
This is a repository copy of Cuckoo's Nest:An Ultra-Lightweight DoS-Resilient Bitcoin
Mempool.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/225640/

Version: Accepted Version

Proceedings Paper:
Binte Haq, Hina, Ali, Syed Taha and Shahandashti, Siamak F. orcid.org/0000-0002-5284-
6847 (2025) Cuckoo's Nest:An Ultra-Lightweight DoS-Resilient Bitcoin Mempool. In: The
7th IEEE International Conference on Blockchain and Cryptocurrency (IEEE ICBC 2025).
IEEE International Conference on Blockchain and Cryptocurrency, 02-06 Jun 2025 IEEE ,
ITA

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse
This article is distributed under the terms of the Creative Commons Attribution (CC BY) licence. This licence
allows you to distribute, remix, tweak, and build upon the work, even commercially, as long as you credit the
authors for the original work. More information and the full terms of the licence here:
https://creativecommons.org/licenses/

Takedown
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

1

Cuckoo’s Nest: A Lightweight DoS-Resilient
Bitcoin Mempool

Hina Binte Haq∗, Syed Taha Ali∗, Siamak F. Shahandashti†

∗National University Of Sciences and Technology, Pakistan
†University of York, UK

Abstract—The memory pool (mempool) plays a key role in
processing and disseminating live transactions over the Bitcoin
network. However, rising transaction loads and spam attacks
significantly increase the mempool memory consumption which
leads to dropped transactions, processing delays, and spikes in
transaction fees, and exposes the network to sophisticated attacks.
We present Cuckoo’s Nest, a novel lightweight mempool design
which provides resilience against spam attacks and contributes to
the overall health of the network. Cuckoo’s Nest reimagines the
transaction pool using probabilistic data structures to fingerprint
and forward live transactions. We implement Cuckoo’s Nest in
C++ and benchmark it using a unique 90-day Bitcoin transaction
dataset. Our solution processes 300 MB worth of transaction load
with only 12 MB RAM consumption with 99.999% fidelity and
at three times the computational efficiency of the Bitcoin Core
client. Cuckoo’s Nest is an effective and efficient solution for
lightweight and IoT-based Bitcoin clients; it does not require a
hard fork; and its key design features can be adapted to other
cryptocurrencies.

Index Terms—cryptocurrency, Bitcoin, mempool, optimization,
spam, denial-of-service

I. INTRODUCTION

Bitcoin reigns the cryptocurrency landscape with over 56%

market dominance and a compound annual growth rate of

63% [1]. Approximately 52% of institutional investors have

reported holdings involving Bitcoin [2].

Bitcoin, however, continues to face various scalability and

security challenges. One such concern is increasing transaction

loads and spam attacks. These factors cause congestion in

the Bitcoin transaction pool, referred to as the mempool. The

mempool indexes unconfirmed or pending transactions in local

memory (RAM) instead of disk for inventory and network-

wide propagation. The mempool uses map data structures to

organize transactions, resulting in memory usage of several

hundred megabytes, typically three times the raw transaction

size [3].

Mempool congestion correlates with network-wide spikes in

transaction fees, delayed or dropped transactions, and also ren-

ders the Bitcoin network vulnerable to more complex attacks.

Moreover, the growing transaction loads add considerably to

the resource costs of operating Bitcoin nodes. Unlike Bitcoin

miners, node operators are not financially incentivized to

contribute resources to the Bitcoin network, and increasing

costs can have a discouraging effect on their participation, and

This is an e-print of a paper accepted to the 7th IEEE International
Conference on Blockchain and Cryptocurrency (IEEE ICBC 2025).

thereby the overall footprint size and decentralization level of

the Bitcoin network.
Spam and dust attacks targeting the mempool pose a more

dire threat [4]. Numerous spam and congestion incidents

have occurred over the years. In October 2015, a Bitcoin

spam campaign expanded the mempool to 1 GB (88,000

transactions), causing an estimated 10% of Bitcoin nodes to

crash [4]. Dust attacks involve sending minute amounts of

cryptocurrency, known as dust, to numerous wallet addresses,

and are the most common type of spam. Dust attacks have var-

ious purposes including network disruption, advertisements,

criminal activity, and deanonymization attempts [5] [6] [7].

Ethereum [8], Litecoin [9], Solana [10] and BinanceChain [11]

have also experienced severe disruptions due to dust attacks.
To address this issue, researchers have proposed strategies

to identify and evict spam transactions from the mempool.

These metrics are primarily based on transaction age and fee

thresholds that are characteristic of dust transactions [12] [13].

However, these approaches suffer from high false positive

rates, act as inadvertent blacklists, and can lead to denial of

service. Moreover, these solutions do not address the broader

issue of mempool congestion and growing local memory

consumption.
In this paper, we propose Cuckoo’s Nest, a novel solution

to rearchitect the Bitcoin mempool to increase its resilience

to high traffic loads and network spam. Cuckoo’s Nest uses

probabalistic data structures to record live transactions. Our

key insight is that the two key functions of the mempool,

inventory and forwarding may be dissociated. The transaction

inventory function is necessary for mining blocks and is

of interest primarily to miners. Our solution enables other

nodes to prioritize transaction verification and the forwarding

functionality instead. Cuckoo’s Nest is particularly suited to

lightweight clients and IoT devices.
Our solution relies on a construction of sequential cuckoo

filters to fingerprint live transactions instead of storing them

in their entirety. The challenge here was to design our

construction in a way to cater to Bitcoin’s complex rules

for live transactions: namely, devising mechanisms to expire

transactions based on age, for expiry of transaction inputs, for

tracking and limiting double-spends without a deterministic

record, and ensuring resilience to DoS attacks.
Specifically, we make the following contributions:

1) We describe Cuckoo’s Nest, a reimagined mempool con-

struction leveraging time-shifting cascading cuckoo filters

to replicate the Bitcoin mempool’s core functions. With

2

an overall memory footprint of 12 MB, Cuckoo’s Nest ac-

curately processes 99.999% of transactions over periods

in which the default Bitcoin mempool was observed to

routinely reach 300 MB, even going as high as 1 GB.

2) Cuckoo’s Nest is implemented in C++ and evaluated

using a custom dataset collected over 90 days from an

instrumented Bitcoin node. The dataset was specifically

gathered to assess our scheme. Both the code [14] and

our dataset [15] are publicly available.

