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Abstract

The newly introduced discipline ofPopulation-Based Structural HealthMonitoring (PBSHM) has been developed in

order to circumvent the issue of data scarcity in “classical” SHM. PBSHM does this by using data across an entire

population, in order to improve diagnostics for a single data-poor structure. The improvement of inferences across

populations uses the machine-learning technology of transfer learning. In order that transfer makes matters better,

rather than worse, PBSHM assesses the similarity of structures and only transfers if a threshold of similarity is

reached. The similarity measures are implemented by embedding structures as models —Irreducible-Element

(IE) models— in a graph space. The problem with this approach is that the construction of IE models is subjective

and can suffer from author-bias, which may induce dissimilarity where there is none. This paper proposes that

IE-models be transformed to a canonical form through reduction rules, in which possible sources of ambiguity have

been removed. Furthermore, in order that other variations—outside the control of the modeller— are correctly dealt

with, the paper introduces the idea of a reality model, which encodes details of the environment and operation of the

structure. Finally, the effects of the canonical form on similarity assessments are investigated via a numerical

population study. A final novelty of the paper is in the implementation of a neural-network-based similarity measure,

which learns reduction rules from data; the results with the new graph-matching network (GMN) are compared with a

previous approach based on the Jaccard index, from pure graph theory.

Impact Statement

Data-based Structural Health Monitoring (SHM) has benefited from over three decades of research and offers an

extremely promising means of automatically diagnosing damage in structures, thus improving operational safety

and economy. Despite this effort, SHM has not made the transition to commonplace usage within the industry.

One of the problems is that higher levels of diagnostics (damage location and quantification) require data from

structures in damaged states, which are difficult or impossible to obtain. Population-Based SHM (PBSHM) has

been proposed as a means of solving the problem of data scarcity by using data across entire populations of

structures. Inferences in PBSHM are considerably strengthened if the population data are from similar structures.

For this reason, a major part of the PBSHM framework involves assessing the similarity of structures, and this is

accomplished by modeling structures in a graph space in which comparisons are facilitated mathematically. The

comparison process itself introduces technical problems, not least the fact that structural models are subjective
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and affected by author bias. The current paper is a major contribution to the process of removing author bias and

allowing objective structural comparison. As such, it is a step toward the practical implementation of PBSHM

across the civil industry.

1. Introduction

In a traditional structural health monitoring (SHM) paradigm, data are acquired via a monitoring

campaign on a single structure with the aim of determining the health of the given structure. However,

this methodology has inherent obstacles; data must first be acquired from the structure of interest before

any health state can be determined. Population-based structural health monitoring (PBSHM) attempts to

overcome the aforementioned data obstacle within SHMby expanding the remit of available data sources.

The belief is that by monitoring multiple structures —the population— knowledge on the health of a

specific structure can be enhanced in comparison to the knowledge available when only utilizing its

own data.

PBSHM operates under the premise that knowledge learnt on one structure may be transferred to

another structure via a process of transfer learning (Pan and Yang, 2010; Weiss et al., 2016). To aid in the

intention that any transferred knowledge improves rather than hinders the overall knowledge of the target

structure: a structural similarity is first established between the source and target structures before any

knowledge transfer is attempted.

The work included within this paper focuses on the portion of PBSHM, which establishes a degree of

similarity between the structures. Before any metrics of similarity can be computed, there must first be a

common domain in which to describe these structures: in this case, the set of Irreducible Element

(IE) models. Brennan et al. (2025) introduced the second generation of IE model language and referred

to the domain in which structures are compared within PBSHM as the network.

Previous work by Gosliga et al. (2021) established how the Jaccard Index (Jaccard, 1901) with a

Maximum Common Subgraph (MCS) (Fernández and Valiente, 2001) approach can be used for

generating a similarity metric between two structures. The problem with any similarity algorithm is in

making the algorithm recognize differences in the models which are present because of underlying

differences in the objects being represented (structures), and ignoring differences which are present

because of limited human understanding of the problem (author bias).

The purpose of this paper is to explore the effect that variationswithin amodel from author bias have on

the network and the associated similarity metrics. This paper proposes a novel approach to dealing with

these aforementioned variations by the introduction of a Canonical Form IE model, which provides a

unique IE model for each structure, regardless of any author-introduced variations. An existing machine-

learning technique is also proposed here as an alternative to the graph-theory approach utilized byGosliga

et al. (2021) to generate similarity metrics.

This paper is laid out as follows: Section 2 outlines the background ofwhy variations are present within

IE models because of author bias. Section 3 introduces the Canonical Form IE model and Canonical

Form Reduction Rules (CFRR). The Reality Model is introduced, and the effect that it will have on the

CFRR is discussed. The effect that the CFRRhave on the network is evaluated using the Jaccard Index and

MCS algorithm to generate a similarity matrix with and without using the CFRR. Section 4 introduces the

Graph Matching Network (GMN) within the realm of PBSHM and explores the use of the GMN to

generate similarity metrics using the Canonical Form. Finally, Section 5 provides the conclusions of

this work.

2. Background

SHM (Farrar and Worden, 2007) aims to understand the health of a structure or system by analyzing

sensor data from the structure. Over the decades, many approaches have been tried and tested with the

vision of implementing SHM in the real world; however, there is one limitation that has plagued the field
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since its inception—the availability of damage labels for a given structure or system. PBSHM (Bull et al.,

2021; Gosliga et al., 2021; Gardner et al., 2021; Tsialiamanis et al., 2021; Brennan et al., 2025) aims to

address these inherent data availability issues by monitoring multiple structures with similar character-

istics—the population—with the desire that data can be transferred from one similar structure to another.

These aforementioned goals of PBSHM can be broken down into two distinct subprocesses: deter-

mining which structures (or components of the structure) are similar—thus establishing a population—

and transferring any learnt knowledge across the population. Before any similarity metrics can be drawn

up for a given set of structures, there must be a standardizedmethodology for describing the structures in a

consistent and meaningful manner. Gosliga et al. (2021) introduced the vehicle used within PBSHM to

achieve such descriptions of structures: IE models.

