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ABSTRACT

This Primer provides an overview of a comprehensive set of analysis methods for studying waves, vibrations, and

related oscillatory phenomena – including instabilities, turbulence, and shocks – across diverse scientific fields.

From astrophysical domains to complex systems in terrestrial environments, such phenomena are ubiquitous.

Understanding their nature requires careful selection of techniques, as the misapplication of analysis tools can

introduce misleading results. We first review the fundamental principles of various wave analysis methods, along

with adaptations to address complexities like non-linear, non-stationary, and transient signal behaviour. To offer

unique insights and guide informed choices, we apply these techniques to identical synthetic datasets, providing

a quantitative comparison of their strengths and limitations. These experiments facilitate the selection of the

most appropriate analysis tools based on specific data characteristics and scientific goals, promoting reliable

interpretations and ensuring reproducibility. This Primer highlights best ethical practices for data deposition and

the importance of open-code sharing. Finally, we explore the broad applications of these techniques in various

research fields, address current challenges in wave analysis, offer an outlook on future directions, and emphasise

the potential for transformative discoveries through the optimisation and development of cutting-edge analysis

methods.
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1 Introduction

The study of waves and oscillations is essential for understanding the dynamic universe, from the smallest scales
to the most immense1–3. Such examples include a simple harmonic wave-form generated in a laboratory plasma4,
sound waves5, oscillations of a guitar string6, ocean waves7, cosmic gravitational waves in the galactic medium8,
and those excited by a multitude of restoring forces (e.g., pressure, gravity, and magnetic fields) propagating through
complex plasma environments (such as magnetohydrodynamic waves observed in the extreme conditions of the
Sun’s atmosphere)9–11, to name but a few. Oscillatory phenomena go beyond periodic waves. They encompass
shocks, instabilities, turbulence, and more. These events shape environments across the cosmos, from the churning
plasma of stars to the vast interstellar medium, exhibiting a wide array of behaviours. Figure 1 outlines the typical
steps involved in wave analyses, beginning with data collection and culminating in scientific interpretation.
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Fig. 1 | Unveiling wave phenomena: a visual guide to wave analysis. This schematic diagram illustrates the key

steps in wave analysis, showcasing the journey from raw data to scientific insight. A detector captures a wave

signal, transforming it into an observable time series. This signal is then decomposed through wave analysis

techniques (e.g., Fourier transform) to reveal its constituent frequency components and identify various features, as

represented by a 3D cube. The power spectrum displays the relative power of each component as distinct peaks.

Ultimately, this analysis, which relies on careful method selection tailored to the data and research goals, enables

us to detect trends, identify frequencies, characterise waves, measure properties, generate comprehensive

scientific insights, and give rise to new hypotheses.

The research topic of seismology12, 13 is founded in the scientific study of the generation and propagation of elastic
waves through the Earth, with an emphasis on determining their crucial role in identifying earthquake sources14 and
linking these to the subsequent atmospheric response15. Hence, in this field, seismology enables the type of elastic
wave mode to be identified (e.g., body and surface modes of oscillation that propagate through the interior and along
the surface, respectively, of the Earth) through a quantitative understanding of the embedded wave amplitudes16,
phase lags17, and propagation speeds18. Other research fields have adopted the term ‘seismology’ as a way of
highlighting the use of wave and/or oscillatory phenomena to uncover information about the background environment
that would otherwise be impossible to measure directly. Such examples include magneto-seismology19–22, where
waves linked to astrophysical oscillations enable indirect diagnostics of plasma parameters to be inferred, and
fibre-optic seismology23, 24, where phase changes in optical light enable fine-scale studies of challenging areas to
be made over multi-km distances. Therefore, analysing oscillatory processes not only reveals their underlying
properties (such as the amount of energy they carry) but also provides important information about the medium in
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which they propagate25.
Propagating waves, of various kinds, can also interact with each other, and may change their nature or characteristics
while travelling through different media26, 27. As such, the applications of traditional analysis techniques, like the
Fourier transform28, are not always alone capable of uncovering all information contained, particularly in complex
systems where superposition of several wave modes may coexist within the same structure29, 30. In addition to such
complexities and non-harmonic behaviour, oscillations observed in the real world often pose limitations for which
most theoretical analysis methods, designed for simpler scenarios, are not directly applicable. Examples of such
imperfections are large noise levels, finite (sometimes too small) durations of oscillatory signals, low temporal
and/or spatial resolutions, embedded non-linear and non-stationary trends, transient oscillations, weak signals,
quasi-periodic signatures, or missing data points resulting in the recorded time series being unevenly sampled31–34.
In order to overcome such challenges, extensive developments have taken place in advancing the wave analysis
techniques over the past two decades35–41. These advances include techniques specifically designed to handle noisy
data, non-linear patterns, complicated wave interactions, and the types of shocks, instabilities, and turbulence found
in various environments42. However, the huge range of available methods and codes, often designed for specific
purposes (e.g., linked to specifics of the datasets employed and/or science cases), can sometimes be inappropriately
applied within the science communities43. This also includes coding issues in some of the well-used and publicly
available packages44. As a result, some of the scientific studies are difficult or impossible to reproduce45, 46.
The sheer variety of wave analysis tools underscores the importance of careful technique selection. The best method
for a given task depends on the nature of the oscillatory signal, the characteristics of the environment, and the specific
scientific question being asked47. For example, analysing the complex three-dimensional wave interactions within a
turbulent plasma requires different approaches than identifying a faint, periodic signal in noisy one-dimensional time
series. Alternatively, using a tool designed for simple harmonic waves on a dataset containing shocks or instabilities
can lead to misleading or incorrect conclusions. Hence, choosing the right technique is crucial not only for accuracy,
but also for the physical interpretation of results48–50. This Primer aims to guide researchers in selecting appropriate
analysis methods from among those commonly used, empowering them to gain reliable insights into the complex
world of waves and oscillations. To address these issues, a number of mainstream wave analysis tools are detailed
and summarised in this Primer, where their applications to identical synthetic datasets are also demonstrated and
compared. Importantly, the computer codes we employ are extensively tested and cross-checked between different
packages and programming languages to ensure consistency for future users.
This Primer offers, in Experimentation (Section 2), a holistic perspective of the wave analysis field by reviewing a
wide range of key methods in analysing oscillatory signals (of different nature and properties) as well as highlighting a
number of advanced techniques that support identification of, and disentangling, various wave types/modes. Specific
outcomes for these advanced analysis approaches, applied on examples of synthetic datasets with known parameters,
as well as their interpretations and comparisons are provided in Results (Section 3). The advances in the wave
analysis tools reviewed here provide a wide range of science communities and research areas with a diverse set of
methods to tackle various challenges in different oscillatory environments (see Applications; Section 4). To facilitate
Reproducibility and set field standards in Data Deposition (Section 5), we further describe an ever-expanding
publicly-available and open-source repository – WaLSAtools – that we introduce in this Primer. Furthermore, in
Limitations and Optimisations (Section 6), we discuss the importance of selecting the right tools for various scientific
cases and how different choices can impact results. Finally, we address, in Outlook (Section 7), some of the future
directions in improving the methods making them suitable for outstanding challenges in wave studies across a wide
range of research areas.

2 Experimentation

This section introduces essential techniques for analysing oscillatory signals across various scientific disciplines,
which builds upon previous historical publications that documented pioneering digital signal processing tech-
niques51–63. The analysis tools are divided into two categories: (a) those focusing on the characteristics of oscillations
within single time series (Sections 2.2 and 2.3), and (b) those examining correlations between oscillations in two
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(or more) distinct time series (Section 2.4). We cover methods applicable to one-dimensional (1D) time series,
for example representing fluctuations in a measured quantity as a function of time, and three-dimensional (3D)
spatio-temporal datacubes, which capture the evolution of oscillations across both space and time. A research
methodology flowchart linked to the analysis of wave activity in a variety of data sequences is schematically outlined
in Supplementary Figure S1.
It is worth noting that time series analysis often benefits from additional complementary approaches64. Whether
empirical, analytical, or statistical, these techniques, designed for tasks such as noise reduction, pattern identification,
or trend analysis, help uncover important information within complex signals, potentially affected by noise65. For
instance, scaling properties of fluctuations or irregularities within a signal or turbulence can be characterised by
Structure Function Analysis66–68, a method that examines how differences in signal values change with increasing
time lags. Furthermore, all real-world oscillatory signals must be pre-processed before applying wave analysis
techniques (see Box 1).

Box 1 | Preprocessing of oscillatory signals

Real-world signals often exhibit characteristics that require preprocessing to mitigate unwanted effects prior to

the application of spectral analysis.

• Detrending: removing long-term trends to isolate the oscillatory component69. Common techniques include

subtracting a fitted polynomial, applying a high-pass filter, or calculating a moving average and subtracting it

from the signal70,71. The choice of detrending method depends on the nature of the underlying trend72.

Incorrect detrending can affect the results73.

• Apodization: Finite-length time series introduces an abrupt start and end, resulting in artificial frequencies,

whose effects can be mitigated by apodization, i.e., apply a windowing function that smoothly tapers the

signal to zero at its edges64. Common choices include the Hann (Hanning)74, Hamming75, and Tukey76

windows. While apodization reduces spectral leakage, it also slightly broadens frequency peaks, decreasing

resolution77. Hence, the choice of the windowing function involves a trade-off between spectral leakage

reduction and frequency resolution.

Additional preprocessing:

• Zero padding: adding zeros to the beginning and end of a signal to increase its length, sometimes done to

improve the visual clarity of spectral peaks in certain analysis techniques78. Zero padding interpolates

between the existing frequency points in a spectral analysis. This makes the spectrum look smoother and

can make peaks appear sharper, although without improving the true frequency resolution79,80.

• Interpolation: replacing an irregularly sampled time series with regularly sampled one, if the method is

designed for evenly sampled data81–83.

• Normalisation: ensuring datasets have comparable amplitudes for cross-correlation studies84. Alternatively,

coherence examination methods (see Section 2.4.2) are able to identify correlations with incomparable

amplitudes.

• Filtering: isolating specific frequency intervals before analysis85, which may involve the use of, e.g.,

low-pass, high-pass and/or band-pass filters. This step is primarily tied to the science case of interest, where

a priori knowledge may enable the investigative team to pre-select frequency windows of interest using a

combination of optical hardware and/or computational software86–90.

2.1 Worked examples

To rigorously test and compare wave analysis techniques, we employ synthetic datasets containing a variety of
oscillatory signals with known parameters. These datasets, shown in Figure 2, provide a controlled environment
where we can assess how well each method identifies different oscillations (or wave modes), handles non-linearities,
and responds to varying noise levels. By comparing analysis results against this ‘ground truth’, we gain clear
insights into the strengths, limitations, and appropriate use cases for each method. This is essential for the reliable
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interpretation of complex oscillations in real-world scientific data. The results of the analyses and comparisons are
presented in Section 3.
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Fig. 2 | Synthetic datasets. Left: synthetic 1D time series with various oscillatory components (see main text for

details). Right: First six frames of the synthetic spatio-temporal datacube illustrating the temporal evolution of the

concentric wave patterns. A movie of the time series is shown in Supplementary Video 1.

2.1.1 Synthetic 1D time series

This dataset is constructed by combining five sinusoidal waves with distinct frequencies (5, 12, 15, 18, and 25 Hz) and
amplitudes (1.0, 0.5, 0.8, 0.3, and 0.2), respectively (see Supplementary Table S1). To introduce realistic variability,
we modulate the amplitudes of these individual waves with an envelope function. We then superimpose features
common in real-world data: a short-lived transient oscillation (for a duration of 2 sec), a weak high-frequency signal
(33 Hz; 0.1 amplitude), and a quasi-periodic signature with a slightly varying frequency (modulation frequency
of 0.2 Hz). Non-linearity is introduced through a mathematical transformation that distorts the waveform (with a
non-linear factor equal to 0.1). Finally, we add random noise (with an amplitude of 0.2, corresponding to 20% of the
strongest oscillatory amplitude, while being twice the amplitude of the weak high-frequency signal) to simulate
measurement imperfections. The sampling rate is 100 Hz, and the signal duration is 10 sec.
In addition to this synthetic time series, and to test cross-correlation methods, we generate another nearly identical
signal, but with adjusted phases for the main wave, quasi-periodic signature, and weak signal components. This
simulates observing the signal at a later time or different location. The specific phase shifts, listed in Supplementary
Table S1, represent propagating waves in both directions.

2.1.2 Synthetic spatio-temporal datacube

This datacube comprises 200 frames, each with a resolution of 130×130 pixels2, representing a time span of 99.5
sec with a cadence of 0.5 sec between frames. The core structure consists of 50 concentric circular regions, each
containing ten sinusoidal waves with distinct frequencies, amplitudes, and phases, dynamically selected based on the
region’s index (see Supplementary Table S2). We further enhance complexity by superimposing a transient cubic
polynomial signal (coefficients [0.01, -0.02, 0.03]), a simulated transverse motion with varying amplitudes in x and
y directions, a fluting-like instability (wavenumber 3), a quasi-periodic signal, and added noise.

2.2 Methods for wave studies of single 1D time series

This section presents a range of techniques for spectral analysis within single 1D time series. While all these methods
aim to reveal the underlying frequency content of a signal, they employ diverse strategies for decomposition. This
diversity is crucial, providing the flexibility to address different data characteristics and scientific questions. Careful
consideration of these factors guides the selection of the most appropriate technique for a given investigation.
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2.2.1 Fast Fourier Transform

The Fast Fourier Transform91–95 (FFT) is a cornerstone of spectral analysis. As a computationally efficient
implementation of the Discrete Fourier Transform (DFT)96, 97, it decomposes a signal into a superposition of
sinusoidal and/or cosinusoidal functions with distinct frequencies, amplitudes, and phases. The core equation
underlying FFT calculations is the Discrete Fourier Transform:

X( f ) =
N−1

∑
n=0

x(n)e−i2π f n/N ,

where x(n) is the discrete input signal (time series), X( f ) is the complex-valued Fourier spectrum, N is the number
of samples in the signal, and f represents the frequency index. FFT reveals the frequency content of the signal,
where each value X( f ) represents the amplitude and phase of the corresponding frequency component. The squared
magnitude of X( f ) yields the power spectrum, which, when normalised by the frequency resolution, is known as the
power spectral density (PSD; see Box 2 for further details).
FFT excels in analysing evenly sampled, infinite, and stationary signals, and its clear interpretation makes it a
frequent starting point for investigations. However, prerequisites like an even sampling, infinite duration, and
stationarity should be considered before application.

