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Abstract 20 

Deprived communities tend to face higher environmental exposure risks due to inadequate 21 

environmental protection and economic investment. Estimating high-resolution disparities in 22 

pollution exposure is key to addressing such Environmental Justice issues. This study conducted 23 
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a PM2.5 measurement campaign in Cangzhou, China, in 2021, by using a taxi-based mobile sensing 1 

system. Disparities in pollution exposure, health impacts and related economic costs were 2 

calculated between deprived and affluent zones. The results showed mean values cannot represent 3 

the full extent of exposure inequality, and distributional characteristics should be emphasized. 4 

Pollutant concentrations and relative risks in some disadvantaged areas exceeded the maximum 5 

values in affluent areas. Disparities are more pronounced within deprived areas, with Gini 6 

coefficients for pollution exposure of 9.12%, exceeding affluent areas (2.28%). But affluent areas 7 

exhibit higher economic costs. The study contributes to portraying the inequalities of 8 

environmental exposure in developing country cities, helping formulate policies to mitigate 9 

environmental health disparities. 10 

Keywords: Environmental justice, Health impact assessment, Deprived-affluent areas disparities, 11 

Roadside fine particulate matters, Mobile monitoring system  12 

 13 

1. Introduction 14 

Atmospheric fine particulate matters (PM2.5) pose serious health risks. Exposure to high 15 

levels of PM2.5 can lead to fatal health problems (WHO, 2016), such as cardiorespiratory diseases 16 

(Manisalidis et al., 2020), respiratory diseases (Orellano et al., 2020), pulmonary illnesses (Chen 17 

et al., 2017). The U.S. Environmental Protection Agency states a link exists between PM2.5 and 18 

mortality rates (US EPA, 2019). Given these health damages, the WHO has adjusted the long-term 19 

exposure level for PM2.5 in the Global Air Quality Guidelines from 10 μg/m3 to 5 μg/m3 in 2021. 20 

However, about 90% of the global population still live in areas with PM2.5 exceeding 10 μg/m3 in 21 

2019 (WHO, 2021).  22 
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The truth is that pollutants are not evenly distributed between regions. Socio-economically 1 

deprived areas exhibit elevated pollutant levels, and deprived groups face higher risks of 2 

environmental exposure (Lim et al., 2012; Badland and Pearce, 2019). The unequal socio-spatial 3 

dispersion of air pollution highlights Environmental Justice (EJ) concerns (Hsu et al., 2021; Fang 4 

et al., 2023). EJ means that no individual shoulders a disproportionate burden of adverse 5 

environmental effects due to policy or economic disadvantages. EJ associated with air pollution is 6 

frequently investigated in developed urban cities. Exposure to traffic-related pollution was shown 7 

to be highest among the most disadvantaged groups in New Zealand (Kingham et al., 2007). A 8 

non-linear relationship between higher pollutant concentrations and deprived areas was found in 9 

Los Angeles (Molitor et al., 2011). A significant positive correlation between PM2.5 concentrations 10 

and Social Deprivation Index existed in Hong Kong (Li et al., 2018). However, the above studies 11 

lack the context of small and medium-sized cities, whose populations may be growing faster than 12 

large urban clusters (Berdegué and Soloaga, 2018), but inequalities in pollution exposure in such 13 

cities remain unclear. Furthermore, the majority of comparisons focus on affluent and deprived 14 

areas, neglecting the disparities within these regions. 15 

High-resolution PM2.5 data are essential for EJ implementation. However, limited by 16 

measurement methods, most studies used fixed monitoring stations data or air pollution estimation 17 

models to evaluate pollution exposure. The global average population distance to the nearest PM2.5 18 

fixed monitoring station is 220 km (Martin et al., 2019). Fixed monitoring stations are usually 19 

situated in bustling urban centers (Stampfer et al., 2020). Due to this sparse spatial distribution, 20 

large-scale air pollution monitoring is difficult to achieve, especially in economically 21 

disadvantaged areas (Hao et al., 2022). However, pollutants at the neighborhood scale are spatio-22 

temporally dynamic and can change dramatically over short distances with short periods (Hoek et 23 
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al., 2008; Apte et al., 2017). Such variability cannot be captured by fixed monitoring stations. 1 

Given that individuals predominantly reside and work in these street-level environments, using 2 

high-resolution pollutant data to accurately estimate their health impacts and disparities is a 3 

necessary but challenging task (Wu et al., 2023). The utilization of low-cost sensors in conjunction 4 

with mobility has emerged as a prevalent approach for monitoring air pollution, such as being 5 

carried by trained individuals or mounted on motorcycles and probe vehicles (Targino et al., 2016; 6 

Qiu et al., 2017; Munir et al., 2022; deSouza et al., 2023). In addition, mobile monitoring with 7 

sensors installed on the overhead lights of taxis enables high-resolution data collection with good 8 

accuracy. It provides a basis for expanding the sampling space and conducting fine-grained health 9 

impact assessments and disparities (Wu et al., 2020; Yu et al., 2022; Wang et al., 2024). 10 

Moreover, inequalities in pollution exposure will exacerbate inequalities in income, 11 

physical health, and well-being, significantly compromising equity in safeguarding individuals' 12 

health and welfare. Such health inequalities can even reduce employment and productivity and 13 

create severe psychological stress in deprived areas, further exacerbating impoverishment 14 

(Marmot, 2020; Tao et al., 2021). However, existing environmental policies mainly focus on the 15 

sources of pollutants and their concentrations, ignoring the disproportionate adverse 16 

environmental impacts on populations and failing to adopt a health-oriented perspective. Most 17 

people do not have a quantified concept of the human health costs of air pollution and some studies 18 

have attempted to estimate the related public welfare costs to provide a basis for the development 19 

of environmental health compensation mechanisms and supporting legislation (Maji et al., 2018; 20 