The premise of an IE model is straightforward: create a representation of any structurally significant

components within the structure and capture each interaction between these components. The level of

detail required for an IE model is not the same as for a finite element (FE) model or for a computer-aided

design (CAD) model; such levels of detail as to the complex geometrical mesh would only serve to hinder

any similarity metric, instead of providing a grounding for an overall characteristic of the structure. The

initial concept of IE model generation proved fruitful across two datasets: the initial toy dataset and a

further real bridge dataset (Gosliga et al., 2022).

The recent work by Brennan et al. (2025) introduced the idea of a technological implementation

supporting a shared-data domain in which PBSHM data reside; network, framework, and database. A

second generation of IE models was also proposed, which facilitated an increased embedding of

engineering knowledge and design choices within the model; in conjunction, it provided a standardized

IE model language for structure descriptions, enabling IE model data to reside within the introduced

shared-data domain. In the interest of completeness, a short recap of the second-generation IE model

language is included here; however, the reader is recommended to read the original paper byBrennan et al.

(2025) to gain a full understanding of the breadth and depth of rich engineering knowledge available for

embedding within the second-generation IE model language.

Any physical entity within a structure is labeled as an element; if the entity belongs to the structure in

question, it is classified as a [regular] element. If the entity belongs to another structure, it is classified as a

[ground] element.Any interactions between these elements are labeled as relationships. Any time a larger

[regular] element is divided into two or more [regular] elements of the same type, the interaction between

those two [regular] elements is classified as a [perfect] relationship. When a [regular] element has been

omitted from a model —because it is not classified as structurally significant— but interactions remain

present which require to be modeled, this is classified as a [connection] relationship. If the physics

between two [regular] elements is desired to be modeled, this interaction must be classified as a [joint]

relationship.When the edge of the structure is to be denoted—when a [regular] element interacts with a

[ground] element— this is modeled as a [boundary] relationship. Each type of element and relationship

comes with its own set of accepted knowledge that is available to embed within the model.

Figure 1 depicts the change from a real-world structure to an IE model. The structure in question is a

two-span beam-and-slab bridge from Northern Ireland (see Figure 1a), which—for the purposes of this

paper— has been simplified into a single beam which runs horizontally from the left embankment to the

right embankment—as pictured— and a single column supporting the horizontal beam, from the center of

the beam to the road. Transitioning this scenario to an IE model (see Figure 1b) means that each

embankment on the left and right side of the bridge is represented by independent [ground]

elements. The beam traversing from left to right is represented by a single [regular] element and the

column in the center of the beam providing vertical support, is represented by another [regular] element.

One final [ground] element is also present to represent the ground on which the supporting column is

resting. [boundary] relationships are present between each [ground] element and the associated supported

[regular] element. The interaction between the column and the beam are then modeled via a [joint]

relationship with a [static] nature.

Within PBSHM, IE models may be the vehicle used to embed structural knowledge into the PBSHM

framework; however, they are not the final domain in which this structural knowledge resides. The whole
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purpose of embedding structural knowledge within PBSHM—and thus the necessity of IE models— is to

facilitate the comparison of structures to collect a measured score of similarity between structures for

determining potentially unknown populations. Brennan et al. (2025) refer to this final destination of

structures as the network; a shared domain in which the similarity comparisons of PBSHM structures

reside and—based upon the associated similarity— establish the strength of relationships between these

structures. The implementation of these similarity algorithms will be present within the PBSHM

framework, and as such, may support multiple different similarity algorithms that execute within the

network. Each structure within the network will have a similarity score for every other structure,

potentially for each supported similarity algorithm within the framework.

This affiliation of relationships between structures within PBSHM can be envisioned as a complete

weighted graph, where each node is the model of a structure, and each edge is the similarity value between

the two structures. Figure 2 visualizes the relationships between structures within the network. As the

network is the final domain for IEmodel data, it is only natural that the field of graph theory (Barabási and

Pósfai, 2016; Newman, 2018) be an avenue for exploration in the goal of determining the similarity of

structures. IE models by their definition, naturally lend themselves to be represented as an Attributed

Graph (AG): each element becomes a node, and each relationship becomes an edge. All the knowledge

present within the IE model is then embedded as attributes on the corresponding node or edge.

Whilst PBSHM is a relatively recent branch of SHM, it does not invalidate the fundamentals upon

which SHMwas built and must honor these principles and practises within the theory of PBSHM. One of

these aforementioned principles within SHM is the desire to locate where potential damage is located

Figure 1. A simplified Irreducible-Element (IE) model representation of a two-span beam-and-slab

bridge with two deck [regular] element s and one column [regular] element. The model interacts with the

ground at the left and right side of the deck as well as at the bottom of the column and is considered a

[grounded] IE model.
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within the structure. The issue with honoring this principle is subjectivity. If one considers the two-span

beam-and-slab bridge depicted in Figure 1a. One engineer may be particularly interested in locating the

damage on the beam, and as such, add more details within the model on the beam section of the IE model.

Another engineer may decide that the damage on the column is of paramount importance and thus add

additional details to the column section of the IE model. These nuances in model objectives may appear

insignificant within the grand scheme of PBSHM; however, they can vastly change the arrangement of an

IE model and thus the associated AG.

