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We study numerically the dynamical evolution of two different vorticity arrays with an initially
uniform magnetic field in two-dimensional incompressible magnetohydrodynamics. We concentrate
particularly on the role of the strength of the background magnetic field, which is always assumed
weak in the sense that its energy is much less than the kinetic energy of the vortical flows. Within
the context of a weak background field, we are able to identify four distinct regimes. When the
field is so weak that the back-reaction of the Lorentz force can be ignored (the kinematic regime),
classical flux expulsion occurs. As the field strength is increased, the first signs of the dynamical
influence of the small-scale field generated is in the disruption of vortex filaments, with flux expulsion
still occurring in the vortex cores. A further increase in field strength leads to the regime of vortex
disruption, in which the magnetic field is expelled, but is then of sufficient strength to disrupt or
destroy the vortices. For yet stronger fields, even the large-scale field can be sufficiently strong to be
dynamically active; flux expulsion is then prevented and the field is dynamically active throughout
the evolution. Furthermore, in the case of a row of vortices, we show that the orientation of the
background field significantly influences the evolution, especially at higher field strengths.

I. INTRODUCTION

The process of flux expulsion, in which magnetic field
is expelled from circulating eddies, is a widely studied
phenomenon, with implications for the concentration of
magnetic fields by swirling convective motions in stellar
and planetary interiors (see, for example, [1–3]).
Flux expulsion was first addressed in the pioneering

study of Weiss [1] (see also [4]), who considered the kine-
matic evolution of an initially uniform magnetic field
in a variety of steady, two-dimensional cellular flows.
Weiss demonstrated how magnetic flux is initially con-
centrated at the edges of the cells and amplified within
the eddy, before a period of reconnection, in which the
central field decays and the configuration relaxes to a
steady state. Through a combination of physical argu-
ments and numerical simulations, Weiss established the
dependence of the magnetic energy and the timescale for
expulsion on the magnetic Reynolds number Rm, defined
by Rm = U0L/η, where U0 and L are characteristic ve-
locity and length scales, and η is the magnetic diffusivity.
For an initial field of strength B0, and assuming Rm to be
large, the peak field strength B1 satisfies B

2

1
∼ Rm2/3B2

0
,

while the strength of the final steady state field B2 sat-
isfies B2

2
∼ Rm1/3B2

0
; the timescale associated with the

process of flux expulsion is O(Rm1/3T0), where T0 is a
characteristic flow timescale (see also [5, 6]).
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The studies [1, 5, 6] addressed the problem of the kine-
matic evolution of the magnetic field, in which the back-
reaction of the field on the flow via the Lorentz force
is neglected. In the dynamical evolution, in which the
Lorentz force is incorporated, one of the most interest-
ing issues concerns the strength of the initial field B0 at
which the dynamic and kinematic evolutions markedly
differ. Mak et al. [7], building on the work of Ref. [8],
argued theoretically that dynamic effects could become
important, leading to vortex disruption, provided that

M2Rm ∼ 1, (1)

where M2 denotes the ratio of the initial magnetic en-
ergy to the kinetic energy of the flow. This critical field
strength for disruption was then confirmed by numerical
simulations of the nonlinear evolution of vortices emerg-
ing from the instabilities of parallel shear flows in the
presence of a weak background field [7]. The incorpora-
tion of dynamical effects into the process of flux expulsion
has also been considered in Ref. [9] via a quasi-linear anal-
ysis in which only the axisymmetric component of the
Lorentz force is retained, thereby leading to a slightly dif-
ferent scaling to that derived in [7]. It is noteworthy that
the scaling (1) implies that for high values of Rm, only a
very weak background field (small M2) is needed for the
Lorentz force to play a significant role; although the field
is weak on the large scale, it is greatly amplified on the
small scale so as to become dynamically significant. Such
behavior is important in an astrophysical context, where
Rm is invariably high, and has been previously identi-
fied in the suppression of turbulent transport [10–16], in
the suppression of jets in β-plane turbulence [17], and in
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the inhibition of large-scale vortex formation in rapidly
rotating convection [18].

Weiss [1] considered a variety of flow patterns, which
can be classified, broadly speaking, as having either a
single cell or a band of eddies. Most studies of flux ex-
pulsion — both kinematic and dynamic — have focused
on the case of a single isolated cell. Our aim in this paper
therefore is to concentrate on the problem of flux expul-
sion in connected vortices, and, specifically, to extend the
kinematic studies into the dynamic regime.

A related study [19], at lower resolution and lower
Reynolds numbers, focuses on the effect of turbulent fluc-
tuations to the spatial distribution of the magnetic po-
tential in a quasi-stationary state. While Ref. [19] consid-
ers a forced array of vortices in a sinusoidal background
field, we focus on high Reynolds number run-down exper-
iments of various arrangements of vortices in a uniform
background field of varying strength.

The paper is organized as follows. In section II we
present the mathematical formulation of the problem,
which includes the governing equations and the differ-
ent sets of initial conditions. Three vortex arrangements
are considered: a row of vortices aligned with the field,
one perpendicular to it, and a two by two periodic tile of
vortices. Next, in section III, we discuss the numerical
methods used in our simulations and the associated diag-
nostics employed to determine important features of the
flow and magnetic field. Section IV presents the results of
the simulations, where each configuration is tested with
four different magnetic field strengths: a kinematic field,
a very weak dynamical field, a critical field strength, and
a strong field. The impact of the field strength and di-
rection on flux expulsion is analyzed through various di-
agnostics. We conclude with a discussion in section V.

