
This is a repository copy of Neonpool: Reimagining cryptocurrency transaction pools for 
lightweight clients and IoT devices.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/id/eprint/225630/

Preprint:
Haq, Hina Binte, Ali, Syed Taha, Salman, Asad et al. (2 more authors) (2024) Neonpool: 
Reimagining cryptocurrency transaction pools for lightweight clients and IoT devices. 
[Preprint] 

https://doi.org/10.48550/arXiv.2412.16217

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse 
Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless 
indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by 
national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of 
the full text version. This is indicated by the licence information on the White Rose Research Online record 
for the item. 

Takedown 
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by 
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request. 

mailto:eprints@whiterose.ac.uk
https://doi.org/10.48550/arXiv.2412.16217
https://eprints.whiterose.ac.uk/id/eprint/225630/
https://eprints.whiterose.ac.uk/


Neonpool: Reimagining Cryptocurrency Transaction Pools for

Lightweight Clients and IoT Devices

Hina Binte Haqa, Syed Taha Alia, Asad Salmanb, Patrick McCorryc and Siamak F. Shahandashtid,∗

aNational University of Sciences and Technology (NUST), Islamabad, Pakistan
bX (formerly Twitter), USA
cArbitrum, London, United Kingdom
dUniversity of York, York, United Kingdom

A R T I C L E I N F O

Keywords:

Cryptocurrencies

Txpool

Mempool

Full-node

IoT

Lightweight

Memory

A B S T R A C T

The increasing adoption of cryptocurrencies has significantly amplified the resource requirements

for operating full nodes, creating substantial barriers to entry. Unlike miners, who are financially

incentivized through block rewards and transaction fees, full nodes lack direct economic compensation

for their critical role in maintaining the network. A key resource burden is the transaction pool, which is

particularly memory-intensive as it temporarily stores unconfirmed transactions awaiting verification

and propagation across the network. We present Neonpool, a novel optimization for transaction pool

leveraging bloom filter variants to drastically reduce memory consumption by up to 200x (e.g., 400

MB to 2 MB) while maintaining over 99.99% transaction processing accuracy. Implemented in C++

and evaluated on unique Bitcoin and Ethereum datasets, Neonpool enables efficient operation on

lightweight clients, such as smartphones, IoT devices, and systems-on-a-chip, without requiring a hard

fork. By lowering the cost of node participation, Neonpool enhances decentralization and strengthens

the overall security and robustness of cryptocurrency networks.

1. Introduction

Cryptocurrencies are revolutionizing finance by foster-

ing decentralization, efficient cross-border transactions, and

creating new investment opportunities. In recent years, cryp-

tocurrencies have witnessed global impact, gaining users

and acceptance by major players like PayPal and Tesla [6],

and governments actively exploring and piloting central

bank digital currencies. Blockchain technology has also

driven innovation beyond finance, impacting domains such

as healthcare, real estate, freight and supply chains, etc.

Participating in the cryptocurrency ecosystem, however,

is a significant undertaking: running cryptocurrency nodes

entails growing resource costs (hardware, bandwidth, and

electricity consumption). Many novel lightweight cryptocur-

rency clients have been proposed over the years to address

this issue [18]. These clients cater to diverse users and

typically prioritize certain node functions over others.

For instance, pruned nodes conserve storage by discard-

ing old transactions. Simplified payment verification (SPV)

clients, designed for lightweight devices, store block headers

and only request transactions of interest from full nodes [9].

Other proposals include lowering computation costs using

lightweight transaction inclusion proofs [34], minimizing

state size [44], and reducing bandwidth consumption using

limited flooding and intermittent reconciliation of transac-

tions [16]. Most light clients cannot function independently

and rely on full nodes for proper functioning.

A preprint of this paper is available on arXiv.
∗Corresponding author

siamak.shahandashti@york.ac.uk (S.F. Shahandashti)

ORCID(s):

Furthermore, none of the clients proposed thus far cater

to the growing local memory (RAM) consumption of cryp-

tocurrency nodes. This includes the transaction pool, which

indexes unconfirmed transactions in local memory for inven-

tory purposes and network-wide propagation. The transac-

tion pool uses map data structures to store, manage, and or-

ganize transactions, resulting in memory usage significantly

greater than the actual transaction data, typically several

hundreds of megabytes. Storing the transaction pool in RAM

is two orders of magnitude faster than disk storage [8].

Increased transaction loads substantially increase pool

size, which strains the resources of nodes, and results in

dropped transactions, processing delays, spikes in transac-

tion fees, and even exposes the network to sophisticated

attacks. Additionally, the transaction pool is also a vector for

spam and dust attacks. In October 2015, a Bitcoin spam cam-

paign grew the transaction pool to 1 GB (88k transactions),

crashing 10% of nodes, mostly on Raspberry Pi [7].

In this paper, we propose Neonpool, a novel solution that

optimizes the transaction pool for resource-constrained plat-

forms. Neonpool uses probabilistic data structures to design

the transaction pool, which utilizes statistical properties for

compact representations of large data sets, offering highly

space-efficient solutions that provide answers to member-

ship queries with tightly controlled error rates.

Neonpool utilizes two key insights: first, we observe that

a majority of light clients levy a burden on the network by

piggybacking on existing full-node clients for their proper

functioning. Second, we note that the two key functions

of the transaction pool, inventory and forwarding, can be

dissociated. This approach is similar to how lightweight

clients (e.g., pruned nodes, SPV wallets) are commonly built

by prioritizing one function over another [18]. So we ask the

HB Haq, ST Ali, A Salman, P McCorry, SF Shahandashti: Preprint submitted to Elsevier Page 1 of 15

ar
X

iv
:2

41
2.

16
21

7v
2 

 [
cs

.C
R

] 
 1

7 
M

ar
 2

02
5



Neonpool

question, is it possible to get the best of both worlds, i.e., de-

sign a client that optimizes local memory and contributes to

the network’s health without imposing a significant burden

on existing full nodes?

Specifically, we make the following contributions:

• We describe Neonpool, an optimized transaction pool

construction for cryptocurrencies that explores using

standard bloom filters, decaying bloom filters, and

bloom filters with key-value storage to replicate the

transaction pool’s core function of transaction inven-

tory. It reduces the transaction pool’s local memory

consumption by up to two orders of magnitude (400

MB to 2 MB) while still processing unconfirmed

transactions with over 99.99

• We implement two variants: Neonpool-BTC and Neonpool-

ETH, individually developed in C++ and bench-

marked on two novel blockchain network datasets,

each containing 10 million unique Bitcoin and Ethereum

network transactions.

• Neonpool-BTC and Neonpool-ETH are theoretically

and empirically evaluated on multiple dimensions, in-

cluding error rates, memory utilization, computation

time, and security on popular IoT devices.

To the best of our knowledge, Neonpool is the first

optimization solution targeted specifically at the transaction

pool and local memory. Our results demonstrate a dramatic

reduction in memory consumption, up to 200x (400 MB to

2 MB for Bitcoin and Ethereum), with transaction process-

ing accuracy over 99.99%. This solution enables resource-

constrained systems like smartphones, systems-on-a-chip,

mobile, and IoT devices to run a high-performing functional

transaction pool. It does not require a hard fork and is orthog-

onal to other light clients. Neonpool may be combined with

them to aggregate their benefits. Neonpool can be extended

to other cryptocurrencies.

Neonpool helps reduce the cost of running a full node for

users. Running a network node contributes to the health of

the network: it helps keep the network decentralized, as each

node independently enforces consensus rules and validates

and verifies transactions. It also ensures privacy for users,

unlike SPV nodes and wallets, which expose transaction

history to external servers.

In the subsequent sections, we delve into the requisite

background in ğ2, followed by the proposed scheme in ğ3.

We analyze and discuss empirical results in ğ4. We compare

our scheme with prior work in ğ5. We identify potential

future directions and conclude in ğ6.

2. Background

2.1. Unconfirmed transaction pool
The unconfirmed transaction pool (alternately called the

transaction pool) serves as a gateway for verifying and

temporarily storing unconfirmed or pending transactions in

a cryptocurrency node while they await inclusion in a block.

Its primary functions include 1. Transaction verifi-

cation: All incoming transactions are checked for adher-

ence to the cryptocurrency’s protocol rules such as syntax,

valid signatures, availability of funds, etc; 2. Transaction

storage: A verified transaction is stored temporarily until

it is included in a block. 3. Transaction propagation: The

verified transactions are disseminated through the peer-to-

peer network. A verified transaction is only forwarded to the

peers the first time it is received by a node to prevent loops in

the network. Forwarding a transaction enables other nodes to

independently verify and store them in their transaction pool.

Other functions include estimating transaction fees, pri-

oritizing transactions for inclusion in a block, and bootstrap-

ping the transaction pool of a newly connected node.

The components of the transaction pool can vary de-

pending on the cryptocurrency but generally include Trans-

action data: the raw transaction data itself; Transaction

metadata: other relevant information associated with each

transaction, such as the time the transaction was received, the

fee it pays, transaction’s priority, to name a few; Transaction

indexing data: to efficiently search and retrieve transactions

from the transaction pool, implementations utilize indexing

structures like maps or priority queues. They enable rapid

lookup, insertion, and deletion operations based on trans-

action IDs or other unique identifiers, to help optimize the

process of transaction validation and propagation.