Figure 3 illustrates how the subjectivity of the model creator can change the underlying model

submitted into the database and ultimately the network. The first graph (see Figure 3a) shows the changes

present within the IE model if the author decided that instead of the horizontal beam being a single

[regular] element, the horizontal beam is initially split into two [regular] elements to locate damage to a

particular span of the bridge, the right span of the bridge is further subdivided into three [regular] elements

for either sensor placement or potential further damage localization given signs of wear on that span of the

bridge. The second graph (see Figure 3b) shows that the horizontal beam has been left as a single [regular]

element; however, the vertical column has been split into two [regular] elements to enable damage

localization to either the top section of the column or the bottom section of the column. The third and final

graph (see Figure 3c) splits the horizontal beam into two [regular] elements and a single [regular] element

for the column; however, the engineer generating this IE model has determined that there should be a

[joint] relationship to either span of the horizontal beam. These are only three of the potentially limitless

variations that can be present in the simplified two-span beam-and-slab bridge.

Variations present within a model because of author subjectivity are a fundamental issue with any

modeling task. The problem was present in the initial version of IE models by Gosliga et al. (2021) and

remains present in the second version of IE model language by Brennan et al. (2025); however, with the

second version of the language, there is embedded knowledge stored within the model itself to help

understand and interpolate why an author has chosen to dissect the structure in the manner present within

the model. Research has already been initiated by Gosliga et al. (2021) into the viability of the Jaccard

Index as a similarity metric within PBSHM. The Jaccard Index works by calculating the MCS between

two graphs; in the case here, two attributed graphs.

To evaluate the impact these aforementioned variations have upon PBSHM’s similarity results, a

synthetic dataset was generated based on the simplified two-span beam-and-slab bridge example

Figure 2.A diagram of the similarity score-driven relationships between Irreducible Element (IE) models

within the PBSHM network. Each existing IE model —a purple node— within the network, has a

relationship with every other IE model within the network. Each relationship is derived from a similarity

score generated by the PBSHM framework, and as such, may therefore necessitate multiple relationships

between each pair of IEmodels in the network. The diagram also depicts a new IEmodel—the green node

— being added to the network, and the process of relationships being discovered between the newly

inserted IE model and existing network models.
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illustrated within this paper. The dataset contains randomly generated beam-and-slab bridges from two to

ten spans, with each span being potentially divided up into three subsections; furthermore, each column

between the span was either joined to the previous span, the next span, or both spans to include the full set

of variations presented in Figure 3. The dataset contains a total of 4500 randomly generated bridges—500

Figure 3. Three of the potential Irreducible Element (IE) model representations—displayed as graphs—

of the two-span bridge displayed in Figure 1a. [ground] element s are represented by a G in the centre of

the node, [regular] element s are represented by an R in the centre of the node. [boundary] relationship s

are represented by aB on the edge, [perfect] relationship s are represented by aP on the edge and a [joint]

relationship with a [static] nature is represented by a J:S on the edge.
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bridges per number of spans— and was then randomly separated into a training, validation, and test

subsets. This dataset—for the purposes of this paper—will be henceforth known as, thematching dataset.

Figure 4 displays an extract of the generated “five span” bridges included within the matching dataset.

To ensure consistency throughout the similarity matrix results depicted within this paper, the embed-

ding of attributes into the AG representation from an IE model has been fixed to embedding only the

contextual type—the type attribute value from the contextual object within a [regular] element. For nodes

where there is no contextual type —such as a [ground] element— no attributes are embedded into the

node. The edges in the AG representations have no attributes from the associated [relationship]s

embedded within the graph.

Figure 5 shows the results of embedding only the [regular] element’s contextual typewithin theAG and

evaluating each pair within the network for their given MCS similarity using the Jaccard Index. The axes

of the similarity matrix are labeled with the number of spans of the bridge and their associated graph

Figure 4. An extract of the Irreducible Element (IE) models—displayed as graphs— contained within the

generated beam-and-slab ‘matching’ dataset. Each IE model incorporates the following variations:

spans being divided up into one to three subsections and each column being joined to either the previous

span, the next span, or both spans. The examples chosen are from the test subset and are used in the

similarity results in Figures 10,13, and 14.
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number within the matching dataset. In the ideal scenario, all the graphs with the same number of spans

should all identify as matching with a similarity value of 1. When a graph with either a descending or

ascending number of spans —N�1, Nþ1— is compared to a graph with N number of spans, the

similarity score should identify these as the next closest match, after N.

As the reader can see in the results in Figure 5, when the inherent ambiguity of the model author’s

subjectivity is includedwithin the graphs, the algorithm is not able to find any strong recognizable pattern.

The algorithm correctly identifies when the graph is compared to itself; however, the algorithm—at least

within the matching dataset— is not able to correctly identify graphs with the same number of spans as

identical; instead, it identifies graphs with differing number of spans as being the closest matches. If one

looks at the result for 6 (#5–220), the algorithm identifies a four-span bridge (#3–465) as having a closer

similarity than any of the six-span bridges.

3. Canonical Form

The observed variations present within the similarity metrics —when introducing the inherent model

subjectivity— highlight two new scenarios which require attention within the comparison portion of

PBSHM. When generating similarity scores, two graphs must always match as identical if the source

structure from which both graphs have been generated is the same structure, and structures which are

classed as nominally identical or from a homogenous population Bull et al. (2021), should further match

as identical.

This paper proposes that the solution for addressing the aforementioned scenarios across all current and

future similarity algorithms within the framework is a methodology for reducing IE models to a common

form. A form which preserves the structural knowledge and engineering decisions present within the

original model but facilitates a common representation of a single structure, regardless of any author

subjectivity; a Canonical Form. IE models generated by authors would henceforth be known as detailed

Figure 5. The Jaccard Index similarity matrix results from the Maximum Common Subgraph on the test

portion of the matching dataset when embedding only the contextual type as the node attribute. The axis

are labelled with the number of spans the graph is associated with and the ID of the graph from within the

dataset.
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IE models and only reduced to a Canonical Form representation for the purpose of similarity matching

within the network. Detailed IE models would still be submitted by authors into the framework and

ultimately stored within the database.