II. MATHEMATICAL FORMULATION

We investigate the dynamics of two-dimensional, in-
compressible magnetohydrodynamics (MHD), with the
magnetic field in the plane of the fluid motion. We im-
plicitly scale the magnetic field by a factor of 1/

√
µ0ρ,

with µ0 the magnetic permeability of the fluid and ρ the
(constant) density, such that the field has units of ve-
locity. The velocity u is expressed in terms of a stream
function ψ, and the magnetic field b in terms of a back-
ground magnetic flux function Ā and associated pertur-
bation A. The vorticity and electric current have a non-
zero component only in the z-direction; they are denoted,
respectively, by q and j. The governing equations may be
expressed as evolution equations for q and A. The flow
has a characteristic speed U0 and a characteristic length
scale L; there is a background uniform magnetic field of
strength B0. We thus scale lengths with L, time with an
advective time scale L/U0, and magnetic field with B0.
In non-dimensional form, the governing equations then

become

∂tq + u ·∇q =M2
b ·∇j +Re−1∇2q, (2a)

∂tA+ u ·∇(A+ Ā) = Rm−1∇2A, (2b)

u = ẑ ×∇ψ, b = ẑ ×∇(A+ Ā), (2c)

q = ∇2ψ, j = ∇2A, (2d)

where

M =
B0

U0

, Re =
U0L

ν
, Rm =

U0L

η
, (3)

with ν the kinematic viscosity and η the magnetic diffu-
sivity (both constants). Here Ā(x, y) is the flux function
of the uniform background magnetic field; for a field in
the x (y) direction, Ā is a linear function of y (x) (and
hence ∇2Ā = 0). The problem is described by the three
dimensionless parameters in Eqs. (3): M is the ratio of
the strength of the (scaled) background field (the Alfvén
wave speed) to the typical flow speed; Re and Rm are,
respectively, the fluid and magnetic Reynolds numbers.
We solve Eqs. (2) as an initial value problem for a pre-

scribed velocity with an initially uniform magnetic field.
These are rundown experiments, where the initial condi-
tions are set and allowed to evolve under no additional
forcing. Though viscosity influences the motion, the evo-
lution to the final stationary state is inherently very slow
when the fluids Reynolds number is high. We assume pe-
riodic boundary conditions in both the x and y-directions
for both evolved quantities, q and A, on a square domain.
Inspired by the original examples from [1], we study

two types of vortex configurations as initial conditions.
The first comprises a single row of vortices with alter-
nating polarity on a domain with edges of length 8π,
0 < x, y < 8π, with vorticity defined by

qrow =

{

− sin
(

x
2

)

cos
(

y
2

)

, |y − 4π| < π

0, otherwise.
(4)

Note that this profile differs from that studied in [1], in
that instead of specifying the streamfunction we spec-
ify the vorticity. In the region where the vorticity is
non-zero, the two approaches are identical. However, we
have chosen to specify the vorticity patchwise, as this
then guarantees that the associated velocity and stream-
function are smooth in the continuous limit. We do not
believe that there should be any significant differences be-
tween the two approaches, but we have not investigated
this in detail. This centered row of vortices spans a quar-
ter of the y-domain, and hence the flow is anisotropic. We
therefore investigate (as did Weiss) the distinct cases in
which the background uniform magnetic field is in the
x-direction and the y-direction.
The second type of initial vortex configuration that we

consider is a two by two tile of vortices of the same size as
the previous case, and which thus fit exactly in a square
domain with edges of length 4π, 0 < x, y < 4π. The
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vorticity takes the form

qtile = − sin
(x

2

)

sin
(y

2

)

, (5)

and is an exact solution to the system (2) in the invis-
cid (Re→ ∞) and hydrodynamic (M = 0) limit. In this
case, the symmetry of the initial conditions makes the di-
rection of the background field irrelevant (with regard to
the x and y-directions), and so we will consider only the
case in which the uniform field is aligned with the x-axis.
The normalization factors for both cases are chosen such
that the maximum velocity is unity. The initial vortex
configurations from (4) and (5) are shown in Fig. 1.

FIG. 1. Initial conditions for the vorticity field, according to
(4) (left), and (5) (right).

We thus investigate, numerically, three classes of initial
value problems, summarized in Table I. For each of these,
we consider a set of four values for the relative strength
of the (weak) background magnetic field, namely M ∈
{0, 10−3, 10−2, 10−1}. The case M = 0 represents the
kinematic evolution, in which the magnetic potential A
acts as a passive tracer. In all the simulations, we set
Re = Rm = 104; these are both eddy Reynolds numbers,
subject to a factor of 2π.

Case Description

A qrow with b̄ = x̂

B qrow with b̄ = ŷ

C qtile with b̄ = x̂

TABLE I. Table of numerical experiments considered.

III. NUMERICAL METHODS AND

DIAGNOSTICS

The numerical library [20] developed for this investiga-
tion is written in Python and makes use of the Shenfun

computing platform [21, 22], which allows for the simple
implementation of the pseudo-spectral method in serial
or in parallel using MPI. We evolve the vorticity q and
the magnetic potential A in the doubly periodic domain,
while the background Ā remains steady in time. For

all simulations, we take N = 1024 collocation points in
each direction. The solution is evolved in time (with
sufficiently small dt = 2.5 × 10−4) through a 3-step
Adams-Bashforth (AB3) scheme, where the first step is
forward Euler and the second step uses the 2-step Adams-
Bashforth method. In all simulations, in order to prevent
aliasing errors, we use the exponential-type spectral fil-
ter proposed initially by Godon and Shaviv [23]. This
filter increases the numerical stability of the code and
acts on much smaller scales than the physical diffusion
and viscosity.
To quantify the results of the evolution, we consider

three quantities for both the kinematic and the magnetic
portions of the dynamics as functions of time. First,
we consider the Taylor microscale, and its magnetic ana-
logue, defined by