Box 2 | Power spectra and power spectral density

Wave analysis methods often begin by computing the complex-valued frequency representation of a signal,

denoted as X( f ), where f represents frequency. This representation encompasses both the amplitude and

phase information of the signal at each frequency.

The power spectrum provides a broad overview of how power is distributed across frequencies within a signal.

It is obtained by squaring the magnitude of the complex frequency representation, |X( f )|2, which represents the

power at each frequency f . The magnitude |X( f )| corresponds to the amplitude of the signal at that frequency.

The power spectral density (PSD) refines this concept by normalising the power spectrum by the frequency

resolution of the analysis, ∆ f , typically defined as the inverse of the signal duration. The PSD is calculated as:

PSD =
|X( f )|2

∆ f
,

However, in wavelet analysis (Section 2.2.3), the frequency resolution varies across frequencies, depending on

the scale of the wavelet. Hence, to facilitate comparisons across different frequencies and with other

techniques like FFT, the wavelet power spectrum may be interpolated onto a uniform frequency array using

methods such as cubic spline interpolation, before calculating the PSD.

Normalising by frequency resolution ensures that PSDs from signals with different sampling rates or durations

can be directly compared, facilitating meaningful assessments of power distribution. The PSD often has a

direct physical interpretation related to the energy or variance of the signal at different frequencies. For

real-valued signals, PSDs are typically presented in a single-sided format, folding power from negative

frequencies into the positive domain.

2.2.2 Lomb-Scargle technique

Lomb–Scargle98, 99 is a statistical approach for irregularly sampled time series, a common occurrence in many
scientific fields. At its core, the Lomb-Scargle method involves fitting sinusoids of different frequencies to the
irregularly sampled data and determining the power associated with each tested frequency. The fitting process
employs a least-squares approach to find the best-fit parameters for each frequency. The normalised Lomb-Scargle
periodogram, often used to represent the spectral power, is given by:

PN(ω) =
1

2σ2

{

[∑ j(x j − x̄)cosω(t j − τ)]2

∑ j cos2 ω(t j − τ)
+

[∑ j(x j − x̄)sinω(t j − τ)]2

∑ j sin2 ω(t j − τ)

}

,
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where x j is the data value at time t j, x̄ and σ2 are, respectively, the mean and variance of the data, ω is the angular
frequency being tested, τ is an offset that makes the periodogram independent of shifting the time origin. The
Lomb-Scargle method effectively handles gaps and missing data points, making it the preferred choice when the data
points are unequally spaced100–102. It can be generalised103 and extended to incorporate high-order Fourier models,
non-stationary signals, and a Bayesian approach104–106. However, it can be computationally expensive for large
datasets, and alternative implementations or optimisations might be necessary. While interpolation techniques can
be used to fill gaps for other methods like FFT, choosing the right interpolation method is not always straightforward
and likely introduces artefacts107.

2.2.3 Wavelet analysis

Wavelet analysis108–112 localises spectral power in both time and frequency domains simultaneously, offering unique
insights into the temporal evolution of oscillatory patterns. In principle, it reveals the frequency components just like
FFT, but it also uncovers any variation of frequencies in the temporal domain113. The foundation of wavelet analysis
is the Continuous Wavelet Transform (CWT)114. It involves convolving the signal with a ‘mother wavelet’ function,
whose adjustable width and amplitude capture high/low frequencies and short/long durations simultaneously:

W (a,b) =
1

√

|a|

∫ ∞

−∞
x(t)ψ∗

(

t −b

a

)

dt ,

where x(t) is the input signal, ψ∗ is the complex conjugate of the mother wavelet function, a is the scaling factor
(controls wavelet width), and b is the translation factor (shifts the wavelet in time). The coefficients W (a,b) represent
the similarity between the signal and the scaled/translated wavelet at each point in time-frequency space. High
values indicate a strong correlation between the signal and the wavelet at that specific time and frequency.
The choice of the mother wavelet function is important for optimal results120 and it should be chosen based on how
its characteristics match to the expected oscillatory patterns in the data, and whether time or frequency localisation,
or both, are important based on the scientific goals. The ‘Morlet’ wavelet is often used as a default choice due
to its balanced time-frequency localisation. However, as demonstrated in our analysis (Section 3.1), the Morlet
wavelet may not be sensitive enough to detect certain wave signatures, such as weak or high-frequency oscillations.
Therefore, it is important to consider alternative wavelets which might be better suited for specific cases. Table 1 lists
the most common wavelet functions suitable for analysing waves, oscillations, and phenomena such as instabilities
and turbulence. The shapes and overall characteristics of these wavelet functions are also given.
The time-frequency plot also enables one to identify parts of the signal that are subject to the edge effect (that is
introduced due to the convolution of the wavelet function close to the edges of the finite time series). Such regions
are marked with the so-called Cone of Influence (CoI), identifying unreliable areas of the 2D power spectrum.
The wavelet transform is particularly suitable for studying transient oscillations, weak signals, or quasi-periodic
signatures. In addition to the 2D time-frequency spectrum, a 1D spectrum (known as the “global” wavelet spectrum;
GWS) can be computed by averaging the power along the entire time domain. However, this traditional approach
includes power subject to edge effects, potentially causing misinterpretations.
To address these limitations, we introduce the refined global wavelet spectrum (RGWS), a modification of the
traditional GWS. This refinement involves integrating the wavelet power over time, while excluding contributions
from the CoI and areas below a given confidence level (e.g., 95%). This ensures that the resulting spectrum focuses
on reliable, significant power variations in the signal, encompassing both periodic oscillations and non-oscillatory
fluctuations such as those found in turbulence. Thus, RGWS offers a power-weighted frequency distribution of the
oscillatory signal, enhancing the identification of significant features. For more details on determining confidence
levels, see Supplementary Section S3.
While both GWS and RGWS act as counterparts to the classic Fourier power spectrum, they offer advantages when
dealing with time series that exhibit non-stationary behaviour. However, the time averaging or integration processes
inherent to their calculation results in smoother spectra compared to the FFT, which in turn may be beneficial in
reducing noise and highlighting broader trends. One should also be aware of the frequency resolution limitations
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Table 1 | Wavelet mother functions

Wavelet

Function

Visual

Representation

Characteristics Typical Applications

Morlet115 Complex-valued, modulated
Gaussian; Balanced time-frequency
localisation, but poor spatial
localisation

Well-suited for analysing wave-like
signals and transient oscillations

Mexican Hat116

(DOG m=2)
Second derivative of a Gaussian;
High time resolution

Useful for detecting transient events,
turbulence, and instabilities

Paul117 Derivative of a Gaussian; Higher
orders provide better frequency
localisation

Suitable for analysing brief events or
oscillations with distinct frequencies

Daubechies118

(Db5)
Real-valued, moderate smoothness &
support size; Db5 is one example of
Daubechies wavelet family

Useful for analysing oscillations with
some degree of regularity; can
analyse signals at different scales
(multi-resolution)

Haar119 (Db1) Simplest wavelet, discontinuous Excellent for detecting sudden
changes or discontinuities, such as
shocks

intrinsic to wavelet analysis. At smaller wavelet scales (higher frequencies), broad frequency smoothing can mask
spectral peaks, while at larger scales, those peaks might appear sharper with artificially increased amplitudes121.

2.2.4 Empirical Mode Decomposition

Empirical Mode Decomposition (EMD)122, 123 is a data-driven technique for decomposing a complex signal into
its constituent oscillatory components, known as Intrinsic Mode Functions (IMFs). Unlike Fourier-based methods
that assume predefined basis functions (sines and cosines), EMD adaptively extracts IMFs based on the local
characteristics of the signal itself. This data-driven and adaptive nature makes EMD particularly well-suited for
analysing non-linear and non-stationary signals, which are common in many natural phenomena. The EMD process
involves identifying local maxima and minima within the signal and then constructing upper and lower envelopes
by connecting the extrema with cubic splines. The mean of these envelopes is subtracted from the original signal
resulting in the first IMF. This sifting process is repeated on the residual signal to extract subsequent IMFs, and
the process is iterated until a stopping criterion is met. Each IMF represents a distinct oscillatory mode within the
original signal, and analysing these IMFs reveals the time-varying amplitudes and frequencies, extracted directly
from the data.
However, a major limitation of EMD is its sensitivity to noise, which can lead to mode mixing, where a single IMF
contains components from different oscillatory modes. To overcome this, Ensemble Empirical Mode Decomposition
(EEMD) was introduced124. EEMD enhances the robustness of EMD by adding noise to the signal and performing
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multiple EMDs. Averaging the resulting IMFs reduces the impact of noise and improves the separation of modes,
especially for real-world noisy signals.
The success of EMD and EEMD relies on proper selection of stopping criteria and spline fitting parameters, as
these choices can affect the quality of the decomposition and the information contained in each component of the
decomposition itself. For example, different stopping criteria can result in varying numbers of IMFs, potentially
under- or over-representing the true oscillatory modes present in the signal. Additionally, the choice of spline type
and smoothing parameters can influence the shapes and frequencies of the extracted IMFs. Therefore, it is essential
to carefully evaluate the appropriateness of these parameters based on the specific characteristics of the data and the
research questions. In addition, it is worth noting that the IMFs are only locally orthogonal, meaning that in contrast
to, e.g. FFT, each IMF may represent more than one single frequency present in the original signal at the same
time. To ensure the reliability of EMD and EEMD results, significance testing plays a crucial role125. By assessing
the statistical significance of each extracted IMF, researchers can distinguish genuine oscillatory components from
noise-induced artefacts. This ensures that subsequent analysis focuses on meaningful oscillations, leading to more
accurate interpretations and robust scientific conclusions.

2.2.5 Hilbert-Huang Transform

Hilbert-Huang Transform (HHT32, 126, 127) is an empirical approach designed to handle non-linear and non-stationary
signals. It operates in two primary stages: first, the signal is decomposed into IMFs using either EMD or EEMD.
Next, Hilbert Transform is applied to IMFs to calculate instantaneous frequencies and amplitudes. The Hilbert
Transform (H[x(t)]) of a signal x(t) is given by:

H[x(t)] =
1
π

P

∫ ∞

−∞

x(τ)

t − τ
dτ ,

where τ is an integration variable representing time, t is the specific time point where the Hilbert Transform is
being evaluated. P denotes the Cauchy Principal Value which ensures the integral converges even when there is
a singularity at t = τ (i.e., if the signal has sudden spikes or discontinuities). Instantaneous frequencies provide
insights into how the dominant frequencies of oscillations evolve over time, however, it is important to be aware of
potential uncertainties associated with them at particular times. The integration of the 2D Hilbert spectrum across
time, known as the ‘marginal’ spectrum, can be useful for visualising the overall frequency distribution, especially
for identifying low-amplitude, high-frequency oscillations. Finally, the success of HHT depends on careful selection
of parameters for the EMD (or EEMD) decomposition.

2.2.6 Welch method

The Welch method128 is a refined approach for calculating power spectra, or PSD (see Box 2), designed to reduce
noise, especially in datasets where noise reduction takes priority over fine frequency resolution. It operates by
splitting a signal into overlapping segments, detrending and apodizing each segment, and computing their individual
frequency spectra (often using FFT). The resulting spectra are then averaged, resulting in a smoother final spectrum
with reduced noise (see Supplementary Section S4 for details on various noise models).
The Welch method is a specialised implementation of the Short-Time Fourier Transform (STFT)129. The key
idea of STFT is to divide the signal into shorter segments and calculate the Fourier Transform of each. Applying
a windowing function (e.g., Hann, Gaussian) to each segment before the transformation helps minimise spectral
leakage130. This process generates a series of spectra representing the frequency content of the signal over time. STFT
provides a visual and analytical framework for understanding signals with time-evolving frequency characteristics
and is the foundation for various other time-frequency analysis techniques.

2.2.7 Specialised time-frequency methods

While FFT, Lomb-Scargle, and Welch (or STFT) are fundamental tools for analysing the frequency content of signals,
wavelet transforms, along with EMD and HHT, offer a powerful way to study signals with time-varying frequency
content. However, these fundamental methods can be further extended and refined to address specific challenges, or
uncover additional insights, within complex datasets, particularly when dealing with, for instance, non-stationary or
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noisy data in some specialised areas. This section explores a selection of such advanced time-frequency methods,
highlighting their potential to complement the core techniques predominantly covered in this Primer.
One such method is the Wigner-Ville distribution (WVD)131–133, which offers high-resolution time-frequency
representations. It involves calculating the instantaneous frequency and amplitude of the analytic signal correspond-
ing to the input signal, constructing a weighted kernel function, and then analysing this kernel using DFT134. It is
defined as:

Wx(t, f ) =
∫ ∞

−∞
x
(

t +
τ

2

)

x∗
(

t −
τ

2

)

e−i2π f τdτ (1)

where x(t) is the input signal and x∗(t) is its complex conjugate. While WVD excels at resolving non-stationary
signals, it can introduce artifacts or “cross-terms” when multiple frequency components are present in the signal.
These cross-terms can sometimes be mitigated using wavelet-based filtering techniques135, potentially improving
the WVD’s interpretability. While WVD has proven valuable in various fields, such as quantum physics, recent
advancements in signal processing have further enhanced its accuracy and broadened its applications136.
Another approach is the Synchrosqueezing transform (SST)137, which enhances the traditional wavelet transform,
or STFT, by “squeezing” the wavelet or Fourier coefficients in the frequency direction, leading to sharper time-
frequency representations; particularly useful for signals with closely spaced, or overlapping frequencies. However,
this method, originally developed for audio signal processing138, may not be able to directly handle signals with a
rapidly changing instantaneous frequency139.
The S-transform140 combines elements of the STFT and wavelet transforms. It uses a Gaussian window whose
width varies with frequency, providing a balance between time and frequency resolution, much like wavelet analysis,
but with Fourier-based calculations. While computationally efficient, it may not be, due to its fixed Gaussian window
shape, as flexible or adaptable as wavelet transforms (through its various mother functions) for highly non-stationary
signals.
Finally, the Gabor transform141 is yet another approach for analysing signals using Gaussian windows, offering
good time-frequency localisation. However, its fixed Gaussian window might not be optimal for all types of signals.
These additional time-frequency methods, along with many others such as the Choi-Williams distribution142 and
the Zhao-Atlas-Marks distribution143, to name but a few, while valuable, represent only a small fraction of the vast
array of techniques often developed for specialised applications and/or analysing complex oscillatory signals. Their
detailed descriptions and analyses are beyond the scope of this Primer, which focuses on a core set of fundamental
methods.