3) We evaluate our solution and provide extensive empirical

results in multiple dimensions including security, error

rates, memory usage, and compute time.

Cuckoo’s Nest has some limitations: it does not explicitly

remove spam and thereby does not resolve congestion in

blocks. However, it can easily be integrated with spam filtering

schemes. Our solution also results in false positives, but they

are several orders of magnitude less than those reported for

spam filtering solutions. Moreover, nodes running Cuckoo’s

Nest cannot participate in mining.

On the positive side, Cuckoo’s Nest does not require a hard

fork and being orthogonal to other light clients, can be aggre-

gated with them to maximize benefits. Moreover, the cuckoo

filter approach adopted by Cuckoo’s Nest can be adapted to

other cryptocurrencies. To the best of our knowledge, our work

is the first to fundamentally redesign the mempool itself to

prioritize security, efficiency, and operational costs.

We examine the requisite background in §II, followed by

the proposed scheme in §III. We analyze and discuss empirical

results in §IV. Conluding remarks are given in §VI.

II. BACKGROUND

In this section we discuss the internals of the Bitcoin Core

mempool, prior work and the mechanism of cuckoo filters.

A. Internals of the Bitcoin Core Mempool

The memory pool (mempool) is an in-memory staging

area where transactions pending confirmation are temporarily

stored. All incoming transactions for a node are verified for

adherence to Bitcoin rules by the mempool and only admitted

if they are valid transactions. The transactions are stored

until they are included in a block (few transactions may

be evicted before inclusion in a block for various reasons

discussed ahead). Valid transactions are advertised to all nodes

but are only broadcast upon request. This allows nodes to

independently verify them and propagate them further within

the Bitcoin network. A transaction is added to the mempool

and advertised only when it is first received.

The mempool may also index transactions, prioritizing

them by fee, size, input age, etc., to aid block proposals.

Transactions in the mempool may also be shared on request

to populate a new node’s mempool.

We briefly describe the Bitcoin mempool and its structure.

Bitcoin mempool utilizes the class CTxMemPoolEntry to

store the raw transaction data such as hash, size, fee, entry

height, coinbase status, scripts, inputs, ancestor and descen-

dant transactions [17]. Transaction metadata (time received,

priority) and indexing data (data structure overhead allowing

Fig. 1: Bitcoin mempool dynamics [16]

Fig. 2: Bitcoin Core Memory Schematic

efficient lookup and fetch transactions) are stored in the

second class CTxMemPool. CTxMemPool has three com-

ponents: 1) mapTx (boost:: multi index) [18] sorts the

mempool on five criteria: transaction hash, witness-transaction

hash, descendant and ancestor fee rates, and time; 2) map-

NextTx (std::map) [17] tracks the transaction inputs; and

3) mapLinks (std::map) [17] indexes in-mempool ancestor

and descendant transactions data.

The size of the mempool depends on the number of trans-

actions it contains and their individual size, as determined

by the transaction content. CTxMemPool and CTxMem-

poolEntry introduce up to 3 times memory overhead over

the raw data [3]. This overhead in terms of pointers, indexes,

and metadata is necessary for efficient transaction lookup and

retrieval. Fig. 1 shows raw transaction data size, and the

number of transactions in the Bitcoin mempool since August

2023. The mempool, typically 3 times the size of the raw

data, commonly occupies several hundred megabytes in RAM.

The mempool is allocated 300 MB by default [19], but can be

reduced (-maxmempool) or disabled entirely (-blocksonly).

The minimum recommended storage for setting up a Bitcoin

full-node is 2 GB RAM and 350 GB disk space [20]. As

shown in Fig. 2, key memory components of a Bitcoin Core

node besides the mempool include: partial UTXO set for

transaction validation, memory pool cache for new transactions

awaiting validation, block validation cache to store signature

verification results, block index map for efficient block retrieval

from disk, and network connections data.

B. Prior Work

The concept of light clients was introduced by Satoshi

Nakamoto himself through Simplified Payment Verification

(SPV) clients, which only download block headers and se-

lective transactions to verify payments [21]. Since then, re-

searchers have numerous optimizations that reduce the storage,

memory, computation and communication demands on nodes

while maintaining robust security.

3

We highlight key proposals for reducing resource con-

sumption in Bitcoin: Efforts to reduce bootstrapping costs

include pruned nodes [22], Non-interactive Proofs of Proof-

of-Work (NIPoPoW) [23], FlyClient [24] and TXCHAIN [25].

Dietcoin [26] and Utreexo [27] aim to compress the UTXO

set. Graphene [28], Erlay [29] and Compact Blocks [30] aim

to reduce data exchanged in the Bitcoin network, while Seg-

regated Witness (SegWit) [31] helped reduce computational

overhead by optimizing transaction signature verification.

The mempool is an area of Bitcoin research that remains

relatively underexplored. Default configurations allocate about

300 MB for the Bitcoin mempool [19], however custom

configurations are permitted. Mempool schemes, particularly

concerning spam attacks have been highlighted in various

studies. Baqer et al. [4] analyzed a major spam attack on Bit-

coin, identifying mempool vulnerabilities and recommending

transaction evictions or the implementation of a dynamic fee

model similar to Litecoin’s to combat spam.

Boškov et al. [32] introduced the Set Reconciliation-

Enhanced Propagation (SREP) algorithm to reduce bandwidth

usage and speed up transaction pool synchronization using set

reconciliation techniques, operating distributedly outside the

network’s block propagation channels.

Further studies, such as Contra by Saad et al. [12], in-

troduced eviction strategies based on transaction age and

fee thresholds, identifying and removing dust transactions.

Wang et al. [13] developed Anti-dust, a model using Gaussian

distributions to filter out low-value transactions, redirecting

them to a separate dust pool. However, these approaches strug-

gle to balance eviction thresholds; overly strict criteria can

misclassify legitimate transactions as spam, leading to false

positive rates much higher than the 1–2% threshold discussed

by Baqer et al [4]. If multiple nodes were to deploy these

filters, they may function as inadvertent blacklists. Attackers

can modify spam transactions to evade filters, while filters lack

dynamic and real-time adaptation to filter spam. Implementing

real-time filters and separate pools for spam transactions,

also incurs computation costs and increased local memory

consumption which remain to be evaluated.