In Bitcoin, the mempool is allocated 300 MB by de-

fault [47]. In Ethereum, the default number of pending trans-

actions in the txpool is 4096 [24]. Surplus transactions are

evicted. Users can define a custom transaction pool accep-

tance policy. In a low-memory environment, the transaction

pool size can be disabled entirely.

(a) Bitcoin transaction count, raw size [17] and memory usage

(b) Ethereum transaction count [29], raw size and memory usage

Figure 1: Transaction pool trends (since 2020)

HB Haq, ST Ali, A Salman, P McCorry, SF Shahandashti: Preprint submitted to Elsevier Page 2 of 15



Neonpool

Fig 1a provides the transaction count and raw transac-

tion size of transactions in the Bitcoin mempool btccharts.

Using this data, we calculate the memory usage of the

Bitcoin mempool, which is approximately three times larger

than the size of the raw transaction data [27] [26]. This

disproportionate memory usage arises from the inherent

limitations of map data structures, which require significant

additional memory due to the storage of metadata, indexes,

and pointers, resulting in total memory usage that far exceeds

the size of the raw data. In early 2024, Bitcoin’s transaction

pool often ranged from 150-300 MB in raw transaction size,

with memory usage exceeding 400 MB.

Etherscan provides comprehensive data on transaction

count for the Ethereum txpool [29], as shown in Fig 1b. As

explained above, overheads are estimated to be three times

the raw transaction size for Bitcoin.1 This helps estimate

memory usage. These metrics are visualized in Fig. 1b. For

Ethereum, raw transaction size has frequently surpassed 150

MB, while memory consumption often crosses 400 MB.

Fig. 2 shows the distribution of node components over

the hard disk and RAM. Disk storage encompasses raw

block data, metadata, and state information like UTXO or

Trie. Notably, the UTXO/Trie is partially mirrored in RAM.

Additionally, RAM contains essential elements such as the

unconfirmed transaction pool, partial state (e.g., UTXO or

Trie), block and validation cache, as well as network con-

nections information.

Figure 2: Major node components in disk and memory

Figure 3: Bloom őlter

2.2. Bloom filter
A Bloom filter [38] is a probabilistic data structure used

to test for set membership. It is particularly efficient with

regards to memory usage but with a caveat: it may provide

false positive results, i.e., it can report that an element is

present in the set when it is not, but it will never produce

a false negative.

Essentially it is a bit array of size m and k different hash

functions. Initially, all bits are set to 0. To insert an element,

1Simple ETH transfers are 30% of Ethereum transactions (210–250

bytes), while smart contract transactions make up 70% (500–1,000 bytes),

resulting in an average size of 600 bytes. [28]

it is hashed using each of the k hash functions, resulting in

k different bits corresponding to positions in the bit array,

which are set to 1. To check for membership, the element

is again hashed by the k hash functions, and if any of the

corresponding positions in the bit array are 0, the element

is not in the set. If all the positions are 1, the element is

likely in the set. In Fig. 3 we insert three elements 𝑥[1], 𝑥[2],

𝑥[3] in the filter, which map to indices {2, 9, 15}, {6, 10, 15}

& {0, 4, 9} respectively. For 𝑥[4] with indexes {0, 2, 6}, the

bloom filter returns a false positive due to earlier insertions

setting those bits to 1. The probability of a false positive,

alternatively called the false positive rate (FPR), depends on

the size of the bit array, the number of hash functions used,

and the number of elements inserted. It is given by

𝑝 ≈
(
1 − 𝑒

−
𝑘𝑛

𝑚

)𝑘

(1)

FPR highlights the trade-off between space and accuracy.

Filter size 𝑚 can be provisioned as per set size 𝑛:

𝑚 ≈

(
−𝑛 ×

𝑙𝑛(𝑝)

(𝑙𝑛2)2

)
(2)

The optimum value of a number of hash functions, 𝑘 is

𝑘 ≈
(
𝑚

𝑛
× 𝑙𝑛2

)
(3)

Decaying Bloom filters [46] randomly decay or "age

out" bits over time. This behaviour is helpful when item

relevance decreases over time, and it’s important to maintain

an accurate representation of recent data while letting old

data expire. Upon inserting an element into the Decaying

Bloom filter, bits are reduced by a constant decay factor.

A Decaying Bloom filter can be achieved by modifying a

standard Bloom filter, whereupon every insertion 𝑑 random

indices are decremented, mimicking expiry. For instance, the

decay factor, 𝑑 = 32, results in 32 random indices of the filter

being decremented upon every insertion. A fraction of these

randomly selected indices may be already zero.

Bloom filters are commonly used in applications, such

as caching and network routing, where probabilistic results

and memory efficiency are acceptable trade-offs.

Bloom filters in cryptocurrencies:Transaction Bloom

filtering, introduced in BIP 37, enabled lightweight SPV

wallets to efficiently retrieve transactions relevant to their

addresses by sending a Bloom filter (based on its addresses,

public keys, or other identifiers) to a full node, reducing

bandwidth usage. However, BIP 37 was deprecated in Bit-

coin Core 0.21.0 (2021) due to privacy concerns, as it ex-

posed SPV wallet addresses to the full node. Graphene uses

bloom filters to reduce network bandwidth in block recon-

ciliation in Bitcoin [4]. In Ethereum, Bloom filters are used

within block headers to summarize the logs generated by

transactions in a block. This enables quick event log lookups

without requiring full transaction execution. Bloom filters

support block declaration fairness by enabling nodes to

quickly verify transaction inclusion when competing blocks

are declared, ensuring valid transactions are not overlooked.

HB Haq, ST Ali, A Salman, P McCorry, SF Shahandashti: Preprint submitted to Elsevier Page 3 of 15



Neonpool

Algorithm 1 transaction pool

1: function RECEIVETRANSACTION(tx)

2: if TRANSACTIONPOOLLOOKUP(tx) then

3: DROPTRANSACTION(tx)

4: else

5: if SYNTAXANDSEMANTICSCHECK(tx) then

6: if DOUBLESPENDCHECK(tx) then

7: ADDTRANSACTION(tx)

8: RELAYTRANSACTION(tx)

9: else

10: DROPTRANSACTION(tx)

11: else

12: DROPTRANSACTION(tx)

Algorithm 2 Neonpool

1: function RECEIVETRANSACTION(tx)

2: if BLOOMTXFILTER(tx) then

3: DROPTRANSACTION(tx)

4: else

5: if SYNTAXANDSEMANTICSCHECK(tx) then

6: if DSTXFILTER(tx) then

7: ADDTRANSACTION(tx)

8: RELAYTRANSACTION(tx)

9: else

10: DROPTRANSACTION(tx)

11: else

12: DROPTRANSACTION(tx)

For a comprehensive summary of the applications of bloom

filters in blockchain systems, we refer the reader to [5].

A Merkle tree is a binary tree structure used in cryp-

tography to efficiently and securely verify the integrity of

large datasets. They are invaluable for ensuring data integrity

and inclusion in static, immutable datasets. Bitcoin and

Ethereum leverage Merkle trees to organize transaction data

within blocks. Once a block is mined and added to the chain,

its data becomes immutable, making Merkle trees a suitable

choice for this static context. However, their high update

costs, verification overhead, and reliance on additional data

(e.g., root and sibling hashes) make them unsuitable for the

dynamic, high-churn environment of transaction pools.

In contrast, Bloom filters are particularly suited for op-

timizing the transaction pool because they enable efficient

insertion and verification without requiring additional data,

such as sibling or root hashes. Unlike Merkle trees, which

scale logarithmically with the size of the dataset, the mem-

ory usage of a Bloom filter is independent of the dataset size.

Instead, it is determined by its configuration, such as the size

of the bit array and the number of hash functions. This makes

Bloom filters especially beneficial for resource-constrained

environments, including lightweight clients and IoT devices.

3. Proposed scheme

In this section, we provide a detailed explanation of our

proposed scheme. By leveraging probabilistic data struc-

tures, Neonpool maintains the transaction pool’s core func-

tionality while significantly improving resource efficiency.

It does not necessitate the storage of complete transactions.

Instead, it only stores transaction fingerprints, effectively

disassociating the processes of transaction forwarding and

inventory management.

Neonpool comprises two primary components. The first,

bloomtxFilter, utilizes the transaction ID or hash, txHash,

to map valid ingress transactions. The second component,

dstxFilter, ensures that duplicate or potential double-spend

transactions are identified and discarded. The exact mecha-

nism to identify potential double-spending varies for UTXO-

based Bitcoin and account-based Ethereum.

We present two variations of our proposed scheme,

namely Neonpool-BTC and Neonpool-ETH. The term Neon-

pool is used if a certain aspect of the scheme applies to

both Bitcoin and Ethereum. We use the term mempool to

refer to the Bitcoin transaction pool and txpool to refer to

the Ethereum transaction pool, while transaction pool is

a generic term that applies to both Bitcoin mempool and

Ethereum txpool.

3.1. Ingress
Here, we describe the ingress process for the transaction

pool and Neonpool, as depicted in Algo. 1 and 2, respec-

tively.

(a) Mempool Ingress

(b) Neonpool-BTC Ingress

Figure 4: Ingress: mempool vs Neonpool-BTC (only (Y)es or
(N)o is shown, other implies transaction is dropped.)