Yang et al., 2019; Zhang et al., 2020, 2008). However, the existing studies about economic costs 21 

have been conducted mainly on a macro scale and lack assessment among different socio-22 

economic groups. While EJ emphasizes the inequality of environmental burdens, the EJ further 23 
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implies that remedies are needed to mitigate the injustices imposed on disadvantaged groups. The 1 

United Nations Sustainable Development Goals (United Nations, 2019) have outlined a vision to 2 

diminish inequalities. Goal 3 on Good Health and Well-being emphasizes the need to protect 3 

vulnerable groups living in areas with a high disease prevalence. Goal 10, Reduced Inequalities, 4 

states the necessity of working to reduce inequalities. However, deprived areas are more likely to 5 

be trapped in a situation where they live in highly polluted environments, where their health is 6 

affected, their welfare is jeopardized, their employment opportunities are reduced, and they 7 

become poorer. Such inequality may even strengthen fertility among vulnerable groups, exposing 8 

more people to such hazards (Islam and McGillivray, 2020). 575 million people are predicted to 9 

live in extreme poverty worldwide by 2030 (United Nations, 2019). Therefore, conducting 10 

assessments of disparities in pollution exposure, health impacts and economic costs will help to 11 

develop targeted and equitable air pollution prevention strategies that reduce disparities between 12 

regions and socio-economic groups. 13 

Although studies have been conducted to examine inequalities in pollution exposure among 14 

different socio-economic groups, most of them have been carried out in larger and more developed 15 

cities and have used low-resolution pollution concentration data. Gaps exist in research on small 16 

and medium-sized cities where the distribution patterns of population and pollution could be very 17 

different from those in larger and more developed cities. The fine-grained inequalities in pollution 18 

exposure, health effects and economic costs, along with disparities within areas of different socio-19 

economic positions, remain unclear. Therefore, this study aims to contribute to this knowledge 20 

gap, and the major contributions of our work are highlighted below:  21 
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1. Hyper-localized PM2.5 concentrations across extensive spatial extents and long durations 1 

were collected by a taxi-based mobile atmospheric monitoring system in both low and high socio-2 

economic position communities in a medium-sized city in China. 3 

2. More accurate and fine-grained PM2.5 was used for EJ study. Disparities in pollutant 4 

concentrations, health risks, and PM2.5-related deaths between deprived and affluent areas were 5 

estimated. Inequalities in exposure within regions were discussed. High-resolution maps of 6 

roadside PM2.5 concentrations and relative risks were created, and refined health impacts were 7 

implemented. Distribution pictures of inequalities in environmental exposures and health effects 8 

were developed.  9 

3. The fine-grained PM2.5-related economic costs were calculated for regions with different 10 

socio-economic status. Potential causes and hazards of disparities in pollution exposure, health 11 

effects, and economic costs were discussed, and measures for improvement were proposed. 12 

 13 

2. Materials and methods 14 

Our research includes five steps: (1) define the study region, (2) collect data, including 15 

high-resolution PM2.5 concentration data, population and housing price data, (3) estimate fine-16 

grained health effects, (4) quantify the economic costs of those impacts, (5) assess the disparity, 17 

including pollutant concentration and pollution exposure between areas. The following describes 18 

these steps in detail.  19 

2.1. Study area 20 

 This study was conducted in Cangzhou, a city located in Hebei Province, China. Cangzhou 21 

was chosen as it is a heavily industrialized city in the Beijing-Tianjin-Hebei region and an area 22 

facing serious air pollution issues. It is a typical medium-sized city with a population of 810,000, 23 
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according to Tabulation on 2020 China Population Census by County, characterized by central 1 

area being economically developed and densely populated compared to suburbs. As shown in 2 

Figure 1 (a), Xinhua District, Yunhe District and Cang County are three of the districts and 3 

counties in Cangzhou. 4 

 5 

2.2. Data collection 6 

2.2.1. Source of population data 7 

The study area was divided into 2,763 1km×1km grid cells, as shown in Figure 1 (c) and 8 

(d). The population data were sourced from WorldPop (https://www.worldpop.org/datacatalog/), 9 

an organization affiliated with the University of Southampton in the UK, dedicated to providing 10 

an open platform for high-resolution global population distribution data. The raw data are provided 11 

in TIFF format as raster files, with each pixel value representing the population count within its 12 

corresponding area. After downloading, the data were integrated into GIS, refined to the study area 13 

through mask extraction, and converted into SHP format by raster-to-vector transformation to 14 

obtain population data. More details can be seen in Supplementary Materials. 15 

2.2.2. Source of housing price data 16 

Existing studies have used census-level income data to classify populations into different 17 

socioeconomic status groups (Rowangould, 2013; Antonczak et al., 2023). However, such data in 18 

China is not publicly available. Research has shown that income impacts housing affordability, as 19 

housing constitutes a substantial portion of household expenditures (Määttänen and Terviö, 2014; 20 

Mirkatouli et al., 2018). Housing loans represent 75.9% of total household liabilities in China, 21 

according to a survey conducted by Statistics and Analysis Department of the People’s Bank of 22 

https://www.worldpop.org/datacatalog/
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China. The relationship between housing prices and income also influences household 1 

consumption levels, savings, and other factors (Berger et al., 2018;Atalay and Edwards, 2022). 2 

A positive correlation has been identified between residents' socioeconomic status and 3 

housing prices (Mirkatouli et al., 2018). Using housing price levels to classify populations into 4 

high and low socioeconomic status groups is a common approach when income data is unavailable  5 

(Coffee et al., 2013). In the study by Guo et al. (2020b) and Ding et al. (2023), this method was 6 

used to analysis the equity of pollution exposure and health impacts. Therefore, given the difficulty 7 

in obtaining census level income data, our study adopts housing price levels to classify populations 8 

into high and low socioeconomic status groups. 9 

The housing price data were sourced from Anjuke, a leading real estate information service 10 

platform in China (www.anjuke.com). The platform comprehensively covers listings for new 11 

homes, second-hand properties, and rental units. We collected housing prices and geographical 12 

locations from 887 residential areas and made them into a dataset. The housing prices range from 13 