Lu =
⟨|u|2⟩1/2
⟨q2⟩1/2 , Lb =

⟨|b|2⟩1/2
⟨j2⟩1/2 , (6)

where angled-brackets indicate a domain average. The
lengths Lu and Lb provide estimates of the typical length
scales of the turbulent flow and field. An increase (or
decrease) in these scales with time tells us whether the
kinetic and magnetic energies are moving to larger (or
smaller) scales. This allows us to confirm the direction of
the energy flux. Next, we consider a bulk measure of the
anisotropy of the velocity and magnetic field. Clearly,
anisotropy is induced in flows subject to a background
magnetic field [24, 25]; furthermore, the choice of initial
conditions for the flow may also introduce anisotropy to
the system. Specifically, we compute the anisotropy of
the velocity u = (u, v) via

A(u) =
⟨u2⟩

⟨u2⟩+ ⟨v2⟩ , (7)

together with the equivalent quantity for the magnetic
field, replacing u by the field b = (bx, by). These de-
termine, on the range 0 to 1, the induced anisotropy;
A = 0.5 corresponds to the isotropic case. Note that
initially, A(u) = 0.25 for flow (4) and A(u) = 0.5 for
flow (5). Finally, we consider the kinetic energy EK and

a scaled version of the magnetic energy B̃2, defined by

EK =
1

2

∫∫

|u|2 dx dy, B̃2 =

∫∫

|b|2 dx dy
∫∫

|b̄|2 dx dy . (8)

This scaled magnetic energy B̃2 is normalized to be unity
initially, so as to measure the amplification of the field
over time.

IV. SIMULATIONS OF FLUX EXPULSION

In this section, we present numerical results of the dy-
namical flux expulsion resulting from the three flow and
field configurations listed in Table I, using the diagnostic
tools described in Section III.
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A. Row of Vortices Aligned with the Field

Figure 2 shows snapshots of the vorticity at selected
times and for different values of M in the case where a
row of vortices with initial vorticity qrow, given by expres-
sion (4), evolves with a background magnetic field in the
x-direction. The first row shows the hydrodynamic (kine-
matic) limit (M = 0, where the field has no effect on the
motion), with elliptical vortex cores surrounded by thin
filaments of vorticity. Note that the elliptical vortices are
created via a hydrodynamic transition from square vor-
tices at early times. The second row shows the vorticity
for a very weak dynamical magnetic field (M = 10−3).
Here the field, although extremely weak, can nonethe-
less generate small-scale vorticity features that are not
present in the kinematic evolution; the field however is
not strong enough to disrupt the coherent vortex cores.
For M = 10−2, shown in the third row, the field, al-
though still very weak on the large scale, is strong enough
on the small scale to be dynamically significant: intense,
small-scale, vortical structures are generated and ejected
into plumes in the y direction. Note the different times
for the snapshots in the lower two rows compared with
those of the upper two rows. For this particular value
of M = 10−2, the flow evolves much more quickly than
the previous two cases with smaller M ; by the final time
shown (t = 80), there is little evidence of the original
cores. Although the background field is still weak (small
M), M2Rm is now O(1) and hence, from the scaling
argument presented in [7], we might indeed expect the
concentrated expelled field to be sufficiently strong to
cause vortex disruption. The fourth row of Fig. 2 shows
the vorticity for the largest magnetic influence consid-
ered here (M = 10−1). At this value of M , the field is
reasonably strong even on the large scale (although still
considerably less than equipartition strength). As such,
the vorticity is concentrated into filaments that dominate
the flow even at early times (t = 20). The flow leads to
a complex vorticity distribution, which becomes unsta-
ble (t = 40), leading to small-scale magnetic turbulence.
The resulting evolution is highly oscillatory and shows a
pulse in the vorticity traveling in the positive and nega-
tive y-directions.

Figure 3 shows snapshots of the total magnetic flux
function Ā+A for the same set of simulations as shown
in Fig. 2. The two smaller values of M (M = 0, 10−3)
demonstrate clearly the expulsion of magnetic flux from
the centers of the four cores by t = 200. With no re-
maining variation of the flux function within the cores,
all field lines (lines of constant Ā + A) are therefore ex-
pelled from these regions. However, for M = 10−2, the
large-scale field, although weak, is in the regime where
flux expulsion can occur, at least initially, but then the
amplified, expelled field is sufficiently strong to disrupt
the vortices dynamically. For M = 10−1, the large-scale
field is sufficiently strong that it is immediately dynam-
ically significant, and hence forestalls the expulsion pro-
cess. We thus see a qualitative transition of regimes (ex-

hibited by both the vorticity and magnetic flux function)
from a hydrodynamic regime to one dominated by the
magnetic field. Below, we quantify this transition using
various diagnostics.

The left column of Fig. 4 shows the typical length scales
of the velocity (top) and magnetic field (bottom), as de-
fined in expressions (6). Note that all diagnostics are
plotted up to time t = 300. For the kinematic (M = 0)
case, for which the field exerts no force on the flow, the
vortices simply decay on a viscous timescale: Lu is essen-
tially unchanged throughout the evolution. For this kine-
matic case, magnetic flux is expelled into a thin boundary
layer. The scale for the field, Lb, falls sharply from be-
ing formally infinite at t = 0 (a result of the field being
uniform initially) before leveling off once a balance is at-
tained between advection and diffusion; as shown in [1],
Lb = O(Rm−1/3). For the weak field case of M = 10−3,
the turbulence induced outside the vortex cores by the in-
teracting vortex filaments leads, at late times, to a slight
reduction in Lu, since the flow is no longer totally con-
trolled by the large-scale vortices, and to a slight increase
in Lb, since the interaction of the turbulence with the
background field leads to magnetic structures on a larger
scale than those caused by the flux expulsion process.
For the stronger field cases of M = 10−2 and M = 10−1,
there is significant vortex disruption, as discussed above;
the flow becomes small scale, resulting in a marked de-
crease in Lu. For M = 10−2, Lb tracks the kinematic
evolution only until t ≈ 40, at which stage vortex disrup-
tion sets in; subsequently, the magnetic field is no longer
exclusively small scale and so Lb grows, greatly exceeding
its kinematic value. For M = 10−1, the initial decline in
Lb is halted even before the saturated kinematic level is
attained; the field is then large scale (as measured by Lb)
throughout the evolution.