HB Haq, ST Ali, A Salman, P McCorry, SF Shahandashti: Preprint submitted to Elsevier Page 4 of 15



Neonpool

3.1.1. Neonpool-BTC

As shown in Fig. 4a and 4b, in both Bitcoin Core and

Neonpool-BTC, the process begins with the arrival of a trans-

action announcement through an inv message. In Bitcoin,

txHash is used to query the mempool to determine if the

transaction already exists in the mempool. In Neonpool-BTC,

the txHash is used to query the bloomtxFilter.

Nodes may receive a transaction announcement multiple

times but only accept it the first time they receive it. This

functionality is essential in cryptocurrency networks to min-

imize traffic overhead and prevent infinite loops by ensuring

that transactions are broadcast only upon first receipt. In

both Bitcoin and Neonpool-BTC, if a transaction with the

same txHash has already been received, it is discarded. If the

transaction is determined to be new, the complete transaction

is requested via a transaction message. When received,

the complete transaction txBTC undergoes syntax, validity

(valid transaction signatures, availability of sufficient funds,

etc.), and semantics checks in both Bitcoin and Neonpool-

BTC, followed by checks to detect double-spends.

In both Bitcoin and Neonpool-BTC, each of the in-

puts, comprising the inputtxHash and index are scanned for

double-spends. Transaction inputs are validated using the

UTXO set. Transactions with invalid or spent inputs are

discarded. It is also checked that none of the inputs exists in

the mempool in Bitcoin. For Neonpool-BTC the dstxFilter

is queried with the tuple <inputtxHash, index> to ascertain

that the input does not already exist in the filter. If any of the

inputs already exist in the mempool or dstxFilter, the trans-

action is dropped, as it constitutes a potential double spend.

If two transactions with the same inputs are in circulation,

the first seen by a node is regarded as safe, while the second

is dropped. If any transaction input also (referred to as parent

or ancestor) is missing, the transaction is added to the orphan

pool. It will reside in the orphan pool until its ancestor is

received, after which it will be reprocessed. If the txBTC

passes the verification process, it is added to the mempool

in Bitcoin and bloomtxFilter in Neonpool-BTC. Finally, the

transaction hash, txHash, is relayed to the connected peers.

3.1.2. Neonpool-ETH

As shown in Fig. 5a and 5b, in both Ethereum and

Neonpool-ETH a complete transaction txETH arrives via a

transaction message. In Ethereum, the transaction hash (or

ID) txHash is used to query the txpool to determine if the

transaction already exists in the txpool. In Neonpool-ETH,

the txHash is used to query the bloomtxFilter.

Nodes may receive a transaction announcement multiple

times but only accept it the first time they receive it. In both

Ethereum and Neonpool-ETH, if a transaction with the same

txHash has already been received, it is discarded. If the trans-

action is determined to be new, it undergoes syntax, validity

(valid transaction signatures, funds availability, etc.), and

semantics checks in both Ethereum and Neonpool-ETH.

In both Ethereum and Neonpool-ETH, the transaction

is then checked for potential double-spends by validating

the transaction’s address, nonce and amount against the Trie.

(a) Txpool Ingress

(b) Neonpool-ETH Ingress

Figure 5: Ingress: txpool vs Neonpool-ETH (only (Y)es or (N)o
is shown, other implies transaction is dropped.)

Transactions with an invalid or out-of-order nonce or insuf-

ficient funds are rejected.

Then, in Ethereum, the txpool is queried to check if a

transaction with the same address and nonce already exists

in it. If two transactions from the same address and with

the same nonce are in circulation, the first seen by a node

is regarded as safe, while the second is dropped. The first

seen may differ for nodes on the network. In Neonpool-

ETH, the <address, nonce> tuple of txETH is scanned in

dstxFilter to detect any potential double-spends and drop

such transactions.

In Ethereum, if txETH passes the verification process, it

is added to the txpool. In Neonpool-ETH, the txHash is used

to add the transaction to the bloomtxFilter, while the tuple

<address, nonce>, representing the sender’s address, and the

nonce value of the transaction is added to the dstxFilter.

Finally, the complete transaction is relayed to a random

fraction of connected peers.

3.2. Egress
In Bitcoin core and Ethereum, transactions are removed

from the unconfirmed transaction pool for various reasons,

such as inclusion in a block, limited transaction pool ca-

pacity, transaction expiry, fee priority, running out of gas

(in Ethereum), replacement by a newer version that offers

a higher fee, invalid or conflicting transaction, or chain

reorganization event at the node.

In Bitcoin, transactions are automatically removed from

the mempool after a default expiration period of 14 days,

although this limit can be configured by the node opera-

tor [23]. In Ethereum, the transaction pool’s memory usage

is configurable, and transactions expire when the number of

HB Haq, ST Ali, A Salman, P McCorry, SF Shahandashti: Preprint submitted to Elsevier Page 5 of 15



Neonpool

pending transactions exceeds the default limit of 4,096 or

when they remain unprocessed for more than 3 hours [24].

Neonpool mimics these expiry mechanisms using Bloom

filters, offering nodes configurable parameters for transac-

tion expiry through periodic clearing and decaying Bloom

Filters. This is necessary because we do not perform any

deletions on the bloom filter, and the load in the bloom filter

is bound to exceed the number of transactions it was initially

dimensioned for. We consider two approaches: Firstly, the

accumulated transactions can be periodically removed by

clearing the filter. This period may be a fixed hourly interval

or based on the number of transactions processed. Secondly,

Decaying Bloom filters may be employed to randomly

decay or age out transactions, to maintain an accurate

representation of recent data while letting old data expire.

Our work is a pioneering investigation into the fea-

sibility and suitability of probabilistic data structures for

transaction pool construction. Based on the core function

of the transaction pool, we require a data structure with the

following properties: it can answer membership queries, let

old transactions expire to make way for more recent ones

and ensure double spending protection. Key-value support is

also required. While there are more than a dozen variants of

bloom filters available in the literature, we start by using the

most basic ones that meet our requirements and are widely

understood. As a proof-of-concept, we evaluate these in ğ 4

and gain greater insight into the theoretical limitations of

each data structure. Further optimizations will be explored

in an extension study.

3.3. Scaling Neonpool
We present a strategy to enable Neonpool to handle in-

creasing transaction loads effectively: To mitigate the risk of

false positives during heavy network congestion, the system

initializes a counter to track the total number of transactions

inserted into the Bloom filter. When the transaction count

exceeds the capacity of 200,000, additional auxiliary Bloom

filters of the same size and capacity are dynamically instan-

tiated, as per demand and expired in order of age [39] [40].

This prevents overloading the filter, thereby maintaining

acceptable false positive rates.

The proposed approach of recursively generating Bloom

filters may result in increased computation time and memory

overhead on lightweight devices. In cryptocurrencies like

Bitcoin and Ethereum, there is an established practice of lim-

iting transaction pool sizes and managing overflow by reject-

ing or expiring excess transactions. For instance, Bitcoin’s

default mempool size is capped at 300 MB, while Ethereum

employs a default limit of 4096 transactions in the transac-

tion pool, with surplus transactions being evicted [47] [24].

Furthermore, users can customize transaction pool policies

or disable transaction pools entirely to accommodate low-

memory or low-computation environments.

Similarly, Neonpool allows nodes to configure and ad-

just memory and computational thresholds based on their

specific capacity. If the memory or computational threshold

is reached, older Bloom filters automatically expire as nec-

essary. For example, if a node can efficiently manage only

two concurrent filters without exceeding its computational

resources, it can set this limit to ensure optimal performance.

The objective is to empower full-node users by op-

timizing resource utilization, providing enhanced flexibil-

ity, and granting greater control over resource allocation.

This approach incentivizes altruistic participation of the full

nodes, enabling them to actively participate in transaction

verification and forwarding, thus contributing to the decen-

tralization, security, and robustness of the ecosystem.

The scaling function of Neonpool is governed by Eq. 2

and is determined by the configuration of the Bloom filter,

specifically the size of the bit array and the number of hash

functions: False-Positive Rate (p): Eq. 2 shows that the bit

array size (m) grows logarithmically with p. For example,

reducing the false-positive probability from 10−3 to 10−6

increases the bit array size modestly. This logarithmic rela-

tionship allows for efficient use of resources while lowering

false positives. Number of Transactions (n): Assuming

the false-positive rate (p) is kept constant, the bit array

size grows linearly with the number of transactions. As the

number of transactions (n) increases, the size of the Bloom

filter increases proportionally. If the number of transactions

doubles, the Bloom filter size doubles, making it scalable as

transaction pools grow.

Thus, Neonpool scales logarithmically with the desired

false-positive probability and linearly with the number of

transactions it tracks, ensuring efficient transaction pool

management even in resource-constrained environments.

4. Experiments, results and discussion

This section comprehensively evaluates Neonpool-BTC

and Neonpool-ETH in comparison to Bitcoin mempool and

Ethereum txpool respectively, on multiple dimensions in-

cluding error rates, memory utilization, computation time,

and security, on popular IoT devices.

4.1. Data set, implementation, and methodology
We record 𝑖𝑛𝑔𝑟𝑒𝑠𝑠 and 𝑒𝑔𝑟𝑒𝑠𝑠 transactions in the trans-

action pool in JSON format for Bitcoin and CSV for Ethereum

(for raw transaction structure in Bitcoin and Ethereum,

see [10] [41]) to allow us to reconstruct the transaction pool

state at the client and replay network activity for simula-

tion purposes. Our data set also includes all transactions

(for Bitcoin inventory and Ethereum transaction message

structure see [45] [42]) received over the network stored in

CSV format. For Bitcoin, we run an instrumented version

of Bitcoin Core modifying txmempool.cpp to capture 10

million unique transactions (around 30 million transaction

announcements over ∼30 days). Similarly, for Ethereum, we

run an instrumented version of Geth, modifying txpool.go,

to capture 10 million unique transactions (around 13 million

transactions over ∼10 days).