540 to 30,071 yuan/m2. House prices are not shown in some areas as some are self-built houses. 14 

Residing in self-built houses is common in China (especially in small or medium-sized cities like 15 

Cangzhou) due to their affordability and the absence of security and property management fees 16 

typical in residential communities (see Figure S4 for more details). Therefore, we classified 17 

regions with housing prices exceeding the average as high socio-economic position communities, 18 

and regions with prices below the average and lacking housing prices as deprived areas, as shown 19 

in Figure 1 (d). 20 

2.2.3. Source of roadside PM2.5 21 

Roadside PM2.5 data were collected using a taxi-based mobile atmospheric monitoring 22 

system. The detector is an SDS019-TRF laser particle sensor developed based on laser diffraction 23 

http://www.anjuke.com/
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theory by Shandong Nova Fitness Co., Ltd. The silicone tube resin material was upgraded, shock-1 

absorbing screws were installed, and pre-deployment testing was conducted to mitigate the impacts 2 

of high-temperature environments, vibrations, and strong winds. Four sensors were mounted on 3 

the headlight of the taxi, and the reliability of the monitoring dataset was ensured through 4 

automatic fault detection by cross-checking. The device utilizes a dual-mode GPS and Beidou 5 

positioning system with an accuracy of less than 20 meters, and each monitoring device can upload 6 

PM2.5 data every 3 seconds, returning latitude, longitude, timestamp, and PM2.5 concentration 7 

values. In our previous research (Wu et al., 2020), the validity of the data was confirmed through 8 

spatiotemporal comparisons with fixed monitoring stations using five statistical metrics, including 9 

relative error (Er), fractional bias (FB), normalized mean square error, geometric variance (VG), 10 

correlation coefficient (R), and the fraction of predictions within a factor of two of the observations 11 

(FAC2). In 2021, the system was deployed on 54 taxis, collecting a total of 79,973,505 valid data, 12 

with more than 10 million data for each season. Data monitoring was conducted continuously over 13 

24 hours, with minimum hourly data exceeding 30,000 in each season. All major roads were 14 

covered, and good spatial and temporal coverage was achieved in the study area. More details can 15 

be found in the Supplementary Materials. 16 

Each 1km1km grid cell was statistically analyzed to demonstrate the availability of 17 

monitoring data. Equation (1) was used to calculate the proportion of the population covered by 18 

monitoring, and Equation (2) was applied to assess the variation coefficient within each grid.  19 𝑟 = (∑𝑝𝑜𝑝𝑐𝑒𝑙𝑙 𝑃𝑂𝑃)⁄ × 100                                              (1) 20 

Where 𝑟 is the proportion of population covered by monitoring, ranging from 0 to 100, with larger 21 

values indicating more people covered. 𝑃𝑂𝑃 is the total population of study area. 𝑝𝑜𝑝𝑐𝑒𝑙𝑙 is the 22 

grid population with monitoring data. 23 



10 

 

𝐶𝑉𝑐𝑒𝑙𝑙 = 𝜎𝑐𝑒𝑙𝑙 𝜇𝑐𝑒𝑙𝑙⁄                                                  (2) 1 

Where 𝐶𝑉𝑐𝑒𝑙𝑙 is the variation coefficient of each cell, 𝐶𝑉𝑐𝑒𝑙𝑙 < 1.5 indicates that the variability 2 

between data points is not very high and the data is relatively stable; 𝜎𝑐𝑒𝑙𝑙, 𝜇𝑐𝑒𝑙𝑙 are the standard 3 

deviation and mean of all roadside PM2.5 sampling data for each cell, respectively. 4 

 5 

Figure 1 Study area. (a) The location of the study area. (b) The taxi-based mobile 6 

atmospheric monitoring system. (c) 1km×1km grid cells population. (d) 1km×1km grid 7 

cells housing price distribution. 8 
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2.3. Health impact assessment 1 

In this study, the epidemiologic relative risk (RR) was applied to estimate the long-term 2 

health effects attributable to roadside PM2.5 exposure. This method is recommended by the Global 3 

Burden of Disease (GBD) (Pisoni et al., 2023)  and is calculated as follows. 4 𝐻𝐼𝑐𝑒𝑙𝑙,𝑖 = 𝐴𝐹𝑐𝑒𝑙𝑙,𝑖 × 𝑃𝑜𝑝𝑐𝑒𝑙𝑙 × 𝐵𝑖                                        (3) 5 𝐴𝐹𝑐𝑒𝑙𝑙,𝑖 = (𝑅𝑅𝑐𝑒𝑙𝑙,𝑖 − 1) 𝑅𝑅𝑐𝑒𝑙𝑙,𝑖⁄                                         (4) 6 

Where 𝐻𝐼𝑐𝑒𝑙𝑙,𝑖 is the health impacts of health outcomes 𝑖 in each cell; 𝐴𝐹𝑐𝑒𝑙𝑙,𝑖  is defined as the 7 

population attributable fractions for health outcomes 𝑖  in each cell; 𝑃𝑜𝑝𝑐𝑒𝑙𝑙  is the gridded 8 

population data; 𝐵𝑖 is the baseline disease-specific health impacts rate for health outcomes 𝑖, and 9 

obtained from the China Health Statistical Yearbook; 𝑅𝑅𝑐𝑒𝑙𝑙,𝑖 is the relative risks (RRs) of health 10 

outcomes 𝑖  in each cell, and if 𝑅𝑅𝑐𝑒𝑙𝑙,𝑖 > 1  indicates adverse health effects. This research 11 

considered long-term exposures and calculated mortality for four health outcomes, including all-12 

cause, cardiovascular, respiratory and lung cancer mortality.  13 

Three RR estimation functions have been developed for PM2.5 exposure, including the 14 

integrated exposure risk (IER) (Burnett et al., 2014), log-linear (LL) exposure-response functions 15 