The middle column of Fig. 4 shows the evolution of the
kinetic energy Ek and the magnetic field amplification
B̃2. For the kinematic evolution, Ek is essentially con-
stant over the time interval shown: the very slow decay
on a viscous timescale is not discernible. The magnetic
field is amplified to a peak energy (B2

1
in the notation of

[1]), before saturating at a lower level (B2

2
). In our sim-

ulations, over times much longer than shown in Fig. 4
— and in contrast to [1], where the flow is prescribed
— the vorticity will eventually decay and the field will
revert to its initial uniform state. The kinematic scal-
ings of [1] suggest that B2

1
and B2

2
should scale as Rm2/3

and Rm1/2, respectively. However, since we do not inves-
tigate multiple values of Rm, we cannot determine the
proportionality constant to see if our results align with
these scalings. For M = 10−3, the turbulence induced
at a late stage leads to enhanced dissipation of both ki-
netic and magnetic energies in comparison with the case
of M = 0. For M = 10−2, the magnetic field amplifica-
tion initially follows the kinematic time trace, but ends
abruptly once dynamical effects become important. The
subsequent vortex disruption then leads to dissipation
of the magnetic energy. It is of interest to note that
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FIG. 2. Snapshots of the vorticity q for increasing M = 0, 10−3, 10−2, 10−1, at times t = 20, 100, 200, 300 for the two smallest
values of M , and at times t = 20, 40, 60, 80 for the two largest. The initial condition has q = qrow with a background magnetic
field b̄ = x̂ (case A).
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the departure from the kinematic evolution occurs at an
earlier time for Ek than for B̃2. Some small-scale tur-
bulence is generated even while the field is still being
amplified; this leads to a reduction in Ek by a factor of
about ten in 50 ≲ t ≲ 100. For the strongest field case
considered, with M = 10−1, the background field is suf-
ficiently strong that its dynamical influence is such that
there there is very little amplification of magnetic en-
ergy. The Lorentz force induces oscillations in the flow,
leading to an increase in Ek after an initial decrease. As
shown in Fig. 2, hydrodynamic instabilities lead rapidly
to small-scale turbulence and thus (oscillatory) decay of
Ek.

The right column of Fig. 4 shows the anisotropy mea-
sures of the velocity (top) and magnetic field (bottom), as
defined by Eq. (7). Initially, A(u) = 0.25 and A(b) = 1,
reflecting the anisotropy of the flow and that of the uni-
directional imposed field. For M = 0 and M = 10−3,
⟨v2⟩ is the dominant contribution to the kinetic energy
throughout. However, for M = 10−2 and M = 10−1, the
kinetic energy at long times is distributed isotropically,
at least on average. It is therefore of interest to examine
the vorticity at long times. Figure 5 shows the long-time
behavior of the vorticity for the case of M = 10−2 —
at much longer times than shown in Fig. 2. In compar-
ison with the first and second rows of Fig. 2 (M = 0,
10−3), in which the vortex cores are still visible even at
longer times, here there is no trace of the original cores
at long times; the vorticity field is rather turbulent. For
M = 10−1, the stronger field leads to oscillatory behav-
ior, reflected in A(u). For all four values of M , the
anisotropy measure of the magnetic field A(b) initially
declines rapidly, reflecting the generation of (strong) field
in the y-direction from a (weak) field initially in the x-
direction. For the kinematic evolution, A(b) continues to
decrease, with a long-time value of A(b) ≈ 0.1. For the
case of M = 10−3, A(b) tracks the kinematic evolution
until at late times there is a deviation from kinematic
behavior, again with an almost isotropic distribution of
magnetic energy. For M = 10−2, 10−1, the decrease in
A(b) is quickly halted once the field become dynamically
effective, leading to a roughly isotropic distribution of
magnetic energy.

From the four values of M we have investigated, we
have been able to identify four distinct regimes. For
M = 0 (the kinematic regime, in which the field is de-
coupled from the flow), classical flux expulsion occurs,
as described in [1]. For M = 10−3, the evolution is es-
sentially kinematic, although even this extremely weak
field has some dynamical influence at long times. For
M = 10−2, M2Rm becomes O(1), and hence is in the
vortex disruption regime identified by [7]. Here, flux is
initially expelled, but becomes of sufficient strength to
disrupt the expelling vortex. For M = 10−1, the field is
sufficiently strong, even on the large scales, that there is
little, if any, flux expulsion. Wave-like motions are in-
duced by the Lorentz force, again leading, by a different
mechanism, to total vortex disruption.

B. Row of Vortices Perpendicular to the Field

In this subsection, we again present results for simula-
tions with initial vorticity qrow, but now with the back-
ground magnetic field in the y-direction. Figure 6 shows
snapshots of the vorticity at the same times and for the
same values of M as in Fig. 2. Differences between the
first two rows of Fig. 6 can be identified only on very close
inspection. Thus the case ofM = 10−3 here is essentially
kinematic, in contrast to the case where the imposed field
is in the x-direction, for which small-scale dynamically-
driven vortical features can be seen in the second row of
Fig. 2. When M = 10−2, there is evidence of vortex dis-
ruption, but it is noteworthy that the vortices are much
more coherent, at the equivalent field strength and time,
than with a background field in the x-direction (third
row of Fig. 2). For the strongest imposed field case of
M = 10−1, filaments of vorticity are elongated in the
y-direction, with strong oscillations in the long-time evo-
lution; the contrast with Fig. 2 is again marked. Clearly,
for all values of the imposed field strength, the orienta-
tion of the background field with respect to the row of
vortices is critical to how the vortices evolve.