We develop simulations for Bitcoin mempool and Ethereum

txpool using map data structures, with high-level pseu-

docode described in Algo 2, and for Neonpool-BTC and

HB Haq, ST Ali, A Salman, P McCorry, SF Shahandashti: Preprint submitted to Elsevier Page 6 of 15



Neonpool

Expiry Rejected Transactions Redundant Transactions
Hours(h)/ 500 kB 1 MB 2 MB 500 kB 1 MB 2 MB
Decay(d) FPR/Num FPR/Num FPR/Num FNR/Num FNR/Num FNR/Num

None 8.06E01/26897923 7.43E01/25191220 6.82E01/23508643 0/0 0/0 0/0
h=48 5.20E-02/1650093 2.08E-02/658984 3.77E-03/119770 1.08E-03/34309 1.17E-03/37060 1.21E-03/38510
h=24 9.03E-03/286612 1.94E-03/61577 6.22E-04/19735 1.77E-03/56112 1.79E-03/56905 1.80E-03/57057
h=12 2.83E-03/89922 9.28E-04/29479 6.05E-04/19200 1.99E-03/63224 2.00E-03/63473 2.00E-03/63549
h=6 1.51E-03/48011 7.32E-04/23247 5.82E-04/18476 2.27E-03/72025 2.27E-03/72180 2.27E-03/72194
h=3 1.03E-03/32575 6.51E-04/20680 5.80E-04/18415 3.06E-03/97205 3.06E-03/97320 3.07E-03/97333
400k tx 9.80E-03/408250 1.70E-03/73000 6.00E-03/9824 1.49E-03/46785 1.50E-03/46813 1.51E-03/46872
d=16 1.73E-03/72561 7.27E-04/30427 4.87E-04/20398 4.64E-03/148179 4.66E-03/148905 4.67E-03/149097
d=32 3.85E-04/16112 7.44E-05/3115 1.90E-05/794 5.04E-03/164708 5.04E-03/164608 5.06E-03/165318
d=64 1.45E-04/6055 2.64E-05/1103 4.44E-06/186 5.48E-03/182864 5.47E-03/182592 5.48E-03/182790
d=128 1.19E-05/498 8.53E-06/357 1.98E-06/83 6.06E-03/207234 6.05E-03/206961 6.03E-03/206087
d=256 1.19E-05/497 4.35E-06/182 8.60E-07/36 7.03E-03/247948 7.04E-01/248219 7.04E-03/248218

Table 1
Neonpool-BTC performance for n=400k

Neonpool-ETH as shown in Fig. 4a and 5a. We replay trans-

actions in each dataset to reconstruct the Bitcoin mempool

and Ethereum txpool over 30 and 10 days, respectively. The

simulated Bitcoin mempool and Ethereum txpool serve as the

ground truth, running in parallel with Neonpool-BTC and

Neonpool-ETH to evaluate our scheme’s performance.

Neonpool-BTC was implemented using C++, as Bitcoin

Core, the most widely used Bitcoin client, is written in C++.

Furthermore, C++ offers a robust standard library optimized

for high performance, efficient memory management, and

handling data-intensive operations with minimal overhead.

For Bloom filters and variants, we use the comprehensive

Berkeley libbf library [25] written in C++ and incorporate

the 𝐻3𝑒𝑥𝑝 hash functions.

For Neonpool-ETH, we reuse the code components de-

veloped for Neonpool-BTC. The language-agnostic nature

of our approach ensures that Neonpool’s advantages are

preserved even when ported to Go for integration with

Ethereum. Our dataset and code are publicly accessible. [43]

We perform independent queries on Neonpool and the

transaction pool at each 𝑖𝑛𝑔𝑟𝑒𝑠𝑠 transaction in our data set,

and the responses are recorded. The responses may diverge

from the ground truth owing to the probabilistic nature of

bloom filters. We discuss how these false positives and

negatives affect our scheme and offer a quantitative analysis.

4.2. Evaluation metrics
The responses obtained from the bloomtxFilter can be

categorized as True Positive (TP): a positive instance cor-

rectly classified as positive; True Negative (TN): a negative

instance correctly classified as negative; False Positive (FP):

a negative instance incorrectly classified as positive.

In the context of an 𝑖𝑛𝑔𝑟𝑒𝑠𝑠 event, the following implica-

tions hold𝐓𝐏𝐢𝐧𝐠𝐫𝐞𝐬𝐬: the transaction already exists in the pool

and will be discarded correctly. 𝐓𝐍𝐢𝐧𝐠𝐫𝐞𝐬𝐬: the transaction is

new and will be added to the pool as intended. 𝐅𝐏𝐢𝐧𝐠𝐫𝐞𝐬𝐬: the

transaction is new and should be added to the pool, but it will

be erroneously rejected. Inherently, bloom filters do not have

false negatives. However, because we periodically expire

older transactions, we may receive a false negative response

in our scenario. 𝐅𝐍𝐢𝐧𝐠𝐫𝐞𝐬𝐬: The transaction has already been

added and expired, but it will be erroneously added again.

Hence, the criteria used to assess the performance are:

False Positive Rate (FPR) measures the proportion of trans-

actions rejected erroneously, calculated as
𝐹𝑃𝑖𝑛𝑔𝑟𝑒𝑠𝑠

𝑄𝑢𝑒𝑟𝑖𝑒𝑠𝑖𝑛𝑔𝑟𝑒𝑠𝑠
;

False Negative Rate (FNR) measures the proportion of

transactions reprocessed, calculated as
𝐹𝑁𝑖𝑛𝑔𝑟𝑒𝑠𝑠

𝑄𝑢𝑒𝑟𝑖𝑒𝑠𝑖𝑛𝑔𝑟𝑒𝑠𝑠
.

4.3. Error rates and memory utilization
4.3.1. Neonpool-BTC

The highest transaction volumes observed in the Bit-

coin mempool to date are around 200k. We dimension

bloomtxFilter to handle double that, i.e., 400k transactions,

because Neonpool delays removing transactions, as dis-

cussed below. Using Eq. 2 and Eq. 3, we dimension filters of

size 500 KB, 1 MB, and 2 MB with 4M, 8M, and 16M cells,

having 7, 14, and 28 hash functions, and theoretical FPR of

8.2𝐸 − 03, 6.7𝐸 − 05, and 5.0𝐸 − 09 respectively.

We replay transaction events in the Bitcoin dataset.

When Neonpool-BTC runs without a transaction expiry

mechanism, transactions accumulate and quickly surpass

the filter design capacity. Due to filter overloading, we get

poor results. As shown in Tab. 2, the 500 KB, 1 MB, and

2 MB filters report a false positive rate (FPR) of 8.06𝐸01,

7.43𝐸01, and 6.82𝐸01, erroneously rejecting 80.6%, 74.3%,

and 68.2% of transactions respectively. However, as no

transactions expire, the false negative rate (FNR) is zero.

We introduce expiry mechanisms to prevent the filters

from overloading. We follow two approaches: 1. reset the

bloom filter at fixed hourly intervals or once the count of

transactions surpasses the number of transactions the filter

was originally dimensioned for i.e. 400k in our case; 2.

employ a decaying bloom filter that decrements a certain

number of indices at random upon every insertion, hence

mimicking expiry.

HB Haq, ST Ali, A Salman, P McCorry, SF Shahandashti: Preprint submitted to Elsevier Page 7 of 15



Neonpool

Fig. 6 depicts in real-time the number of transactions

stored in Neonpool-BTC with 1 MB filters and 24-hour ex-

piry alongside the FPR for 30 days (10 million transactions).

We also plot the corresponding number of transactions in

the Bitcoin mempool, the ground truth in our evaluation.

The number of transactions closely tracks the pattern in

the Bitcoin mempool, with an increasing offset, as the filter

retains egress transactions until the expiry interval lapses.

For instance, when the filter is cleared every 24 hours

the average FPR, at 9.03 − 03 is highest for the 500 kB

filter, reducing to 1.94𝐸 − 03 and 6.22𝐸 − 04 as the filter

size increases to 1 MB and further to 2 MB. For the 500 kB,

1 MB, and 2 MB filters, this translates to 286612 or 0.90%,

61577 or 0.19% and 19735 or 0.06% of transactions being

erroneously rejected due to false positives. For each filter,

there are around 0.18% redundant transactions due to false

negatives. Tab. 1 shows that as the expiry interval is reduced,

the FPR improves, while the FNR deteriorates.

Tab. 1 shows that when the filter is cleared every 400k

transactions, the average false positive rate at 9.80𝐸 − 03

is highest for the 500 kB filter and reducing to 1.7𝐸 − 03

and 6.00𝐸 − 03 as the filter size increases to 1 MB and

further to 2 MB. For the 500 kB, 1 MB, and 2 MB filters.

We observe 0.98%, 0.17%, and 0.06% of transactions being

erroneously rejected due to false positives. For each filter,

there are around 0.15% redundant transactions due to false

negatives.

Empirical false positive rates are significantly higher

than the theoretical value, sometimes even more than an

order of magnitude. We theorize the causes: first, multiple

works have reported that false positive rates in real de-

ployments are higher than theoretically computed [31] [30].