(Pascal et al., 2013) and the non-linear power law (NLP) function (Chowdhury and Dey, 2016). 16 

The LL function is the recommended model for estimating health effects in high PM pollution 17 

areas (WHO, 2006) and is currently the most widely used exposure response model in China (Lin 18 

et al., 2017; Yin et al., 2017; Maji et al., 2018; Wang et al., 2024), calculated as Equation (5). 19 𝑅𝑅𝑐𝑒𝑙𝑙,𝑖 = exp⁡[𝛽𝑖 × (𝑐𝑐̅𝑒𝑙𝑙 − 𝑐0)]                                      (5) 20 

Where 𝛽𝑖 is the exposure response coefficient, meaning the incidence change of health outcomes 21 𝑖 per μg/m3 PM2.5 increment, obtained from the Chinese epidemiological study (shown in Table 22 

1); 𝑐𝑐̅𝑒𝑙𝑙 is the average PM2.5 concentration in each cell; 𝑐0 is the baseline PM2.5 concentration, and 23 
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is set to be 5 μg/m3 according to the latest version of the WTO Air Quality Guidelines (WHO, 1 

2021). 2 

To calculate the annual mean PM2.5 concentrations, grid cells with monitoring data for all 3 

seasons were selected. The average PM2.5 concentration in each cell is calculated as Equation (6). 4 𝑐𝑐̅𝑒𝑙𝑙 = ∑ 𝑝𝑐𝑒𝑙𝑙,𝑛𝑁𝑐𝑒𝑙𝑙𝑛=1 𝑁𝑐𝑒𝑙𝑙⁄                                             (6) 5 

Where 𝑝𝑐𝑒𝑙𝑙,𝑛 is the PM2.5 concentration for the 𝑛th monitoring point in each cell; 𝑁𝑐𝑒𝑙𝑙 is the total 6 

number of monitoring data in each cell. 7 

Table 1   for four health outcomes for long-term exposure. 8 

Health outcomes 𝛽𝑖 (CI 95%) (Fang et al., 2016) 

All-cause mortality 5.37 (3.48,7.27) 

Cardiovascular mortality 5.91 (3.63,8.18) 

Respiratory mortality 2.54 (0.95,4.12) 

Lung cancer mortality 8.93 (4.32,13.55) 

 9 

2.4. Economic valuation of PM2.5 health impacts 10 

The value of statistical life (VSL) is a widely available indicator used to monetize the 11 

ultimate impact on health due to air pollution. It is defined as the aggregating individuals’ 12 

willingness to pay (WTP) to secure a marginal reduction in the risk of premature death, which is 13 

not the value of a person's life, but the sum of an individual's WTP (OECD, 2014). The VSL can 14 

be calculated as Equation (7). 15 𝑉𝑆𝐿 = 𝜕𝑊𝑇𝑃 𝜕𝑅⁄                                                     (7) 16 

Where 𝜕𝑊𝑇𝑃  represents individuals’ willingness to pay; 𝜕𝑅  represents a small eduction of 17 

mortality risk. 18 
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Existing studies in China have focused mainly on Beijing or nationwide, lacking localized 1 

WTP (Zeng et al., 2024). The calculation methodology recommended by the OECD incorporates 2 

parameters such as income elasticity, GDP per capita, and consumer price index (CPI), shown in 3 

Equation (8). Economic costs associated with health endpoints in different regions and years can 4 

be estimated by using a baseline (base region and base year). This method has been widely applied 5 

to estimate health-related economic costs due to air pollution (OECD, 2014; Giannadaki et al., 6 

2018; Wang et al., 2020; Zeng et al., 2024). Therefore, this study calculated the economic cost of 7 

the four health endpoints in each grid cell in Cangzhou based on the existing health-related cost 8 

data in Beijing (Guo et al., 2010; Yin et al., 2017; Maji et al., 2018; Zeng et al., 2024). 9 𝑉𝑆𝐿𝑐𝑒𝑙𝑙 = 𝑉𝑆𝐿(𝑡) × (𝐺𝑐𝑒𝑙𝑙,(𝑡) 𝐺(𝑡)⁄ )𝜏 × (1 +%∆𝑃 +%∆𝐺𝑐𝑒𝑙𝑙)𝜏                    (8) 10 

Where 𝑉𝑆𝐿𝑐𝑒𝑙𝑙 is the per unit economic cost in each cell in Cangzhou in 2021; 𝑉𝑆𝐿(𝑡) is the per 11 

unit economic cost in year 𝑡 in the baseline area (e.g., Beijing is usually chosen); 𝐺(𝑡) is the per 12 

capita GDP of Beijing in year 𝑡; %∆𝑃 is percentage alteration in CPI from year 𝑡 to 2021, data 13 

source from Hebei Statistical Yearbook (more details shown in Table S1 of Supplementary 14 

Material); 𝐺𝑐𝑒𝑙𝑙,(𝑡) is the per capita GDP for each cell in year 𝑡; %∆𝐺𝑐𝑒𝑙𝑙 is percentage alteration 15 

in GDP per capita from year 𝑡 to 2021 in each cell. We used grid cell population data and GDP 16 

data to calculate. The gridded GDP data were obtained from the Resource and Environmental 17 