Moreover, solutions such as adopting a fee-per-output pol-

icy, which charges transaction fees based on the number of

outputs rather than just size, require a hard fork to implement.

Similarly, dynamic block sizes, which allow blocks to scale

based on network demand, also necessitate a hard fork, which

can be a contentious process.

Existing approaches focus primarily on identifying and

evicting spam, rather than addressing the broader issue of

mempool congestion and memory consumption. Our approach,

emphasizing mempool resilience to high transaction volumes

without spam filtering, is orthogonal to these strategies. This

enables integration with existing solutions, enhancing Bit-

coin’s scalability and resource efficiency.

Building on Neonpool [33] and Carbyne [34], which used

Bloom filter variants for a memory-efficient transaction pool in

Bitcoin, we extend this work with a detailed study of cuckoo

filter-based mempool construction. Our approach reduces false

positives and negatives with minimal computational expense

while enhancing resilience to DDoS attacks.

C. Cuckoo Filter

A cuckoo filter [35] is a 2D bit matrix. It has a fixed number

of buckets m, where each bucket is further divided into b slots,

and each slot may hold a fixed number of bits f . Such a filter

may hold a maximum of b · m elements, and the number of

elements currently inserted is denoted by n. Hence the load

factor at any time may be calculated by α = n/(b ·m).
Cuckoo filters use two independent hash functions: the

fingerprint hash fx and the bucket hash H . These functions

are part of partial-key cuckoo hashing, which identifies the two

buckets where a fingerprint ϕ(x) of an item x may be stored.

The fingerprint hash determines the item’s fingerprint, while

the bucket hash selects the two candidate buckets i1 and i2 for

storage. If neither has space, one bucket (i1 or i2) is chosen

randomly, triggering the recursive cuckoo eviction process.

For the fingerprint function ϕ(x) = fx(x), the partial-key

cuckoo hashing is calculated as follows:

i1 = H(x) mod m (1)

i2 = i1 XOR ϕ(x) mod m (2)

i1 and i2 denote the indices of the buckets and are limited

to the range of valid buckets from [0,m − 1]. When m is a

power of two, the modulo operation simplifies to a bit-wise

AND, thus leading to greater efficiency on modern hardware.

The partial-key alternative bucket calculation given in Eq. 2

is free of false negatives only when m is a power of two.

Cuckoo filters use f bits to fingerprint each item, and the

minimal fingerprint size for a given false positive rate ϵ and

bucket size b is

f ≥ 1 + log2 b− log2 ϵ (3)

III. PROPOSED SCHEME

In this section, we provide a detailed explanation of our

proposed scheme, Cuckoo’s Nest, which does not necessitate

the storage of complete transactions. Instead, it only stores

transaction fingerprints, effectively disassociating the pro-

cesses of transaction forwarding and inventory management.

Cuckoo’s Nest comprises two primary components. The first,

CuckooTxFilter, utilizes the transaction hash txHash to map

valid entry transactions. The second component, CuckooTx-

InputsFilter, ensures that duplicate or potential double-spend

transactions are identified and discarded.

Here, we describe the transaction entry and exit process for

the Bitcoin Core mempool and Cuckoo’s Nest.

A. Entry

In both Bitcoin Core and Cuckoo’s Nest, a sending node

(Node A) makes a transaction announcement through an inv

message. At the receiving node (Node B), txHash is used to

query the mempool to determine if the transaction already

exists in the mempool. In Cuckoo’s Nest, the txHash is

used to query the CuckooTxFilter. Nodes may receive a

transaction announcement multiple times, but only accept it

the first time they receive it. In both Bitcoin and Cuckoo’s

Nest, if a transaction with the same txHash has already been

4

(a) Mempool synchronization
(b) Transaction entry process for Bitcoin Core mempool and Cuckoo’s Nest

(Where only Y(es) or N(o) is shown, the other implies the transaction is dropped.)

Fig. 3: Mempool synchronization and Entry

received, it is discarded. If the transaction is determined to be

new, the complete transaction is requested from the sending

node via a transaction message, ensuring that both nodes

eventually converge on a consistent view of the mempool.

Cuckoo’s Nest does not alter the number of round trips

required for mempool synchronization compared to Bitcoin

core. The synchronization protocol is summarized in Fig. 3a.

The transaction is checked for potential double-spends. In

both Bitcoin and Cuckoo’s Nest, each input, comprising the

inputtxHash and index, is scanned for double-spends. Inputs

are validated using the UTXO set, and transactions with invalid

or spent inputs are discarded. It is also checked that none of the

inputs exist in the mempool in Bitcoin. For Cuckoo’s Nest, the

CuckooTxFilter is queried with the tuple <inputtxHash,

index> to ensure the input is not already in the filter. If

any input is found in the mempool or CuckooTxFilter, the

transaction is dropped. If two transactions with the same inputs

are circulating, the first seen by a node is regarded as safe,

while the second is dropped. If any input (parent or ancestor)

is missing, the transaction is added to the orphan pool and will

be re-processed once the ancestor is received. If the transaction

passes verification, it is added to the mempool in Bitcoin

and the CuckooTxFilter and CuckooTxInputsFilter in

Cuckoo’s Nest. Finally, the txHash is relayed to connected

peers. This process is summarized in Fig. 3b.

B. Exit

In Bitcoin Core, transactions are removed from the mem-

pool for various reasons, such as inclusion in a block, limited

pool capacity, transaction expiry, fee priority, replacement

by a newer version with a higher fee, invalid or conflicting

transaction, or chain reorganization at the node.

Similarly, in Cuckoo’s Nest, transactions are removed when

a block arrives, as it contains confirmed transactions that

should be cleared from the mempool. In Bitcoin Core, the

mempool is updated by removing transactions from mapTx,

mapNextTx, and mapLinks, while Cuckoo’s Nest removes

them only from the Cuckoo TxFilter. Transactions needing

removal for reasons other than block inclusion accumulate and

are removed by clearing the filter at periodic intervals. For this

purpose, we cascade an additional filter to CuckooTxFilter

to work in rotation. This configuration enables us to separate

mempool transactions based on age.