The magnetic flux function in the top two rows of Fig. 7
(M = 0, 10−3) exhibits classical kinematic flux expulsion;
by the final time shown, there is very little variation re-
maining in the vortex cores. For M = 10−2 (third row),
at t = 80 the flux function still shows the spiral struc-
ture arising from winding up the magnetic field; at this
time, the evolution is still not significantly different from
the kinematic case. It is noteworthy that the evolution
of the flux function is much more ordered than for the
equivalent field strength in case A — contrast the t = 80
plots in Fig. 3 and Fig. 7. For M = 10−1 (fourth row),
flux expulsion is soon halted as a result of the stronger
background field. For the time interval shown, the dom-
inant feature is the elongation in the y-direction, fluid
motion being less constrained in the direction of the im-
posed field. We note again how different the evolution is
to that of case A, where the background field is aligned
with the row of vortices.

The diagnostics in Fig. 8 shed further light on the be-
havior exhibited in Fig. 6 and Fig. 7. The first thing to
note is that the kinematic diagnostics are similar to those
of case A, except for the energy amplification B̃2, which is
markedly different. Whereas for an imposed field parallel
to the row of vortices (case A) there is energy amplifica-
tion of nearly 800, here, for an imposed perpendicular
field, the amplification is ten times smaller. What is also
immediately noticeable is that — in contrast to case A
— the kinematic (M = 0) and weakest dynamical field
(M = 10−3) cases are indistinguishable throughout the
evolution shown, for all the diagnostic measures. For
M = 10−2, as in case A, the departures from the kine-
matic evolution for flow and magnetic field diagnostics
occur at different times. The length Lu starts to de-
crease at t ≈ 50, as small-scale motions are generated.
However, Lb follows the kinematic trace until t ≈ 200; as



7

FIG. 3. Snapshots of the magnetic flux function (A + A) for increasing M = 0, 10−3, 10−2, 10−1, at times t = 20, 100, 200,
300 for the two smallest values of M , and at times t = 20, 40, 60, 80 for the two largest, for case A.
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in case A, despite the velocity field being changed from
its initial state, flux expulsion is still the dominant mech-
anism regarding the magnetic field, up to this later time.
For t ≳ 200, there is clearly a change in the dynamics, as

illustrated by Lb, B̃
2, A(u) and A(b). Figure 9 shows the

vorticity snapshots for the case of M = 10−2 at longer
times. The original vortex cores survive, to some extent,
until t ≈ 200, but are then destroyed by the surrounding
small-scale turbulence. The turbulence then fills the do-
main, leading to roughly isotropic measures of flow and
field. The enhanced turbulence at t ≈ 200 acts on the rel-
atively ordered flux-expelled magnetic field, leading to an
initial amplification in magnetic energy (B̃2). The dom-
inant scale for the field is no longer the boundary layer
scale of the expelled field, and so Lb increases, despite the
increase in B̃2. At the final time shown, both the flow
and field are roughly isotropic. For M = 10−1, the back-
ground field is again of sufficient strength to influence the
dynamics throughout. The small kinematic value for Lb

is never attained, and amplification of magnetic energy
is relatively small in comparison with the weaker fields
considered. As in case A, the stronger background field
induces wave-like motions, whose effects can be seen, for
example, in the oscillations in Lu and Lb. However, in
contrast to case A, the flow and field remain anisotropic
throughout, with the preferred (y) direction being that
of the imposed field.
As in case A (imposed field aligned with the row of vor-

tices), as the imposed field strength is increased, we can
identify regimes of kinematic behavior, of vortex disrup-
tion, and of magnetically-dominated dynamics. There
are, however, some important differences. For the per-
pendicular field case, a stronger background field is re-
quired before any dynamical influence is observed. In a
similar manner, for M = 10−2, vortex disruption does
not occur immediately after flux has been expelled, as
in [7] and case A. Instead, small-scale turbulence is gen-
erated outside the vortex cores, as shown in Fig. 9, and
it is this turbulence that is responsible for the late-time
destruction of the vortex cores. For the strongest back-
ground field considered (M = 10−1), the geometry of the
field is such as to maintain anisotropy throughout the
evolution.

C. Two by Two Vortices

Finally we investigate the case of a two by two tile
of vortices with initial vorticity qtile, given by (5). The
evolution of the vorticity is depicted in Fig. 10. In con-
trast to the hydrodynamic (M = 0) evolution starting
from an initial condition of q = qrow, here there is no
change of form of the vortices; the hydrodynamic evo-
lution (top row of Fig. 10) is identically satisfied by
q = exp(−t/2Re)qtile. However, even with a very weak
background field (M = 10−3), as shown in the second
row of Fig. 10, there is clear evidence of the dynami-
cal influence of the Lorentz force. By t = 20, a sheath

of opposite-signed vorticity has formed around each vor-
tex core. These sheaths subsequently grow in width (e.g.
t = 100) and eventually become unstable, with the vortex
cores surrounded by turbulent vortex filaments (as seen
at t = 200). Note though that by the final time shown
(t = 300), there is no wholesale destabilization of the vor-
tex cores. With M = 10−2, the vorticity filaments grow
rapidly, as can be seen in the plot at t = 20. These inter-
act to give rise to smaller vortices through a secondary
instability (t = 40). The flow has two distinct spatial
phases, with reasonably laminar vortex cores living in a
turbulent vortex sea. At longer times, the vortex cores
are gradually eroded by the surrounding turbulence. For
the case of the strongest field considered (M = 10−1),
thick bands of vorticity appear that wind and unwind in
place of the original vortex cores, generating smaller-scale
features and a complex turbulent flow thereafter.