Science Data Platform ((http://www.resdc.cn/DOI),2017.DOI:10.12078/2017121101). The 18 

distributions of gridded GDP and more details can be seen in Figure S8. 𝜏 is the income elasticity, 19 

which is set at 0.8 according to OECD (2014). 20 

Thus, the economic costs can be calculated as Equation (9). 21 𝐸𝐶𝑐𝑒𝑙𝑙,𝑖 = 𝑉𝑆𝐿𝑐𝑒𝑙𝑙,𝑖 × 𝐻𝐼𝑐𝑒𝑙𝑙,𝑖                                            (9) 22 

http://www.resdc.cn/DOI),2017.DOI:10.12078/2017121101
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Where 𝐸𝐶𝑐𝑒𝑙𝑙,𝑖 is the economic costs for health outcomes 𝑖 in each cell; 𝐻𝐼𝑐𝑒𝑙𝑙,𝑖 is the health impacts 1 

of health outcomes 𝑖 in each cell. 2 

 3 

2.5. Estimation of disparity 4 

2.5.1. The disparity in PM2.5 concentration between regions 5 

Equation (10) was used to calculate the disparities in concentration between two areas. 6 𝜆𝑑𝑖𝑓𝑓 = 𝑁(𝑠) 𝑁𝑎,𝑐𝑒𝑙𝑙⁄ × 100%𝑠 = {𝑐𝑎,1, … , 𝑐𝑎,𝑖, … }, 𝑐𝑎,𝑖 > 𝑐𝑏,𝑚𝑎𝑥                                        (10) 7 

Where 𝜆𝑑𝑖𝑓𝑓 is defined as the disparities in concentration between areas 𝑎 and 𝑏; 𝑁𝑎,𝑐𝑒𝑙𝑙 is the total 8 

number of grid cells in area 𝑎; 𝑁(𝑠) is the number of set 𝑠; 𝑐𝑏,𝑚𝑎𝑥 is the maximum concentration 9 

of grid cells in area 𝑏; 𝑠 is the set of area 𝑎 with grid cells concentration above 𝑐𝑏,𝑚𝑎𝑥; 𝑐𝑎,𝑖 is the 10 

concentration in area 𝑎. In our study, area 𝑎 and area 𝑏 refer to deprived area and affluent area, 11 

respectively. 12 

2.5.2. The Gini coefficient in pollution exposure 13 

The Gini coefficient is frequently employed to quantify economic inequality (Atkinson, 14 

1970). The same concept can be used to assess disparities in pollution exposure (Pisoni et al., 15 

2022). 16 𝐺𝑠 = 1 (2𝜇𝑠)⁄ × ∑ ∑ 𝑝𝑖𝑝𝑗|𝑐𝑖̅ − 𝑐𝑗̅|𝐶𝑠𝑗=1𝐶𝑠𝑖=1                                    (11) 17 𝜇𝑠 = ∑ 𝑝𝑖𝑐𝑖̅𝐶𝑠𝑖=1                                                         (12) 18 

Where 𝐺𝑠 is the Gini coefficient in deprived or affluent areas, ranging from 0 to 1, with higher 19 

values representing increased inequality; s indicates deprived or affluent areas; 𝐶𝑠  is the total 20 

number of grid cells; 𝑐𝑖̅  and 𝑐𝑗̅  are the average concentration of cell 𝑖  and 𝑗; 𝑝𝑖  and 𝑝𝑗  are the 21 

proportion of population in cell 𝑖 and 𝑗. 22 
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3. Results 1 

3.1. Statistical information of sampling data in each grid cell 2 

High coverage of monitoring was achieved within 1km  1km grid cells. As shown in 3 

Figure 2 (a), the number of grid cells with monitoring data each month exceeds 1,000. The 4 

proportion of the population covered by monitoring (𝑟) each month exceeds 70%. In Figure 2 (b), 5 

the average number of monitoring data per grid cell in spring, summer, autumn, and winter is 6 

12,225, 10,528, 9,862 and 8,148, respectively. Figure 2 (c) shows the coefficient of variation for 7 

each grid. In each season, the proportion of grids with 𝐶𝑉𝑐𝑒𝑙𝑙 > 1.5 is less than 1% (shown in 8 

Figure 2 (d)), indicating that the monitoring data varies within a reasonable range under the 9 

restricted temporal and spatial scopes. 10 

 11 

Figure 2 Statistical information of roadside PM2.5. (a) Number of grid cells with monitoring 12 
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data per month and population coverage proportion. (b) The number of monitoring data in 1 

each cell. (c) The coefficient of variation in each cell. (d) The proportion of coefficient of 2 

variation exceeding 1.5. 3 

 4 

3.2. The disparities in concentration  5 

Due to objective limitations, not all grid cells under the 1km1km resolution were 6 

monitored (e.g., mountainous or forested regions that were difficult to access). However, the 7 

monitored areas covered over 70% of the population. Grid cells with monitoring data available for 8 

all four seasons were selected, including 1,102 grid cells in low housing price areas (representing 9 

55.1% of the total population) and full coverage of the 78 grid cells in high housing price areas 10 

(representing 16.56% of the population). Figure 3 (a) presents a refined pollution concentration 11 

map at 1 km1 km resolution, illustrating the spatial and temporal variability of pollutant 12 

concentrations. Significant variations in roadside PM2.5 concentrations can be observed between 13 

adjacent grid cells within the same season. Also, a single grid's concentration may exhibit 14 

substantial changes across different seasons. However, the limited spatial coverage of stationary 15 

monitoring stations fails to capture such dynamic, potentially exposing populations to elevated and 16 

variable pollution levels without their awareness. 17 

As shown in Figure 3 (b), the average concentrations in deprived areas are close to affluent 18 

areas. However, disparities in pollutant concentration distribution between the two regions are 19 

evident. Air pollution levels are more widely distributed in underdeveloped areas. The maximum 20 

PM2.5 concentrations in deprived areas are much higher than affluent areas in all seasons. The 21 

highest concentrations in deprived communities were 155.60 μg/m3, 113.55 μg/m3, 150.68 μg/m3, 22 

and 174.93 μg/m3 in spring, summer, autumn, and winter, respectively, while in affluent areas were 23 



