones where cellular activity 

can emerge.    

 

Figure 2. Activator-substrate control system of the molecular process. VEGF: vascular endothelial 

growth factor, MMP13: matrix metalloproteinase 13. The figure illustrates the relationship of 

molecular signals produced during the hypertrophic stage of chondrocytes in the growth plate. 



According to Figure 2, the regulatory process shows two molecular factors, VEGF (activator) and 

MMP13 (substrate), released by hypertrophic chondrocytes in the growth plate. These factors 

diffuse in the cartilaginous matrix and react with each other. The diffusion process in this model is 

the main agent responsible for producing non-homogeneous spatial instabilities, which lead to the 

generation of patterns in the endochondral ossification process. The control system derived from 

the Reaction-Diffusion system indicates that with a low substrate concentration (MMP13), the 

activator (VEGF) concentration increases, facilitating the invasion of vascular cells and the 

degradation of the cartilaginous matrix. On the other hand, the control system shows that with the 

presence of a high concentration of VEGF, the concentration of MMP13 decreases, allowing the 

invasion of the remaining cartilage by the ossification front, leading to its mineralization and closing 

the endochondral ossification process. 

The processes of self-activation and self-inhibition of the molecular factors present in the control 

system indicate that near the steady state of the reactants 𝑓(𝑉𝐸𝐺𝐹,𝑀𝑀𝑃13) = 0 , 𝑔(𝑉𝐸𝐺𝐹,𝑀𝑀𝑃13) = 0, 

a small increase in the concentration of MMP13 temporarily amplifies its concentration, while small 

increases in the concentration of VEGF temporarily reduce the production of this factor. 

The reaction-diffusion system for the model representing the regulatory process shown in Figure 1 

employs the kinetic reaction of glycolysis as a reactive term. Glycolysis is the process of glucose 

synthesis to provide energy for cellular metabolism. This model can exhibit several phenomena 

associated with glycolysis and oscillatory behaviors. The kinetic reaction of glycolysis is based on 

real biological reactions and explains the behavior of an activating chemical in the presence of a 

substrate chemical [18]. The system of equations (10) can represent this reaction in the immature 

trabecular bone morphogenesis model. 𝜕𝑆𝑉𝐸𝐺𝐹𝜕𝑡 =  𝐶𝑜 (𝛿 − 𝜅𝑆𝑉𝐸𝐺𝐹 − 𝛾𝑜𝑆𝑉𝐸𝐺𝐹𝑆𝑀𝑀𝑃132 )+𝐷𝑉𝐸𝐺𝐹∇2𝑆𝑉𝐸𝐺𝐹 (10a) 𝜕𝑆𝑀𝑀𝑃13𝜕𝑡 =  𝐶𝑜(𝜅𝑆𝑉𝐸𝐺𝐹 − 𝑆𝑀𝑀𝑃13 + 𝛾𝑜𝑆𝑉𝐸𝐺𝐹𝑆𝑀𝑀𝑃132 ) + 𝐷𝑀𝑀𝑃13∇2𝑆𝑀𝑀𝑃13 (10b) 𝜕𝑐𝐵𝑜𝑛𝑒𝜕𝑡 =  𝜂 𝑆𝑉𝐸𝐺𝐹𝑛𝑆𝑉𝐸𝐺𝐹𝑛 + 𝑆𝑢𝑚𝑏𝑟𝑎𝑙𝑛  𝑇𝑎𝑟𝑇𝑎𝑟 + 𝑡𝑟 (10c) 

Where 𝐶𝑜 is the concentration of hypertrophic chondrocytes, 𝑆𝑉𝐸𝐺𝐹 and 𝑆𝑀𝑀𝑃13 represent the 

concentrations of the molecular factors VEGF and MMP13, respectively. 𝛿 quantifies the initial 

amount of VEGF due to hypertrophic chondrocytes. 𝜅 in equation 10a is a constant that quantifies 

the consumption of VEGF, and in equation 10b, it quantifies the production of MMP13. 𝛾0 regulates 

the nonlinear interaction between the MMP13-VEGF concentration, quantifying the concentration 

or inhibition of each molecular factor. 𝐷𝑉𝐸𝐺𝐹 and 𝐷𝑀𝑀𝑃13 are the diffusion coefficients of VEGF and 

MMP13, respectively. In the biological interpretation of the equations mentioned above, the term 𝛾0𝑆𝑉𝐸𝐺𝐹𝑆𝑀𝑀𝑃132  represents the nonlinear activation of 𝑆𝑀𝑀𝑃13 (VEGF production due to the 

presence of MMP13) and the nonlinear consumption of 𝑆𝑉𝐸𝐺𝐹 (due to the presence of MMP13). 