Furthermore, the notion of a common form for a single structure has the potential to improve the

performance of the network. Currently, the network acts as a complete weighted graph for each similarity

algorithm within the framework. Computationally, this requirement involves each unique pair of graphs

having their similarity computed. Whilst this mechanism may appear trivial when factoring a toy dataset

numbering only a few hundred graphs, the logistics of performing this same computation become

problematic when considering the potentially vast size and quantity of real-world structure graphs. The

largest single graph within the matching dataset has in the order of tens of elements/nodes. Real-world

structures may have elements numbering in the order of hundreds or even thousands within a single

structure. If one factors in that, within a network, one may have thousands, if not tens of thousands of

structures present, the reality of performing these computations becomes expensive— without factoring

in the possible variations from model subjectivity.

This paper proposes that the solution to the computational problem is that the Canonical Form

becomes an intermediary layer within the network to act as a known target for comparison against

detailed IE models. Each detailed IE model within the network would have a similarity score to every

Canonical Form within the network. When a new detailed IE model is inserted into the network, only

similarity scores are drawn up for the newly inserted model and the existing known Canonical Forms. The

proposed modified methodology of the network has the potential to not only reduce the number of

computations performed within the network but also create a natural alignment of populations within the

network for discovery by clustering algorithms. Figure 6 visualizes the configuration of theCanonical Form-

inspired network and depicts the process of a new detailed IE model being included into the network.

3.1. Canonical Form reduction rules

To facilitate the process of reducing a detailed IE model to the corresponding Canonical Form

representation, this paper proposes an initial set of three reduction rules to accomplish the desired

common form; the CFRRs. The CFRR are a set of rules which can be applied to any detailed IE model,

with the goal of removing any ambiguity from the model; however, the rules must not remove any

Figure 6. The PBSHM Network using the Canonical Form as a common form for comparison. The red

nodes represent the known Canonical Form representations within the network. The purple nodes

represent existing detailed IE models, for whom similarity comparison values are already present against

the known Canonical Form representations. The weight of the similarity between the existing detailed IE

models and the known Canonical Form representations are represented by increased darkness of colour

on the edge—higher similarity scores equal darker edges. The green node represents a new detailed IE

model being inserted into the network and the dotted edges represent the similarity calculations made

upon insertion.
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embedded knowledge within the model, which may later be used within the similarity metrics. Each rule

must be grounded in a solid reasoning as to why the associatedmodifications contained within the rule are

able to modify the IE model, without the loss of knowledge from within the model. While the reduction

rules may be applied whilst the model is within the IE model domain, the reality is that the Canonical

Form representation occurs whilst within the network and as such, further discussions within this paper

will refer to the changes made by the CFRR as within the associated graph domain of the network.

The upcoming subsections introduce the first three CFRR. Each reduction rule has an accompanying

figure which depicts the methodology of its operations within the graph domain. To ensure continuity

throughout this paper, the associated figures utilize the two-span beam-and-slab bridge example intro-

duced in Figure 1. It is important to note that the generatedCanonical Form representation of a detailed IE

model is not intended to be immutable. When additional knowledge is accumulated on the attributes and

topology that are important within the network, new CFRR will be included; therefore, transforming the

representation referenced as the Canonical Form.

3.1.1. Individual ground

The first rule proposedwithin the CFRR is that each [ground] elementwithin a graphmust be unique. This

rule requires that wherever a [boundary] relationship is present within a graph, the associated [ground]

element included within the relationship must be unique to the [boundary] relationship and not shared

with any other [boundary] relationships. The reasoning behind this rule is, each [ground] element present

within the graph, is the representation of another structure’s presence within the model. Each interaction

between the structure being modeled, and the third-party structure is unique, and as such, should be

represented as a unique [ground] elementwithin the model. As a [ground] element is only the reference to

the presence of an external structure, no knowledge is lost by this reduction rule.

The Individual Ground reduction rule not only reduces the topological complexity of the graph by

removing unnecessary loops but could also be applied as a general rule for [ground] elements in the

detailed type. Figure 7 illustrates the process of selecting a [ground] element with more than one

corresponding [boundary] relationship, creating new [ground] elements and [boundary] relationships,

and subsequently, removing the offending [ground] element and [boundary] relationships.

3.1.2. Perfect-Joint-Joint relationships

The second rule proposed within the CFRR is that any time within the graph where there is a pattern of

three [regular] elements connected in a loop via a [perfect], [joint], and [joint] relationship; the loop can be

broken and reduced to a [perfect] and [joint] relationship. If one takes the example illustrated in Figure 3c,

there are two [regular] elements —representing the horizontal beam in the example bridge— connected

via a [perfect] relationship, there is then a single [regular] element —representing the vertical support

column— connected to both of the aforementioned [regular] elements of the horizontal beam, via

independent [joint] relationships.

The interaction between the three aforementioned [regular] elements can be modeled in three distinct

manners: the vertical support column is connected via a [joint] relationship to both of the horizontal beam

[regular] elements (as depicted within Figure 3c), the vertical support column is connected via a [joint]

relationship to only the left horizontal beam [regular] element, and oppositely, the vertical support column

is connected via a [joint] relationship to only the right horizontal beam [regular] element.

Eachof these scenarios is a validmethod for embedding the structural knowledgeof the interaction between

the horizontal beam and the vertical support column. In the last two scenarios, the physics between the vertical

support column and the horizontal beam have been embedded once within the model; conversely, in the first

scenario, the physics have been embedded twice within the model, once for each beam.

The Perfect-Joint-Joint reduction rule can safely reduce a [perfect], [joint], [joint] relationship loop to

a single [perfect] and [joint] relationship as the physics of the interaction have been duplicated within the

model; thus, one of the [joint] relationships can safely be removed from the model without losing any

structure knowledge regarding the interaction. The Perfect-Joint-Joint reduction rule also simplifies the

topology of the graph by removing another unnecessary loop.
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Figure 8 illustrates the process of finding the [perfect], [joint], [joint] relationship loop, selecting one of

the [joint] relationships to remove, and finally removing the selected [joint] relationship from the graph.