2.3 Methods for spatial wave analysis

Understanding the interplay between oscillatory phenomena and their spatial distribution is crucial for identifying
and interpreting wave modes. This section introduces analytical techniques designed to reveal such relationships
within spatio-temporal datasets. Several strategies exist for analysing how the power of oscillations varies across
a spatial domain. Averaging temporal power over regions of similar scale highlights the frequencies dominant at
specific spatial locations. We can extend this concept by filtering oscillations based on various physical properties
(e.g., magnetic field strength, temperature), or other relevant parameters depending on the field of study. Furthermore,
depending on the scientific question, a spatially-averaged power spectrum over the entire field of view may reveal
global oscillations, while examining the distribution of dominant frequencies can pinpoint localised phenomena.
These techniques are complemented by powerful data-driven methods like Proper Orthogonal Decomposition (POD)
which identify coherent patterns and their evolution across both space and time, applicable across various scientific
disciplines.

2.3.1 Mean power spectrum

The spatially-averaged power spectrum offers a global perspective on oscillatory behaviour within a field of view144.
Calculated by averaging the power spectra of individual pixels across the region of interest in the frequency domain,
it highlights the overall power distribution across frequencies, revealing dominant oscillatory modes. The mean
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power spectrum can identify frequencies where oscillations are most pronounced, potentially uncovering global
modes or characteristic frequencies. Comparing mean power spectra across different regions or datasets can unveil
changes in dominant oscillatory behaviour. In complex datasets, this technique can serve as a baseline for filtering
out dominant global contributions, allowing for the study of localised phenomena or weaker oscillations. Applicable
to 1D power spectra generated from various methods (FFT, Lomb-Scargle, Wavelets, HHT, or Welch), it is a flexible
tool for diverse scientific questions.

2.3.2 k−ω analysis

The k−ω diagram provides a powerful way to analyse oscillatory phenomena, revealing how they are distributed
across spatial scales (represented by wavenumber, k) and temporal frequencies (ω)145, 146. While often constructed
from azimuthally averaging the spatial frequencies (i.e., the wavenumbers kx and ky) of the Fourier transform (FFT)
power spectra of a 3D spatio-temporal datacube, k−ω diagrams can also be generated from phase differences
between two oscillatory signals to reveal phase relationships and potential wave propagation directions147, 148.
Analysing the relationships within the k−ω diagram illuminates dispersion relations, helping identify distinct wave
modes and their properties. A key feature of k−ω analysis is the ability to filter oscillations selectively within
specific ranges of wavenumbers and/or frequencies. Applying an inverse Fourier transform to the filtered data allows
us to isolate these oscillations in the original dataset, enabling targeted studies of complex wave phenomena. An
example is isolating oscillations with relatively small amplitudes that might be masked by macroscopic flows or
dominant wave modes with considerably larger power37. This makes k−ω analysis a versatile tool across disciplines
investigating wave phenomena, fluid dynamics, and other intricate systems where spatio-temporal oscillations are
fundamental. While k−ω analysis primarily focuses on the relationship between spatial and temporal frequencies,
it can be extended to incorporate other relevant properties within the data. This extension, called Property-Frequency
Analysis (PFA), allows for a detailed exploration of wave behaviour by filtering oscillations based on specific
characteristics, such as magnetic field strength, temperature, or other parameters (See Supplementary Section S6).

2.3.3 Proper Orthogonal Decomposition

Proper Orthogonal Decomposition (POD)149, 150 is a powerful data analysis technique used to identify spatially
orthogonal (unique dominant) patterns within complex datasets, often referred to as “spatial modes”. Similar to the
more familiar Principal Component Analysis (PCA)151, 152, POD extracts these modes based on their contribution to
the overall variance in the data. While other approaches exist, such as the classical method (or spatial POD) and
the snapshot method153, we focus here on the Singular Value Decomposition (SVD)154 as the primary approach for
computation. SVD is a mathematical factorisation that decomposes a matrix into three distinct components which,
when combined, describe the original data input in full. For POD, the input data cube is column vectorized into an
input matrix such that each row contains the value relating to each spatial coordinate and each column represents
each snapshot in time. In this method we express the POD as a singular value decomposition. Therefore the POD
modes are expressed components of the SVD.
The POD analysis decomposes the data (X) into a set of Spatial POD modes (U), a set of Eigenvectors (temporal
coefficients) (V), and a set of singular values (S). The squares of the singular values, which in this context are
referred to as Eigenvalues, are the measures of variance, which, in real-world applications, are seen to be analogous
to total energy contribution,

X = USVT .

Here ((·)T ) denotes a transpose. The POD spatial modes and Eigenvectors are ranked by the Eigenvalues from the
largest to smallest, i.e., spatial modes and temporal coefficients each descend from the largest contribution to the
smallest and in this order can be recombined to describe the original dataset. In most cases, the top few modes
capture the majority of variability within the dataset, making POD a valuable data-driven tool for dimensional
reduction. The spatial modes provide spatial insights into “coherent” spatial patterns which propagate through the
datasets, with the temporal coefficients mapping these contributions through time, showing their variability and
repeatability throughout the data; this is often further interpreted using Fourier-based methods155, 156, and these
temporal coefficients can likewise be used to further decompose the modes by filtering the temporal coefficients157.

11



In short, POD is an invaluable data-driven tool for dimensional reduction158 and elucidating underlying coherent
patterns and temporal behaviours. It can also be extended to multi-variable datasets by applying a weighting
procedure159–161.

2.3.4 Dominant frequency

The dominant frequency, generally defined as the frequency associated with the highest power in a spectrum, offers
insights into the most prevalent oscillation within a signal. However, caution is needed when interpreting this metric,
particularly in signals with multiple strong spectral peaks. If multiple peaks share the maximum power, the method
will typically return the lowest frequency among them, potentially under-representing the true complexity of the
oscillatory behaviour.
Calculating dominant frequencies is compatible with 1D power spectra generated using various methods. Maps of
dominant frequencies, determined pixel by pixel in spatio-temporal data, provide a visual representation of how
these frequencies vary across a spatial region. While potentially biased due to the possibility of multiple strong
peaks, these maps offer a statistical overview of the oscillatory landscape, revealing spatial patterns and potential
correlations with other physical properties.
Table 2 provides a comparative overview of the wave analysis tools discussed, serving as a guide for researchers to
select the most suitable methods for their specific investigations.

2.4 Cross correlations between two datasets

Investigating the connections between two time series is crucial for untangling the interplay of phenomena162.
Whether exploring relationships between different physical parameters, signals across spatial locations, or even
between distinct datasets, cross-correlation analysis offers a powerful toolkit. Parameters like the cross-spectrum,
coherence, and phase difference quantify the shared frequencies, strength of relationships, and relative timing
of oscillations between two signals. These insights are essential for revealing hidden connections, tracing the
propagation of disturbances, or identifying common drivers of oscillatory behaviour in diverse scientific fields.
Importantly, these cross-correlation parameters can be calculated using the diverse analysis methods we have
reviewed in Section 2.2. The dimensions of the output visualisation depend on the chosen method: 1D representations
are common for FFT, Lomb-Scargle, and HHT-based power spectra of one-dimensional time series, while wavelet
analysis offers time-frequency insights through 2D representations.

2.4.1 Cross spectrum

The cross spectrum offers a powerful tool for identifying frequencies where oscillations in two different time series
exhibit common power163. This provides valuable clues about potential connections or shared drivers influencing the
signals. In general, the analysis begins by transforming each time series from the time domain into a representation
that highlights its frequency content. This could be achieved through various techniques, such as the FFT for evenly
sampled data or wavelet transforms for analysing time-varying frequency content. For unevenly sampled data, the
Lomb-Scargle cannot be directly used to calculate the cross-spectrum. However, the smoothed Lomb-Scargle, a
variation of the standard method, allows for cross-spectral analysis between two irregularly sampled time series164.
The cross spectrum is then computed by multiplying the frequency representation of one signal by the complex
conjugate of the frequency representation of the other signal, mathematically expressed as:

Sxy( f ) = X∗( f )Y ( f ) ,

where X( f ) and Y ( f ) are, e.g., the Fourier transforms of the two time series x(t) and y(t), respectively, and X∗( f )
denotes the complex conjugate of X( f ). This highlights frequencies where both signals display strong power. The
inherently complex-valued nature of the cross spectrum Sxy( f ) carries both magnitude and phase information at
each frequency. The real part, known as the co-spectrum, and given by:

Coxy( f ) = ℜ[Sxy( f )] ,

provides a direct measure of the shared power between signals at different frequencies, with high values suggesting
a strong link between the oscillations.
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Table 2 | Comparison of various wave analysis methods

Method Data Assumptions/Capabilities Pros and Cons

FFT Stationary, infinite/long signals,
evenly-sampled data

Fast, efficient, clear interpretation.
Limited to stationary signals, requires even sampling. May
results in biased estimations of the real spectral density.

Lomb-Scargle Unevenly-sampled data Handles gaps and missing data well.
Less straightforward interpretation, computationally
intensive for large datasets.

Wavelet Transient signals, non-stationary data,
weak or quasi-periodic signals

Localises power in time and frequency, good for feature
detection, multi-scale analysis.
Requires careful wavelet selection, can be computationally
intensive.

EMD /
EEMD &
HHT

Non-stationary, non-linear signals Data-driven, handles non-linearity well.
Sensitive to parameter choices. EMD can be sensitive to
noise and mode mixing

Welch Noisy data Reduces noise in spectra by segmenting. Reduces spectral
leakage.
Comes at the cost of slightly reduced frequency resolution.

k−ω Spatio-temporal datasets Reveals dispersion relations, filtering in wavenumber and
frequency.
Requires spatio-temporal data.

PFA Time series or spatio-temporal data,
associated parameter of interest

Isolates oscillations in specific regimes defined by the
parameter of interest.
Requires auxiliary data.

POD Complex datasets with dominant
spatial patterns

Identifies coherent modes, excellent for dimensionality
reduction.
Assumes linear superposition of modes.

Mean Power Time series or spatio-temporal data Provides global view, reveals characteristic frequencies.
Averages out localised behaviour.

Dominant
Frequency

Time series or spatio-temporal data Offers spatial maps or statistical picture.
Interpretation requires caution (multiple peaks, etc.).

2.4.2 Coherence

While the cross spectrum highlights frequencies with shared oscillatory power, coherence provides a complementary
tool for investigating the strength of the relationship between two time series across different frequencies. This is
particularly valuable when one or both of the individual power spectra might lack strong, distinct peaks (e.g., signals
embedded in noise or with incomparable amplitudes), potentially masking correlations in the cross spectrum. The
coherence γ2

xy( f ) is defined as the squared absolute value of the complex cross spectrum Sxy( f ), normalised by the
product of the individual power spectra |X( f )|2 and |Y ( f )|2:

γ2
xy( f ) =

|Sxy( f )|2

|X( f )|2|Y ( f )|2
.
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This normalisation is crucial36, 165, ensuring that coherence values range between ‘0’ (no correlation) and ‘1’ (perfect
correlation). High coherence values at a specific frequency indicate that the oscillations in the two time series are
linearly related at that frequency, even if the individual power spectra do not exhibit strong peaks. This makes
coherence a powerful tool for uncovering hidden relationships, tracing wave propagation across spatial locations,
and investigating connections between oscillations in different physical parameters, even if their amplitude is small.

2.4.3 Phase difference

Phase difference (or phase lag) provides a crucial measure of the relative timing of oscillations in two time series. It
is calculated from the phase angle of the complex cross spectrum and offers insights into whether oscillations are in
phase, or if one signal systematically leads or lags the other. A zero phase difference indicates that the oscillations are
in phase, meaning their peaks and troughs align in time. Values between −180 and 180 degrees reveal a phase shift
and a phase difference of ±180 degrees represents an anti-phase relationship, where the oscillations are perfectly out
of step (one’s peaks align with the other’s troughs). The phase lag (φ ) can be easily translated into a time lag (τ) at a
specific frequency ( f ) using the relationship: τ = φ/(2π f ). This conversion provides a more intuitive understanding
of the temporal offset between the oscillatory signals. Phase difference analysis is valuable for determining the
direction and speed of wave travel, exploring potential cause-and-effect connections between phenomena, and
investigating the degree of synchronisation between oscillating systems146, 166.

3 Results

This section presents the results of applying the diverse analysis methods introduced in Section 2 to our carefully
crafted synthetic datasets. By utilising signals with known ground truth, we thoroughly evaluate the capabilities of
each method in identifying specific wave modes, handling complex wave components, and assessing their robustness
in the presence of noise. It is important to note that these comparisons and insights are based on the specific
characteristics of our synthetic datasets, which are designed to represent a wide range of oscillatory behaviours but
may not fully encompass all the complexities present in real-world data. Therefore, researchers should carefully
consider the specific properties of their data (such as noise levels, non-linearity, non-stationarity, length, cadence,
and other relevant parameters) and the specific aims of their study when selecting the most appropriate method or
combination of methods. To aid reproducibility and understanding of the analysis process, all codes used in this
section, along with the synthetic datasets, are available in a publicly accessible repository (see Section 5). This
evaluation provides a valuable framework for understanding the strengths, limitations, and complementarity of
different techniques, ultimately guiding the interpretation of results obtained from the analysis of real observational
data.

3.1 Synthetic 1D signal: method performance evaluation

Figure 3 showcases a systematic assessment of various wave analysis methods applied to the synthetic 1D signal
plotted in Figure 2 and described in Section 2.1.1. Before analysis, the signal was linearly detrended by subtracting
a linear fit with respect to time, and apodized with a Tukey window (with α = 0.1, representing the fraction of the
window within the cosine-tapered region; panel a), then subjected to uneven sampling by removing 20% of the
data points in four unequally spaced windows (panel b). Panels (c)-(n) present the results of various wave analysis
techniques on the original data, with the exception of the Lomb-Scargle approach which was applied to the unevenly
sampled signal.
The FFT, Lomb-Scargle, and Welch methods (panels c, d, and k) are able to recover the five base (dominant)
oscillation frequencies (5, 12, 15, 18, and 25 Hz) and amplitudes. Notably, Welch, designed for noise reduction,
exhibits a loss of frequency resolution compared to FFT (as indicated by the vertical lines on top of each frequency
spectrum), highlighting the trade-off between noise reduction and resolving power. However, Welch is notably more
effective at suppressing spurious signals, such as the small peak around 9.5 Hz. This advantage becomes increasingly
valuable in the presence of higher noise levels, where the FFT might produce misleading peaks. Lomb-Scargle is
able to handle the irregular sampling, resulting in the same identified frequencies as those found with the FFT (and
Welch), validating its suitability for datasets with gaps. While none of these three techniques reliably identify the
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Fig. 3 | Performance of diverse analysis methods on the intricate synthetic 1D time series described in

Section 2.1.1. This signal comprises dominant oscillations (frequencies 5, 12, 15, 18, and 25 Hz), a transient

oscillation, a weak signal, a quasi-periodic signature (frequencies 2, 33, and 10 Hz), noise, and other complexities.