Equation (10c) represents the activation of the bone production rate due to high VEGF levels, which 

are regulated over time. In this equation, 𝑐𝐵𝑜𝑛𝑒 indicates the bone production per unit volume due 

to the concentration and distribution of VEGF within the domain. 𝜂 is a constant that regulates bone 

production over time, 𝑆𝑢𝑚𝑏𝑟𝑎𝑙𝑛  represents the value of the VEGF concentration at which the 



ossification process begins. 𝑇𝑎 is the time required for cartilage calcification and 𝑡𝑟  is the time 

limiting bone production. 

The equations (10) were implemented and numerically solved using the finite element method with 

a Newton-Raphson scheme, as shown in equation 11. 

 

[  
   
𝜕𝑟𝑆𝑉𝐸𝐺𝐹𝑒𝜕𝑆̃𝑉𝐸𝐺𝐹𝑒 𝜕𝑟𝑆𝑉𝐸𝐺𝐹𝑒𝜕𝑆̃𝑀𝑀𝑃13𝑒𝜕𝑟𝑆𝑀𝑀𝑃13𝑒𝜕𝑆̃𝑉𝐸𝐺𝐹𝑒 𝜕𝑟𝑆𝑀𝑀𝑃13𝑒𝜕𝑆̃𝑀𝑀𝑃13𝑒 ]  

   [ 𝛥𝑆𝑉𝐸𝐺𝐹𝑒⬚𝛥𝑆𝑀𝑀𝑃13𝑒 ] = − [ 𝑟𝑉𝐸𝐺𝐹𝑒
𝑟𝑀𝑀𝑃13𝑒 ] (11) 

Where: 

𝜕𝑟𝑆𝑉𝐸𝐺𝐹𝑒𝜕𝑆̃𝑉𝐸𝐺𝐹𝑒 = 𝐶𝑜∆𝑡  ∫ 𝑵𝑉𝐸𝐺𝐹𝑇 𝑵𝑉𝐸𝐺𝐹  𝑑Ω +  α𝐶𝑜 [𝐷𝑉𝐸𝐺𝐹 ∫ ∇𝑵𝑉𝐸𝐺𝐹∇𝑵𝑉𝐸𝐺𝐹 + ∫ 𝐍𝑉𝐸𝐺𝐹𝑇 𝑵𝑉𝐸𝐺𝐹𝑘𝑑Ω +⬚Ω⬚Ω⬚Ω𝛾𝑜 ∫ 𝐍𝑉𝐸𝐺𝐹𝑇 𝑵𝑉𝐸𝐺𝐹(𝑵𝑀𝑀𝑃13 𝑆̃𝑀𝑀𝑃13𝑒 )2𝑑Ω ⬚Ω  ]𝑡+Δ𝑡
  𝜕𝑟𝑆𝑉𝐸𝐺𝐹𝑒𝜕𝑆̃𝑀𝑀𝑃13𝑒 =  2α𝐶𝑜𝛾𝑜 [∫ 𝐍𝑉𝐸𝐺𝐹𝑇 𝑵𝑉𝐸𝐺𝐹  𝑆̃𝑉𝐸𝐺𝐹𝑵𝑀𝑀𝑃13𝑵𝑀𝑀𝑃13 𝑆̃𝑀𝑀𝑃13𝑒  𝑑Ω⬚

Ω ]𝑡+Δ𝑡
 

𝜕𝑟𝑆𝑀𝑀𝑃13𝑒𝜕𝑆̃𝑉𝐸𝐺𝐹𝑒 =  α𝐶𝑜 [−𝑘 ∫ 𝐍𝑀𝑀𝑃13𝑇 𝑵𝑉𝐸𝐺𝐹  𝑑Ω⬚
Ω − 𝛾𝑜 ∫ 𝐍𝑀𝑀𝑃13𝑇 𝑵𝑉𝐸𝐺𝐹  (𝑵𝑀𝑀𝑃13 𝑆̃𝑀𝑀𝑃13𝑒 )2 𝑑Ω⬚