We employ two identical cuckoo filters, a primary and a

secondary, working together in rotation, which switch status

after a predefined interval. All queries are directed to the

primary filter first. If a transaction is not present there, then the

secondary filter is queried. Transactions are removed from the

filter that first reports them to be present. However, insertions

only occur into the primary filter. After every predefined

interval, the secondary filter is reset, and status of the two

filters is switched again, effectively simulating transaction

expiry. We implement this mechanism using Bitcoin’s default

14-day expiry, as discussed in detail in § IV-D.
CuckooTxInputsFilter is periodically cleared to avoid

overflow. Batch deletion removes the need to store individual

transaction-input mappings and avoids indivdual deletions.

This process is detailed in §IV-E.

IV. EMPIRICAL RESULTS AND DISCUSSION

A. Methodology, Dataset and Implementation

We record entry and exit transactions in the transaction

pool in JSON format (for the raw transaction structure in

Bitcoin see [36]) to allow us to reconstruct the transaction pool

state at the client. Our data set also includes all transactions

received over the network (for the Bitcoin inventory message

structure see [37]), in CSV format, to help us replay network

activity for simulation purposes. For Bitcoin, we run an instru-

mented version of Bitcoin Core modifying txmempool.cpp,

to capture 30 million unique transactions (around 90 million

transaction announcements over 90 days).
We develop a simulation of the Bitcoin mempool using map

data structures, and of Cuckoo’s Nest using cuckoo filters. We

replay transactions in the data set to reconstruct the Bitcoin

mempool over the 90 days. The simulated Bitcoin mempool

acts as the ground truth, and running it in parallel with

Cuckoo’s Nest helps evaluate how our scheme performs.
We use C++ to implement Cuckoo’s Nest and simulate the

Bitcoin Core mempool. We use the cuckoo filter library by

Efficient Computing at Carnegie Mellon [38] to implement

cuckoo filters. The Cuckoo’s Nest implementation consists

of probabilistic data structures CuckooTxFilter and Cuck-

ooTxInputsFilter. We simulate Bitcoin Core mempool’s

key structures, mapTx, mapNextTx and mapLinks. The

CuckooTxFilter in Cuckoo’s Nest and the mapTx structure

in Bitcoin Core are independently queried at every entry,

inv and exit event in our dataset to check if the relevant

transaction exists in the mempool or not. Due to its probabilis-

tic nature, Cuckoo’s Nest’s CuckooTxFilter will sometimes

deviate from the ground truth and yield false positives and

negatives. Our code [14] and dataset [15] are both publicly

available.

5

Cuckoo Buckets Slots Hash Finger- False Positive Rate Discarded Transactions Reprocessed Transactions

TxFilter print Theor No Exp With Exp No Expiry With Expiry No Expiry With Expiry

m b k f bits Num/(%) Num/(%) Num/(%) Num/(%)

1 MB 262,144 4 2 8 3.13×10−2 5.57×10−2 4.28×10−2 914,608(0.815) 233,879(0.208) 8,070,080(9.11) 959(1.1×10−3)
2 MB 262,144 4 2 16 1.22×10−4 2.80×10−2 2.27×10−3 441,161(0.393) 27,417(0.024) 7,360,622(8.32) 26(2.9×10−5)
4 MB 262,144 4 2 32 1.86×10−9 1.94×10−3 1.10×10−5 206,384(0.184) 1,234(0.001) 5,054,885(5.74) 0(0)

TABLE I: Performance metrics for CuckooTxFilter of various sizes dimensioned for n = 262, 144 transactions

B. Performance Metrics

The responses to mempool queries can be categorized into

a confusion matrix. The outcomes as per event are as follows:

For an entry event the mempool is queried to add a received

transaction: TPentry: the transaction already exists in the pool

and will be discarded; TNentry: the transaction is new and

will be added to the pool; FPentry: the transaction is new and

should be added to the pool but will erroneously be discarded;

FNentry: the transaction already exists in the pool, but will

erroneously be added again.

For an inv event, the mempool is queried to check if a

transaction is available in the mempool: TPinv: the transaction

already exists in the pool and the full transaction will not

be requested; TNinv: the transaction is new and the full

transaction will be requested, to add to the pool; FPinv: the

transaction is new but the full transaction will not be requested,

to be added to the pool; FNinv: the transaction already exists in

the pool but the full transaction will erroneously be requested,

to add to the pool.

At exit, the mempool is queried to remove a transaction:

TPexit: the transaction exists and will be removed; TNexit:

the transaction does not exist and cannot be removed; FPexit:

the transaction does not exist, and another transaction is

erroneously ‘removed’; FNexit: the transaction exists in the

pool but is erroneously not removed.

Each filter-level outcome has different consequences for

Cuckoo’s Nest performance. False positives at all three events

lead to transactions not being processed, reducing the overall

accuracy of the system. Therefore, the overall false positive

rate (FPR) is a vital metric. Specifically, any false positives at

inventory and entry result in transactions being discarded, and

the rate of discarding needs to be kept low. Regarding false

negatives, any such outcome at inventory (or entry) will cause

unnecessary reprocessing of transactions. False negatives at

exit won’t inflict immediate cost but will eventually increase

the load factor, which may cause more false positives. Based

on these insights, we define performance metrics:

• False Positive Rate (FPR) is a measure of accuracy,

defined as the ratio of the false positives to the total

number of queries (entry, inv and exit).

FPR =
FPentry + FPinv + FPexit

Queriesentry +Queriesinv +Queriesexit
.

• Discarded Transactions is a measure of the proportion

of new transactions at entry and inventory that were

erroneously discarded due to false positives.

DiscardedTxs =
FPinv + FPentry

Queriesinv +Queriesentry
.

• Reprocessed Transactions is a measure of transactions

processed twice due to false negatives at inventory.

ReprocessedTxs =
FNinv

Queriesinv
.

Note that circulating reprocessed transactions does not

equate to actual double-spends, since nodes in the network,

including Cuckoo’s Nest nodes, will screen incoming blocks

to prevent double-spend.

C. Dimensioning ❈✉❝❦♦♦❚①❋✐❧t❡r

The highest transaction volumes observed to date are around

250,000, as shown in Fig. 1. We choose a maximum trans-

action load of 250,000 as a starting point to dimension

CuckooTxFilter. Using Eq. 3, we derive a starting filter

size of 1 MB with 262,144 rows (m, the number of rows,

should be a power of 2 to avoid false negatives [39]), 4

buckets, an 8-bit fingerprint per item, and 2 hash functions.