Figure 11 shows the corresponding evolution of the
magnetic flux function. As expected, the kinematic evo-
lution shows the expulsion of magnetic field to the pe-
riphery of the large-scale vortices. It is though notice-
able that at t = 300, and in contrast to cases A and B,
some remnant of the field remains at the centers of the
core. Whereas flux can be expelled in a relatively un-
constrained manner from the row of vortices, the more
constrained geometry of the two by two periodic tile leads
to competition in the expulsion process between the var-
ious vortices, leading to a longer period for full expulsion
to occur. ForM = 10−3, the initial evolution of the mag-
netic flux (certainly up to t = 100) is essentially indis-
tinguishable from the kinematic case. However, at later
times, the effects of the interaction of the vortex filaments
(seen in Fig. 10) with the magnetic field is clearly seen at
the edge of the cells. As for cases A and B, the dynam-
ical effects of the field are felt fully by M = 10−2. As
seen in Fig. 10, the Lorentz force drives a strong sheath
of counter-vorticity around the vortex cores. By t = 40,
the sheath and the field have become disrupted, with
the flux having been expelled from the vortex cores. For
M = 10−1, the background field is again strong enough to
be dynamically significant, retaining a large-scale compo-
nent, despite the small-scale vorticity observed in Fig. 10.

The kinematic evolution of Lb, shown in Fig. 12, is
very similar to that for cases A and B. The amplifica-
tion of magnetic energy is greater than for case B but
less than that of case A. The anisotropy measure A(b)
initially decreases from its starting value of unity but, un-
like in case A, increases again, with A(b) ≈ 0.9 at later
times; this final value reflects the anisotropy of the back-
ground field, the flow being isotropic. ForM = 10−3, the
diagnostic measures follow those of the kinematic case
until t ≈ 150. At this point, the disruption of the vor-
tex sheaths leads to a pronounced growth in magnetic
energy and to the field becoming, on average, isotropic.
We note though that the overall length scale of the field,
Lb, is similar to that when M = 0. As in cases A
and B, the diagnostics for the two strongest field cases
(M = 10−2 and M = 10−1) have certain characteris-
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FIG. 4. Field and flow diagnostics as a function of time for case A. The four different values of M are shown as: M = 0 (solid
black), 10−3 (dashed red), 10−2 (dot-dashed green) and 10−1 (dotted blue). Left column: microscales for the velocity (Lu,
top) and magnetic field (Lb, bottom), defined in (6). For reference, the lower plotting limit of the y-axis is chosen as the grid

scale (L/N = 8π/1024). Middle column: total kinetic energy (EK , top) and total scaled magnetic energy (B̃2, bottom). Right
column: anisotropy norms for the velocity (A(u), top) and magnetic field (A(b), bottom), defined in (7).

FIG. 5. Vorticity snapshots of case A for M = 10−2, as in the third row of figure 2, but at longer times. This case corresponds
to the green curves of Fig. 4 and shows how the velocity field approaches near isotropy, as measured by A(u).
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tics in common, and considerable differences from the
weaker field cases. Here there is essentially no period
of kinematic evolution: small velocity scales are gener-
ated at very early times (leading to a decrease in Lu),
while the background field is of sufficient strength that
full flux expulsion, leading to a small value of Lb, is not
attained. Instead, as the field becomes disordered, there
is an increase in the magnetic microscale Lb. The rapid
fall-off in kinetic energy is similar to that of case A,
shown in Fig. 4. For M = 10−2, the velocity remains
essentially isotropic throughout, and the long-time mag-
netic field is also roughly isotropic (A(b) ≈ 0.6). By
contrast, for M = 10−1, for which there is little ampli-
fication of the magnetic energy, the background field is
sufficiently strong that the long-term state has high de-
grees of anisotropy in both the field and flow. This can
be seen in Fig. 13, which shows the evolution of the vor-
ticity for t > 150. The increasing anisotropy in time is
apparent. It is though worth pointing out, as can be seen
from the plot of Ek in Fig. 12, that the kinetic energy of
the flows shown in Fig. 13 is extremely small in compar-
ison with the initial energy of the two by two vortices:
most of the energy has been dissipated viscously through
the small scales generated.

V. DISCUSSION

In this paper we have investigated the evolution of
an initially uniform magnetic field in vortical flows at
high Rm (i.e., high electrical conductivity). While the
fundamental mechanism of flux expulsion is inherently
kinematic, as first illustrated by Weiss [1], we have ex-
tended the problem into the dynamical regime by con-
sidering the back-reaction of the field on the flow. We
have investigated various arrangements of vortices in a
relatively simple two-dimensional incompressible MHD
model. While much more complex models exist to study
flows in astrophysics, process studies such as this allow us
to understand the underlying dynamics in an approach-
able way. We have considered a row of vortices either
aligned (case A) or orthogonal (case B) to the initial field,
together with a tile of two by two vortices (case C). For
each of the three different configurations, we considered
background magnetic fields of four different strengths in
order to assess the impact of the field on the overall dy-
namics. In so doing, we identified four different dynami-
cal regimes.
When M = 0, the evolution is kinematic (the field has

no influence on the flow); as expected, all three config-
urations exhibit classical flux expulsion, in which mag-
netic field lines are expelled to the edges of the vortex
cores. When M is non-zero but very small (such that
evenM2Rm is still small), the Lorentz force can nonethe-
less induce small-scale features in the vorticity but is not
strong enough to disrupt the vortex cores and their expul-
sion of magnetic flux. For M2Rm = O(1), the inwards
Lorentz force resulting from the expelled flux can be suffi-

ciently strong to disrupt both the shape and extent of the
vortex cores; this is the vortex disruption regime iden-
tified in [7]. For M2 ≲ O(1), but with M2Rm ≫ 1,
the background field is sufficiently strong to influence the
evolution throughout.