Ω ]𝑡+Δ𝑡
 

𝜕𝑟𝑆𝑀𝑀𝑃13𝑒𝜕𝑆̃𝑀𝑀𝑃13𝑒 = 𝐶𝑜∆𝑡  ∫ 𝑵𝑀𝑀𝑃13𝑇 𝑵𝑀𝑀𝑃13 𝑑Ω +  α𝐶𝑜 [𝐷𝑀𝑀𝑃13 ∫ ∇𝑵𝑀𝑀𝑃13∇𝑵𝑀𝑀𝑃13 +⬚Ω⬚Ω ∫ 𝐍𝑀𝑀𝑃13𝑇 𝑵𝑀𝑀𝑃13𝑑Ω − 2𝛾𝑜 ∫ 𝐍𝑀𝑀𝑃13𝑇 𝑵𝑉𝐸𝐺𝐹𝑵𝑀𝑀𝑃13𝑵𝑀𝑀𝑃13 𝑆̃𝑀𝑀𝑃13𝑒  𝑆̃𝑉𝐸𝐺𝐹𝑒 𝑑Ω ⬚Ω⬚Ω  ]𝑡+Δ𝑡    
𝑟𝑆𝑉𝐸𝐺𝐹𝑒   and 𝑟𝑆𝑀𝑀𝑃13𝑒   are the residual vectors for each equation, 𝑵𝑉𝐸𝐺𝐹  and 𝑵𝑀𝑀𝑃13 represent the shape 

function matrices, ∇𝑵 is the gradient vector of the shape functions. 𝑆̃𝑀𝑀𝑃13𝑒  and 𝑆̃𝑉𝐸𝐺𝐹𝑒  are the values 

of 𝑆𝑉𝐸𝐺𝐹 and 𝑆𝑀𝑀𝑃13 at the nodal points. The superscript 𝑒 indicates the finite element 

discretization of the variable. 

The solution of the system of equations was performed using an incremental, iterative scheme that 

computationally determines the evolution of both the concentration of the molecular factors (𝑆𝑉𝐸𝐺𝐹 , 𝑆𝑀𝑀𝑃13) and the production of primary spongy bone. 

2.2 Description of the Trabecular Bone Remodeling Model 

Once the reaction-diffusion system of equations representing the endochondral ossification process 

has been solved, a new process governed by the model proposed by Komarova et al. [5] is described. 

This process is represented by differential equations (1) and (2), which were solved using the fourth-

order Runge-Kutta method based on the Taylor series. The coupled system of equations was solved 

using the following approximation: 



𝑥1𝑖+1 = 𝑥1𝑖 + Δ𝑡6 (𝑘1 + 2𝑘2 + 2𝑘3 + 𝑘4) 

(12) 𝑥2𝑖+1 = 𝑥2𝑖 + Δ𝑡6 (𝜈1 + 2𝜈2 + 2𝜈3 + 𝜈4) 

Where Δ𝑡 refers to the size of the interval when time is discretized, and the variables 𝑘𝑖 and 𝜈𝑖 are 

the slope values of the lines used to approximate equations (12) simultaneously. These values are 

determined using the following expressions: 𝑘1 = 𝑓(𝑡𝑖 , 𝑥1𝑖 , 𝑥2𝑖)  

(13) 

𝜈1 = 𝑔(𝑡𝑖, 𝑥1𝑖 , 𝑥2𝑖)  𝑘2 = 𝑓 (𝑡𝑖 + Δ𝑡2 , 𝑥1𝑖 + Δ𝑡2 𝑘1, 𝑥2𝑖 + Δ𝑡2 𝑣1)  𝜈2 = 𝑔 (𝑡𝑖 + Δ𝑡2 , 𝑥1𝑖 + Δ𝑡2 𝑘1, 𝑥2𝑖 + Δ𝑡2 𝜈1)  𝑘3 = 𝑓 (𝑡𝑖 + Δ𝑡2 , 𝑥1𝑖 + Δ𝑡2 𝑘2, 𝑥22 + Δ𝑡2 𝜈2)  𝜈3 = 𝑔 (𝑡𝑖 + Δ𝑡2 , 𝑥1𝑖 + Δ𝑡2 𝑘2, 𝑥2𝑖 + Δ𝑡2 𝜈2)  𝑘4 = 𝑓(𝑡𝑖 + Δ𝑡, 𝑥1𝑖 + 𝑘3Δ𝑡, 𝑥2𝑖 + 𝜈3Δ𝑡)  𝜈4 = 𝑔(𝑡𝑖 + Δ𝑡, 𝑥1𝑖 + 𝑘3Δ𝑡, 𝑥2𝑖 + 𝜈3)  

 

For trabecular remodeling, according to the approximation equations, the population of osteoclasts (𝑥1) and osteoblasts (𝑥2) along with the percentage of mass are determined at each time step Δ𝑡. 