Researchers contend that this is because theoretical calcula-

tions assume that "each hash transformation is perfect" [31]

and that transactions "are independent and uniformly dis-

tributed over all records" whereas real activity tends to be

"clumped" [30]. In this context, Bose et al. prove that Eq. 1

gives us a lower bound on the false positive rate [32].

Hence, these deviations reflect practical realities rather

than flaws in the theoretical framework. To address this,

an effective strategy is to over-dimension the Bloom filter.

This compensates for empirical deviations by ensuring false

positive rates remain within acceptable bounds for spe-

cific applications. Such an approach aligns with established

Figure 6: Neonpool-BTC 1 MB, 24 hours expiry

deployment practices, where configurations are optimized

based on observed performance metrics rather than idealized

theoretical models.

If we use a decaying bloom filter, we achieve vast im-

provements in terms of false positive rates. The average FPR

at 1.19𝐸 − 05 is highest for the 500 kB filter and reduces to

8.53𝐸 − 06 and 1.98𝐸 − 06 as the filter size increases to

1 MB and further to 2 MB. For a decay factor of 128, the

500 kB, 1 MB, and 2 MB filters observe 498 or 0.0012%,

357 or 0.0009% and 83 or 0.0002% of transactions being

erroneously rejected due to false positives and there are

around 0.61% redundant transactions due to false negatives.

Tab. 1 shows that by increasing the decay factor, the FPR

and, hence, the number of erroneously rejected transactions

reduce. This is because the decay average meets the insertion

average, and the filter reaches a stable state. However, on the

flip side, the false negative rate increases.

The dstxFilter which prevents double spends, can have

implications denoted as 𝐓𝐏𝐢𝐧𝐩𝐮𝐭 , 𝐓𝐍𝐢𝐧𝐩𝐮𝐭 , 𝐅𝐏𝐢𝐧𝐩𝐮𝐭 , and

𝐅𝐍𝐢𝐧𝐩𝐮𝐭 . Similar to bloomtxFilter, a 𝐓𝐏𝐢𝐧𝐩𝐮𝐭 transaction

should be discarded, while a 𝐓𝐍𝐢𝐧𝐩𝐮𝐭 transaction should be

accepted. The error𝐅𝐏𝐢𝐧𝐩𝐮𝐭 will lead to a genuine transaction

being discarded, while 𝐅𝐍𝐢𝐧𝐩𝐮𝐭 will lead to accepting a

transaction the <inputtxHash, index> of which has already

been processed. However, circulating such transactions does

not imply a double-spend, as Neonpool-BTC and other

network nodes maintain the UTXO and screen transactions

in incoming blocks to prevent double-spending.

In the dataset, incoming transactions average 40,000

inputs hourly, peaking at 191,947 inputs. Thus it is safe that

dstxFilter will have the same dimensions as bloomtxFilter

and consequently similar FPR. Thus, for a 1 MB bloomtxFilter,

rejecting around 0.0009% of valid transactions, the cor-

responding dstxFilter will also reject around 0.0009%

of valid transactions. Neonpool-BTC achieves 99.99% fi-

delity, handling 300 MB of transactions in just 2 MB, as

shown in Fig. 7.

Figure 7: Memory usage of mempool and Neonpool-BTC

4.3.2. Neonpool-ETH

The highest transaction volumes observed in the Ethereum

txpool to date is around 350k. We dimension bloomtxFilter

to handle its double i.e. 700k transactions, because Neonpool

delays the removal of transactions, as discussed below.

Using Eq. 2 and Eq. 3 we dimension three filters of size

HB Haq, ST Ali, A Salman, P McCorry, SF Shahandashti: Preprint submitted to Elsevier Page 8 of 15



Neonpool

Expiry Rejected Transactions Redundant Transactions
event 500 kB 1 MB 2 MB 500 kB 1 MB 2 MB

FPR/Num FPR/Num FPR/Num FNR/Num FNR/Num FNR/Num

None 7.30E-01/7932070 6.70E-01/7282537 6.07E-01/6596909 0.00E+00/0 0.00E+00/0 0.00E+00/0
h=48 2.33E-01/2529181 1.05E-01/1142566 2.95E-02/320771 1.05E-02/113631 1.26E-02/136556 8.53E-03/92649
h=24 5.62E-02/610328 8.14E-03/88437 5.69E-04/6181 1.19E-02/129414 8.50E-03/92339 1.29E-02/139987
h=12 7.43E-03/80758 2.39E-04/2593 5.38E-05/584 1.29E-02/139620 1.29E-02/139981 1.44E-02/156081
h=6 5.58E-04/6059 5.87E-05/638 5.74E-05/624 1.63E-02/177183 1.63E-02/177219 1.63E-02/177219
h=3 3.21E-05/349 1.69E-05/184 1.69E-05/184 2.29E-02/248518 2.29E-02/248518 2.29E-02/248518

700k tx 1.63E-02/177428 4.61E-04/5012 1.66E-04/1801 6.43E-03/69810 6.44E-03/69991 6.44E-03/70041
d=16 1.54E-03/16696 4.72E-05/513 2.48E-05/269 2.57E-03/27924 2.58E-03/27996 2.87E-03/31216
d=32 1.66E-04/1806 2.63E-05/286 1.07E-05/116 6.40E-03/69508 6.41E-03/69685 6.40E-03/69563
d=64 1.69E-05/184 7.36E-06/80 6.63E-06/72 7.36E-03/80010 7.35E-03/79896 7.34E-03/79742

d=128 3.41E-06/37 2.02E-06/22 2.21E-06/24 8.15E-03/88542 8.16E-03/88668 8.17E-03/88723
d=256 1.01E-06/11 9.20E-07/10 5.52E-07/6 8.88E-03/96459 8.88E-03/96502 8.89E-03/96558

Table 2
Neonpool-ETH: Performance for n=700,000

500 KB, 1 MB and 2 MB, with 4M, 8M and 16M cells,

having 4,8 and 16 hashes, and theoretical FPR of 6.4𝐸 −02,

4.1𝐸 − 03, 1.7𝐸 − 05 respectively.

Figure 8: Neonpool-ETH: 1 MB, 12 hours expiry

We replay transaction events in the Ethereum dataset.

First, we run Neonpoool-ETH without any transaction ex-

piry mechanism. Thus transactions accumulate and quickly

surpass the filter design capacity. Due to overloading in the

filter, we get poor results. As shown in Tab. 2, the 500 KB,

1 MB and 2 MB filters report a FPR of 7.30𝐸01, 6.70𝐸01

and 6.07𝐸01, erroneously rejecting around 73.0%, 67.0%

and 60.07% of transactions respectively. However, as no

transactions are expired, the FNR is zero.

We introduce expiry mechanisms to prevent the filters

from overloading. We follow two approaches: 1. reset the

bloom filter at fixed hourly intervals or once the count of

transactions surpasses the number of transactions the filter

was originally dimensioned for i.e. 700k in our case; 2.

employ a decaying bloom filter that decrements a certain

number of indices at random upon every insertion, hence

mimicking expiry.

Fig. 8 depicts the number of transactions in Neonpool-

ETH with 1 MB filters and 24-hour expiry along with the

FPR for almost 10 days (10 million unique transactions).

We also plot the corresponding number of transactions in

the Ethereum txpool, the ground truth in our evaluation.

The number of transactions closely tracks the pattern in

the Ethereum txpool, with an increasing offset, as the filter

retains egress transactions until the expiry interval lapses.

For instance, when the filter is cleared every 12 hours,

the average FPR, at 7.43𝐸 − 03, is highest for the 500 kB

filter, reducing to 2.39𝐸 − 04 and 5.38𝐸 − 05 as the filter

size increases to 1 MB and further to 2 MB. For the 500 kB,

1 MB, and 2 MB filters, this translates to 80758 or 0.74%,

2593 or 0.02% and 584 or 0.0569% of transactions being

erroneously rejected, respectively. For each filter, there are

over 1% redundant transactions due to false negatives. Tab. 2

shows that, as expected, as the expiry interval is reduced, the

FPR improves while the FNR deteriorates.

Tab. 2 also shows that when the filter is cleared every

700k transactions, the average FPR at 1.63𝐸 − 02 is highest

for the 500 kB filter and reducing to 4.61𝐸−04 and 1.66𝐸−

04 as the filter size increases to 1 MB and further to 2 MB.

For the 500 kB, 1 MB, and 2 MB filters, this translates to

1.63%, 0.05% and 0.017% of transactions being erroneously

rejected due to false positives, respectively. For each filter,

there are around 0.64% redundant transactions.

Empirical false positive rates are significantly higher

than the theoretical value, almost by an order of magnitude

e.g. 2.39𝐸 − 04 vs 4.1𝐸 − 03 for the 1 MB filter. This

observation is consistent with Neonpool-BTC as discussed

above.

If we use a decaying bloom filter, we achieve vast im-

provements in terms of false positive rates. The average FPR

at 3.41𝐸 − 06 is highest for the 500 kB filter and reduces

to 2.02𝐸 − 06 and 2.21𝐸 − 06 as the filter size increases

to 1 MB and further to 2 MB. For a decay factor of 128,

the 500 kB, 1 MB, and 2 MB filters observe 37 or 0.0003%,

22 or 0.0002% and 24 or 0.0002% of transactions being

erroneously rejected due to false positives, respectively. For

each filter, there are over 0.82% redundant transactions due

to false negatives. Tab. 2 shows that by increasing the decay

factor the FPR and hence the number of erroneously rejected

transactions reduce. This is because the decay average meets

HB Haq, ST Ali, A Salman, P McCorry, SF Shahandashti: Preprint submitted to Elsevier Page 9 of 15



Neonpool

Figure 9: Memory usage of txpool and Neonpool-ETH

the insertion average, and the filter reaches a stable state.