Whilst the Perfect-Joint-Joint reduction rule does not enforce which of the [joint] relationships should be

removed from the graph, any implementation of the Perfect-Joint-Joint reduction rule must be consistent

in which [joint] relationship the algorithm decides to remove; if the same graph is reduced by a CFRR

implementation, it must choose the same [joint] relationship to remove, each and every time i.e in a planar

graph, an implementation may choose to consistently remove the “right” joint.

3.1.3. Perfect relationships

The third rule proposed within the CFRR for now, is that any [regular] element, with exactly two [perfect]

relationships may be removed from the graph with the associated [perfect] relationships, by creating a

new [perfect] relationship between the neighboring [regular] elements and migrating any knowledge

within the [regular] element to be removed, to the neighboring [regular] elements.

Figure 7. The stages of a Individual Ground Canonical Form reduction against an Irreducible Element

model graph. By performing this reduction, an unrequired loop is removed from the graphwithout the loss

of any embedded knowledge within the model.
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[Perfect] relationships by their own definition, are present within an IE model where a larger

component has been divided up into additional [regular] elements, either for representing a complex

geometrical shape, or for the purpose of damage localization within the model. In both of the aforemen-

tioned scenarios, the [perfect] [relationship] is only present within the model to handle model subjectivity

or SHM necessity of the creator. Embedding complex geometrical shapes is important to gain advanced

knowledge of the form of a component; however, such detailed knowledge is potentially irrelevant when

trying to compare the overall similarity of two structures, but becomes increasingly relevant when trying

to compare the similarity of structure subsections or validate the comparisons to a third party. The same

premise holds true for the division which has occurred because of damage localization: knowledge on

where damage has transpired within the model is vitally important for the author of the model, or when

trying to relay knowledge back to the owner or operator; however, these details are irrelevant when

determining the similarity of structures.

Figure 8. The stages of a Perfect-Joint-Joint Canonical Form reduction against an Irreducible Element

model graph. By performing this reduction, an unrequired loop is removed from the graphwithout the loss

of any embedded knowledge within the model.
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The Perfect Relationship reduction rule can safely reduce a [regular] elementwith two—and only two

— [perfect] relationships, as the knowledge contained within the selected [perfect] relationships and

associated [regular] element is irrelevant for similarity purposes, and can be merged into neighboring

[regular] elements without losing any structural relevant knowledge in the context of the network.

Figure 9 illustrates the process of finding the [regular] element with two —and only two— [perfect]

relationships, creating a new [perfect] relationship between the neighboring [regular] elements of the

selected [regular] element, and removing the original selected [regular] element and the associated

redundant [perfect] relationships from the graph. Whilst the Perfect Relationship reduction rule does

not explicitly enforce that neighboring [regular] elements must obey the [perfect] relationship matching

type rule defined by Brennan et al. (2025), it is expected that any implementation of the CFRR would

ensure that the neighboring [regular] elements of the selected [regular] element have matching values for

the contextual, geometrical and material types before actioning the defined reduction rule.

It is envisioned that the [perfect] relationship reduction rule will be refined in the future to handle

[regular] elements that have more than two [perfect] relationships. In the fullness of time, the CFRR will

have additional rules included to facilitate the removal of all unrequired variations within the network. In

the final version of the CFRR, there will be no [perfect] relationships present in a CF IE model; however,

this statement will not be valid within the remit of the Reality Model (see Section 3.3).

3.2. Jaccard Index results

As discussed earlier in the paper (see Section 1), the Jaccard Index—or Jaccard similarity coefficient— is

a method for measuring the similarity between two datasets. In the case of determining the similarity of IE

models, the algorithm was used by Gosliga et al. (2021) and Gosliga et al. (2022), to generate a similarity

score between two attributed graphs (see Figure 10). The logic behind the Jaccard Index boils down to

calculating the intersection between G1 and G2, over the union of G1 and G2:

p A,Bð Þ¼
∣A∣ ∩ ∣B∣

∣A∣ ∪ ∣B∣
¼

∣A∣ ∩ ∣B∣

∣A∣þ ∣B∣� ∣A∣ ∩ ∣B∣
(1)

The output from the Jaccard Index is a similarity score between 0 and 1, where 1 is similar and 0 is

dissimilar. The calculation of theMCS betweenG1 andG2 is implemented via a backtracking algorithm to

find the largest common subgraph between two graphs—G1 andG2 in this case. In the interest of brevity,

the logic of implementing the backtracking algorithm is excluded from this paper, the interested reader is

recommended to read the original paper by Gosliga et al. (2021) to understand the finer workings of the

algorithm.

Figure 10 displays the similarity matrix results using the Jaccard similarity coefficient against the

matching dataset used in Figure 5 and the knownCanonical Form dataset for bridges with spans from 3 to

7. The ideal scenario for these similarity metrics is that a bridge from thematching dataset shouldmatch as

near identical —a value as close to 1 as possible— to the known Canonical Form bridge with the same

number of spans. The similarity value should decrease in value the further away the number of spans being

compared.

The first results in Figure 10a show the similarities when using none of the CFRRs and instead using

the Canonical Form as a common form for comparison against. As the reader can evaluate, the Jaccard

similarity coefficient is unable to find any discernible pattern between the matching dataset and the

Canonical Form dataset. The second results in Figure 10b show the similarities when thematching dataset

—containing detailed IE models— has first been reduced using an implementation of the CFRR before

being evaluated against the common form Canonical Form dataset, using the Jaccard similarity coeffi-

cient. As the reader can see, the implementation of the CFRR within the network improves the indicated

values with the desired pattern of similarity (results within the same span should match identically with

similarity values gradually decreasing through the change in number of spans) starting to emerge when

comparing the matching dataset to the Canonical Form dataset.
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Figure 9. The stages of a Perfect-Perfect Canonical Form reduction against an Irreducible Element

model graph. By performing this reduction, an unrequired node is removed from the graph without the

loss of any embedded knowledge required for similarity matching. Iterating over the graph with this

reduction rule until no further regular elements are removed will remove the unrequired sequences of

repeated [regular] elements and [perfect] relationships from the graph.
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3.3. Reality Model

An IE model is only concerned with structural composition. The environment in which the IE model is

placed, the operational constraints of the structure, and the concerns of a structure owner are but three

examples of knowledge that, while being vitally important in the overall makeup of a structures’ health,

are out of the remit for an IE model. The aforementioned missing knowledge provides critical context to

conditions a structure must endure; as such, they are required to be included within the global scope of

PBSHM, whilst still remaining out of bounds to the structural comparisons portion of the PBSHM

architecture.