Cellular dynamics variation in the basic multicellular unit (BMU) was implemented randomly and 

simultaneously on the trabecular surface and in areas representing the occurrence of microdamage 

or changes in bone density to simulate the homeostatic remodeling process. This activation or 

deactivation of bone tissue removal and deposition processes is based on changes in the cell 

population at each Δt, following the model proposed by Komarova. 

 

3.0 RESULTS AND DISCUSSION 

3.1 Endochondral Ossification Model 

One of the most studied problems in developmental biology is the formation of spatial patterns 

during embryonic development. Various theories have been proposed to explain this phenomenon, 

with the most extensively studied being Turing’s reaction-diffusion theory [16]. This theory suggests 

that a chemical pre-pattern is initially established through a reaction-diffusion system of chemical 

substances, and cells respond to this pre-pattern by differentiating or expressing cell behaviors that 

give rise to biological structures. In this context, the Turing theory helps explain how patterns and 

spatial structures arise in various biological phenomena, such as segment formation in embryos, the 

appearance of spots and stripes on animal skin, the distribution of structures like teeth, the 

appearance and location of secondary ossification centers [36], the formation of fingerprints [37], 



endochondral and intramembranous ossification [17], [38], [39], and the formation of the cerebral 

cortex during fetal development [40]. In this work, this theory was used to reproduce the 

architecture of immature trabecular bone based on the spatial organization of molecular factors 

involved in the ossification and degradation of the cartilaginous matrix through their chemical 

reaction and diffusion. The generated patterns resemble those present in this tissue. 

The models presented and developed here are useful for understanding and studying the biological 

processes of endochondral ossification and bone remodeling, their natural course, disorders, and 

pathologies affecting the complex interaction among different cell groups involved in endochondral 

ossification and bone remodeling.  

The presented model predicts the formation of primary trabecular bone through the kinetic reaction 

between the molecular factors VEGF and MMP13. This reaction exhibits the formation of 

spatiotemporal patterns that distribute within the cartilage model, leading to its degradation and 

ossification through the action and interaction of the molecular factors, as observed in Figures 3 and 

6. 

Initially, the growth plate is assumed to be a structural matrix with an initial concentration of 

hypertrophic chondrocytes (65,000 cells/mm3). The initial concentrations of VEGF and MMP13 are 

randomly distributed within the growth plate, with a perturbation of 10% around the steady-state 

concentration given by (𝑆𝑉𝐸𝐺𝐹 , 𝑆𝑀𝑀𝑃13) = (0,3544, 2,8)[𝑛𝑔/𝑚𝑙] [14]. The selection of random 

initial conditions around the steady state is similar to the event of molecular expression by 

hypertrophic chondrocytes in an area where the mineralization process of the cartilaginous matrix 

will occur. The flow condition for each molecular factor at the boundary is assumed to be zero due 

to the self-organization of patterns within a specific domain, which is the most important aspect of 

the proposed system. The last implies that no disturbances should be caused by external flows 

directed toward the domain under study. The parameters used for the reaction-diffusion system are 

presented in Table 1. 

Parameter Magnitude Units 𝑆𝑉𝐸𝐺𝐹 1 𝑛𝑔 𝑚𝑙⁄  𝑆𝑀𝑀𝑃13 1 𝑛𝑔 𝑚𝑙⁄  𝐶𝑜 65(103) 𝑐𝑒𝑙𝑙𝑠 𝑚𝑚3⁄  𝐷𝑉𝐸𝐺𝐹 6,9(10−5) 𝑚𝑚2 𝑠⁄  𝐷𝑀𝑀𝑃13 5,9(10−4) 𝑚𝑚2 𝑠⁄  𝛿 2,8 𝑚𝑚3 𝑐𝑒𝑙𝑙𝑠 𝑑𝑎𝑦⁄  𝜅 0,06 𝑚𝑚3 𝑐𝑒𝑙𝑙𝑠 𝑑𝑎𝑦⁄  𝛾𝑜 1,327(1012) 𝑚𝑚9 𝑐𝑒𝑙𝑙𝑠 𝑑𝑎𝑦 𝑔2⁄  

Table 1. General parameters of the endochondral ossification model. 