Panel (a) shows the detrended and apodized signal. Panel (b) illustrates uneven sampling effects after removing

specific data points. Panels (c)-(n) showcase the analytical results: FFT (c), Lomb-Scargle (d), and Welch (k); GWS

and RGWS for three mother wavelets (e)-(f), with corresponding wavelet spectra in (l)-(n); HHT spectrum using

EMD (g) and the FFT power spectra of its individual IMFs (h); HHT with EEMD (i) and the FFT power spectra of its

individual IMFs (j). All powers are normalised to their maximum value and shown in percentages, with panels (c),

(d), (h), and (j) zoomed in on a smaller power range for better visibility of smaller peaks. The 95% confidence levels

are indicated by dot-dashed curves for 1D power spectra and solid black contours for wavelet spectra. Vertical lines

above each 1D spectrum mark the frequency resolution of the 1D power spectra. Green vertical (or horizontal) lines

on the frequency axes indicate the predefined frequencies used to construct the synthetic signal. See the main text

for a detailed discussion of the results and insights into the strengths and limitations of each method.
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weak high-frequency signal, the quasi-periodic signature, or the short-lived transient oscillation in the data, the
Lomb-Scargle approach does more reliably identify the weak transient oscillation at 2 Hz.
All wavelet transforms (panels l-n) excel in detecting the transient oscillation (2 Hz frequency). This highlights
their sensitivity to short-lived events that were missed by FFT, even for relatively large amplitude transients. The
extremely weak 33 Hz signal remains largely undetected by the Morlet and Mexican-Hat wavelet, but is identified
by the Paul wavelet. The quasi-periodic signature (10 Hz; 0.3 amplitude) is identified by all wavelet functions, but
most prominently by the Mexican-Hat and Paul wavelets, emphasising the potential of specialised wavelet functions
for uncovering faint or complex oscillations. Decomposition techniques (such as EMD and EEMD; see below) or
filtering approaches can also be employed to detect weak signals masked by stronger components, as filtering out
the dominant oscillations can reveal weaker but still significant signals.
A comparison of the three wavelet power spectra also reveals the important influence of the different wavelet
functions. Each function results in a different frequency range, with the Mexican-Hat wavelet limited to frequencies
below approximately 13 Hz. Furthermore, the choice of wavelet function influences the resolution in both the time
and frequency domains, as well as the extent of the time-frequency space marked by the CoI. This is evident in the
identification of very-low frequency spurious signals (around 0.2 Hz) by the Mexican-Hat wavelet, which are not
present in the other two wavelet spectra.
While the time-frequency perspective offered by wavelets is invaluable for revealing the temporal evolution of
the base and more complex oscillations in the time-frequency domain (panels l-n), their time-averaged and time-
integrated spectra, the GWS and RGWS (panels e and f), result in smoother frequency spectra that lack detailed
temporal information. Comparing GWS and RGWS demonstrates how excluding the CoI and low-confidence power
leads to a more refined view of significant oscillatory components by the latter. Notably, while the highest frequency
components (at 25 and 33 Hz) are not reliably detected by GWS (i.e., they fall below the 95% confidence levels),
they are captured in the Paul-based RGWS. The latter demonstrates particular sensitivity to the quasi-periodic
signature (10 Hz), as well as the transient and weak signals, whereas the Morlet-based RGWS is unable to detect
the quasi-periodic and weak signatures, and the Mexican-Hat function is limited to frequencies below 13 Hz.
Additionally, the Mexican-Hat-based RGWS introduces a peak at 0.2 Hz (i.e., the low frequency spurious signal).
It is important to note that the frequency-dependent resolution of GWS and RGWS results in sharper peaks and
artificially increased amplitudes at lower frequencies, while higher frequencies appear broader and smoothed. The
smooth appearance of the GWS and RGWS, despite the relatively high frequency resolution as depicted by the
vertical lines on top of the spectra (when compared to, e.g., the Welch spectrum), is primarily due to the averaging
(or integrating) process over time and the properties of the wavelet used. Therefore, direct comparisons with methods
like FFT require careful consideration. If one-to-one comparisons are necessary, interpolating the GWS or RGWS
power onto a uniform frequency array can generate a wavelet PSD that aligns more closely with those obtained by
FFT (see Box 2).
Confidence levels, estimated from 1000 randomised surrogate signals, generally distinguish genuine peaks from
background fluctuations, but discrepancies between methods might arise in noisier environments, necessitating
careful interpretation.
The HHT spectrum using EMD (panel g) reliably recovers only the strongest signal at 5 Hz, failing to identify
other oscillatory components. To further explore the frequency content of the EMD decomposition, the FFT power
spectra of the individual IMFs are shown in panel (h), with each IMF’s spectrum represented by a different colour.
In addition to the five base oscillations, the transient signal, and, to some extent, the quasi-periodic signature are also
identified. However, several other strong peaks appear at locations where no wave signatures were introduced in the
synthetic signal, demonstrating EMD’s limitations in accurately decomposing and identifying all frequencies. For a
more detailed discussion of the EMD results, we refer to Supplementary Section S7, where the individual IMFs and
their instantaneous frequencies are also shown in Supplementary Figure S2.
Furthermore, we applied EEMD, an extension of EMD designed to mitigate mode mixing caused by noise, to the
synthetic signal. The detailed results of this analysis are shown in Supplementary Figure S3. Panel (i) in Figure 3
shows the HHT marginal spectrum using EEMD, revealing two dominant frequencies of the signal at 5 and 15
Hz, and a smaller power enhancement peaked at 25 Hz. Both the EMD and EEMD HHT power spectra exhibit a
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spurious frequency peak around 0.5 Hz, possibly due to residual trends in the signal. Panel (j) illustrates the FFT
power spectra of the individual IMFs extracted by EEMD. These spectra show a more comprehensive recovery of
the original signal’s frequency components, including the weaker wave signature, compared to the EMD results.
However, although less prominent than in EMD, some additional frequencies, linked to noise and spurious signals,
are still present in panel (j). See Supplementary Section S7 for a detailed discussion and comparison of EMD and
EEMD.
Comparing Figure 3c and 3j highlights the value of decomposition techniques in recovering the full spectrum of
frequencies. While the former spectrum was obtained by applying FFT directly to the signal with all signatures
superimposed, the latter represents the results of FFT applied to the individual IMFs extracted by EEMD, showcasing
the superior ability of EEMD to isolate and resolve all individual oscillatory components, even in the presence of
multiple overlapping signals.

3.2 Synthetic spatio-temporal dataset: unveiling wave patterns

Having explored method performance on 1D time series, we now extend our analysis to the the synthetic spatio-
temporal dataset (introduced in Section 2.1.2). This allows us to investigate how oscillatory patterns evolve and
propagate across both space and time, a crucial aspect of wave phenomena in many scientific domains. We first
examine the dataset from a pixel-by-pixel perspective, applying 1D analysis techniques, such as FFT and wavelet
transforms, to understand the spatial distribution of wave properties. We then delve into the application of methods
specifically designed for 3D spatio-temporal data, such as k-ω and POD analyses (introduced in Section 2.3),
uncovering wave modes and their interactions across both spatial and temporal dimensions.

3.2.1 Dominant frequency and mean power spectra

We calculated dominant frequencies and mean power spectra of the 3D datacube using the FFT and the RGWS
with both Morlet and Paul wavelet functions. This allows for a detailed comparison, showcasing the strengths and
limitations of each technique.
The top panels of Figure 4 depict dominant frequency maps for the FFT (left), RGWS with Morlet (middle),
and RGWS with Paul (right). While a single dominant frequency can be misleading in the presence of multiple
significant spectral peaks, these maps offer a statistical overview of the spatial distribution of dominant frequencies
across the observations. Notably, both FFT and Paul-based RGWS maps reveal finer spatial structures compared
to the Morlet-based RGWS. This reflects the higher frequency resolution of FFT and the Paul wavelet’s enhanced
sensitivity to localised features. Conversely, the Morlet-based RGWS, due to its smoothing properties, provides a
more generalised view of dominant oscillations across the entire spatio-temporal domain. This is also evident in the
frequency distributions, with FFT identifying frequencies up to 550 mHz (the highest frequency component in the
synthetic signal). The maximum frequencies detected by Morlet- and Paul-based RGWSs are around 450 and 350
mHz, respectively. These differences highlight the caution needed when interpreting dominant frequency maps, as
the results can be highly sensitive to the method employed.
We also computed normalised spatially averaged mean power spectra using FFT and both RGWS approaches
(Figure 4, bottom panel). All three methods capture the full range of frequencies present in the synthetic data. The
FFT mean power spectrum exhibits distinct peaks, reflecting its superior frequency resolution. In contrast, the
RGWSs present broader, smoother spectral features, most notably the Paul-based RGWS.

3.2.2 Spatio-temporal analysis: comparing k-ω and POD filtering

Figure 5 offers a comparative analysis of wave properties derived from both k-ω filtering and POD techniques.
Panel (a) presents the k-ω power diagram of the synthetic spatio-temporal datacube (introduced in Section 2.1.2),
identifying regions of significant oscillatory power with all ten inserted frequencies exhibiting the strongest power.
The dashed lines identify a specific frequency-wavenumber region of interest, chosen for filtering 500 mHz
(±30 mHz) and wavenumbers between 0.05−0.25 pixel−1. The resulting filtered datacube is shown as a sequence
of the first six frames of the time series in panel (c), illustrating the evolution of the targeted wave pattern. The
filtered results may provide insights into wave propagation, dispersion properties, and the identification of distinct
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Fig. 4 | Dominant frequency maps and mean power spectra. Top row: Dominant frequency maps derived using

FFT (left), Morlet-based RGWS (middle), and Paul-based RGWS (right). Bottom panel: Normalised mean power

spectra for FFT (blue), Morlet-based RGWS (red), and Paul-based RGWS (black).

wave modes within the dataset. For details on the k-ω analysis applied to this datacube and filtering steps, see
Supplementary Section S8.

Panel (b) displays the first six spatial modes derived from POD analysis applied to the mean-subtracted data using
an economy-sized singular value decomposition. These modes represent the dominant, spatially coherent patterns of
oscillation within the datacube (together, they contribute to 93% of the total variance of the system). For further
details, including the temporal coefficients of these POD modes and their Welch power spectra, see Supplementary
Figure S5. Additionally, Supplementary Figure S6 summarises the POD analysis results, including the normalised
singular values (eigenvalues) of the first ten modes, their combined power spectrum, and the cumulative explained
variance as a function of the number of modes included. The strongest 10 peaks of the combined power spectrum
perfectly align with the base frequencies of the synthetic data, irrespective of the number of modes included. This
clearly demonstrates the robustness of POD in reliably identifying dominant frequencies in the data.

While POD reveals the presence of all input frequencies, it does not isolate them individually (i.e., each mode may
present multiple frequencies). To address this, we can algorithmically fit the identified, dominant ten frequencies
to the temporal coefficients of these modes, creating a representation based solely on pure frequencies. For this
study, we use a non-linear least-squares filter fitting to imposed sinusoids and reconstruct the data using these filtered
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(c) k−ω filtered images
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(d) POD frequency−filtered spatial images
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(b) POD spatial modes

Fig. 5 | Comparison of k-ω filtering and POD analysis. (a) k-ω power diagram of the synthetic spatio-temporal

dataset (introduced in Section 2.1.2) with a targeted filtering region (dashed lines). (b) First six spatial modes from

POD analysis (each 130×130 pixels2). (c) First six frames of the k-ω filtered datacube centred at 500 mHz

(±30 mHz) and wavenumbers 0.05−0.25 pixel−1. (d) First six frames of the frequency-filtered POD reconstruction

at 500 mHz using the first 22 POD modes (99% of total variance). All images and spatial modes are plotted with

their own minimum and maximum values to highlight detailed structures within them. See Supplementary

Section S8 and S9 for further details.

temporal coefficients and the first 22 modes (capturing 99% of the total variance). This approach creates a set of
frequency-filtered spatial modes, where each mode represents the spatial pattern associated with a specific frequency
over the entire time series. In panel (d), we showcase the first six frames of the reconstructed datacube after applying
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frequency filtering at 500 mHz. This allows us to directly compare the spatial patterns extracted through k-ω filtering
(c) and POD-based filtering (d). The POD-filtered spatial modes for the ten most dominant frequencies are presented
in Supplementary Figure S7 for the first three time steps of the series, and their temporal variation for the entire
time series is available as Supplementary Video 2. For more detailed discussion on POD analysis, including the
identification of physically meaningful modes and a comparison with Spectral POD (SPOD), where the frequency
filtering is performed before computing the eigenvalues (hence no temporal variation is obtained), please refer to
Supplementary Sections S9 and S10.
The striking similarity between the filtered datacube frames in panels (c) and (d) underscores the complementarity of
these two approaches. Both techniques successfully isolate the 500 mHz wave mode, revealing its spatial structure
and temporal evolution. This confirms that both k-ω filtering and POD-based filtering are effective methods for
extracting specific wave signatures from complex spatio-temporal datasets. Note that jumps between spatial modes
may occur where multiple wave modes are superimposed, as seen in this case at 500 mHz with the concentric wave
patterns and fluting-like instability superimposed (see Section 2.1.2), clearly identified through these methods, more
prominently with POD.
However, subtle differences are also apparent. The k-ω filtered images appear slightly smoother, likely due to
the averaging process inherent in the filtering method, particularly by filtering the spatial scales. In contrast, the
POD-filtered images exhibit sharper edges and finer details, reflecting the ability of POD to capture localised spatial
variations within the wave pattern due to its decomposition nature.
This comparison highlights the strengths and nuances of each method. The k-ω filtering provides a direct and intuitive
way to isolate specific frequency-wavenumber combinations, while POD offers a more detailed decomposition of
the spatial structure of oscillations. Choosing the most suitable approach depends on the specific research goals and
the desired balance between spatial and temporal resolution, with the POD offering a more advanced analysis.