A new model is required to capture the circumstances in which a structure resides, an encapsulation of

the world in which the structure lives: the Reality Model. This model does not invalidate any of the

proceeding research on capturing the structural composition of a model or any of the defined shared-data

domains: network, framework and database. Instead, the model builds upon and encapsulates all of these

PBSHM-defined fundamentals into a hierarchical overarching model. A Reality Model by itself will not

be an official specification or list of requirements akin to the specification and language of an IE model:

instead, the model will be the summation of all available knowledge on a structure: structural

Figure 10. The Jaccard Index similarity matrix when comparing the matching dataset to the known

Canonical Form dataset using both the Jaccard Index without the Canonical Form Reduction Rules

(10a) and then with the Canonical Form Reduction Rules (10b). The Attributed Graph contains only the

embedding of the [regular] element ‘s contextual type as a node attribute to keep results in direct

comparison to Figure 13. TheX axes are labelled with the number of spans of the Canonical Form graph,

the Y axes are labelled with the number of spans the graph is associated with and the IE of the graph from

the matching dataset. The label for the Y axis is missing from the second figure because the labels are the

same as in the first figure.
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composition, channel values, extracted features, sensor network, environmental and operational vari-

ables, and damage localization concerns, to name but a few. Figure 11 depicts the potential hierarchical

knowledge areas within the Reality Model.

The specifications and definitions of required knowledge will be devolved to the individual areas of

knowledge. The decisions as to what is required to capture structural composition, belong to an IE model

and as such are controlled by the IE model section within the PBSHM Schema. The decisions as what is

required to ensure a full picture of a sensor network, belong to the sensor network and as such, will be

defined by a future sensor-network section within the PBSHM Schema. It is only when the aforemen-

tioned knowledge areas are brought together, that the Reality Model achieves its full identity and has a

powerful and meaningful purpose within PBSHM.

By the definition of a Reality Model, each knowledge area is devolved and has complete control of the

associated data and language required to embed the associated required knowledge. The PBSHM shared

data domain— network, framework, and database—must be aware of the Reality Model and understand

how the presence of the model determines any confounding influences. The database will naturally

become aware of any influences the Reality Model produces by the expansion of new defined knowledge

areas within the PBSHM Schema. The framework will further organically expand to be Reality Model-

aware, via the inclusion of new algorithms designed to process the enhanced available state of a structure

contained within the database.

While the network operates its comparisons within the IE model domain, being Reality Model-aware

means that additional restrictions may be required when considering the introducedCanonical Form.The

whole purpose of an IE model and subsequently the Canonical Form is to find similarities between

structures, thus enabling new populations of structures to be established, and finally, learnt knowledge

being transferred across the population. There is no point in attempting to transfer learnt knowledge across

the population, if the knowledge being transferred is not applicable to the target structure because of the

world in which the structure lives.

As such, each area of knowledge encompassed within the Reality Model must have the potential to

restrict and inform the produced Canonical Form representation of a structure. This may be by the

Figure 11. A selection of potential knowledge areas included within the hierarchical layout of the

Reality Model.
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introduction of additional CFRRs, which are only pertinent if certain data are present within the Reality

Model. They may also be in the form of restrictions on when certain CFRRs can be applied. A specific

value within the labels section of the Reality Model may dictate that certain elements are protected and

may not be removed from the model via the CFRRs. In a network, where only IE model data resides, the

Canonical Form representation of two homogenous structures should be identical; however, when

additional Reality Model data are included within the network, the Canonical Form representations of

two homogenous structures, may no longer be identical.

4. Graph matching network

The Jaccard Index is simply one methodology for generating a similarity between two sets of graph data,

once one has established the known intersection between these two sets of data. The way in which this

intersection has been found previously —within the context of a graph— is by using the Maximum

Common Subgraph (MCS). The MCS is an object from graph theory (Barabási and Pósfai, 2016;

Newman, 2018) and is the result of finding the largest shared graph between two graphs (see

Figure 12). The problem with this approach, is that each node within G1 and G2, have to match exactly.

If one takes the example of material within a [regular] element, say a beam on a bridge. Both bridges

are classified as two-span beam-and-slab bridges; however, in the first bridge, the beam has a material

type set of “metal”! “ferrousAlloy”! “steel,” in the second bridge, the beam has amaterial type set to

‘metal’ ! “aluminiumAlloy”. No matter how this material knowledge is encoded into an attributed

graph, the nodes of the corresponding [regular] elements would never be included within the MCS,

without a decision to omit knowledge from the AG. To facilitate the inclusion of these nodes within the

MCS, a decision would have to be made to only include the first level of material type within each node.

Such modifications to knowledge encoding within the AG necessitate knowledge of both the context in

Figure 12. The Maximum Common Subgraph (MCS) between G1 and G2, where the graphs are two

bridge IE models with the contextual type from the [regular] element embedded as an attribute within the

associated nodes.
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which the structures are based and the mechanics of the similarity metrics. Alternately, a method in which

all available knowledge from the IE model can be encoded within the attributed graph, and then the

similarity algorithm itself can determine which of these attributes are necessary for determining the

similarity of the network.