 

The presented endochondral ossification model has been implemented two and three-

dimensionally. Each domain used in the solution represents a portion of bone tissue corresponding 

to a neonate mammalian at the initial month of age. In the two-dimensional case, a circular domain 

with a diameter of 8 mm was utilized, roughly corresponding to the radiographic diameter of the 

ossification core in the femoral epiphysis in neonates. For the analysis, the domain was divided into 



3084 quadrilateral elements with four nodes per element and 3136 nodes. The mesh convergence 

procedure demonstrated that this number of elements is appropriate for the simulation. 

Figure 3 presents the results of the 2D numerical simulation of the reaction-diffusion system 

described in equations (10), considering a time interval of 20 days. This representation shows the 

diffusion, reaction, and temporal distribution of the molecular factors VEGF (green and yellow areas) 

and MMP13 (dark blue areas). The distribution produces a macroscopic pattern similar to that found 

in the primary spongy bone of the ossification core resulting from the endochondral ossification 

process. 

 

Figure 3. Two-dimensional results of the numerical solution of the R-D system. Temporal evolution 

of the concentration of molecular factors VEGF (green and yellow areas) and MMP13 (dark blue 

areas) over a time interval of 1 to 20 days. 

 

Figure 4. Comparison of 2D dimensional results of the proposed R-D system, the grey areas 

represent primary trabecular bone formation, and the black areas represent hyaline cartilage 

degradation. a. Micro-computed tomography cross-section of postnatal mouse femur metaphysis 

[41]. b. Result obtained from the proposed R-D system using a circumference of 8 mm diameter. 

Figure 4 shows the similarities between the morphology of immature trabecular bone in the mouse 

femur and the spatio-temporal distribution of the R-D model using the molecular factors VEGF and 

MMP13. The morphology of primary mouse trabecular bone has a characteristic structure of two-

dimensional interconnections, with trabeculae arranged in a complex manner and adapted to 

biological and mechanical demands. In contrast, applying an R-D model with parameters in Turing 

space, in line with Turing’s theory of morphogenesis, reveals an emergent pattern of bone formation 

that proceeds autonomously and self-organizing. This theoretical model suggests that biochemical 

processes and signal diffusion play a crucial role in the generation of trabecular architecture. 



 

 

Figure 5. Comparison of the primary spongy bone structure. (a) micrograph of turkey bone marrow 

[42] (b) trabecular bone structure obtained using the R-D endochondral ossification model in a 0.46 

mm square side.  

The interaction between the molecular factors VEGF and MMP13 using the R-D model with reactive 

terms of glycolysis can be seen in Figure 5b, where the pattern formed from a homogeneous, 

uniform state faithfully reproduces the morphology of immature trabecular bone. This phenomenon 

is similar to vertebrate endochondral ossification, as shown in Figure 5a. It should be noted that 

Figure 5 highlights the process of primary spongy bone formation mediated by the presence of VEGF 

and the resorption of hyaline cartilage under the influence of MMP13. This interaction results in the 

configuration of the trabecular structure, which provides a fundamental scaffold for the process of 

bone remodeling and, therefore, the formation of mature bone. 

In the three-dimensional case, the endochondral ossification model was developed in a hexahedral 

domain with dimensions of 0.46 mm per side. This domain represents a portion of the growth plate 

in the femoral epiphysis of a gestating mammalian (first month of life) and was discretized into 

42875 hexahedral elements and 46456 nodes. For this case, the mesh convergence procedure 

demonstrated that this number of elements is appropriate for the simulation. 

Figure 6 shows the results of the numerical solution of the reaction-diffusion system presented in 

equations. The chemical interaction of the molecular factors VEGF and MMP13 and their temporal 

distribution generates patterns that spatially organize themselves, similar to the micro-architecture 

of the primary trabecular bone. 



 

Figure 6. Three-dimensional results of the numerical solution of the R-D system. Temporal evolution 

of the concentration of molecular factors VEGF (green and yellow areas) and MMP13 (dark blue 

areas) over a time interval of 1 to 20 days. 