3.3 Cross-correlation analysis: decoding relationships

To investigate the relationships between the near-identical 1D signals (constructed as described in Section 2.1.1; see
Supplementary Table S1), we applied both the FFT and wavelet-based cross-correlation techniques. These methods
allow us to derive power spectra, the co-spectrum and coherence spectrum, alongside the phase shifts between the
time series. This analysis simulates the scenario of observing similar wave signals at different locations or with a
time delay.
Figure 6 presents a comprehensive visual comparison of the FFT and Morlet wavelet-based results. The co-spectrum
clearly detects the five injected base frequencies (5, 12, 15, 18, and 25 Hz). However, as discussed in Section 3.1,
the weak, transient, and quasi-periodic signals cannot be fully recovered by FFT (i.e., they fall below the noise level;
see Figure 3c). The coherence spectrum varies across frequencies, with significant coherence (above 0.8, marked
with a horizontal line) at specific frequencies. Interestingly, all initial waves except for the weak signal exhibit large
coherence levels; the coherence of the weak signal is slightly above 0.8, thus still significant. However, there are
additional large coherence levels at, e.g. 20 Hz and 30 Hz, not associated with any input frequencies in the synthetic
signal’s construction, rather an indication of noise (similar to those seen in Figures3h and 3j, though the 20 Hz peak
is less prominent in the latter).
The lower panels of Figure 6 display the individual Morlet wavelet power spectra, wavelet co-spectrum, and
coherence. Cross-hatched regions denote the CoI, where edge effects might impact results. Phase differences in
panels (i) and (j) are visualised as arrows, with rightward arrows signifying in-phase oscillations and upward arrows
indicating a 90-degree phase lead in time series 1 relative to time series 2.
While the co-spectrum in both panels (d) and (i) highlights all regions where both oscillations exhibit strong power,
the coherence signals reveal areas where the two time series are statistically related, regardless of power. Unlike FFT,
the wavelet analysis (panels g and h) provides a 2D time-frequency representation, facilitating the identification of
frequency variations across the time series.
Due to the identical nature of the signals in terms of initial frequencies and amplitudes (with phase lags introduced
in the second signal), the co-spectrum would ideally recover all wave characteristics. However, the high-frequency
weak signature (33 Hz), despite having relatively small power in individual and cross-power spectra, is reliably
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Fig. 6 | Cross-correlation analysis of the two synthetic 1D time series using FFT and wavelet techniques.
Panels (a) and (b) display the first and second time series, respectively. Panel (c) compares their FFT power

spectra (blue: time series 1, red: time series 2). Panels (d)-(f) present the FFT-derived co-spectrum, coherence

spectrum, and phase differences. Panels (g) and (h) show individual wavelet power spectra (Morlet mother wavelet).

Panels (i) and (j) depict the wavelet co-spectrum and coherence map. Cross-hatched areas in wavelet panels mark

the cone of influence (CoI); black contours indicate the 95% confidence level. Power is represented in log-scale in

panels (g)-(i), while colours in panel (j) map coherence levels. Phase differences in (i) and (j) are visualised as

arrows (right: in-phase, up: 90-degree lead for time series 1).
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detected in the coherence spectrum, particularly from the wavelet. This additionally highlights the importance of
combined complementary techniques in analysing oscillatory signals. Furthermore, all phase angles appearing in
regions with significant power (to a 5% level) match the phase shifts introduced in the second signal relative to the
first.

4 Applications

The methods of wave analysis detailed in this Primer find applications across a remarkably diverse range of scientific
fields. From unravelling the complexities of solar oscillations to probing the dynamics of distant astrophysical
objects, understanding turbulent flows in terrestrial environments, and even deciphering patterns in biological
systems or financial markets, these techniques provide essential insights into the oscillatory phenomena that shape
our universe and daily lives. While we explore a few representative examples in this section, the applications are far
more numerous and by no means limited to those mentioned here.

4.1 Solar atmosphere

Wave processes are ubiquitous in the solar atmosphere and are thought to play an important role in heating the
Sun’s corona to millions of Kelvin – a long-standing puzzle in astrophysics167–170. Since their discovery in the
1960s, scientists have studied the creation, transportation, and energy release of these waves171–173. However, the
exact ways they heat the upper solar atmosphere remain unclear174. In the solar atmosphere, multiple wave types
(such as acoustic and magnetic) often interact, and these processes are further complicated by the complexities of
the region where waves originate. Modern solar telescopes now provide high-resolution, multi-wavelength views
of the dynamic solar atmosphere, packed with information about wave processes175, 176. These waves, including
Alfvén and various magnetohydrodynamic (MHD) modes, could carry enough energy to heat the solar chromosphere
and corona177. To accurately measure wave properties, we need sophisticated analysis tools and must account for
complex theoretical aspects, especially for the lower solar atmosphere which is governed by optically thick plasma
conditions178. Recent breakthrough studies have used advanced polarimetric techniques to analyse wave-induced
changes in the polarisation of light, revealing new insights about the physics of the solar atmosphere179–184. Yet,
challenges remain, as the captured data is often complex, with features that evolve more quickly than our instruments
can fully capture. Recently, the identification of higher-order wave modes has become possible, thanks to both the
high quality of modern data and the application of advanced wave analysis methods30, 40, 150, 185.

4.2 Astrophysical environments

Waves, instabilities, shocks, and turbulence mediate the conversion, transport, and dissipation of energy, governing
the formation and evolution of the constituents of our Universe. Controlled lab conditions enable investigating these
processes separately in different regimes. However, these phenomena are deeply coupled in astrophysics, making it
difficult to disentangle them and infer the underlying physical properties via observations. Waves carry momentum
and energy over vast distances before dissipating, and instabilities can profoundly alter transport, with global
observable implications. Stars can act as resonant cavities for global oscillations driven by convective turbulence,
which enables the study of stellar structure by carefully measuring brightness variations186–188. MHD waves turn
unstable in differentially rotating accretion disks189, feeding turbulence and enabling efficient angular momentum
transport and matter accretion190, powering some of the most energetic sources in the Universe191, 192. Gravitational
instabilities are crucial in structure formation at all scales throughout cosmic history, ranging from planets193–195 to
stars and stellar clusters196 and galaxies to galaxy clusters197. Compact objects in binary systems can coalesce by
emitting gravitational waves198, 199. These signals are extremely weak and require special techniques to extract them
from the background noise to infer the physical properties of black holes and neutron stars200, 201. The ecosystem of
wave analysis tools in this review is instrumental for acquiring and modelling astrophysical data to provide unique
insights into natural phenomena that are impossible to achieve otherwise.
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4.3 Geophysical environments

The Earth and its atmosphere resonate with a range of waves, oscillations, and instabilities, offering a rich platform
for scientific investigation202–204. Geophysicists and atmospheric scientists apply advanced wave analysis techniques
to understand these phenomena and their impacts on our planet205.
From seismic waves illuminating earthquake mechanics and the Earth’s interior206 to atmospheric waves influencing
weather patterns, wave analysis drives insights across disciplines. Ocean waves and tides unveil ocean dynamics and
coastal processes, while wind patterns and turbulence inform weather forecasting and climate studies. Even Earth
tides offer clues about planetary elasticity and sea-level change207. These analyses are essential for natural hazard
mitigation, resource management, weather prediction, and climate monitoring208. Challenges arise from complex
systems and background noise209, but sophisticated analysis tools help researchers overcome them210. By carefully
choosing the right analysis methods, scientists illuminate the interconnected processes that govern our planet – from
its core to its turbulent atmosphere and dynamic oceans.

4.4 Other areas where oscillatory signals are analysed

The analysis of oscillations extends far beyond the Earth, its atmosphere, and the outer universe (including our
nearest star, the Sun), playing a vital role in diverse fields across science and society. In medicine, rhythmic signals
like heartbeats211 and brainwaves212 offer critical diagnostic information. Electrocardiograms (ECGs) track heart
activity for assessing cardiovascular health213–216, while electroencephalograms (EEGs) analyse brain activity, aiding
in the diagnosis of conditions like epilepsy217–220 and sleep disorders221–224.
Oscillations are fundamental to the field of engineering. Analysing vibrations in structures like bridges225–227,
skyscrapers228–230, aircraft231–233, and automotive engines234–236 is crucial for identifying potential weaknesses and
preventing failures. Similarly, electrical engineers study oscillations in circuits to design and optimise electronic
systems for communication, power generation, and countless other applications237–239.
In physics, oscillatory phenomena are also ubiquitous240, from the vibrations of atoms to the behaviour of subatomic
particles241, 242. A notable example is the study of phonons, the quantised vibrational modes in solid-state materials243.
Phonons play a crucial role in various physical properties, such as thermal conductivity, and their analysis provides
insights into the microscopic behaviour of materials244–246.
Economic cycles and market fluctuations also exhibit oscillatory behaviour. Economists employ sophisticated
techniques, including fundamental247–249 and technical250–252 analyses, to identify patterns and trends in these
oscillations, facilitating forecasting and informing decision-making for businesses and governments.
These examples are just a glimpse into the ubiquity of oscillatory phenomena. Correct analysis and interpretation
of these signals, which are often complex and include noise, are essential in a multitude of fields. Through
understanding the hidden rhythms within these processes, we gain valuable insights leading to advancements in
health, safety, technological innovation, and economic stability, to name but a few examples.

5 Reproducibility and data deposition

Reproducibility, the ability to independently verify research findings, is the cornerstone of reliable scientific
progress253. This principle holds particular significance in wave analysis, where the study of intricate wave
phenomena is inherently shaped by dataset complexities, analytical methodologies, and experimental or observational
conditions.
Challenges to reproducibility in wave analysis often arise from inconsistent or non-standardised practices. Incom-
plete or inconsistent metadata descriptions of data origin (experimental details, simulation parameters, observational
conditions), instrumentation characteristics (precision, resolution, calibration procedures), and the lack of standard-
ised definitions for key wave properties across different subfields can hinder the interpretation, comparison, and
reusability of wave data.
Transparency surrounding analysis methods is equally crucial. Beyond clearly specifying the chosen methods,
researchers should explicitly acknowledge any assumptions embedded within those methods, analytical tools, or
theoretical models and, whenever possible, test for sensitivities to these assumptions. Furthermore, blindly using
available analysis codes (e.g., found on the web) without proper inspection poses a significant threat to reproducibility.
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These codes may harbour errors or be tailored for specific scientific applications or data characteristics, leading to
unreliable and irreproducible results254.
To overcome these challenges and foster a culture of reproducibility in wave analysis, researchers can adopt
best practices that prioritise comprehensive and consistent metadata reporting, adhering to established standards
within their respective subfields. Detailed documentation of the techniques employed, including specific code
implementations, parameter selections, and the justification for those choices, is also crucial. Finally, embracing
open science principles by depositing well-documented codes in accessible repositories, such as WaLSAtools (see
below), allows the community to examine, validate, and build upon existing work. While open-source code sharing
is a valuable practice, it is essential to critically evaluate the analysis codes. Researchers must inspect the codes,
assess their suitability for their specific data and research questions, and, ideally, test the codes against established
benchmarks or reference data.
The WaLSAtools repository (https://github.com/WaLSAteam/WaLSAtools) and its online documentation
(https://WaLSA.tools), hosted on GitHub with its integrated version control system, represents a dynamic and
expansive collection of wave analysis tools. Initiated by the Waves in the Lower Solar Atmosphere (WaLSA) Team,
this open-access repository prioritises reliability and reproducibility by also providing comprehensive documentation
and illustrative examples. Researchers are invited to freely access the codes and contribute to their collaborative
development and advancement. The WaLSAtools repository is envisioned as a starting point, with the hope that
the diverse wave analysis community will actively engage in improving and extending the existing methods and
codes across various common programming languages. Code sharing not only amplifies accessibility but also
sparks cross-disciplinary innovation. By adhering to these principles and embracing open science and code sharing
practices, as in this code repository, the wave analysis community can strengthen reproducibility, accelerate progress
in understanding intricate wave phenomena, and build upon a robust foundation of knowledge.
A selection of additional toolboxes and packages relevant to wave analysis for specific purposes are presented in
Supplementary Section S12.

6 Limitations and optimisations

Despite their undeniable power, wave analysis methods face inherent limitations. Real-world wave data is un-
avoidably limited in temporal or spatial extent. This limitation influences achievable resolutions (frequency and/or
wavenumber) and introduces statistical uncertainty, particularly for low-frequency wave components. The sampling
frequency, which is the number of samples taken per second, directly determines the highest frequency that can be
accurately represented in a discrete signal, known as the Nyquist frequency. Additionally, noise, either instrumental
or inherent to the physical system, can mask true wave signatures or introduce artefacts. Techniques such as noise
filtering, spectral smoothing, and robust statistical methods are essential for mitigating these effects. Establishing
confidence intervals through statistical or Monte Carlo analysis can help quantify uncertainties and refine the
identification of reliable features. It is crucial to remember that a signal is a noisy representation of a physical
process, not the process itself. A selection of noise reduction and filtering techniques are discussed in Supplementary
Section S5.
One point to consider in PSD estimation is that a simple FFT, for instance, is often a biased estimator due to the
variance in each spectral bin255. This variance does not decrease with increasing length of the time series, as this
alters the frequency resolution. Averaging over contiguous frequency bins or over multiple spectra of the same
process can mitigate this issue163. However, the former approach inevitably reduces frequency resolution, while the
latter may not always be feasible.
Non-stationary processes pose another challenge. Many techniques assume stationarity, meaning the signal’s
statistical properties remain constant over time. Yet, natural waves often exhibit non-stationary behaviour, with
changes in frequencies, amplitudes, or propagation characteristics. Techniques like wavelet transforms or adaptive
filtering are crucial for analysing them, allowing researchers to track the evolution of wave properties over time,
offering insights into the time evolution of wave properties, as well as the ability to detect and characterise abrupt
changes like shocks (see Supplementary Section S11).
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Furthermore, wave analysis methods often rest on simplifying assumptions that might not fully capture the involved,
often non-linear, dynamics of real-world systems. Advanced techniques like EEMD and HHT offer potential
insights into these complexities. However, interpreting results from these methods requires careful consideration of
underlying assumptions and limitations. Notably, techniques like EEMD (or EMD) primarily decompose signals
into components; identifying periodicities then necessitates the application of other methods, such as FFT or
wavelet analysis. Optimisation can be achieved by leveraging a combination of techniques. Addressing limitations
through data preprocessing, sensitivity analysis, and the exploration of specialised wave analysis methods, including
variational methods for signal decomposition and parameter estimation256, will enhance the accuracy and reliability
of findings. Investments in improved instrumentation, the development of robust techniques for handling noise and
non-stationarity, and the careful integration of domain expertise into the interpretation of results can provide better
insights into wave phenomena.