However, on the flip side, the false negative rate increases.

The dstxFilter which prevents double spends, can have

implications denoted as𝐓𝐏𝐚𝐜𝐜𝐨𝐮𝐧𝐭 ,𝐓𝐍𝐚𝐜𝐜𝐨𝐮𝐧𝐭 ,𝐅𝐏𝐚𝐜𝐜𝐨𝐮𝐧𝐭 , and

𝐅𝐍𝐚𝐜𝐜𝐨𝐮𝐧𝐭 . Similar to bloomtxFilter, a 𝐓𝐏𝐚𝐜𝐜𝐨𝐮𝐧𝐭 transaction

should be discarded, while a𝐓𝐍𝐚𝐜𝐜𝐨𝐮𝐧𝐭 transaction should be

accepted. The error 𝐅𝐏𝐚𝐜𝐜𝐨𝐮𝐧𝐭 will lead to a genuine transac-

tion being discarded, while 𝐅𝐍𝐚𝐜𝐜𝐨𝐮𝐧𝐭 will lead to accepting

a transaction, the <address,nonce> of which has already been

processed. However, circulating such transactions does not

imply a double-spend, as Neonpool-ETH and other network

nodes maintain the State Trie and screen transactions in

incoming blocks to prevent double-spending.

Assuming each transaction is from a unique account,

dstxFilter will have the exact dimensions as bloomtxFilter

and consequently similar FPR. Thus, for a 1 MB bloomtxFilter,

rejecting around 0.0005% of valid transactions, the corre-

sponding dstxFilter will also reject around 0.0005% of valid

transactions. Neonpool-ETH achieves 99.999% fidelity,

handling 400 MB of transactions in just 2 MB, as shown

in Fig. 9.

4.4. Computation time
We conduct experiments to estimate the computation

overhead of Neonpool. The map-based transaction pool in

Bitcoin and Ethereum performs query, insertion, and dele-

tion operations in 𝑂(log 𝑛) time, where 𝑛 is the number of

stored transactions. In Neonpool, bloom filters operate in

constant time,𝑂(𝑘), where 𝑘 is the number of hash functions.

We perform simulations on Raspberry Pi 4 - Broadcom

BCM2711, Quad-core Cortex-A72 64-bit @ 1.8GHz with 8

GB RAM, and Jetson Nano Quad-core ARM Cortex-A57 64-

bit @1.43 GHz MPCore processor 4 GB RAM. Tab. 3 shows

the computation time in microseconds (𝜇𝑠), averaged over

1E06 iterations, for querying and inserting transactions.

Neonpool is designed to avoid increasing computational

demands, which directly translates to energy consumption.

In fact, Neonpool reduces computation time compared to

traditional transaction pools:

In Bitcoin, processing an incoming transaction begins

with querying the transaction’s hash, followed by querying

Raspberry Pi 4 Jetson Nano

Bitcoin Neonpool-BTC Bitcoin Neonpool-BTC

k=7 k=14 k=28 k=7 k=14 k=28
Query 1.8 2.6 4.4 9.6 2.4 3.5 6.0 12.4
Insert 8.3 2.9 6.0 12.6 11.2 4.1 7.0 15.4

Ethereum Neonpool-ETH Ethereum Neonpool-ETH

k=4 k=8 k=16 k=4 k=8 k=16
Query 1.8 1.6 2.9 4.3 2.1 1.9 3.4 5.1
Insert 6.9 1.8 3.3 5.1 8.2 2.1 3.8 5.8

Table 3
Query/Insert time (𝜇s)

its inputs2. If the transaction is new and has valid inputs, it

is then added to the map along with its inputs. This process

involves two queries and two insert operations. Similarly,

in Neonpool-BTC, the transaction’s hash is queried first,

followed by a query for its inputs. If the transaction is new

and has valid inputs, it is added to Neonpool-BTC along

with its inputs. This also involves two queries and two insert

operations. The total computational cost for this process can

be expressed as: 2 × (𝑞𝑢𝑒𝑟𝑦 𝑡𝑖𝑚𝑒 + 𝑖𝑛𝑠𝑒𝑟𝑡 𝑡𝑖𝑚𝑒).

Bitcoin, for querying and inserting a single transaction

and its inputs, takes 20.2𝜇𝑠 (2 × (1.8 + 8.3) 𝜇𝑠) on a

Raspberry Pi 4 and 27.2𝜇𝑠 on a Jetson Nano on average.

Neonpool-BTC with bloomtxFilter and dstxFilter dimen-

sioned at 1 MB with k=14 hash functions, cumulatively for

query and insert, takes 20.8𝜇𝑠 (2 × (4.4 + 6.0) 𝜇𝑠) on a

Raspberry Pi 4 and 26𝜇𝑠 on a Jetson Nano, on average.

Similarly, in Ethereum, processing starts with querying

the transaction’s hash, followed by querying the nonce if

the transaction is fresh. If the transaction is new and has

a valid nonce, it is added to the txpool, and the nonce is

updated. This process also requires two queries and two

insert operations. The computational cost for this process is

the same: 2 × (𝑞𝑢𝑒𝑟𝑦 𝑡𝑖𝑚𝑒 + 𝑖𝑛𝑠𝑒𝑟𝑡 𝑡𝑖𝑚𝑒).

Ethereum, for querying and inserting a single transaction

and the state information, takes 17.4𝜇𝑠 (2 × (6.9 + 1.8)

𝜇𝑠) on a Raspberry Pi 4 and 20.6𝜇𝑠 on a Jetson Nano on

average. Similarly, Neonpool-ETH with bloomtxFilter and

dstxFilter, dimensioned at 1 MB and k=8 hash functions,

cumulatively for query and insert, will take 12.4𝜇𝑠 (2×(2.9+

3.3) 𝜇𝑠) on a Raspberry Pi 4 and 14.4𝜇𝑠 on a Jetson Nano,

on average.

Thus for practical values of 𝑘 Neonpool does not in-

crease computation load. Neonpool can scale to support

cryptocurrencies throughout to the order of thousands of

transactions per second (tps). However, the current through-

put for Bitcoin and Ethereum is around 3-7 tps and 15-20

tps, respectively.

2For simplicity, we assume each transaction has a single input. As the

number of inputs increases, the number of queries increases proportionally

in both Bitcoin Core and Neonpool-BTC.

HB Haq, ST Ali, A Salman, P McCorry, SF Shahandashti: Preprint submitted to Elsevier Page 10 of 15



Neonpool

4.5. Security analysis
Here, we establish the security of Neonpool, focusing

on two main aspects: 1. whether errors made by Neonpool

compromise its security or that of the broader network; and

2. Neonpool’s resilience to adversarial attacks.

The network-level impact of false positives vanishes at

the network level, i.e., effectively negligible. Each node

initializes its Bloom filters with a unique, random 128-bit

salt, ensuring independence between filters across nodes.

Consequently, false positives at one node are statistically

independent of those at other nodes. For instance, with a

Bloom filter accuracy of 99.99% (corresponding to a false

positive rate of 0.0001 per Neonpool node), the probability

of two nodes erroneously dropping the same transaction is

(0.0001)2, an exceedingly low likelihood.

Furthermore, research indicates that while transaction

pools across nodes are not entirely identical, they exhibit a

remarkable 99% similarity in their contents [14]. This high

consistency underscores that, despite occasional discrepan-

cies introduced by Bloom filter false positives or false nega-

tives, the overall integrity of transaction pool contents across

the network remains robust, ensuring reliable transaction

propagation.

In Bitcoin and Ethereum, there is an established prac-

tice of limiting transaction pool sizes and managing over-

flow by rejecting or expiring excess transactions. For in-

stance, Bitcoin’s default mempool size is capped at 300 MB,

while Ethereum employs a default limit of 4096 transac-

tions in the transaction pool, with surplus transactions being

evicted [47] [24]. Users can customize transaction pool poli-

cies or disable transaction pools entirely to accommodate

low-memory or low-computation environments.

Additionally, an adversary may: 1. trigger false positives

to censor specific transactions; 2. craft invalid transactions

that evade verification and validation; 3. generate spam.

Literature shows that any bloom filter can be efficiently

transformed to be adversarial resilient by applying a pseudo-

random permutation of the input [13] i.e. applying a suffi-

ciently large (128-bit) random salt before forwarding it to

the bloom filter. This change requires little overhead and

randomizes the adversary’s queries by applying a pseudo-

random permutation to them; then, we may consider the

transactions sent by the attacker as random and not as

chosen adaptively by the adversary. It is also recommended

that a node regenerate its 128-bit random salt every time

a new bloomtxFilter or dstxFilter is generated. Thus, the

adversary only has oracle access to the bloom filter and does

not know its contents or seed.

We situate our assumption within established practices

in the cryptocurrency ecosystem and light client security

models: Secure random seed generation is essential for

the security of Bitcoin, Ethereum, and the broader crypto

ecosystem. It underpins wallet key generation, ensuring

unique private keys. Random seeds also facilitate con-

tract deployment through ECDSA nonce generation, enable

ephemeral session keys for secure communication, and sup-

port multi-signature wallets by creating unique key shares

for participants.