Figure 7 shows the temporal cartilage degradation and mineralization process, leading to the 

ossification process. It can be observed that in areas where the concentration of MMP13 is high 

(blue zones), the cartilage degrades. In contrast, in areas where the concentration of VEGF is high 

(green zones), trabecular bone formation occurs, giving rise to the primary trabecular bone.  

 

Figure 7. Temporal degradation process of the cartilaginous matrix over a time interval of 1 to 20 

days due to the action of MMP13 concentration, resulting from the numerical solution of the R-D 

system. Dark blue zones represent high MMP13 concentrations, indicating cartilage degradation, 



whereas green and yellow zones represent high VEGF concentrations, indicating immature bone 

formation. 

Figure 8 compares the results obtained from the endochondral ossification model and a cubic 

portion of 5 mm side length of gestating pig bone. It can be observed that the patterns generated 

by the interaction of molecular factors VEGF and MMP13 through the R-D system faithfully 

reproduce the architecture of trabecular bone in a cubic space with a side length of 0.46 mm. In this 

model, the trabeculae exhibit a thickness of 0.13-0.15 mm, similar to what can be measured in the 

microtomography of pig bone. 

 

 

Figure 8. Validation of R-D Model with Computational Microtomography. Comparison of R-D 

model results with computational microtomography of a 5 mm side length portion of trabecular 

bone from a gestating pig. a. 3D visualization. Superimposition of R-D model result (dark zone) on 

computational microtomography of gestating pig trabecular bone (5 mm side length). b. 2D 

Frontal View. Comparison of R-D model result (highlighted zones) with microtomography image of 

gestating pig trabecular bone portion. 

Despite the simplifications used, the presented model of endochondral ossification, governed by 

the reaction-diffusion equations system with a glycolysis reactive term, accurately reproduces the 

architecture of immature trabecular bone, evidencing the interaction between molecular factors 

expressed by chondrocytes in the growth plate: matrix metalloproteinases MMP13 and vascular 

endothelial growth factor VEGF. In the regulatory model depicted in Figure 2, MMP13 is responsible 

for the growth plate’s degradation. It promotes the activation of VEGF, which accelerates 

vascularization and initiates mineralization and calcification of the cartilage. However, this process 

does not solely rely on these molecular factors. Systemic factors such as growth hormone (GH) and 

thyroid hormone, as well as locally secreted factors like Indian hedgehog (Ihh) and parathyroid 

hormone-related peptide (PTHrP), fibroblast growth factors, extracellular matrix components, and 

transcription factors that regulate the gene expression of chondrocytes, such as Runx2, Sox9, and 



MEF2C, are involved [1], [4], [28] – [30]. Therefore, the possibility of a new bioregulatory loop, 

including other molecular factors, cannot be ruled out to develop and control the degradation and 

ossification process. 

 

3.2 Bone Remodeling Model 

 

In endochondral ossification, immature trabecular or fibrous bone is formed as hyaline cartilage 

calcifies due to the invasion of blood vessels and osteoprogenitor cells. This bone tissue is 

characterized by its disorganized collagen fibers and bone cell arrangement. This primary bone 

provides a temporary and provisional structure that will be remodeled into lamellar bone, a bone 

tissue that becomes more organized as the endochondral ossification progresses. 

In this work, the remodeling process begins once the architecture of the primary trabecular bone is 

created through the RD equations system. It is considered a process that occurs spatially and 

temporally at discrete sites of the primary spongy bone, involving the resorption of mineralized 

tissue by osteoclastic cells, followed by the formation of new bone by osteoblasts, in a perfect 

biological balance, reproducing the homeostatic remodeling governed by equations (6a) and (6b), 

including a group of bone cells working within a BMU. The parameters used for the numerical 

solution of this system of equations are shown in Table 2. These parameters have proven to be 

suitable for giving rise to stable oscillations of the cell population and bone mass and determining 

the oscillation period for the constant rate of removal of osteoblasts and osteoclasts, as well as the 

net autocrine and paracrine regulation. 

Parameter Stable Oscillations 

X1 11  cells 
X2 212  cells 𝛼1 3 cells día-1 𝛼2 4 day-1 𝛽1 0.2 day-1 𝛽2 0.02 day-1 
k1 0.093% cell day-1 
k2 0.008% cell day-1 
g11 1.1  
g12 1.0  
g21 -0.5  
g22 0.0  

Table 2. Parameters used in the bone remodeling cycle. 