For comparison, we consider two other filter candidates, sized

at 2 MB (medium) and 4 MB (large), with 262,144 rows, 4

buckets, 2 hash functions, and 16 and 32 bits per fingerprint,

respectively. This is summarized in Table I.

D. Errors and expiry

We replay transactions in our dataset for the three month

period through all filters. Table I shows the average FPR is

highest for the 1 MB filter at 5.57×10−2, reducing marginally

to 2.80×10−2 for a 2 MB filter, and further to 1.94×10−3 for

the 4 MB filter. For the 1 MB, 2 MB, and 4 MB filters. This

translates to 0.815%, 0.393%, and 0.184% of transactions

being erroneously discarded and 9.1%, 8.3%, and 5.7% of

transactions being reprocessed, respectively. As expected, false

positives and negatives decrease with larger filter sizes.

Figs. 4a–4f depict the number of transactions stored in these

three filters in over time along with the FPR for the entire

three-month period, plus the number of transactions in the

Bitcoin Core mempool, the ground truth in our evaluation. In

all three cases, the number of transactions closely tracks the

pattern in the Bitcoin Core mempool, with an increasing offset.

This offset is due to extra load in the filter from two

main sources: 1) transactions that should have been removed

from the mempool because of age, limited transaction pool

capacity, fee priority, replacement by a newer version that

offers a higher fee, invalid or conflicting transaction or chain

reorganization event at the node, but Cuckoo filters have no

inherent mechanism to track these; 2) false negatives result in

some transactions being erroneously added to the mempool

at entry and some, due to be removed, to persist at exit.

6

(a) CuckooTxFilter= 1 MB (b) CuckooTxFilter= 2 MB (c) CuckooTxFilter= 4 MB

(d) CuckooTxFilter= 1 MB×2 (e) CuckooTxFilter= 2 MB×2 (f) CuckooTxFilter= 4 MB×2

Fig. 4: Number of transactions in Bitcoin vs Cuckoo’s Nest, Debris transactions and False positive rate

We term these erroneous artifacts debris, which accumulates

over time and corresponds to growing FPR, specially after the

transaction count exceed 262,144, as depicted in Figs. 4a–4c.

Empirical false positive rates are significantly higher than

theoretical, e.g., 2.80×10−2 vs. 1.220×10−2 for the 2 MB filter.

First, real deployments often report higher false positives due

to non-ideal hash functions and “clumped” data distribution,

unlike theoretical models that assume perfect hashing and

uniform data spread [35]. Fan et al. confirm that Eq. 3 provides

a lower bound on the FPR [35].

Second, debris rapidly causes transactions in CuckooTx-

Filter to exceed the 262,144 mark it was provisioned for.

With increased load factor, both false positives and negatives

rise. While decent false positive rates or lookup performance

are maintained up to 95% filter occupancy, beyond this,

performance rapidly deteriorates. Boskov et al. [39] show that

at load factors below 80%, the false negatives rate remains near

1%. However, cuckoo filters 95% full lead to up to 10% false

negatives. These false negatives result from cuckoo evictions

to incorrect buckets during inserts. We confirm this effect in

our experiments.

As there is no inherent mechanism to remove debris, we

propose periodically ‘clean up’ the filters: We employ two

identical cuckoo filters, a primary and a secondary, working

together in rotation, which switch status after a predefined

interval, enabling us to separate transactions on the basis of

age. All queries are directed to the primary filter first. If a

transaction is not present there, the secondary filter is queried.

Transactions are removed from the filter that first reports them

to be present. However, insertions only occur into the primary

filter. After every predefined interval, the secondary filter is

reset, and status of the two filters is switched.

We implement this mechanism using Bitcoin’s default 14-

day expiry, as shown in Figs. 4d–4f. The filters first switch

roles on 15 January, followed by expiry events every 14

days starting 29 January, corresponding to sharp drops in

filter transaction numbers. Cuckoo’s Nest now closely follows

CuckooTxInFilter 1 hour 3 hours

Num FPR Num FPR

1 MB 166,338 1.88×10−3 41,585 4.7×10−4

2 MB 72,956 8.23×10−4 1,824 2.1×10−5

4 MB 72,537 8.18×10−4 1,813 2.0×10−5

TABLE II: CuckooTxInputsFilter, n = 262, 144

Bitcoin Core transaction patterns. Average false positive rates,

discarded, and reprocessed transactions for our three filters

are significantly reduced. The expiry period here ranges from

14–28 days, as a filter is cleared every 28 days.

Table II shows the average FPR is highest for the 1 MB

filter at 4.28×10−2, reducing to 2.270×10−3 for a 2 MB filter,

and further to 1.10×10−5 for the 4 MB filter. For the 1 MB,

2 MB, and 4 MB filters this translates to 0.208%, 0.024%,

and 0.001% of transactions being erroneously discarded and

1.1×10−3%, 2.9×10−5%, and 0% of transactions being repro-

cessed. As expected, false positives and negatives decrease

with larger filter sizes.

E. ❈✉❝❦♦♦❚①■♥♣✉ts❋✐❧t❡r Dynamics

CuckooTxInputsFilter scans inputs of incoming trans-

actions to prevent double-spends as described in §III. The

implications are TPinputs: a transaction bearing that input was

added to CuckooTx InputsFilter and the new transaction

should be discarded; TNinputs: a transaction bearing that input

does not exist in CuckooTxInputsFilter and the new trans-

action should be added; FPinputs: a transaction bearing that

input does not exist in CuckooTxInputsFilter but the new

transaction was erroneously discarded; FNinputs: a transaction

bearing that input already exists in CuckooTxInputsFilter,

but the new transaction was erroneously added.

In our dataset, incoming transactions average 40,000 inputs

per hour, peaking at 191,947. We dimension the CuckooTx

InputsFilter for 262,144 transactions, similar to CuckooTx-

7

Fig. 5: Memory footprint for Bitcoin Core vs Cuckoo’s Nest

Filter, and reset CuckooTxInputsFilter every hour and

every three hours.

This removes the need to track individual transaction inputs.