As identified by Chatzigiannis et al. [18], there are sev-

eral common assumptions that underpin light client designs,

including trusted genesis block, reliable consensus, secure

underlying cryptographic primitives, weak synchrony (i.e.,

no long network partitions), trusted setup, peer-to-peer com-

munication for relaying information, and rational behaviour

of participants. Secure underlying cryptographic primitives

and trusted setups are of particular interest to us.

In this context, our assumption about Oracle access to the

Bloom filter aligns with these principles. Secure generation

and protection of the 128-bit random seed are essential for

the Bloom filter’s adversarial resilience and are consistent

with best practices in decentralized systems. The crypto-

graphic strength and manipulation resistance of the hash

functions in Bloom filters fundamentally depend on this

secure initialization and randomization.

Secondly, Eve may craft invalid transactions to evade

verification and validation, i.e., attempt double-spending.

Neonpool preserves the verification and validation mecha-

nisms of Bitcoin and Ethereum. Regarding transactions with

conflicting inputs or out-of-order nonce, typically, nodes

accept and forward the first seen transaction, and the first

seen can differ for nodes. It is the job of miners not to

add conflicting transactions to a block and the network

nodes to screen incoming blocks. Since Neonpool maintains

complete UTXO and Trie information, Neonpool nodes will

reject blocks that include double-spend transactions.

Thirdly, Eve might launch a dust or spam attack or replay

transactions. A 2015 Bitcoin spam campaign swelled the

transaction pool to nearly 1 GB, crashing 10% of nodes,

mostly memory-constrained like Raspberry Pi. Neonpool

can withstand such attacks by recursively generating addi-

tional bloom filters on demand, as described in section 3.

Replay transactions are rejected. Already seen transac-

tions will trigger a positive in Neonpool, indicating that the

transaction is already present and thus will be dropped.

4.6. Summary
The unconfirmed transaction pool plays a critical role in

verifying, storing, and disseminating transactions while they

await inclusion in a block. We present Neonpool, a novel

transaction pool construction for cryptocurrencies that stores

transaction fingerprints via bloom filters instead of storing

complete transactions via map data structures. We perform

benchmarks using unique Bitcoin and Ethereum datasets

comprising approximately 10 million unique transactions.

We achieve up to two orders of magnitude reduction in

memory consumption, fingerprinting up to 400 megabytes

of data in as low as 2 MB while maintaining a verification

and forwarding accuracy exceeding 99.99%, with a slight

increase in computation load. We also demonstrate its ad-

versarial resilience. We summarize our findings in Tab. 4.

HB Haq, ST Ali, A Salman, P McCorry, SF Shahandashti: Preprint submitted to Elsevier Page 11 of 15



Neonpool

Transaction(s) Bitcoin / Ethereum Neonpool- BTC/ETH

Storage complete őngerprint
Data Structure map-based bloomtxFilter,

mempool/txpool dstxFilter
Memory Usage up to 400 MB 2 MB
Veriőcation Yes Yes
Inventory Yes Probabilistic (99.99%)
& Propagation

Table 4
Neonpool vs Bitcoin/Ethereum

Due to their function in the network, Neonpool node

operators are not required to store full transactions. This con-

ceptually resembles Bitcoin Core’s built-in "pruned node"

option, which reduces hard disk requirements by storing only

a few recent blocks instead of the full blockchain on disk

while still contributing to the network’s footprint and health

by validating and forwarding transactions.

Such full-node users operate nodes primarily to con-

tribute to the Bitcoin network out of a sense of community

or altruism, similar to how people operate nodes for the Tor

network. Neonpool lowers the barrier to entry for such non-

mining full nodes, offering them greater control over the

memory resources they allocate for the transaction pool.

Neonpool provides full-node operators with significant

flexibility to optimize resource usage by adjusting mem-

ory and computation allocations to balance efficiency and

functionality. Lightweight devices, like IoT nodes, can store

only transaction fingerprints in Bloom filters, while full

nodes participating in mining can still retain a subset of full

transactions to propose a block.

5. Prior work

Our work relates to two main bodies of research: lightweight

clients and transaction pool management.

5.1. Lightweight clients
Our work relates to two main bodies of research: lightweight

clients and transaction pool management. Our work has

a tangential relationship with existing light clients. While

current light clients effectively address specific resource

constraints, such as storage, computation, or bandwidth,

none focus on reducing memory consumption in the trans-

action pool—a critical yet often overlooked challenge. Con-

sequently, direct comparisons with these approaches are not

feasible. However, this distinction helps position our work

within the broader spectrum of light clients. Notably, these

light-client solutions are orthogonal to our approach and

can be deployed alongside Neonpool if needed. We present

key contributions from the literature on lightweight clients,

emphasizing that no existing solutions propose a lightweight

version of the transaction pool.

Reducing blockchain overheads: Satoshi Nakamoto

introduced Simplified Payment Verification (SPV) clients as

a lightweight client, which requires download of only block

Scheme Target Consensus Model Integration Primitive(s)

SPV [9] blocks Any Any Yes -
NiPoPoW [11] blocks PoW UTXO Mod NiPoPoWs
Flyclient [2] blocks PoW UTXO Mod MMR
PoNW [3] blocks PoW UTXO New/Mod SNARKs
EdraX [44] state Any Any New/Mod SparseMT,

Dist.VC
Ethanos [35] state PoS Account Mod -
Neonpool txpool Any Any Mod Bloom őlters

Table 5
Neonpool in the light client spectrum

headers and select blocks to verify transactions [9]. How-

ever, these scales linearly: Ethereum’s SPV client storage

exceeds 10 GB as of July 2023 [36].

Pruned nodes retain only a recent subset of the blockchain.

While they offer robust security, they cannot bootstrap new

nodes. Ultra-light clients of this type depend on trusted full

nodes since they cannot verify transactions independently,

leading to security and privacy concerns.

Reducing bootstrapping costs: Kiayias et al. [11] in-

troduced sublinear storage complexity in SPV clients via

skip lists, termed noninteractive proofs of proof-of-work

(NIPoPoW). This solution checks for high-difficulty previ-

ous blocks. Verifying a logarithmic number of these suffices

to ensure security for the whole chain. However, this solution

is only practical in an honest network with fixed difficulty,

unlike most cryptocurrencies with variable block difficulty.

FlyClient [2] achieves logarithmic complexity, using

Merkle Mountain Range Commitments for memory im-

provements and a random block sampling protocol to ensure

security. This solution works even if parts of the network

are adversarial and have variable block difficulty. However,

NiPoPoW and FlyClient still require linear resources, and

verifying transactions remains costly, as each verified trans-

action also requires downloading the corresponding block.

TXCHAIN [34] addresses this issue using contingent

transaction aggregation to compress transaction inclusion

proofs. Proof of Necessary Work [3] performs necessary

system verification within the proof-of-work computation,

utilizing SNARKs and Pederson hash.

State optimizations: Bitcoin’s UTXO and Ethereum’s

state trie occupy tens of gigabytes, prompting proposals for

more efficient representations: Utreexo [12] and BZIP [8]

recommend representing the UTXO using hash-based ac-

cumulators and lossless compression methods. Dietcoin [1]

splits UTXO into shards, while EDRAX [44] uses sparse

Merkle trees for UTXO and vector commitments for the

state trie. Ethanos downsizes the state trie by periodically

emptying idle accounts [35].

Network optimizations: Graphene uses bloom filters to

reduce network bandwidth in block reconciliation [4]. Anas

et al. recommend increasing the orphan pool size from 100 to

1000, reducing their overhead by 17%. Other works propose

lightweight transaction broadcasting: Strokkur uses rateless

erasure LT codes [3], Erlay combines limited flooding with

HB Haq, ST Ali, A Salman, P McCorry, SF Shahandashti: Preprint submitted to Elsevier Page 12 of 15



Neonpool

intermittent reconciliation [16], and Shrec employs an effi-

cient low-collision hybrid hashing scheme [15].

5.2. Transaction pool
This remains a neglected area in the research literature,

with earlier works focusing on mitigating spam, dust, and

DDoS attacks by filtering malicious transactions.

Baqer et al. were the first to emphasize the transaction

pool’s significance in their analysis of a 2015 Bitcoin stress

test [7]. This attack expanded the pool to nearly 1 GB, report-

edly causing 10% of Bitcoin nodes to crash. They classified

23% of transactions as spam using clustering techniques

and proposed spam filtering. However, they warned about

the risks of misclassifying legitimate transactions: even a

1-2% false positive rate could create a self-inflicted DoS

attack. Additionally, attackers could manipulate transaction

attributes to bypass filters if mechanisms were exposed.

Subsequent works focused on transaction filtering. Saad

et al. introduced Contra, which filters spam based on age and

fee thresholds [20]. Configuring these thresholds presents

tradeoffs: high thresholds risk false positives, while low

thresholds risk false negatives. Their modelling estimates

60% accuracy, recommending dynamically increasing block

size to accommodate dust transactions and deter spam-

mers, though results lack real-world validation. Wang et al.

proposed an Anti-dust solution, analyzing Bitcoin transac-

tions (2009-2017) with a Gaussian model [21]. Transac-

tions below a threshold were classified as spam and placed

in a dust pool, later moved to the mempool if space al-

lowed. Overflowing transactions were discarded. Simula-

tions showed dust transactions increased validation time

from 200 to 25,000 seconds, while Anti-dust reduced it to

215 seconds.