Neural network (Bishop, 2010) models are a subset of machine-learning paradigms aiming to replicate

how the neurons inside the brain process and pass data between themselves. If one examines the process of

how a multi-layer perceptron (MLP) (Bishop, 2010) approximates an input–output mapping for classi-

fication or regression. The MLP adopts a layered structure, with each layer receiving a vector of real

numbers from the previous layer and passing on a processed vector to the next layer. The input layer

receives training or test data from the outside world, and the output layer communicates final results to the

outside world. All other layers are termed hidden layers. It is assumed here that the reader has some

familiarity with the basic MLP structure.

In contrast to MLPs, graph neural networks (GNNs) (Bacciu et al., 2020) receive graph-structured

objects at their input and produce them at their output (Tsialiamanis et al., 2021). The graphs of interest

will generally be attributed graphs where the nodes and edges each carry an associated vector of

parameters. Training then corresponds to optimizing these parameters to satisfy some purpose, and the

graph topology itself will be unchanged at the output. In this case, the training is conducted in a series of

blocks, in which the edge attributes are updated, followed by the node updates. It is also possible to assign

global attributes to a graph, and these are updated at the end of each block. The updates are computed

locally; that is node attributes are updated on the basis of values of attributes on some neighborhood set of

nodes in a process rather like message passing in learning graphical models (Bishop, 2010). The actual

update rules themselves can be based on update functions learning from the training data using standard

learners, like MLPs. More general GNNs can output graphs with changed topologies as well as changed

attributes.

Li et al. (2019) have recently introduced the graph matching networks (GMN) variant within the GNN

family, where instead of categorizing or regressing on data, the objective is to determine the similarity

between graphs. The GMN can be trained in two ways: pairs of labeled graphs or triplets of unlabeled

graphs. In the first method, each graph within the dataset G1, is paired with another graph within the

dataset,G2. If the graphs,G1 andG2, are determined to be similar, then a label of 1 is assigned to the pair;

however, if the graphs are determined to be dissimilar, then a label of �1 is assigned to the pair.

G1,G2ð Þ¼ tϵ �1,1f g (2)

In the second method of training the GMN, each graph,G1, is paired with one graph within the dataset

that it is similar, G2, and one graph within the dataset that is dissimilar, G3. The formed triplet does not

require a label; however, it does require the order of the graphs within the triplet to be observed:

G1,G2,G3ð Þ;G1 is similar toG2,butG1 is dissimilar toG3 (3)

Thework outlined in this paper has shown the potential of a common formwithin the PBSHM network.

The main disadvantage with a method such as this is manually learning and forming theCFRRs to reduce

the detailed IEmodel down to theCanonical Form representation. The hope of using amethod such as the

GMN, is that the neural network in the code of the GMN, can learn yet unknown reductions. To evaluate

the use case of a GMNwithin the context of the PBSHM network, one first must establish if the GMN can

learn the similarity without using the common form.

For the purpose of this paper, the GMN is trained using sets of labelled graph pairs (see equation 2),

applying a loss function of the margin-based Euclidean distance, and utilizing the Adam optimizer

(Kingma andBa, 2014) for theminimization of the loss function. Asmentioned in Section 2, thematching

dataset is randomly separated into three subsets: training, validation, and test. Labelled pairs are generated

for each unique directed combination of graphs within the subset i.e.

Sp ¼ G1,G2ð Þ, G2,G1ð Þ,…, GN�1,GNð Þ, GN ,GN�1ð Þf g (4)
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In this particular problem, if the number of spans is the same in both graphs within the pair, a label of 1

is assigned to the pair; otherwise, a label of �1 is assigned. To limit the impact of overfitting, the GMN

uses only the labelled pairs within the training subset for training. The learnt parameters are evaluated

using the validation subset, with the test subset used as the independent “not seen before” dataset to

generate the similarity results displayed within this paper. Finally, to align the numerical values between

the GMN results and the Jaccard Index results, the similarity values generated by the GMN have been

scaled between 0 and 1—where 1 is similar— using theminimum andmaximumvalueswithin the subset.

Figure 13 depicts the results of using the GMN against only the matching dataset. As one can see, the

GMN is able to learn and identify the beam-and-slab bridges of the same span as identical, with a result of

1. The GMN is also able to identify the desired tiered similarity, when traveling away from the number of

spans. If one looks at the results for the six-span bridges, the bridges with the closest similarity are the

group of six-span bridges. The bridges with the next-nearest similarity are the bridges with five and seven

spans, then the four-span bridges and finally the three-span bridges. While the results are not as separated

in distance as the Jaccard Index results in Figure 10b, there is a small noticeable change in the results as the

further one moves away from the target span.

Figure 14b shows the results of introducing the Canonical Form representation into the GMN

comparisons; instead of the GMN learning the reductions needed between detailed IE models, the

GMN learns the reductions required to reduce the detailed IE model to the Canonical Form represen-

tations. This requires modifying the labelled pairs within the training, validation, and test subsets to have

one graph within the pair be a detailed IE model Gd
n , and the other graph be the Canonical Form

representationGcf
n i.e. Gd

n ,G
cf
n

� �

. As one can see, theGMN is still able to identify detailed IEmodels to the

Canonical Form representation with the same number of spans as identical. The results also show that the

pattern of similarity decreasing with neighboring number of spans from the target span is also preserved.

These results illustrate the flexibility of the GMN, the algorithm is able to learn the reduction rules

between detailed IE model to detailed IE model or from detailed IE model to the Canonical Form

representation.

Figure 13. The Graph-Matching Network similarity matrix results when comparing the detailed

Irreducible Element model against itself. The axes are labelled with the number of spans the graph is

associated with and the ID of the graph from within the dataset.