With a three-hour reset and CuckooTxInputsFilter sizes

of 1 MB, 2 MB, and 4 MB, the FPR is 4.7×10−4, 2.1×10−5,

and 2.0×10−6, respectively, as shown in Table II. Thus, an

attacker can resend a transaction with the same input after the

expiry interval. However, since Cuckoo’s Nest maintains com-

plete UTXO information, nodes will reject blocks containing

double-spend transactions.

F. Memory Footprint

We compare the memory footprint of Cuckoo’s Nest and

Bitcoin Core. Fig. 5 shows the raw transaction size versus the

mempool size over the 3-month experimental period.

Cuckoo’s Nest results are immensely promising: to process

an equivalent transaction volume with 99.999% accuracy,

Cuckoo’s Nest requires only 12 MB of memory. The Cuck-

ooTxFilter (4 MB×2) and CuckooTxInputsFilter (4 MB)

discard only 0.001% of transactions, achieving 99.999% ac-

curacy. Users can adjust parameters to balance accuracy and

memory usage.

As baseline, we consider a straightforward mempool op-

timization schemes which uses standard deterministic data

structures such as maps), storing minimum transaction data.

Rudimentary calculations indicate that for transaction valida-

tion, we would need to store the transaction ID (32 bytes),

input hash (32 bytes) and index (4 bytes), amounting to

32 + 36n bytes for each raw transaction where n is the

number of transaction inputs. Memory overhead will be 3

times this value. This approach reduces memory consumption,

but the disadvantages are still significant. It is less resilient to

congestion events and spam attacks, and scales linearly. It is

as limited as Cuckoo’s Nest from an inventory perspective,

i.e., it cannot bootstrap mempools of other nodes.

G. Computation footprint

We next calculate computational overheads. Bitcoin Core

components mapTx, mapNextTx, and mapLinks perform

query, insertion, and deletion in O(log n) time, where n is the

number of stored transactions, corresponding to the internal

nodes of the red–black binary search tree used in the reference

implementation. Counting cuckoo filters in Cuckoo’s Nest

Fig. 6: Computation time: Bitcoin Core vs Cuckoo’s Nest

operate in constant time using 2 hashes for query, insertion,

and deletion, regardless of filter cardinality.

As depicted in Fig. 6, we perform benchmarks using an

Intel Core i7 8700 CPU @3.2GHZ ×12 and 32 GB RAM,

running Ubuntu 18.04 with GCC 5.4.0. We replicate Bitcoin

Core structures mapTx (Boost multi-index), mapNextTx

and mapLinks (C++ STL maps). We use the cuckoo filter

library by Efficient Computing at Carnegie Mellon [38] to

instantiate counting cuckoo filters and perform query, insert

and delete operations, averaging over 1 million iterations.

a) ❈✉❝❦♦♦❚①❋✐❧t❡r vs. ♠❛♣❚①: Query, insert and

delete operations in mapTx take 358 ns, 4,735 ns, and 272 ns,

respectively, whereas CuckooTxFilter (for k = 2) re-

quires 412 ns, 644 ns, and 489 ns, respectively. For a complete

transaction life-cycle, mapTx requires 5,365 ns compared to

1,545 ns for CuckooTxFilter.

b) ❈✉❝❦♦♦❚①■♥♣✉t❋✐❧t❡r vs. ♠❛♣◆❡①t❚①: The

query, insert and delete operations for mapLinks and

mapNextTx require 997 ns, 1,173 ns, 1,158 ns, respectively.

CuckooTxInputsFilter takes 412 ns and 544 ns, for query

and insert operations, while deletion is replaced by batch

reset. Over the transaction life-cycle, mapTx requires 3,328 ns

compared to 956 ns for CuckooTxInputsFilter.

c) ♠❛♣▲✐♥❦s: Maintaining unconfirmed transaction

chains in mapLinks helps prioritize transactions but is

computation- and memory-intensive, and a potential DDoS

vector. To cap these costs, Bitcoin Core 0.12 introduced a

default policy limiting unconfirmed chains to 25 transactions

and 101 kB total size. Cuckoo’s Nest avoids storing these

mappings as explained in §III, eliminating these costs.

Thus, Cuckoo filter-based Cuckoo’s Nest is at least three

times faster than Bitcoin Core mempool.

V. SECURITY ANALYSIS

We assess an adversary’s potential to exploit Cuckoo’s Nest

for DoS attacks via spam, censorship, or other methods:

A. DDoS resilience

We next discuss how Cuckoo’s Nest copes with surge in

transaction loads such as those in spam based DDoS attack.

Our approach, emphasizes the resilience of the mempool to

high transaction volumes without spam filtering, which acts as

an inadvertent blacklist. Cuckoo’s Nest can easily withstand

such an attack by preventively dimensioning a bigger filter

or recursively generating additional cuckoo filters recursively

8

Transaction count Bitcoin Core mempool Cuckoo’s Nest

262,144 300 MB 12 MB
524,288 600 MB 24 MB

1,048,576 1200 MB 48 MB

TABLE III: Cuckoo’s Nest amidst DDoS attack

to take the load. Since our approach does not differentiate

between benign/spam transactions, our data set does no in-

clude spam transactions. However, incorporating spam into the

dataset should yield similar results.
a) Preventive Dimensioning: The filters in Cuckoo’s

Nest are proactively dimensioned to handle an abnormal

amount of transactions such as 524,288, over double the

amount of transactions ever witnessed on the Bitcoin network.

Such a filter would be 8 MB in size. The primary filter

holds the first wave, but when overloaded, a secondary filter

activates. The system remains stable, handling the load without

disruption and with minimal errors.
b) Remedial Response: We initialize a counter to track

the total number of transactions. As the transaction count ex-

ceeds the filter capacity of 262,144, recursive filter-generation

kicks in and creates additional filters of the same capacity

and size. These filters expire after a set period, freeing up

space. This method dynamically scales based on load, keeping

memory usage low while maintaining accuracy. As congestion

subsides, additional filters are no longer needed.
The highest mempool volumes have bloated it to around

1 GB, while the highest transaction load is around 250,000.

Table III illustrates the transaction counts, corresponding

memory usage in Bitcoin Core’s mempool, and mem-

ory consumption of Cuckoo’s Nest (2×CuckooTxFilter +

1×CuckooTxInputsFilter) to withstand these attacks. We

defer empirical evaluation as future work.