17 

 

50.62 μg/m3, 39.68 μg/m3, 52.02 μg/m3, and 75.04 μg/m3, respectively. Specifically, we calculated 1 

the percentage of cells within deprived regions where concentrations surpass the maximum values 2 

in affluent areas, according to Equation (10). The 𝜆𝑑𝑖𝑓𝑓 for four seasons were 17.97%, 5.72%, 3 

15.25%, and 9.89%, respectively. Residents of these deprived regions (accounting for 5.99%, 4 

2.29%, 5.25%, and 3.56% of the total population, respectively) live with pollution concentrations 5 

exceeding the highest concentrations in affluent areas, posing significant inequalities in air 6 

pollution exposure. The actual values would be higher than these proportions, as concentrations in 7 

some deprived areas were not monitored. However, average concentrations of pollutants fail to 8 

capture such exposure differences, and environmental protection efforts in economically 9 

disadvantaged areas can easily be overlooked. Addressing environmental justice in regions with 10 

different socioeconomic positions needs to map inequalities across full exposure distributions. 11 
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 1 

Figure 3 The disparities in concentration. (a) High-resolution roadside PM2.5 concentration 2 

maps. (b) The disparities between deprived and affluent areas. 3 

 4 

3.3. The disparities in health impact  5 

According to Equations (3) to (6), we calculated the health impacts in grid cells containing 6 

the four health outcomes of all-cause mortality, cardiovascular mortality, respiratory mortality, 7 

and lung cancer mortality. As shown in Figure 4 (a), the RRs of all grids are more than 1, 8 
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indicating negative health impacts. The refined health impact distribution maps show that RRs are 1 

lower in affluent areas. Some grids in deprived areas have RRs of (1.2, 1.3] for all-cause mortality, 2 

(1.3, 1.4] for cardiovascular mortality, (1.1, 1.2] for respiratory mortality, and risks of lung cancer 3 

mortality above 1.8, which exceeds the RRs for most grids in communities with high socio-4 

economic positions.  5 

Figure 4 (b) shows the disparities of RRs between the two areas. The average RRs in 6 

underdeveloped areas of all-cause, cardiovascular, respiratory and lung cancer mortality were 7 

1.211, 1.235, 1.095, and 1.378, respectively, and 1.199, 1.221, 1.089, and 1.352 in affluent areas. 8 

23.91% of grid cells in deprived areas have higher health risks for the four health outcomes than 9 

the highest values in communities with high socio-economic positions. Individuals living in 10 

communities with lower socio-economic positions suffer a higher risk of PM2.5-related mortality.  11 

Combined with the grid cells population dataset, the number of PM2.5-related deaths was 12 

calculated. The percentage of deaths attributed to all-cause, cardiovascular, respiratory, and lung 13 

cancer in these three districts of Cangzhou was 0.142% (1,713 deaths), 0.033% (403 deaths), 0.005% 14 

(65 deaths), and 0.014% (180 deaths), respectively. This result is reasonable, and some health 15 

impact studies have been conducted in Hebei Province, reporting more than 30,000 PM2.5-related 16 

deaths (including all-cause, cardiovascular diseases, respiratory diseases, and lung cancer) in some 17 

cities in 2013 (Fang et al., 2016) and 676,000 PM2.5-related deaths caused by lung cancer in 2016 18 

(Maji et al., 2018). Specifically, affluent areas had 378, 89, 14, and 40 deaths, accounting for 19 

0.031%, 0.007%, 0.001%, and 0.003% of the total population, respectively. And deprived areas 20 

accounted for 0.111% (1,335 deaths), 0.026% (314 deaths), 0.004% (51 deaths), and 0.012% (140 21 

deaths). However, the actual values for deprived areas would be even higher, as some grids were 22 
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not monitored, whereas affluent areas achieved full coverage. More deaths occur in deprived 1 

communities, and health impacts vary unequally among social groups.  2 

 3 

Figure 4 The relative risks of four health endpoints. (a) Fine-grained distribution of health impacts. 4 

(b) The difference between deprived and affluent areas. 5 

 6 
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3.4. Economic valuation of PM2.5 health impacts  1 

Figure 5 (a) shows the spatial distribution of 𝑉𝑆𝐿𝑐𝑒𝑙𝑙 . Overall, the 𝑉𝑆𝐿𝑐𝑒𝑙𝑙 is higher in 2 

affluent areas (1,216,652 USD) than in deprived areas (475,763 USD). People in communities 3 

with high socio-economic positions have a stronger willingness to pay. Some deprived regions 4 

also show a higher willingness to pay, as these grids have smaller populations (shown in Figure 1 5 

(c)) and are clustered with multiple factories with higher GDP (see Figure S8), leading to higher 6 

GDP per capita and 𝑉𝑆𝐿𝑐𝑒𝑙𝑙. The economic cost of different health endpoints varies, with all-cause 7 

mortality incurring the highest, followed by cardiovascular and lung cancer mortality, and 8 

respiratory mortality being the lowest, as shown in Figure 5 (b). The economic costs are higher in 9 

affluent areas, with the four health outcomes being 2,396,331, 564,447, 91,145, 252,120 USD, 10 

respectively, while in deprived areas are 567,660, 133,624, 21,668, 59,479 USD. 11 

The result reflects the fact that the rich are more willing to pay for mitigating health damage, 12 

and people with high socio-economic positions value self-protection investments more than low-13 

income people; for example, one study showed that the rich are more likely to invest in air filters 14 