Data-Centric Engineering e24-19

https://doi.org/10.1017/dce.2024.45 Published online by Cambridge University Press



Figure 14 illustrates the results of comparing the performance of the Jaccard Index using the CFRRs

(see Figure 14a), verses the GMN comparing the matching dataset to the known Canonical Form

representation dataset (see Figure 14b). From the initial inspection of the results, it is clear to see that

the GMN algorithm outperforms the Jaccard Index withCFRRswhen considering the ability to identify a

pattern of similarity within the example network; however, when one considers the context of the

algorithms, the outcome is not so clear.

If one looks at the comparisons for the bridge 7 (#6–124), the Jaccard Index with CFRRs incorrectly

identifies the five-span Canonical Form representation as the closet match to the input bridge, whereas

with the GMN, the algorithm correctly identifies the seven-span Canonical Form representation as the

closest match. The GMN is evidently —within the context of the example scenario— able to learn

reduction ruleswhich are not currently understood or implementedwithin theCFRRs; thismay lead one to

Figure 14. The similarity matrix results for both the Jaccard Index (see Figure 14a) and the Graph-

Matching Network (see Figure 14b) when comparing the matching dataset —containing detailed

Irreducible Element models— against the known Canonical Form dataset. For the Jaccard Index results,

the Canonical Form Reduction Rules were used to reduce the detailed IE models before comparison. For

theGraphMatchingNetwork results, the GraphMatchingNetwork learnt the reductions required against

the training dataset —a labelled graph pairing of detailed Irreducible Element models and known

Canonical Form representations. The Attributed Graphs for both algorithms contain only the embedding

of the [regular] elements contextual type as a node attribute to keep results in direct comparison to

Figure 5 and 13. TheX axes are labelled with the numberof spans of the Canonical Formgraph, and theY

axes are labelled with the number of spans the graph is associated with and the IE of the graph from the

matching dataset. The label for the Y axis is missing from the second figure because the labels are the

same as the first figure.
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imagine that the GMN algorithm should be used above the Jaccard Index with CFRRs; however, to

achieve this learnt knowledge, a not insignificant amount of bridges were required for the GMN to build

the aforementioned knowledge. In direct comparison, the Jaccard IndexwithCFRRs required no previous

examples of similar bridges before it could establish a similarity.

Without modification to the existing GMN algorithm, there is no methodology for extracting which

elements or relationships cause the similarity, thus providing a stumbling block in the algorithm’s ability

to communicate back to a framework user, why the given similarity is thus. The Jaccard Index with

CFRRs, however, is able to communicate back to a framework user, as to where the similarity has been

established via the MCS. Both of the aforementioned algorithms are able to generate a similarity within

the network: and as such belong within the framework. When each algorithm should be used, perhaps,

requires a larger viewpoint of the lifecycle of PBSHM.

While PBSHM is still within its infancy, one cannot rely upon the network having existing examples to

generate learnt knowledge; instead, the network will need to depend upon algorithms which require no

previous examples to learn from, such as the Jaccard Index with CFRRs. Once PBSHM has established

itself to the extent of having multiple examples of a single type of structure, learning algorithms such as

the GMNwill have their place within PBSHM. The problem of data availability should not block research

into learning algorithms; on the contrary, research should continue into machine-learning approaches—

using simulated datasets— and focus on identifying what knowledge can be extracted from these

approaches, and incorporated back into the global knowledge of similarity and processes such as the

CFRRs.

5. Conclusions

In conclusion, this paper has highlighted the effect that author bias has in the variations present within the

network, and the direct effect these variations have upon the computed similarity scores when using a

graph theory-based calculation. The Canonical Form was introduced as the vehicle within PBSHM to

reduce the effect that the variations have on the network. A detailed author-generated IE model is

submitted into the network, the CFRRs then reduce the detailed IE model into the Canonical Form

representation for comparison within the network, such that no author bias-based variations are present

within the model, while retaining all structural knowledge relevant to the similarity comparisons.

The first three CFRR are introduced; however, these rules are not fixed and are in fact intended to be

expanded over the course of time as further knowledge is obtained upon what structural knowledge is

crucial for comparisons within the network. As the Jaccard Index and MCS algorithm is utilized in the

previous published literature as a potential similarity metric within the network, the algorithm is used

within this paper to benchmark the generated similarity scores when utilizing the CFRR. When using no

CFRR before similarity comparison, the algorithm is unable to detect any noticeable pattern of similarity

within the input graph dataset; however, when utilizing the CFRR to reduce the input graphs before

comparison to the reference Canonical Form graphs, an initial pattern of similarity begins to appear. This

highlights the potential of the CFRR to remove the variations introduced by author bias from the network.

An IE model is only concerned about encapsulating the knowledge of the structural components that

encompass the system beingmodeled. The aforementioned remit of the knowledge containedwithin an IE

model is immutable; however, the remit of knowledge to be included within the network is not. The

network should —by its own definition— include all available knowledge on a structure which is

pertinent to the similarity comparisons. Therefore, the Reality Model is introduced as the vehicle within

PBSHM to encapsulate the knowledge regarding the world in which an IE model is placed. The direct

consequence of the Reality Model upon the work included within this paper, is that labels or data defined

within theRealityModelmay restrict which elementswithin the IEmodelmay ormay not be reduced from

the model, thus directly impacting the CFRR and the associated Canonical Form IE model.

Lastly, this paper evaluates the use of amachine-learning approach to deriving the similarity within the

network. The GMN algorithm is used in comparison to the Jaccard Index and MCS method described

above. The GMN is able to find the desired similarity patterns within the network and identify potential

reductions which were not previously known when using the CFRR approach.
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The results of the GMN demonstrate the potential of machine-learning methodologies in calculating

the similarity of structures within the network; however, it also highlights the requirements for future

work. Additional research needs to be conducted into evaluating the included CFRR on IE models which

produce non-planar graphs; new CFRR must be identified to align the results of graph theory-based

algorithms with results from machine learning-based algorithms, and new machine-learning methods

must be evaluated for computing the similarity within the network.
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