While the kinematic regime has been widely studied,
and the vortex disruption regime to some extent, our
study has shed light on two other regimes. The first lies
between the kinematic and disruptive regimes, where the
field can generate small-scale structures in the flow, but
cannot disrupt large-scale coherent vortices. The second
is beyond the vortex disruption regime, but where the
initial magnetic energy is still smaller than the kinetic
energy of the flow. Coherent vortices are almost immedi-
ately destroyed from an initial uniform field that is strong
enough to be dynamically active. The resulting flow is
oscillatory, as vortices attempt to wind-up magnetic field
lines, and fight against magnetic tension, preventing their
deformation.

There are a number of common features between the
various configurations studied, but also some differences
that are worth noting. In the kinematic regime, Lb tends
to roughly the same value for all three configurations —
as expected, since this scale is determined by Rm. It
can be seen that the anisotropy of the field, measured
by A(b), is essentially the same for cases A and B; thus,
despite the different orientations of the background field,
A(b) is here primarily determined by the anisotropy of
the flow. For case C, for which the flow is isotropic, the
long-term value of A(b) must result from the orienta-
tion of the background field. The kinematic amplifica-
tion of the field in case A is markedly greater than that
for case B. The flow configuration in case C also suggests
that flux expulsion is somewhat impeded when a vortex
core is completely surrounded by others, each attempting
to expel their own magnetic flux. ForM = 10−3, the evo-
lution in case B is essentially kinematic throughout. By
contrast, even this extremely weak background field has
late-time dynamical consequences in cases A and C, most
clearly manifested through A(b). For M = 10−2 — the
vortex disruption regime — the initial tendency to flux
expulsion, marked by a decrease in Lb, is halted abruptly
for all three configurations. The dynamical effects of the
field are thus reflected in a subsequent increase in Lb and
a decrease in Lu as a consequence of the small-scale flows
generated. The small-scale turbulence provides a very
efficient mechanism for the dissipation of kinetic energy,
though this is less marked for case B. For M = 10−2,
the long-term states for all configurations are essentially
isotropic in both flow and field. For M = 10−1, for all
configurations, the background field is sufficiently strong
that the kinematic level of Lb is never attained; the mi-
croscale for the field always greatly exceeds the kinematic
value. Furthermore, field amplification for all configura-
tions is very small compared with that for the smaller
values ofM . The relatively strong background field leads
to oscillations induced by the Lorentz force, which can be
seen, for example, in A(u). It is of interest to note that
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FIG. 6. Snapshots of the vorticity q for increasing M = 0, 10−3, 10−2, 10−1, at times t = 20, 100, 200, 300 for the two smallest
values of M , and at times t = 20, 40, 60, 80 for the two largest. The initial condition has q = qrow with a background magnetic
field b̄ = ŷ (case B).



12

whereas the evolution of cases A and C (withM = 10−1)
lead rapidly to a highly turbulent flow, that of case B
(field orthogonal to row of vortices) produces much more
laminar elongated vortices.

The differences between the three considered geome-
tries lie in the degree of symmetry of the vortex arrange-
ment and, for two cases, the relative orientation of the
vortex array and the imposed field. In cases A and B,
the vorticity array is anisotropic, with qrow concentrated
along a single band spanning a quarter of the y-domain.
Consequently, the relative orientation of the field to this
band dictates the features that arise in the nonlinear evo-
lution. For case A (imposed field parallel to row of vor-
tices), field lines in the center of the domain run across —
and are therefore deformed by — all four vortices. The
counter-rotating vortices induce a strong Lorenz force in
the highly distorted field, and consequent vortex disrup-
tion. By contrast, any field line from case B (imposed
field perpendicular to row of vortices) passes through at
most one vortex. Field line distortion and, consequently,
vortex disruption are reduced in comparison to case A.
The differences between cases A and B are particularly
stark for the strongest considered field. For case A, the
induced Lorentz force leads to complete vortex disruption
and to a turbulent flow; for case B, however, the vortices
remain essentially laminar, and are stretched out along
the field lines as magnetic tension opposes any attempt
at distortion. The key difference of case C (for which the
vortices form the periodic array qtile) is that the vortex
distribution is isotropic. Although field lines are heavily
distorted, as in case A, disruption is somewhat inhibited,
since each vortex is constrained to some extent by its four
neighbors of opposing polarity.

In all of our simulations, we have set Re = Rm ≫ 1;
i.e, magnetic Prandtl number Pm = ν/η = 1. Astro-
physically, Re and Rm are typically both large, but their
ratio Pm can be large, O(1) or small, depending on con-
text. In galaxies, Pm ≫ 1; in the solar interior, Pm
is less than unity, but not particularly small (O

(

10−1
)

in the tachocline); in the interiors of the giant planets,
Pm≪ 1. It is important, therefore, to consider the pos-
sible consequences of variations in Pm. For the kinematic
problem, Re plays very little role; the flow is prescribed
initially and decays slowly on a viscous time scale; the
flow remains as a large-scale eddy. However, once the
field is dynamically significant and small-scale vorticity
is generated, then the role of Pm may well be signifi-
cant. In our simulations, with Pm = 1, the small-scale
field and small-scale vorticity are on an equal footing. We
envisage that the evolution for Pm > 1 will be broadly
similar, with less intense vortex interactions. More signif-
icant changes in the evolution are expected when P ≪ 1,
owing to the more concentrated vorticity. However, a
computational study of the regime Re ≫ Rm ≫ 1 is
currently unobtainable; with both Re≫ 1 and Rm≫ 1,
it is unavoidable that Pm cannot be too large or too
small.

From an astrophysical perspective, our study has pro-

vided a further example of how a very weak large-scale
magnetic field (M2 small) can nonetheless become dy-
namically significant on small scales, provided Rm is suf-
ficiently large. Indeed, we have not only given illustra-
tions of vortex disruption whenM2Rm = O(1), but have
shown how the vortex dynamics can be somewhat influ-
enced even for M2Rm ≪ 1. It is thus of interest to
consider the implications of these findings for different
types of astrophysical body.