(Sun et al., 2017). This difference in individual preventive spending implies that inequalities in 15 

socio-economic status will continue to increase disparities in air pollution exposure. For example, 16 

the rich are more likely to own cars, shielding them from environmental pollution, while 17 

disadvantaged groups are more prone to commuting by motorcycle, increasing the risk of outdoor 18 

exposure. In addition, individuals with lower skill levels often engage in outdoor professions like 19 

street cleaning and package delivery. In contrast, high-skilled workers typically work indoors, 20 

reducing outdoor exposure time (Sun et al., 2017; Kim et al., 2024). Residents of underdeveloped 21 

areas are also inclined to work in agriculture, as data from Cangzhou Statistical Yearbook shows 22 

that the power of agricultural machinery in deprived areas far exceeds affluent areas. Individuals 23 
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in deprived areas are more likely to be directly exposed to emissions from agricultural diesel 1 

equipment. Health inequalities between regions will continue to widen if no targeted measures are 2 

taken. Many people do not have this quantified concept of the human health costs caused due to 3 

air pollution and are unaware of such disparities. Goals for reducing pollution exposure in deprived 4 

regions are still lacking in many countries' policy frameworks and action programs. 5 

Moreover, PM2.5 has caused severe economic damage globally. The economic cost caused 6 

by PM2.5 in China amounted to 101.39 billion USD in 2016 and 86.887 billion USD in 2017 (Maji 7 

et al., 2018; Sun et al., 2022). The cost of deaths caused by PM2.5 in 26 European cities was €7.8 8 

billion in 2019 (Belis et al., 2023). 26.805 billion USD in Brazil (Wen et al., 2024), 308 million 9 

USD in Rwanda, and 1.38 billion USD in Ghana (Fisher et al., 2021). This monetization of health 10 

impacts helps to generate public awareness. Combating environmental pollution, minimizing 11 

economic costs, reducing regional disparities, and safeguarding citizens' right to health is a 12 

worldwide imperative. 13 
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 1 

Figure 5 The economic costs of PM2.5 health impacts. (a) The distribution of VSLcell. (b) The 2 

economic costs for four health outcomes. 3 

4. Discussion 4 

4.1. Disparities in deprived and affluent areas 5 

Areas with high housing prices were fully covered by monitoring and used as the baseline 6 

for our analysis. A certain percentage of the deprived population was exposed to pollution levels 7 

exceeding the highest concentrations in affluent areas in each season. The proportion of deaths 8 
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attributable to four health outcomes was higher in low housing price areas. The deprived areas had 1 

a larger population but lower economic costs. This reveals an uneven distribution of pollution 2 

exposure, health impacts, and economic costs across the population. Deprived communities are 3 

exposed to higher levels of environmental pollution and health risks, which has also been 4 

confirmed in other studies (Tonne et al., 2018; Fairburn et al., 2019; Bramble et al., 2023).  5 

Are there inequalities within deprived or affluent areas? We have calculated this according 6 

to Equations (11) (12). The 𝐺𝑠 is 2.28% for affluent areas and 9.12% for deprived areas, indicating 7 

disparities in pollution exposure are larger within deprived areas. Deprived communities face a 8 

more complex situation. Communities with lower socio-economic positions have higher health 9 

risks than their external counterparts, with larger internal variations as well.  In deprived areas, 10 

some inhabitants dwell within the confines of mountains and forests, where the underdeveloped 11 

road network and low levels of modern infrastructure contribute to a lower degree of pollution 12 

exposure. Others reside in self-built houses adjacent to farmland, where agricultural machinery 13 

may be one of the primary sources of pollutant emissions. According to the Cangzhou Statistical 14 

Yearbook in 2021, the total power of diesel engines in Cang County (where high housing price 15 

area are concentrated) and Xinhua and Yunhe Districts (where low housing prices are concentrated) 16 

was 986,480 kW and 59,009 kW, respectively, as detailed in Figure S6. Moreover, due to the 17 

prohibition of trucks entering the central urban areas, the demand for transportation necessitates 18 

their operation on the peripheral suburban road networks of the city. According to a field study, 19 

the number of trucks passing through the roads surrounding low housing residential area in Cang 20 

County exceeds 150 per hour (more details can be seen in Figure S7), which increases the severe 21 

pollution to the socioeconomically disadvantaged groups. 22 
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Environmental protections tend to be more favorable towards communities with high 1 

socio-economic positions. For example, fixed monitoring stations and effective pollution warning 2 

systems are primarily concentrated in the central areas of small and medium-sized cities due to the 3 

high costs of installation and maintenance. As illustrated in Figure 6, the density of these stations 4 

is only 0.00343 per square kilometer in the study area, leaving large regions unmonitored. 5 

Compared to the high-resolution pollution heatmap generated through mobile monitoring (Figure 6 

3 (a)), many pollution hotspots remain undetected by the fixed network. However, as more urban 7 

populations reside in small and medium-sized cities (Fahmi et al., 2014), expanding the spatial 8 

coverage of pollution monitoring and implementing refined health impact assessments are 9 

essential steps for addressing environmental pollution and reducing health risks. For instance, 10 

creating air pollution monitoring networks by combining mobile monitoring methods. 11 

Concentration and health risk heat maps can be developed to identify areas of high pollution levels 12 

and high health risk, such as Figure 3 (a) and Figure 4 (a). Moreover, in the suburbs of small and 13 

medium-sized cities, agricultural activities dominate the outskirts (Pan and Wang, 2022). 14 

Strengthening emission management for agricultural equipment in deprived areas is necessary to 15 

prevent direct exposure to pollutants. 16 
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 1 

Figure 6 Distribution of mobile monitoring and fixed monitoring stations. 2 

 3 

4.2. Health impacts analysis of demographics 4 

Health impacts are unevenly distributed across demographic characteristics. The exposure 5 

response coefficient  values for four health outcomes were obtained from different cohort studies 6 

(Chen et al., 2018; Vodonos et al., 2018; Guo et al., 2020a, 2016; Wang et al., 2020; Yang et al., 7 

2020). Since the World Health Organization (WHO) defines people aged 65 years and over as 8 

older people (Organization, 2015), the population was divided into three age groups: 0-64 years, 9 