7 Outlook

The study of wave phenomena holds immense potential for unlocking a deeper understanding of our world and
accelerating transformative discoveries across diverse scientific fields. The increasing sophistication of analytical
techniques, coupled with the continuous evolution of data acquisition and computational power, positions the
scientists to tackle ever more complex challenges.
As wave analysis delves deeper into intricate natural systems, researchers will inevitably encounter challenges
that demand the development and refinement of specialised techniques. While linear wave theory offers powerful
tools, real-world systems often exhibit non-linear behaviours, wave-wave interactions, and complex couplings
that necessitate advanced approaches. The continued development of non-linear analysis methods, integration of
machine learning, and exploration of techniques tailored to specific subfields of wave analysis will be crucial for
accurately modelling and interpreting these complex systems. In this regard, phase-space techniques like recurrence
quantification analysis (RQA)257 may offer new opportunities257–262, which may be essential in uncovering details
about the origin of the underlying dynamics.
Another challenge is the increasing availability of massive and high-dimensional datasets from sophisticated
instrumentation and large-scale observational campaigns. This is particularly evident in physical systems involving
diverse time scales separated by orders of magnitude, which require high cadence and long time series simultaneously.
This abundance of data presents both an opportunity and a challenge, as it necessitates the development of efficient
algorithms, statistical methods for handling noisy or incomplete data, and dimensionality reduction techniques to
extract meaningful insights. One promising example in this regard is the Incremental PCA (IPCA)263, 264, formally
equivalent to PCA but able to process very large batches of data. Interestingly, while designed to address a limitation
of PCA, IPCA enables the additional opportunity to process time series with near-real-time data incrementally265.
The detection of faint signals embedded in noise is a persistent challenge that necessitates efficient methods to
separate signals from noise. Techniques like Singular Spectrum Analysis (SSA)266, PCA267, and Karhunen-Loève
decomposition268, 269 offer potential solutions. Lastly, while waves and oscillations are ubiquitous across disciplines,
terminology and analysis approaches can vary between fields. Cross-disciplinary knowledge transfer, the sharing of
best practices, and the development of standardised, accessible, and reusable tools are vital to unify and accelerate
progress in wave analysis.

7.1 Future directions

Several exciting and promising directions hold the potential to revolutionise wave analysis in the coming decade.
The intelligent integration of machine learning with domain expertise could unlock new ways of analysing complex
wave phenomena, identifying hidden patterns, and potentially discovering novel wave behaviours270–274. Developing
robust, interpretable machine learning models, potentially incorporating regularisation techniques to prevent over-
fitting and improve generalisation275 , remains a promising avenue of research in wave analysis276, 277.
Advances in high-performance computing, cloud-based resources, and distributed systems empower researchers to
analyse larger datasets, simulate intricate scenarios, and explore computationally-demanding methods, paving the
way for breakthroughs in understanding involved wave phenomena.
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The interconnected nature of wave phenomena calls for collaborative efforts across disciplines. International research
initiatives, shared repositories of data and tools (like WaLSAtools), and interdisciplinary workshops will accelerate
innovation and ensure that knowledge and expertise are accessible to the broader wave analysis community. The
future of wave analysis is an evolving landscape, with the potential to transform our understanding of phenomena that
shape the physical world. By actively building upon existing analysis tools, exploring novel techniques, harnessing
computational advancements, and fostering a collaborative spirit, researchers are poised to unlock significant
discoveries and push the boundaries of knowledge across all disciplines where waves play a fundamental role.

Code availability

The synthetic datasets and codes used for the wave analyses presented in this Primer, including the generation of all
displayed figures, are publicly available via the WaLSAtools repository on GitHub
(https://github.com/WaLSAteam/WaLSAtools), archived at Zenodo with the DOI [TBD]. Further information
and documentation are available online at https://WaLSA.tools.
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Glossary terms

Oscillation: A periodic variation of a measurable around a fixed equilibrium point.

Wave: A correlated collection of oscillations that propagates through a medium over time.

Shock: A wave propagating above the sound speed relative to the rest frame of the medium. This produces
discontinuities in the medium, i.e. the ‘sonic boom’ of fast aircraft.

Harmonic: Characteristic frequencies that an oscillation will prefer to exhibit. These are integer multiples of the
natural, fundamental frequency of the oscillation.

Non-linear waves: Waves that deviate from the linear, sinusoidal oscillatory pattern through asymmetries or
skewness, for instance shocks.

Frequency: The number of oscillatory cycles in a given time, typically the amount per second measured in Hertz
(Hz).

Frequency resolution: The smallest differential in frequency that can be detected. It is linked to the rate at which
the data is sampled.

Sampling Frequency: The number of samples taken per second from a continuous signal to create a discrete
representation.

Nyquist Frequency: The highest frequency that can be accurately represented in a discrete signal, equal to half the
sampling frequency.

Spectral analysis: Studying the characteristics of a range of frequencies within data.

Wave Power: A measure of the energy flow associated with waves. It is proportional to the square of the wave
amplitude.

Spectral Power: The distribution of detected wave power in data as a function of frequency.

Quasi-periodic: An oscillation with a changing amplitude over time. They are often due to an inconsistent driver,
thus can appear and vanish with time.

Non-stationary signal: A time series whose statistical properties, such as the mean or variance, evolve over time.

Spectral Leakage: Artefacts introduced to the spectral power due to sampling a non-integer number of wave cycles.
Produces a ‘leakage’ of true wave power into adjacent frequencies.

Wavelength: The distance covered by one full cycle of a wave.

Wavenumber: The number of wavelengths per unit of distance. The angular variant describes the number of radians
per unit of distance.

Phase: A time-dependent variable that describes the fraction of a wave encountered at a given time. Typically
expressed as an angle fraction of the wave, i.e., 90◦ or π

2 radians.
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Phase Lag: The angular difference between corresponding points on two waves of the same frequency, representing
the delay of one wave relative to the other.

Dispersion: The separation of complex signals into discrete wave frequencies due to their differing propagation
speeds. For example, white light breaking into its constituent colours when propagating through a prism.

Magnetohydrodynamic (MHD): Study of the interactions between a magnetic field and a fluid (gas or plasma).

Eigenvector: In wave analysis, an eigenvector represents a spatial pattern of oscillation that retains its shape while
its amplitude might change over time.

Eigenvalue: A measure of the variance or energy associated with a specific eigenvector (spatial pattern of oscillation).

Optically thick: When a medium readily absorbs light, thus only the surface layer is typically observable.

Transverse waves: Oscillations that are perpendicular to the direction of wave propagation.
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Supplementary Information

This Supplementary Information provides additional details and in-depth analyses that complement the main text,
offering further insights into the topics, specific methods, datasets, and results. The sections below are organised to
correspond with the order in which they are referenced in the main text.

S1 Overview of the wave analysis research cycle

Supplementary Figure S1 illustrates the cyclical and iterative nature of wave analysis research. The process begins
with defining the scientific questions and understanding the characteristics of the available data. These factors guide
the selection of appropriate analysis methods, which are then applied to the data. Interpretation of the results leads
to insights into the underlying wave phenomena, which can, in turn, inform the refinement of scientific questions or
the selection of different analysis methods, leading to a new cycle of investigation. This iterative process is crucial
for ensuring robust and comprehensive wave analysis research.

S2 Detailed parameters for synthetic datasets

The tables below provide detailed parameter specifications for the synthetic 1D time series (Supplementary Table S1)
and spatio-temporal datacube (Supplementary Table S2) used in this study. These datasets serve as a controlled
environment for evaluating the performance of various wave analysis techniques, as discussed in Section 2.1 (Worked
Examples) of the main text.

Table S1 | Parameters for synthetic 1D time series

Parameter Base Oscillations Envelope Transient Weak Quasi-Periodic

Frequency (Hz) 5, 12, 15, 18, 25 0.2 2 33 10

Amplitude 1.0, 0.5, 0.8, 0.3, 0.6 0.5 0.6 0.1 0.3

Phase (deg) 0, 45, 90, 135, 180 – 0 0 0

Phase shifts (deg)* 29, -45, 40, -57, 69 – 0 -46 57
* Phase shifts for the secondary signal relative to the corresponding phase of the primary signal (see Section 2.1.1 of the main text). Positive
shifts indicate the secondary signal leading the primary signal, while negative shifts indicate a lag.

Table S2 | Parameters for synthetic spatio-temporal datacube

Parameter Base Oscillations Transverse Fluting Quasi-Periodic

Frequency (Hz)
0.10, 0.15, 0.20, 0.25, 0.30,
0.35, 0.40, 0.45, 0.50, 0.55

0.25 (x), 0.25 (y) 0.5 0.55

Amplitude
1.60, 1.80, 1.90, 1.70, 1.20,
2.00, 2.40, 1.20, 1.80, 2.20

14.0 (x), 10.0 (y) 14 5.2

Phase (deg)
0, 29, 57, 86, 115,

14, 43, 72, 100, 129
– – 29

S3 Significance and noise in wave analysis

Statistical significance tests are crucial for distinguishing real oscillatory signals from background noise and spurious
fluctuations. These tests determine confidence levels, indicating the probability that observed power could arise
from random fluctuations alone. While a 95% confidence level is common279–282, the appropriate threshold depends
on factors like the scientific hypothesis, signal-to-noise ratio, and the balance between sensitivity and specificity. A
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95% confidence level indicates a 5% chance the power is due to noise, but this is only meaningful if the noise model
accurately reflects the characteristics of the background fluctuations (see Supplementary Section S4 for description
of various noise models).
Randomisation tests offer a flexible approach to assess significance without relying on specific noise distribution
assumptions283. In these tests, statistical significance is typically assessed by comparing the observed power in the
original data to the distribution of power obtained from a large number (e.g., 1000) of randomised surrogate datasets,
generated by preserving certain properties of the original signal while disrupting the patterns of interest. However,
understanding the noise characteristics is still valuable. The choice of noise model can influence the generation
of randomised (surrogate) datasets used in the test, as different noise types (e.g., white noise vs. correlated noise)
require different approaches.
Furthermore, even with randomisation tests, knowledge of the noise aids interpretation and sets appropriate
confidence levels. If the noise is highly non-Gaussian or temporally correlated, a more stringent confidence level
might be needed to avoid misidentifying noise artefacts as real signals. In this context, noise may refer not only to
random fluctuations but also to any feature of the system that is not the primary focus of the analysis.
Therefore, understanding the noise is crucial for constructing appropriate surrogate datasets and interpreting statistical
results. Exploring data at different confidence levels, guided by a well-considered noise model, leads to a more
robust interpretation of wave analysis results.

S4 Noise models

Noise, the unwanted fluctuations superimposed on measured signals, is present in some form across all data
sequences in scientific domains284. Understanding the types and characteristics of noise is crucial for accurate signal
processing and interpretation64. Different noise models are able to describe the origin and statistical properties
of these fluctuations, each impacting subsequent data analysis in a unique way285. Importantly, since many noise
models are frequency dependent, they must be treated carefully when investigating the wave and/or oscillatory
behaviour of the studied system. Common noise profiles inherent to scientific observations include:

• White noise: This model assumes that noise has a flat PSD across all frequencies (i.e., f 0), meaning equal
power at all frequencies286, 287. White noise is often used as a baseline for assessing significance levels in wave
analysis288, 289.

• Pink noise (Flicker noise): PSD decreases with increasing frequency ( f−1 dependence), common in elec-
tronic290, 291 and biological systems292.

• Red noise (Brownian noise): PSD decreases with increasing frequency ( f−2 dependence), often seen in natural293

and astrophysical systems294, 295.

• Blue noise: PSD becomes larger with increasing frequency ( f+1 dependence), resulting in less energetic low-
frequency components, hence is often seen in audio acoustic signal processing296, 297.

• Poisson noise (Shot noise): Arises from the discrete nature of events (e.g., photon arrivals in detectors298) and is
characterised by its variance being proportional to the signal intensity299, which tends to a Gaussian distribution in
the limit of large number statistics300–304.

• Non-Gaussian noise: Does not follow a normal (Gaussian) distribution and may complicate noise modelling and
analysis305–307.

• Instrumental Noise: Inherent to the instrumentation performing the measurements, hence is affected by thermal
noise308, 309, readout noise310, 311, and/or quantisation noise312, to name but a few examples.

The specific noise source(s) present within the data necessitate different approaches when undertaking subsequent
wave analysis. For example, the presence of red noise, which exhibits stronger power at lower frequencies, may
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require the application of a high-pass filter to uncover weaker high-frequency signals. Conversely, when dealing with
Poisson noise, specialised techniques or averaging over multiple measurements may be advantageous to accurately
estimate wave amplitudes. Additionally, non-Gaussian noise can violate the assumptions of certain statistical tests,
leading to biased estimates or incorrect conclusions.