The architecture of the trabecular bone obtained through the endochondral ossification model was 

divided into cubic elements of 0.018 mm per side. Each element on the trabecular surface is 

considered a potential space where Howships’ lacunae can be produced during bone remodeling 

[46], [47]. This process was performed on the trabecular surface, simulating the occurrence of 

microdamage due to excessive forces or maintenance of the trabecula to preserve stable mass and 

adapt to mechanical stimuli. This process is illustrated in Figure 9. Initially, the highlighted areas on 



the trabecular surface (zones A, B, C, D, and E in Figure 9a) represent regions where the trabecula’s 
integrity is maintained, and subsequently, the Howships’ lacunas will be created by the osteoclast 
cells. In these areas, the BMU’s action increases the population of osteoclasts, leading to the 
degradation of the bone tissue due to the appearance of micro defects (Figure 9b). Subsequently, 

an increase in the population of osteoblastic cells initiates the mineralization process, restoring the 

tissue to maintain bone density on the trabecular surface. The behavior of the cell population within 

the BMU and the variation in bone density in the time can be observed in Figures 9c and 9d. 

 

 

Figure 9. Population dynamics of osteoblastic and osteoclastic cells and the corresponding bone 

mass variation during bone remodeling over a time interval of 0 to 300 days. a. Configuration of the 

trabecular bone portion on day 100 of the remodeling cycle with 100% bone mass. Possible areas 

where bone resorption occurs are highlighted with red circles. b. Configuration of the trabecular 

bone portion on day 260 of the remodeling cycle with 98% bone mass. Possible areas where bone 

deposition occurs are highlighted with red circles. c. i. Graphs of the variation in the behavior of the 

osteoclastic cell population (blue line) and the osteoblastic cell population (red line). On day 100, 

there are no osteoclastic cells (green point), and the osteoblast population consists of 225 cells 

(black point). ii. Graph of bone mass variation, where the blue point indicates that on day 100, the 

trabecular bone portion retains 100% of its bone mass. d. i. Graphs of the variation in the behavior 

of the osteoclastic cell population (blue line) and the osteoblastic cell population (red line). On day 

260, there are 12 osteoclastic cells (green point), and the osteoblast population consists of 375 cells 

(black point). ii. Graph of bone mass variation, where the blue point indicates that on day 260, the 

trabecular bone portion retains 98% of its bone mass. 

 



 

The complete cycle of bone resorption and deposition for homeostatic remodeling and the variation 

in bone mass are evidenced in Figures 10 and 11, respectively. The simulation of this process was 

conducted for 232 days, and the resorption results are shown for days 0, 4, 16, 40, 80, and 128, with 

a variation in mass from 100% on day 0 to 85.5% on day 128. 

The process of bone deposition, carried out by the action of osteoblasts, initiates on day 128 with a 

mass of 85.5%. The simulation results are presented for days 132, 140, 156, 188, and 232, again 

achieving 100% of bone mass. This homeostatic remodeling process occurs exclusively on the 

surface of trabeculae and asynchronously. Its execution depends on mechanical or maintenance 

demands to ensure the structural integrity of trabecular bone. 

 

 

Figure 10. Schematic representation of bone resorption process over a time interval of 0 to 128 days 

in a cubic bone portion of 0.46 mm per side. The cycle shows a mass reduction of 15.49%  

 



 

Figure 11. Schematic representation of bone formation process over a time interval of 128 to 232 

days in a cubic bone portion of 0.46 mm per side. The cycle shows a complete bone mass restoration 

for the homeostatic remodeling process. 

According to the above, the process of homeostatic remodeling in this work is governed by the 

model presented by Komarova et al. [35], in which bone remodeling maintains a perfect equilibrium 

over time within the BMU in its processes of resorption and deposition, in order to preserve bone 

mass through the control of population dynamics by regulating paracrine and endocrine factors 

released by osteoprogenitor cells. 

The results of homeostatic remodeling presented in Figures 10 and 11 demonstrate the response to 

variations in the percentage of bone mass in a small portion of trabecular bone in perfect synchrony. 