In the Sun, Rm is large, although, dependent on con-
text, there is quite a range for its estimated value. Based
on the (slow) radial flows across the tachocline, Rm may
be as low as a few hundred [26]. Conversely, much higher
estimates of 109 can be derived for the deep convection
zone or 106 for the photosphere [27]. Our work has
addressed the interaction of vortical flows with a back-
ground magnetic field, and so possibly the most relevant
solar application would be to models such as [28], which
seek to explain the confinement of the tachocline through
essentially hydrodynamic meridional flows, with a thin
magnetic boundary layer separating the field in the ra-
diative interior from the field-free region above. The pro-
posed flows are very slow (∼ 10−5cm s−1), thus giving
Rm ∼ 103 for a length scale based on the tachocline
width. On taking ρ = 0.2 g cm−3 [29], the condition
M2Rm = O(1) translates into a critical field strength of
the order of 5×10−7G. Thus an incredibly weak magnetic
field could have a dynamical effect on the flow structure
proposed, suggesting that purely hydrodynamical consid-
erations may be unrealistic. It should also be mentioned
that other objections have been advanced to the idea of
an entirely field free region in the tachocline (see, e.g.,
[30]). In the convection zone itself, the motions arise
from highly supercritical turbulent convection; although
there will undoubtedly be some sort of flux expulsion, the
turbulent dynamics renders the physics very different to
that investigated here.

A notable characteristic of the gas giants is that the
electrical conductivity σ falls precipitously with radius
towards the surface of the planets. The ab initio simula-
tions of [31] suggest that σ in Jupiter declines by about
twelve orders of magnitude over the outer 10% by ra-
dius. Similar calculations for Saturn [32] suggest a sim-
ilar (though slightly less dramatic) story, with a decline
in σ of ten orders of magnitude over the outer 30% by
radius. The vast range in σ leads to a similarly large
range in Rm. For example, on adopting a typical zonal
wind strength on Jupiter of 100ms−1, and a length scale
of one tenth of the planetary radius RJ , Rm varies from
O(10−3) at the surface to O(109) in the deeper interior.
The interior magnetic fields of Jupiter and Saturn are
the result of turbulent dynamo action at high Rm [33],
and, as in the solar context, our models of flux expul-
sion are not immediately applicable in such dynamo re-
gions. However, in the surface regions, the idea of vor-
tical flows in the presence of a weak background mag-
netic field is of immediate relevance. The strength of the
dipolar field at the Jovian surface is O(10G). Adopting
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FIG. 7. Snapshots of the magnetic flux function (A + A) for increasing M = 0, 10−3, 10−2, 10−1, at times t = 20, 100, 200,
300 for the two smallest values of M , and at times t = 20, 40, 60, 80 for the two largest, for case B.
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a characteristic flow speed of 100ms−1 and a represen-
tative density of ρ = 0.1 g cm−3 [31] provides the esti-
mate M2 = O

(

10−6
)

. The condition M2Rm = O(1)
is then satisfied at roughly r = 0.95RJ [31], suggesting
that magnetohydrodynamical effects will certainly come
into play by this depth. Although the scaling argument
is of course not particularly precise, it does highlight the
important feature that a hydrodynamic description will
be valid only for the upper surface layers and that the
influence of the magnetic field will be felt at radii some-
what greater than where the conductivity reaches its full
interior value. Indeed, it is of interest to note that the
estimate r = 0.95RJ is consistent with the depth of the
surface zonal flows inferred from recent Juno measure-
ments [34]. We envisage that a similar argument holds
for Saturn, although the weaker surface field strength and
the less steep variation of electrical conductivity means
that the transition between hydrodynamical and magne-
tohydrodynamical behavior would lie at a smaller radius.

Here we have concentrated on the simplest case of two-
dimensional fields and flows, for which the interactions
between the vorticity and magnetic fields are most pro-
nounced and most readily understood. It would certainly
therefore be of interest to extend the studies to a three-
dimensional geometry. The most natural way of doing

this is to consider stratified systems that favor quasi-
two-dimensional behavior. A study of decaying vortices
in the shallow-water MHD system would complement the
investigation [7] of the formation and possible disruption
of vortices arising via instabilities of shear layers and jets.
A related system is that of quasi-geostrophic shallow-
water MHD [35], which extends the two-dimensional dy-
namics to include the competition between the influences
of stratification and rotation (measured by, for example,
the Burger number), as well as incorporating beta-plane
dynamics. Some interesting progress has already been
made along these lines ([36], [37]).
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corresponds to the spike in the green curve in the magnetic field amplification (bottom right panel of Fig. 8).
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FIG. 10. Snapshots of the vorticity q for increasing M = 0, 10−3, 10−2, 10−1, at times t = 20, 100, 200, 300 for the two smallest
values of M , and at times t = 20, 40, 60, 80 for the two largest. The initial condition has q = qtile with a background magnetic
field b̄ = x̂ (case C).
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FIG. 11. Snapshots of the magnetic flux function (A + A) for increasing M = 0, 10−3, 10−2, 10−1, at times t = 20, 100, 200,
300 for the two smallest values of M , and at times t = 20, 40, 60, 80 for the two largest, for case C.
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FIG. 12. Field and flow diagnostics as a function of time for case C. The four different values of M are shown as: M = 0 (solid
black), 10−3 (dashed red), 10−2 (dot-dashed green) and 10−1 (dotted blue). Left column: Lu (top) and Lb (bottom). Middle

column: EK (top) and B̃2 (bottom). Right column: A(u) (top) and A(b) (bottom).

FIG. 13. Vorticity snapshots of case C for M = 10−1, as in the fourth row of Fig. 10, but at longer times. The plots clearly
show flow organization in the direction of the field; the evolution corresponds to the blue curve in A(u) (top left panel of
Fig. 12).