65-74 years, and >75 years.  10 

The relative risks (RRs) for four health outcomes vary by age group. The RRs are lower 11 

for individuals under 65 years old, while those aged 65-74 have more burdens of PM2.5 attributable 12 
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all-cause, cardiovascular and lung cancer mortality. And the RRs are lower for individuals over 75 1 

years old. The feasible reason is that susceptible residents die before reaching the 75 and older age 2 

group, and individuals over 65 are at greater risk of PM2.5 exposure compared to younger 3 

populations (Chen et al., 2018). Additionally, based on the gender-specific RRs, males are at 4 

greater risk of PM2.5-related mortality of all-cause, cardiovascular disease and lung cancer. 5 

Significant effects of PM2.5 on mortality of respiratory causes were observed in females. And more 6 

details can be seen in Figure S9. 7 

 8 

4.3. The land use and pollution exposure disparities 9 

In our study, pollution exposure and health risks were lower in affluent areas (mainly 10 

located in city centers), while higher in deprived areas (mainly located in suburban areas), shown 11 

in Figure 3 (a)  and Figure 4 (a). The relationship between PM2.5 concentration, land use, and 12 

road length were quantified by using Geographically Weighted Regression (GWR) model. 13 

Following the steps outlined in Figure 7, spatial autocorrelation tests, influencing factors selection, 14 

and model construction were conducted. The result shows that roadside PM2.5 concentrations 15 

exhibit a positive correlation with industrial area, expressway length, and branch road length, while 16 

showing a negative correlation with residential areas (more details can be seen in Supplementary 17 

Materials). 18 



28 

 

 1 

Figure 7 The steps and results for GWR model building. 2 

 3 

Cangzhou is a typical medium-sized city in China, characterized by a developed urban core 4 

while industrial land is distributed in the surrounding areas far from the city center. Populations 5 

with lower socioeconomic status tend to prefer low-cost housing near industrial zones (Hanna, 6 

2007; Sharghi et al., 2022). This pattern is observed in similar developing country cities like China 7 

(Ding et al., 2023), and south-central Chile (Romero et al., 2012), where suburbs exhibit higher 8 

health risks compared to central areas. Additionally, the import and export activities in industrial 9 

areas increase truck traffic, further contributing to higher PM2.5 emissions. The road fleet 10 

configurations in the central areas include no trucks but their proportion is higher in the suburbs 11 

(over 20%), according to our field research. 12 

We simulated a scenario where the industrial land area was reduced to 10% of its current 13 

size, resulting in a change in pollution concentration distribution. The PM2.5 concentration 14 

decreased by an average of 2.2%. And the relative risks of all-cause, cardiovascular disease, 15 



29 

 

respiratory disease, and lung cancer deaths decreased by 0.007, 0.008, 0.003, and 0.014, 1 

respectively (more details can be seen in Supplementary Materials). 2 

Urban planning and facility distribution influence the distribution of population exposure 3 

to pollution and raises Environmental Justice concerns. Based on the GWR model, a negative 4 

correlation between pollution concentrations and residential areas was found, indicating that 5 

higher proportions of residential zones are associated with lower PM2.5 concentrations. In areas 6 

with high housing prices, larger proportions of land, higher green coverage, and better isolation 7 

from surrounding regions effectively reduce particulate pollution and improve human health (Bi 8 

et al., 2022). Wealthier populations tend to choose to reside in areas with better air quality, far 9 

from degraded or polluted zones, having higher security against risks and natural hazards (Romero 10 

et al., 2012). In some developed cities, employment and commercial activities have shifted to 11 

suburban areas. Affluent individuals have moved to the suburbs, seeking lower population density, 12 

higher living standards, and greater comfort. In contrast, disadvantaged groups are often forced to 13 

live in the urban core (Daskalova and Slaev, 2015; Morris, 2019). Diverse exposure patterns exist 14 

within regions or countries. For example, air pollution levels are higher in central Shenzhen, China, 15 

compared to rural areas (Guo et al., 2020b). These disparities highlight the importance of 16 

investigating exposure differences across diverse contexts. A deeper understanding of local air 17 

pollution exposure inequalities is crucial for developing targeted policies to address health 18 

inequities. Environmental policymakers should shift their perspective to emphasize the uneven 19 

spatial distribution of building environment, air pollution, and health impacts in an effort to reduce 20 

regional disparities. 21 

 22 
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5. Conclusions 1 

In this study, disparities in pollution exposure, health effects, and related economic costs 2 

between affluent and deprived areas were estimated by using the taxi-based mobile atmospheric 3 

monitoring system in a medium-sized city in China. The results showed that the mean value cannot 4 

capture the full extent of inequalities in pollution exposure. The roadside PM2.5 concentrations in 5 

some deprived areas exceeded the maximum concentrations in affluent areas. The relative risks of 6 

health hazards due to PM2.5 are higher in deprived communities. Health inequalities exist among 7 

communities with different socio-economic positions. Given that the economic costs are higher in 8 

affluent areas, people with high socio-economic positions are more willing to pay for protecting 9 

their health. Existing environmental policies are pollution-centered, focusing only on pollutants 10 

and their sources while neglecting the human or health-oriented approach. A shift should be made 11 

in perspective by emphasizing patterns of local disparities in air pollution exposure and 12 

endeavoring to reduce regional disparities (e.g., between deprived and affluent areas).  13 

However, there are still limitations in our study. We only used housing price data to 14 

distinguish between deprived and affluent areas, as income data is challenging to obtain given 15 

privacy concerns. In addition, we measured economic costs in Cangzhou based on existing studies 16 

of other regions in China and did not conduct localized willingness-to-pay surveys. Future studies 17 

could enhance localized surveys and develop pollutant concentration prediction models to 18 

characterize pollution levels in areas not covered by stationary monitoring. 19 

 20 
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