B. Adversarial Resilience

Can an adversary craft transaction to inject or censor trans-

actions at individual nodes? Literature shows cuckoo filters

can be efficiently transformed to be adversarially resilient by

applying a pseudo-random permutation of the input [40] [41],

i.e. applying a sufficiently large (128 bit) random salt before

forwarding it to the cuckoo filter. Thus, for an adversary to

trigger a false positive at a specific node, they would need both

the filter’s initialization seed and its current state. Obtaining

the seed is difficult as adversary only has oracle access to

nodes. Nodes can regularly update their seeds (e.g., biweekly).

Thus, adversaries can only broadcast random transactions,

unable to craft transactions that cause false positives.
Can an adversary achieve network-wide injection or cen-

sorship of specific transactions? Each Cuckoo’s Nest node

initializes its filters independently using secret, randomly

generated 128-bit seeds [40]. Given a FPR of 0.0001 per node,

even if an adversary manages to trigger a false positive at one

node, the probability of the same transaction being censored

by two nodes is negligible (0.0001)2. Therefore, adversarial

attempts to target individual nodes do not scale across the

Bitcoin network, and there is no feasible low-cost method for

network-wide transaction censorship.

Thus, the adversary only has oracle access to the cuckoo

filter i.e. does not know its contents or seed. We situate this

assumption within established practices in the cryptocurrency

ecosystem and light client security models as identified by

Chatzigiannis et al. [42]. Further common assumptions that

underpin light client designs like ours, including trusted gene-

sis block, reliable consensus, secure underlying cryptographic

primitives, weak synchrony (i.e. no long network partitions),

trusted setup, peer-to-peer communication for relaying infor-

mation, and rational behaviour of participants.

Can an adversary be successful in a double-spend attack?

Cuckoo’s Nest preserves Bitcoin’s transaction verification and

validation mechanisms. While nodes may forward transactions

with conflicting inputs, they screen blocks to reject double-

spends. Since Cuckoo’s Nest retains full UTXO data, it

rejects blocks with double-spend transactions. Hence, false

negatives in the CuckooTxFilter only cause reprocessing,

not double-spends. Replay transactions are dropped as already

seen transactions will trigger a positive, indicating that the

transaction is already present.

VI. FUTURE WORK AND CONCLUSION

We propose Cuckoo’s Nest, a novel cuckoo filter based de-

sign for the Bitcoin Core mempool that drastically reduces the

mempool memory consumption, reducing the cost of running

a full node, and increasing its reliability and survivability in

the wake of network spam.

Our results thus far are immensely promising: with an

overall memory footprint of 12 MB, Cuckoo’s Nest accurately

processes 99.999% of transactions while Bitcoin Core mem-

pool routinely hits 300-500 MB, and requires at least three

times less computational effort than Bitcoin Core mempool.

We are working on developing a functional prototype for live

deployment and launch a Bitcoin Improvement Proposal.

We foresee some challenges in deployment: a key challenge

is bootstrapping new nodes storing random subsets of trans-

actions in RAM. Our extra analysis shows that if a new node

connects to 4, 8, or 12 Cuckoo’s Nest nodes, each storing

10% of transactions, it can recover 30%, 55%, or 70% of

the mempool, respectively. Other challenges include: mempool

changes affecting layer-2 protocols e.g. Lightning network,

securing consensus among the Bitcoin community, etc.

Cuckoo’s Nest can be adapted for other cryptocurrencies,

but implementation requires significant modifications tailored

to each protocol. For example, adapting it for Bitcoin deriva-

tives like Bitcoin Cash, Bitcoin Gold, Litecoin, and Dogecoin

is relatively straightforward since they follow the UTXO

model. In these cases, only specific parameters—such as

transaction expiration times and cuckoo filter sizes—need

adjustment based on network traffic and block intervals.

In contrast, adapting Cuckoo’s Nest for Ethereum requires

addressing key differences from Bitcoin. Ethereum’s account-

based system relies on state tracking for double-spend preven-

tion, its transaction and transaction pool structure and transac-

tion broadcast protocol differ. This warrants a dedicated study

using Ethereum-specific data. To that end, we are currently

adapting Cuckoo’s Nest for Ethereum.

9

REFERENCES

[1] “Cryptocurrency Prices, Charts And Market Capitalizations | CoinMar-
ketCap,” 2024. https://coinmarketcap.com.

[2] Coinweb, “How Many People Hold Bitcoin in 2024? - Coinweb.” https:
//coinweb.com/trends/how-many-people-hold-bitcoin, 2024.

[3] “The 300 MB default maxmempool Problem.” https://b10c.me/blog/001
-the-300mb-default-maxmempool-problem, Dec. 2017.

[4] K. Baqer, D. Y. Huang, D. McCoy, and N. Weaver, “Stressing out:
Bitcoin “stress testing”,” in International Conference on Financial

Cryptography and Data Security, pp. 3–18, Springer, 2016.
[5] F. Memoria, “$700 million stuck in 115,000 unconfirmed bitcoin trans-

actions, CCN.” https://www.ccn.com/700-million-stuck-115000-uncon
firmed-bitcoin-transactions/, 2017.

[6] K. Sedgwick, “200,000 Unconfirmed Transactions Pile Up in Another
Crazy Day for Bitcoin.” https://news.bitcoin.com/200000-unconfirme
d-transactions-pile-another-crazy-day-bitcoin/, Dec 2019.

[7] A. Zmudzinski, “Bitcoin’s Mempool Saw an Anomalous Number of Big
Transactions on Friday- Coin Telegraph.” https://cointelegraph.com/ne
ws/bitcoins-mempool-saw-an-anomalous-number-of-big-transactions,
Nov 2019.

[8] B. Dale, “Mempool Manipulation Enabled Theft of 8M in MakerDAO
Collateral on Black Thursday: Report - CoinDesk,” CoinDesk, Jul 2020.