S5 Filtering and noise reduction

While Sections S3 and S4 discussed significance levels and various noise models, it is crucial to remember that a
signal is a noisy representation of a physical process, not the process itself. Without knowing the true nature of
the noise (or the combination of various noises, including instrumental and other sources), there is always the risk
of removing actual signal components during a de-noising process. Distinguishing between noise and signal may
not always be straightforward, requiring careful considerations and potentially the exploration of different filtering
techniques.
This section focuses on filtering and noise reduction techniques crucial for enhancing signal quality and preparing
data for accurate wave analysis. These pre-processing techniques aim to reduce or eliminate unwanted noise or
signal components while preserving the essential features of the underlying wave signals of interest. Choosing
appropriate methods depends on the characteristics of the noise, the nature of the signal, and the specific goals of the
analysis. It is important to note that this is not an exhaustive list of filtering and noise reduction techniques; rather,
we present a selection of example methods and a few specialised approaches.
Many filtering techniques focus specifically on reducing noise while preserving the underlying signal of interest.
One example is Bilateral filtering313 which smooths images while preserving sharp edges by considering both
spatial (or temporal) distances and intensity differences between neighbouring data points. This method is especially
useful for images or signals where edge preservation is important. Wiener filtering314, 315 is another example of
such classical methods that estimates the original signal (or image) by minimizing the mean square error between
the estimated and true signals. This method relies on knowledge of the signal and noise power spectra, making
it effective when such information is available or can be reliably estimated. Certain methods also utilise similar
patterns, or repeated structures, within the signal for effective de-noising. For example, Non-local means filtering316

averages similar patches within the data, making it effective for de-noising signals with repetitive patterns. A more
advanced approach in this regard is Block-Matching and 3D filtering (BM3D)317, which groups similar patches
into 3D blocks, applies a transform-domain shrinkage (e.g., wavelet shrinkage), and then aggregates the de-noised
blocks. This technique is known for its strong de-noising capabilities, particularly for images. Time-frequency
analysis also provided powerful tools for noise reduction. Wavelet de-noising318, 319, for instance, separates noise
from the signal by thresholding or shrinking wavelet coefficients, which is particularly effective for non-stationary
signals.
Beyond noise reduction, filtering can also be used to selectively pass or remove specific frequencies or frequency
bands within a signal320. This can be useful for isolating particular components of interest or removing unwanted
interference. High-pass filters allow high frequencies to pass through while suppressing low frequencies, useful
for removing low-frequency trends or drifts in the data. Similarly. Low-pass filters allow low frequencies to pass
through while removing high frequencies, useful for, e.g., smoothing out high-frequency noise or fluctuations.
As such, for isolating a specific oscillatory component of interest, or removing narrowband interference or noise,
Band-pass or Band-reject filters can be used.
Filtering can also be used to enhance or isolate specific oscillatory signals of interest. This might include techniques
like Wavelet transforms321, which can isolate signals at particular scales or frequencies, or Synchrosqueezing137

approach which can further sharpen time-frequency representations to facilitate identification of specific oscillations.
Additional specialised methods have also proven valuable for de-noising and signal enhancement. For example,
in particle image velocimetry, the POD detection and estimation method (PODDEM)322, uses a non-iterative
approach by modifying temporal coefficients from POD for efficient outlier detection and correction. PODDEM’s
ability to analyse single vector fields offers potential advantages when temporal data is limited322. Similarly,
Variational Mode Decomposition (VMD)256 decompose signals into modes that can be processed individually,
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providing flexibility in handling complex signals. Furthermore, Regularisation techniques275 can be incorporated
into various de-noising algorithms to prevent over-fitting and ensure smooth solutions.
Choosing the right filtering/de-noising method requires careful consideration of data characteristics, noise properties,
and analysis goals. It is often crucial to experiment with different techniques, compare their performance and
effectiveness, and select the most suitable approach for the given task.

S6 Property-frequency analysis

In this section, we introduce the concept of Property-Frequency Analysis (PFA), a versatile technique that extends
the concept of frequency analysis by incorporating information about additional properties or parameters associated
with the data. Although the term PFA might be new, the underlying approach of filtering oscillatory signals based on
specific properties has likely been utilised in various forms across different scientific fields. However, we formalise
this approach here under the term PFA to emphasise its broad applicability and highlight its potential for unifying
wave analysis across disciplines. PFA can be applied to both single time series (1D data) and spatio-temporal
datasets (2D or 3D data).
In PFA, the power spectrum or other frequency-domain representation of the signal is calculated for different values
or ranges of a chosen property. The resulting power spectra are then compared to investigate how the frequency
content of the signal varies with changes in the property. For example, in a time series of temperature fluctuations,
PFA could be used to examine how the power at different frequencies changes with varying atmospheric pressure or
humidity.
This approach allows for a more detailed understanding of the oscillatory behaviour within the data. By isolating
and comparing frequency information based on specific properties, PFA can reveal hidden patterns and correlations
that might not be apparent in traditional frequency analysis alone.
One specific example of PFA, particularly relevant in solar physics, is the B-ω diagram39. The B−ω diagram
combines averaged FFT spectra, calculated within various magnetic field strength bins, into a single plot. Each
vertical column represents the average power spectrum at a specific magnetic field strength, displayed along the
horizontal axis. While k−ω analysis works with the full 3D datacube (see Section 2.3.2 of the main text), the
B−ω method initially analyses individual pixels in the temporal domain. Power spectra from pixels within a
specified magnetic field range are then averaged for each bin. This technique, which requires an associated magnetic
field data, offers valuable insights into the influence of magnetic fields on oscillatory phenomena. Thus, filtering
by magnetic-field strength can help us disentangle how wave behaviour varies in regions with different magnetic
environments.
The principle of PFA is broadly applicable across various scientific disciplines. Depending on the field of study,
the property used for filtering could be magnetic field strength, temperature, density, velocity, or any other relevant
parameter. For instance, in social sciences, one could analyse fluctuations in economic indicators as a function of age
or income levels. The adaptability of PFA makes it a powerful tool for unravelling complex oscillatory phenomena
and their relationship with other variables of interest.

S7 EMD and EEMD analyses

Here, we provide detailed results of the application of EMD and EEMD to the synthetic 1D signal (introduced in
Section 2.1.1 of the main text) to assess their ability to resolve distinct oscillatory modes and their robustness against
noise. Some of these results are discussed in Section 3.1 of the main text, in comparison with other wave analysis
techniques (see Figure 3).
As shown in Supplementary Figure S2, EMD extracts eight IMFs (panels a), with their instantaneous frequencies
depicted in panels (b), calculated using the Hilbert Transform. This provides insight into the time-varying frequency
content of the signal, highlighting how oscillatory modes evolve over time. IMFs 4, 5, and 6 are marked as
non-significant based on a statistical significance test (with 1000 randomisation). The corresponding HHT marginal
spectrum (panel c) correctly identifies the strongest oscillation at 5 Hz but fails to clearly distinguish other weaker
components, potentially due to the presence of noise and mode mixing. The FFT power spectra of the IMFs (panel
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d) primarily recover the five base oscillations and, to a lesser extent, the transient and quasi-periodic fluctuations, but
are unable to reliably detect the weak signal component present in the original signal. This indicates that the EMD
decomposition can affect the frequency information content. Additionally, spurious frequencies, more prominently
in the range of 2-4 mHz, are erroneously detected.
It is worth recalling that each IMF may contain more than one frequency simultaneously, and their orthogonality is
only locally satisfied323. Also, in contrast to, e.g., FFT, the IMFs are not given in a closed analytical form.
Furthermore, we applied EEMD to the synthetic signal. The parameters chosen for EEMD, including a noise
standard deviation of 0.2 and 1000 realisations, are critical for balancing noise influence and ensuring computational
efficiency. The noise standard deviation is typically selected as a fraction of the signal standard deviation, ensuring
the added noise is sufficient to resolve mode mixing without overwhelming the original signal components. The
number of realisations is a trade-off between computational cost and the stability of the IMFs. More realisations
generally lead to more stable IMFs by averaging out noise effects, but at the expense of increased computation time.
Additionally, both EMD and EEMD utilise the same stopping criterion, ensuring that the number of zero-crossings
and extrema in each IMF differ at most by one, and that the mean of the envelope is close to zero.
Supplementary Figure S3 illustrates the results of the EEMD analysis. Panels (a) display the extracted IMFs from
the synthetic signal, each representing a distinct oscillatory mode. Nine IMFs are obtained, compared to eight with
EMD, with IMF 1 marked as non-significant through statistical significance testing. Additionally, IMFs 7, 8, & 9
show very low frequencies likely related to residual spurious trends in the time series, or a slow evolution, so should
be interpreted with caution. These characteristics are also evident in the instantaneous frequencies (panels b) and
FFT power spectra of the IMFs (panel d).
The HHT marginal spectrum is presented in panel (c). This spectrum offers a comprehensive view of the energy
distribution across different frequencies, integrated over time. The HHT spectrum reveals four peaks: one at very low
frequencies (likely due to IMFs 7-9, thus ignored), two prominent peaks around 5 & 15 Hz, and one smaller peak at
25 Hz, corresponding to the strongest signals in the constructed time series. However, the HHT marginal spectrum
does not recover the other input frequencies, indicating limitations in capturing weak or complex oscillations. Note
that the HHT marginal spectrum using EMD (Figure 3g and Supplementary Figure S2c) was able to identify only the
strongest signal at 5 Hz (plus the very-low frequency component), a limitation that will be further discussed below.
It is worth mentioning that HHT is particularly useful for signals where the frequency content varies significantly
over time, such as in biological or geophysical data.
Panel (d) illustrates the power spectra of individual IMFs, estimated using FFT. The power spectra reveal almost
all input frequencies, including transient, quasi-periodic, and weak signals. Peaks corresponding to these marginal
signals are considerably smaller but still above the 95% confidence level. Interestingly, a few additional frequencies
appear: one at very low frequency (peaked at 0.2 Hz; linked to IMF 9 and thus disregarded), and a strong peak at
30 Hz and considerably weaker ones at 7, 10.5, 13, and 20 Hz, likely due to noise. Notably, this analysis includes
both significant and non-significant IMFs. Excluding the non-significant IMF, the 30 Hz and weaker peaks disappear,
confirming its noise origin, while the 33 Hz weak signal also becomes undetectable, highlighting the sensitivity of
significance testing. While FFT provides a clear spectral representation, the Welch method could be employed for
power spectral estimation for high noise levels, as it reduces spectral variance by averaging over segments.
Comparing these results to those obtained from traditional EMD underscores the advantages of EEMD, with EMD
at its core. While EMD can decompose the signal into IMFs, it is more susceptible to mode mixing, resulting in less
distinct components. EEMD’s ensemble approach effectively addresses this, yielding more reliable and interpretable
IMFs.
The choice of parameters in EEMD, such as noise standard deviation and the number of realisations is crucial
for achieving high-quality decomposition. Similarly, the significance test for determining the relevance of IMFs
is sensitive to these parameters and fitting functions. Variations in these choices can affect the determination of
significant IMFs, potentially influencing the interpretation of the signal’s oscillatory components.
In conclusion, EEMD of the synthetic signal demonstrates its efficacy in decomposing complicated, non-trivial
signals into meaningful IMFs. Careful selection of parameters and the use of significance testing are paramount
to achieving reliable results. These findings not only validate the capabilities of EEMD but also provide a robust
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Fig. S2 | EMD analysis of the synthetic 1D signal. (a) IMFs extracted from the synthetic signal using EMD. IMFs

4, 5, and 6 are marked with the grey background as non-significant (at 5%) based on a significance test. (b)

Instantaneous frequencies of each IMF. (c) HHT marginal spectrum. (d) FFT power spectra of individual IMFs. The

dashed lines in both panels (c) and (d) indicate the 95% confidence levels. Note that the powers in panels (c) and

(d) are shown in arbitrary units. The dotted vertical lines mark the oscillation frequencies of the synthetic signal.
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Fig. S3 | EEMD analysis of the synthetic 1D signal. (a) IMFs extracted from the synthetic signal using EEMD.
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Instantaneous frequencies of each IMF in Hz, revealing time-varying frequency content. (c) HHT marginal spectrum

(solid line) and its 95% confidence level (dashed line). (d) FFT power spectra of individual IMFs, with dashed lines

indicating 95% confidence levels. The dotted vertical lines mark the oscillation frequencies of the synthetic signal.
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framework for analysing real-world observational data, where similar complexities and noise characteristics are
often encountered.

S8 k−ω analysis and filtering

Supplementary Figure S4 provides a comprehensive look into the application of k−ω techniques on our synthetic
spatio-temporal dataset. The foundational k−ω power diagram (panel a) maps the oscillatory power distribution,
showing all 10 inserted frequencies with strong power, as it was previously demonstrated in Figure 5a. This
visualisation is used to select specific regions of interest, allowing for targeted filtering. For instance, the dashed
lines in panel (a) demarcated a region of interest chosen for further analysis (i.e., filtering).
Panel (b) reveals the impact of filtering by isolating specific wave features and their evolution over time (obtained
by applying an inverse Fourier transform to the filtered data). Panels (c)-(e) further elucidate the filtering process,
providing a step-by-step visualisation of the dataset’s transformation: (c) the time-averaged spatial power spectrum
of the original dataset, revealing the range of spatial scales present, (d) the mask used for spatial filtering, highlighting
the selected wavenumber range, and (e) the result of applying the mask to the spatial Fourier transform, isolating the
targeted spatial scales.
Finally, panel (f) focuses on the temporal filter by displaying the spatially-averaged temporal power spectrum, with
the filter mask over-plotted as a dashed line. The solid red curve of the preserved Fourier power illustrates how
specific temporal frequencies are enhanced while others are suppressed. This selective enhancement is vital for
isolating and studying signals of interest, although it is important for the research team to ensure that the filters
applied do not introduce spurious signals into the reconstructed time series.
Overall, Supplementary Figure S4 goes beyond simply visualising the filtering process. It offers a multi-faceted
examination that enables us to derive insights into the waves embedded within the synthetic data. By analysing the
filtered results, we can study wave propagation, dispersion properties, and potentially, identifying specific wave
modes.