However, for maintenance and turnover to occur without compromising the mechanical demands 

of the bone structure, a phase shift in the remodeling process is required in other areas of the bone 

during the same time, as depicted in Figure 12. 

 



 

Figure 12. Bone remodeling process at two different points in a 5 mm side portion of the trabecular 

bone over 50 days. a. Bone resorption process involving cellular population dynamics and variations 

in bone mass. In this case, the BMU consists of approximately nine osteoclasts and 110 osteoblasts, 

with a bone mass rate of 91% for the trabecula. b. Bone deposition process involving cellular 

population dynamics and variations in bone mass. In this case, the BMU consists of approximately 

one osteoclast and 580 osteoblasts, with a bone mass rate of 96.6% for the trabecula. The green 

points indicate in the respective graphs the population within a BMU of osteoblasts, osteoclasts, 

and bone mass variation on day 50 for the trabeculae highlighted within the bone portion.  

Figure 12 illustrates the asynchronous process occurring at two different points in the trabecular 

bone portion during remodeling within a BMU. At each point, the variation in the population of 

osteoblastic and osteoclastic cells for bone renewal on the trabecular surface can be observed. 

According to Komarova’s model and the simulation conducted, at the point shown in Figure 12a and 
over 50 days, the cellular population in a BMU for osteoclasts increases to approximately nine cells. 

At the same time, osteoblasts are around 110 cells, resulting in a bone mass rate of 91%, indicating 

the resorption stage in the remodeling process. On the other hand, figure 12b shows an increase in 

bone mass, reaching 96.6% over the same 50 days, demonstrating a decrease in osteoclasts by 

approximately eight cells and an increase in the osteoblast population, reaching 580 cells in the 

BMU. The last indicates that the BMU is in the stage of bone tissue deposition. 

5.0 CONCLUSION 

The main objective of this article focused on bone modeling and remodeling processes. 

Implementing the proposed endochondral ossification model does not encompass all biological 

processes in bone development. Nevertheless, the central premise of this study is based on the 

bone formation cycle, guided by the interaction among molecular factors expressed by 



chondrocytes in the growth plate, such as MMP13 and VEGF. These elements diffuse in the hyaline 

cartilage, subsequently interacting to generate biological patterns that give rise to the structure of 

trabecular bone. This work represents this interaction through a reaction-diffusion system with 

parameters in the Turing space and a reactive term of glycolysis, accurately reproducing the 

morphology observed in immature trabecular bone. 

The presented model of endochondral ossification proposes a single dynamic process that plays a 

crucial role in both temporal and spatial self-organization of bone mineral metabolism. The 

convergence of temporal and spatial factors into a single dynamic process suggests an intrinsic 

interconnection, providing a more holistic perspective to comprehend the complexity of bone tissue 

formation. Therefore, the results reinforce the proposed model's validity and ability to effectively 

capture critical processes involved in forming trabecular bone. 

The remodeling stage aims to explain the population variation process of cells in the bone tissue 

within a BMU for bone mass turnover and trabeculae mineralization. This process happens spatially 

and temporally at discrete sites, involving the resorption of mineralized tissue by osteoclastic cells, 

followed by the formation of new bone by osteoblasts. This process operates in a perfect biological 

balance in mass and time, reproducing the homeostatic remodeling governed by the model 

presented in equations (6). 

This work presents an intrinsic connection between bone modeling and remodeling processes, 

which have typically been addressed separately. Firstly, it explores the development of an 

embryonic architecture influencing the structural adaptation of bone to mechanical demands. 

Secondly, it addresses the bone's mineral homeostatic function. This integrative approach reflects 

the essential link between the mineral stability of bone and its structural evolution, marking a 

significant advance in understanding these processes. 

On the other hand, the results presented here open the door to more detailed investigations 

exploring the interplay between molecular factors in endochondral ossification and variations in 

population dynamics, considering the activation of paracrine and endocrine factors in bone 

remodeling. The above contributes to a deeper understanding of bone physiology and its long-term 

implications for bone health. However, although the processes presented here are framed within 

embryonic development and do not consider the effect of mechanical loads, their importance in 

bone maintenance and modeling is not disregarded. They should be considered as the primary input 

for understanding remodeling processes in mature stages of trabecular bone and, in this way, 

delving into the maintenance of bone structure and the emergence of pathologies resulting from 

imbalances in the production of molecular factors and variations in the population of bone cells in 

a BMU. 
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