[9] “Litecoin - Open source P2P digital currency.” https://litecoin.org, 2024.
[10] B. Quarmby, “Solana reportedly hit by DDoS attack, but network

remains online,” Cointelegraph, 12 2021.
[11] “Binance Is Facing Issues with Solana Withdrawals - Financial and

Business News | Finance Magnates,” Dec 2024.
[12] M. Saad, J. Kim, D. Nyang, and D. Mohaisen, “Contra-*: Mechanisms

for countering spam attacks on blockchain memory pools,” arXiv

preprint arXiv:2005.04842, 2020.
[13] Y. Wang, J. Yang, T. Li, F. Zhu, and X. Zhou, “Anti-Dust: A Method

for Identifying and Preventing Blockchain’s Dust Attacks,” in ICISCAE

2018, pp. 274–280, IEEE, 2018.
[14] H. Bhaq, “Cuckoo’s Nest - BTC.” Available on GitHub: https://github

.com/hbhaq/CuckoosNestBTC, Mar. 2025.
[15] “Mempool state Bitcoin.” Available on Kaggle: https://www.kaggle.c

om/datasets/mempoolstate/mempool-state-bitcoin, Mar. 2025.
[16] Blockchain.com, “Blockchain charts, Bitcoin mempool.” https://www.bl

ockchain.com/explorer/charts, 2024.
[17] “Txmempool.h, Bitcoin source code, Github.” https://github.com/bitco

in/bitcoin/blob/master/src/txmempool.h, 2024.
[18] “Boost.MultiIndex Documentation - Performance.” https://cs.brown.edu

/∼jwicks/boost/libs/multi index/doc/performance.html, 2024.
[19] “P2P Network Guide - memory pool limit - Bitcoin.” https://bitcoin.or

g/en/p2p-network-guide#memory-pool, Oct 2024.
[20] “Running a full-node - Bitcoin.” https://bitcoin.org/en/full-node, 2024.
[21] S. Nakamoto, “Bitcoin p2p e-cash paper,” The Cryptography Mailing

List, 2008.
[22] “Full node - Bitcoin Wiki.” https://en.bitcoin.it/wiki/Full\ node, 2024.
[23] A. Kiayias, A. Miller, and D. Zindros, “Non-interactive proofs of proof-

of-Work,” in International Conference on Financial Cryptography and

Data Security, pp. 505–522, Springer, 2020.
[24] B. Bünz, L. Kiffer, L. Luu, and M. Zamani, “Flyclient: Super-light

clients for cryptocurrencies,” in 2020 IEEE Symposium on Security and

Privacy (SP), pp. 928–946, IEEE, 2020.
[25] A. Zamyatin, Z. Avarikioti, D. Perez, and W. J. Knottenbelt, “TxChain:

Efficient Cryptocurrency Light Clients via Contingent Transaction Ag-
gregation,” IACR Cryptol. ePrint Arch., vol. 2020, p. 580, 2020.

[26] D. Frey, M. X. Makkes, P.-L. Roman, F. Taı̈ani, and S. Voulgaris,
“Dietcoin: hardening bitcoin transaction verification process for mobile
devices,” Proceedings of the VLDB Endowment (PVLDB), vol. 12,
no. 12, pp. 1946–1949, 2019.

[27] T. Dryja, “Utreexo: A Dynamic Hash-Based Accumulator Optimized for
the Bitcoin UTXO Set.,” IACR Cryptol. ePrint Arch. 2019/611, 2019.

[28] A. P. Ozisik, G. Andresen, B. N. Levine, D. Tapp, G. Bissias, and
S. Katkuri, “Graphene: efficient interactive set reconciliation applied to
blockchain propagation,” in Proceedings of the ACM Special Interest

Group on Data Communication, pp. 303–317, Springer, 2019.
[29] G. Naumenko, G. Maxwell, P. Wuille, A. Fedorova, and I. Beschastnikh,

“Erlay: Efficient transaction relay for bitcoin,” in Proceedings of the

2019 ACM CCS, pp. 817–831, 2019.
[30] M. Corallo, “Compact block relay.”

https://github.com/bitcoin/bips/blob/master/bip-0152.mediawiki, 2016.
[31] E. Lombrozo, J. Lau, and P. Wuille, “Segregated witness (consensus

layer).” BIP 141: https://github.com/bitcoin/bips/blob/master/bip-0141.
mediawiki, 2015.

[32] N. Boškov, S. Simsek, A. Trachtenberg, and D. Starobinski, “Srep:
Out-of-band sync of transaction pools for large-scale blockchains,” in
2023 IEEE International Conference on Blockchain and Cryptocurrency

(ICBC), pp. 1–9, 2023.
[33] H. Binte Haq, S. T. Ali, A. Salman, P. McCorry, and S. F. Shahan-

dashti, “Neonpool: Reimagining cryptocurrency transaction pools for
lightweight clients and IoT devices.” arXiv preprint arXiv:2412.16217,
2025.

[34] H. Binte Haq, S. T. Ali, A. Salman, P. McCorry, and S. F. Shahandashti,
“Carbyne: An ultra-lightweight DoS-resilient mempool for Bitcoin.” ht
tps://eprints.whiterose.ac.uk/id/eprint/225617, 2025.

[35] B. Fan, D. G. Andersen, M. Kaminsky, and M. D. Mitzenmacher,
“Cuckoo filter: Practically better than bloom,” in Proceedings of the 10th

ACM International on Conference on emerging Networking Experiments

and Technologies, 2014.
[36] “Raw Transactions format - Bitcoin developer reference.”

https://developer.bitcoin.org/reference/transactions.html#raw-
transaction-format.

[37] “P2P Network — Bitcoin, Inventory Messages - Bitcoin developer
reference.” https://developer.bitcoin.org/reference/p2p networking.

[38] Efficient, “cuckoofilter - GitHub.” https://github.com/efficient/cuckoofil
ter, 2024.

[39] N. Boskov, A. Trachtenberg, and D. Starobinski, “Birdwatching: False
negatives in cuckoo filters,” in Proceedings of the Student Workshop,
pp. 13–14, 2020.

[40] D. Clayton, C. Patton, and T. Shrimpton, “Probabilistic data structures
in adversarial environments,” in Proceedings of the 2019 ACM CCS,
pp. 1317–1334, 2019.

[41] M. Naor and Y. Eylon, “Bloom filters in adversarial environments,” ACM

Transactions on Algorithms (TALG), vol. 15, no. 3, pp. 1–30, 2019.
[42] P. Chatzigiannis, F. Baldimtsi, and K. Chalkias, “SoK: Blockchain light

clients,” in International Conference on Financial Cryptography and

Data Security, pp. 615–641, Springer, 2022.