S9 POD analysis

Here, we present detailed results of POD application to the spatio-temporal datacube. For complex, quasi-non-linear
time series of image data, POD reveals spatially coherent patterns and their temporal evolution, ordered by their
contribution to the system’s variance. However, in cases with competing dynamics of similar amplitudes, POD may
struggle to disentangle all temporal behaviours, resulting in higher-order modes containing multiple frequencies. On
these occasions it is possible to extend the POD and further reveal spatial structure from datasets.
The POD outputs for the first six modes are presented in Supplementary Figure S5. Temporal coefficients of all
spatial modes and their Welch power spectra show the repeatability of the patterns over time. These spatial modes
describe dominant, coherent patterns propagating through the spatio-temporal domain. The Welch method balances
frequency resolution and statistical reliability through a segment length of 150, a segment overlap of 25, an FFT
length of 214 points (i.e., zero padded FFT), and a sampling frequency of 2 Hz.
Supplementary Figure S6 summarises the POD analysis results further. The top-left panel shows the square of
singular values (Eigenvalues) of the first ten modes, normalised to the total Eigenvalues and shown in percentages.
The power spectrum of these modes (top-middle panel) reveals their dominant frequencies. The strongest 10 peaks
of this spectrum align with the base frequencies of the synthetic data, while additional weaker peaks (lying below the
95% confidence level) are likely due to noise. Importantly, these 10 strongest (significant) peaks remain consistent
as the number of modes included in the combined power spectrum changes, demonstrating the robustness of POD in
identifying dominant frequencies.
The top-right panel of Supplementary Figure S6 shows the total Eigenvalues captured as a function of the number of
POD modes included. The blue, green, and red vertical lines mark the cumulative variance captured by the first 2,
10, and 22 modes, respectively, revealing that these subsets account for 84%, 96%, and 99% of the total variance.
Notably, even with just the first three modes, POD captures approximately 88% of the total variance, indicating that
these modes are sufficient to reconstruct a significant portion of the original signal’s energy. Using only these first
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Fig. S4 | Illustration of k−ω analysis and filtering applied to the synthetic spatio-temporal dataset of

Figure 2 and Table S2. Panel (a) displays the k−ω power diagram, with the dashed lines outlining the targeted

filtering region. Panel (b) presents a six-frame sequence from the filtered datacube, showcasing the spatial and

temporal evolution of the isolated wave features. Panels (c)-(e) provide a step-by-step visualisation of the filtering

process: first, the time-averaged spatial power spectrum of the original dataset, followed by the spatial filter mask,

and finally, the result of applying the mask to the spatial Fourier transform, highlighting the spatial scales preserved

in the filtered dataset. Panel (f) shows the spatially-averaged temporal power spectrum. The temporal filter masks

are indicated by dashed lines, while the preserved oscillatory power within the filtered data is depicted by the solid

red curves.

three modes for reconstruction yields a combined power spectrum free of noise-related peaks. We note that POD
results in as many modes as are in the input snapshots (i.e., 200 modes in this example), but not all POD modes
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Fig. S5 | POD analysis results. The first six spatial modes (130×130 pixels2 each), along with their temporal

modes and Welch power spectra of the temporal coefficients.
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Fig. S6 | POD mode analysis. Top left: Normalised squared singular values (Eigenvalues) of the first ten POD

modes, demonstrating their relative contributions to the total variance. Top middle: Combined power spectrum of

the first ten POD modes, revealing the dominant frequencies captured by these ten modes. The vertical dotted lines

mark the ten base frequencies used to construct the synthetic data; the red dashed line identifies the 95%

confidence level (estimated from 1000 bootstrap resamples). A movie of this panel showing the combined power

spectrum as a result of various numbers of modes included is shown in Supplementary Video 3. Top right:

Cumulative explained variance as a function of the number of POD modes included, with vertical lines indicating the

cumulative variance captured by 2 (blue), 10 (green), and 22 (red) modes. Bottom left: Reconstructed image

(130×130 pixels2) of the first frame of the time series using 22 first modes. Bottom middle: Original image

(130×130 pixels2; first frame) of the datacube. Bottom right: Scatter plot of the reconstructed and original image.

are physically meaningful, as many might be due to noise and spurious signals in the data. Identifying physical
modes requires detailed information about the system being analysed. In the worked example we presented here, we
reconstruct the original image by adding the first 22 modes (as they capture 99% of the total variance), shown in the
bottom-left panel of Supplementary Figure S6, for the first frame of the time series. The original image from the
input data, alongside a scatter plot of the reconstructed and original images are also illustrated in the bottom-middle
and bottom-right panels of Supplementary Figure S6, respectively, showing a near-perfect match.
While these modes identify all ten base frequencies, their amplitudes may not fully reflect the original input values.
This is likely due to the superposition of frequencies propagating into higher-order modes and/or the exclusion of
noise-dominated modes. As such, the amplitudes obtained from the combined power spectrum may depend on the
number of modes included.
While POD reveals the presence of all base frequencies, it does not visually isolate them individually. To address
this, we can algorithmically fit the ten identified dominant frequencies to the temporal coefficients of these modes,
creating a representation based solely on pure frequencies. For this study, we use a non-linear least-squares fitting
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approach to imposed sinusoids and reconstruct the data using these filtered temporal coefficients and the first 22
modes (capturing 99% of the total variance). This approach creates a set of frequency-filtered spatial modes, where
each mode represents the spatial pattern associated with a specific frequency over the entire time series.
Supplementary Figure S7 presents these POD-filtered spatial modes for the ten most dominant frequencies at the
first three time steps of the series. This method can be particularly useful in identifying patterns in a signal that are
otherwise occluded by other superimposed frequencies. The temporal variation of these spatial modes is available
as Supplementary Video 2, providing insights into the dominant dynamical features of the system. It is worth
noting that jumps between spatial modes may be observed at frequencies where two or more different wave modes
are superimposed. One example of such spatial variation occurs at 500 mHz, where both concentric waves and
fluting-like instability were constructed in the synthetic datacube.
Another method for extracting spatial modes associated with specific frequencies, but without capturing temporal
variations of the reconstructed data, is to apply the filtering before computing the eigenvalues, known as Spectral
POD (SPOD)324, as discussed below, in Supplementary Section S10.

S10 Spectral Proper Orthogonal Decomposition

Spectral POD (SPOD) is an extension of the traditional POD using snapshot method153. While both snapshot and
SVD approaches yield identical POD results325 the snapshot method can be better suited for large datasets. To
properly introduce SPOD, we first briefly recap the mathematical formulation of the snapshot method.
A dataset q(x, t) can be decomposed into a time average and a fluctuation field, with the fluctuation field further
decomposed into POD modes:

q(x, t) = ⟨q(x)⟩+q′ (x, t) = ⟨q(x)⟩+
N

∑
n=1

a(n) (t)φ (n) (x) , (2)

where φ (n) represents a set of space-dependent orthonormal modes, a(n) is a time-dependent mode amplitude, N is
the number of snapshots and n is the mode index. Here ⟨ ⟩ denotes a time average and the ( )′ indicates a fluctuation.
A reconstructed fluctuation field can then be approximated by,

q̃′ (x, t) ≈
M

∑
n=1

a(n) (t)φ (n)(x) , (3)

where M is the number of modes used in the reconstruction. Using the snapshots method153, the modal basis is
constructed from a covariance matrix of the fluctuation field:

Ct1,t2 =
1
N

∫

Ω
q′ (x, t1)q′ (x, t2)dx . (4)

Since this matrix is symmetric, positive, and semi-definite, we can compute its eigenvalues and eigenvectors using
SVD. Thus, the POD spatial modes can be computed by a linear combination of the snapshots into an orthonormal
set of basis functions:

φ (n) (x) =
1

λnN

N

∑
k=1

ξk,nr′ (x, tk) , (5)

where λn are the eigenvalues, and ξk,n are the eigenvectors of the covariance matrix C. The term k corresponds to the
kth column of ξ in the eigenvalue problem Cξ = λξ . Finally, the time-dependent mode amplitude is given by:

a(n) (tk) =
√

Nλnξk,n . (6)

SPOD324 introduces a filtering step to the covariance matrix C before computing eigenvalue, resulting in a filtered
matrix S:

Si, j =
N f

∑
k=−N f

gkCi+k, j+k . (7)
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where gk is a filter kernel161, 324 (here we employ a Gaussian filter kernel161). The filtering limits the frequencies per
mode, where the SPOD filter allows for a continuous fading from the energetic optimality of POD to the spectral
purity of DFT324.
To summarise the entire process, it begins by computing the fluctuation field, obtained by subtracting the time
average from each snapshot of the data. This fluctuation field is crucial for constructing the correlation matrix using
the snapshot method, capturing relationships between different time snapshots.
To implement SPOD, a periodic boundary condition is applied to the correlation matrix to account for the periodic
nature of the data. This correlation matrix is then filtered using a Gaussian function to create the spectral matrix,
which is subsequently decomposed into eigenvalues and eigenvectors via SVD.
Examination of the resulting spatial and temporal modes, along with their power spectra (Figure S5, illustrating the
first six SPOD modes; see Supplementary Video 4 for all SPOD modes), reveals that the modes often form pairs
with the same frequency. For instance, modes (1, 2), (3, 4), (5, 6), and so on, exhibit similar frequencies and spatial
structures, a characteristic feature of the SPOD method. However, where two dominant waves coexist at the same
frequency, the pair modes display distinct structures, revealing the two underlying wave modes. Examples include
the sinusoidal wave and fluting-like instability at 500 mHz, and the concurrent sinusoidal and transverse waves at
250 mHz. This correlation is confirmed by analysing the temporal coefficients in phase space161. In such cases,
analysing the corresponding mode pair together is crucial for a complete understanding of the waves.
Analysis of all SPOD modes (see Supplementary Video 4) reveals that the first twenty modes represent the ten base
frequencies used to construct the synthetic signal, effectively capturing the primary features of the data. Beyond the
20th mode, the power drops significantly, suggesting that the remaining modes likely represent noise and spurious
signals. This drop-off underscores SPOD’s effectiveness in isolating important frequencies and filtering out less
relevant information.

S11 Shock analysis: capturing abrupt changes

Shocks, characterised by sudden, often discontinuous changes in physical properties of a system (e.g. pressure,
density, temperature)326 can arise from the steepening of non-linear waves, collisions, explosions, or other dynamic
processes327. These abrupt transitions present challenges in wave analysis due to their distinct characteristics.
Shocks are inherently non-stationary events, introducing rapid changes in a signal’s properties over time. The
sharp transitions at the shock front also pose challenges for techniques designed for smooth, continuous signals.
Furthermore, shocks often contain significant high-frequency energy, requiring methods with sufficient time
resolution to capture the details of the shock front. Several techniques are particularly well-suited for analysing
shocks, including:

• Wavelet transforms: The time-frequency localisation of wavelets can allow the identification of both the time and
spatial location of shock arrivals, in addition to the analysis of the evolution of their frequency content.

• HHT: The adaptive decomposition of HHT can isolate shock signatures within a signal and track their evolution
through instantaneous frequency analysis.

• Time-domain methods: Techniques like the shock-fitting method, which focuses on the shape of the shock front,
can be used to directly estimate shock parameters (e.g., speed, strength)328.

The results of shock analysis can provide valuable insights into the shock location and timing, pinpointing the
arrival time of a shock front and its spatial position in multi-dimensional data. They can also estimate the shock’s
strength and speed, as well as analyse how the shock’s properties (e.g., frequency content) change as it propagates.
Additionally, shock analysis can help understand how energy is released and transferred during the shock process.

S12 Specialised toolboxes for wave analysis

While this Primer has focused on a core set of fundamental wave analysis methods, a wealth of specialised toolboxes
and packages are available to researchers, often offering optimised implementations, advanced features, or tailored
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functionalities for specific applications. All analyses presented in this Primer were performed using the WaLSAtools
repository (see Section 5 of the Primer). This section provides a brief overview of some additional toolboxes and
packages, highlighting their potential value in complementing the techniques discussed in this Primer.
Table S3 lists a selection of toolboxes and packages relevant to wave analysis. These resources offer a wide range of
functionalities, from optimised implementations of fundamental techniques to specialised methods for analysing
specific signals.

Table S3 | Overview of specialised toolboxes and packages for wave analysis.

Toolbox Description/Language Key Features/Applications

FFTW329, 330 Fastest Fourier Transform in the West. Highly
optimised FFT library for various platforms.
(C, Fortran)

Widely used in scientific computing and signal
processing. Provides high-performance FFT
routines. URL: https://www.fftw.org

SigPack Signal Processing toolbox. A collection of
signal processing tools, using the Armadillo
library331 as a base (C++)

Implement fundamental signal processing
algorithms. URL:
https://sigpack.sourceforge.net

INSITE332, 333 Software toolkit for studying non-linear
dynamical and chaotic systems.

Includes algorithms for, e.g., periodic solutions,
dimension estimation, and Lyapunov exponents.

TISEAN334 Non-linear time series analysis package.
(Fortran, C)

Offers a wide range of algorithms for analysing
non-linear and chaotic systems. URL:
https://www.pks.mpg.de/tisean

TFTB Time-Frequency Toolbox. Wide range of
time-frequency analysis techniques. (GNU
Octave, MATLAB, R; also in Python)

Developed for the analysing non-stationary signals
using time-frequency distributions. URL:
https://tftb.nongnu.org

SSA-MTM
Toolkit335

Singular Spectrum Analysis - Multi-Taper
Method Toolkit for analysing short, noisy
time series, and multivariate data. (Fortran)

Offers tools for noise reduction, trend extraction,
and spectral analysis. URL: https:
//research.atmos.ucla.edu/tcd/ssa/

Rssa336 R package for SSA. Implements Singular
Spectrum Analysis (SSA) for time series
decomposition and forecasting. (R)

A collection of methods for singular spectrum
analysis. URL:
https://github.com/asl/rssa

Obspy337, 338 Python toolbox for seismology. Primarily
used for processing seismological data, but
includes many general-purpose signal
processing tools. (Python)

Contains FFT, wavelet transform, and spectral
analysis methods. URL:
https://docs.obspy.org

LTFAT339, 340 The Large Time-Frequency Analysis Toolbox.
A modern library for time-frequency analysis,
including Gabor and wavelet transforms.
(MATLAB, Octave)

Offers high-resolution time-frequency
representations. Useful in, e.g., audio signal
processing and biomedical applications. URL:
https://ltfat.org

Biosppy341 Bio-signal processing library. Focused on
analysis of bio-signals such as EEG and ECG,
including filtering and clustering. (Python)

Includes wavelet and Fourier analysis, spectral
analysis, and feature extraction tools. URL:
https://biosppy.readthedocs.io

It is important to note that this table is by no means comprehensive and represents only a small fraction of the
available online resources. Many other specialised toolboxes and packages, such as TFSA342, 343, have also been
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developed for specific scientific domains or analysis tasks. Researchers are encouraged to explore these tools
and consider their suitability for their specific needs and research questions. However, it is crucial to critically
evaluate any toolbox or package before applying it to research data. This includes carefully examining the references
and documentation, understanding the underlying assumptions and limitations of the implemented methods, and
validating the code’s performance against known benchmarks or synthetic datasets.
Important Disclaimer: The inclusion of a toolbox or package in this list (including their URLs) does not imply
endorsement or guarantee its accuracy or reliability. Researchers are responsible for conducting their own careful
checks and validation before utilising any of these tools in their research.
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Fig. S7 | Frequency-filtered spatial modes for the ten dominant frequencies. The spatial patterns associated

with each frequency are shown for the first three time steps of the series, with each image covering 130×130

pixels2. A movie of the time series, showing the temporal evolution of each frequency-filtered mode, is shown in

Supplementary Video 2.
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Fig. S8 | SPOD analysis. Spatial modes (130×130 pixels2 each), temporal coefficients, and Welch power spectra

of the first six SPOD modes. The SPOD analysis was performed with a Gaussian filter kernel, illustrating the

frequency pairing phenomenon, where each frequency is associated with two distinct spatial modes with

corresponding temporal coefficients. The shared frequency content is evident in the Welch power spectra. The ten

base frequencies are marked with vertical dashed lines. A movie of all 200 SPOD modes is available as

Supplementary Video 4.
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