Eduardo et al. simulated dust attacks on Ethereum using

2 million genuine transactions and synthetic ones [19]. They

found dust attacks extended transaction pending time by over

42%. Using machine learning, they achieved 94% accuracy

in identifying under-priced potential DoS attack transac-

tions. DETER highlighted Ethereum-specific vulnerabili-

ties, describing DETER-X and DETER-Z attacks that evict

legitimate transactions, delay processing, and reduce miner

revenue [22]. Proposed heuristics mitigate these attacks by

regulating txpool entry and eviction.

To the best of our knowledge, Neonpool is the first opti-

mization technique that re-architects the transaction pool of

a cryptocurrency from an optimization perspective, specifi-

cally aiming to reduce the local memory consumption of the

transaction pool. Earlier works primarily focus on mitigating

spam, dust, and DDoS attacks by filtering out malicious or

low-value transactions. They do this by introducing addi-

tional modules to the transaction pool while preserving the

transaction pool structure itself. These approaches increase

resource usage, as implementing real-time filtering (via sta-

tistical techniques or machine learning) or maintaining sep-

arate pools for spam imposes significant computational and

memory costs, which are not adequately investigated.

Our work does not focus on spam filtering but prior-

itizes reducing memory usage and enhancing transaction

pool resilience for larger traffic flows. As a result, a direct

comparison with these techniques is not possible. Filtering

solutions are orthogonal to our overall approach and can be

deployed against Neonpool if required.

Our work is directly compared with the reference imple-

mentations of Bitcoin Core and Ethereum, as detailed in ğ4.

6. Conclusions and Future Work

Our work introduces a promising new direction in the

domain of light clients, scalability solutions, and improving

the health of cryptocurrency networks. Neonpool proposes a

novel transaction pool design based on bloom filter variants

and achieves a remarkable reduction of up to 200x in mem-

ory usage while maintaining a verification and forwarding

accuracy of over 99.99%. This breakthrough makes it a

viable solution for supporting resource-constrained devices,

such as browsers, smartphones, systems-on-a-chip, mobile,

and IoT devices, to perform full-node functions effectively.

Additionally, Neonpool does not require a hard fork.

Our results highlight Neonpool’s potential and provide a

foundation for further exploration in several directions.

Our work pioneers investigating the suitability of prob-

abilistic data structures for transaction pool construction.

While over a dozen Bloom filter variants exist in the lit-

erature, we begin with the simplest ones that meet our

requirements and are widely understood. Future research

will evaluate alternative probabilistic data structures, such

as counting Bloom filters and cuckoo filters, to explore im-

proved trade-offs in error rates, memory and computational

overhead.

Another focus of future work is to assess Neonpool’s

scalability under varying network conditions, transaction

loads, and scenarios such as spam and dust attacks. Future

experiments will aim to log and analyze attack patterns,

examine the relationship between transaction fee spikes and

network congestion, and design robust defences.

Finally, we plan to introduce Neonpool’s design to the

cryptocurrency community by initiating a Bitcoin Improve-

ment Proposal (BIP) and an Ethereum Improvement Pro-

posal (EIP), to facilitate Neonpool’s live deployment and

integration into existing blockchain ecosystems.

Neonpool’s approach can be extended to other cryptocur-

rencies with minimal modifications. For instance, Neonpool-

BTC can be adapted for UTXO-based systems, and Neonpool-

ETH for account-based cryptocurrencies by adjusting pa-

rameters like transaction expiry time and filter size based

on network conditions and block time. These adaptations

enable generic client-side optimizations, making Neonpool

broadly applicable to lightweight devices across different

distributed ledger technologies (DLTs). We are currently

preparing datasets for alternative currencies, including Lite-

coin and Solana, to evaluate Neonpool’s adaptability and

effectiveness across diverse blockchain architectures.

HB Haq, ST Ali, A Salman, P McCorry, SF Shahandashti: Preprint submitted to Elsevier Page 13 of 15



Neonpool

References

[1] Frey, D., Makkes, M. X., Roman, P.-L., Taïani, F., and

Voulgaris, S. Dietcoin: Hardening bitcoin transaction

verification process for mobile devices. Proceedings of

the VLDB Endowment (PVLDB), 12(12):1946–1949,

2019.

[2] Bünz, B., Kiffer, L., Luu, L., and Zamani, M. Flyclient:

Super-light clients for cryptocurrencies. In 2020 IEEE

Symposium on Security and Privacy (SP), pages 928–

946. IEEE, 2020.

[3] Kattis, A. and Bonneau, J. Proof of necessary work:

Succinct state verification with fairness guarantees.

Cryptology ePrint Archive, 2020.

[4] Ozisik, A. P., Andresen, G., Levine, B. N., Tapp, D.,

Bissias, G., and Katkuri, S. Graphene: Efficient inter-

active set reconciliation applied to blockchain propaga-

tion. In Proceedings of the ACM Special Interest Group

on Data Communication, pages 303–317. Springer,

2019.

[5] Rottenstreich, O. Sketches for blockchains. In 2021

International Conference on COMmunication Systems

& NETworkS (COMSNETS), pages 254–262. IEEE,

2021.

[6] 250+ companies and stores that accept cryptocurrency.

Bit Pay, 2023. Available at: https://bitpay.com/direc

tory.

[7] Baqer, K., Huang, D. Y., McCoy, D., and Weaver, N.

Stressing out: Bitcoin “stress testing”. In International

Conference on Financial Cryptography and Data Se-

curity, pages 3–18. Springer, 2016.

[8] Jiang, S., Li, J., Gong, S., Yan, J., Yan, G., Sun, Y.,

and Li, X. BZIP: A Compact Data Memory System

for UTXO-based Blockchains. In 2019 IEEE Interna-

tional Conference on Embedded Software and Systems

(ICESS), pages 1–8. IEEE, 2019.

[9] Nakamoto, S. Bitcoin P2P e-cash paper. The Cryptog-

raphy Mailing List, 2008.

[10] "Transactions Bitcoin, Raw Trans-

actions format." Available at:

https://developer.bitcoin.org/reference/transactions.html

[11] Kiayias, A., Miller, A., and Zindros, D. Non-interactive

proofs of proof-of-work. In International Conference

on Financial Cryptography and Data Security, pages

505–522. Springer, 2020.

[12] Dryja, T. Utreexo: A dynamic hash-based accumulator

optimized for the Bitcoin UTXO set. IACR Cryptol.

ePrint Arch., 2019.

[13] Naor, M. and Yogev, E. Bloom filters in adversarial en-

vironments. ACM Transactions on Algorithms (TALG),

15(3):1–30, 2019.

[14] Dae-Yong Kim, Meryam Essaid, and Hongtaek Ju,

"Examining Bitcoin mempools Resemblance Using

Jaccard Similarity Index," in 2020 21st Asia-Pacific

Network Operations and Management Symposium

(APNOMS), IEEE, 2020, pp. 287–290.

[15] Han, Y., Li, C., Li, P., Wu, M., Zhou, D., and Long,

F. Shrec: Bandwidth-efficient transaction relay in high-

throughput blockchain systems. In Proceedings of the

11th ACM Symposium on Cloud Computing, 2020.

[16] Naumenko, G., Maxwell, G., Wuille, P., Fedorova, A.,

and Beschastnikh, I. Erlay: Efficient transaction relay

for bitcoin. In Proceedings of the 2019 ACM SIGSAC

Conference on Computer and Communications Secu-

rity, pages 817–831. 2019.

[17] "Blockchain.com | Charts - Mempool Size (Bytes),"

December 2024. Available at: https://www.blockcha

in.com/explorer/charts/mempool-size.

[18] P. Chatzigiannis, F. Baldimtsi, and K. Chalkias, "SoK:

Blockchain light clients," in *Financial Cryptography

and Data Security*, Springer, 2022, pp. 615–641.

[19] Eduardo et al., "Fighting under-price DoS attack in

Ethereum with machine learning techniques," *ACM

SIGMETRICS Performance Evaluation Review*, vol.

48, no. 4, pp. 24–27, 2021.

[20] M. Saad, J. Kim, D. Nyang, and D. Mohaisen,

"Contra-*: Mechanisms for Countering Spam At-

tacks on Blockchain Memory Pools," *arXiv preprint

arXiv:2005.04842*, 2020.

[21] Y. Wang, J. Yang, T. Li, F. Zhu, and X. Zhou,

"Anti-Dust: A Method for Identifying and Preventing

Blockchain’s Dust Attacks," in *2018 International

Conference on Information Systems and Computer

Aided Education (ICISCAE)*, IEEE, 2018, pp. 274–

280.

[22] K. Li, Y. Wang, and Y. Tang, "Deter: Denial of

Ethereum txpool services," in *Proceedings of the

2021 ACM SIGSAC Conference on Computer and

Communications Security*, ACM, 2021, pp. 1645–

1667.

[23] Bitcoin source code. GitHub, 2021. Available at: http

s://github.com/bitcoin/bitcoin/blob/master/src/txm

empool.h.

[24] Ethereum, go-ethereum. GitHub, 2023. Available at:

https://github.com/ethereum/go-ethereum/blob/m

aster/light/txpool.go.

[25] libbf Bloom filters for C++11. Available at: http:

//mavam.github.io/libbf.

[26] Jochen Hoenicke, "Johoe’s Bitcoin Mempool Size

Statistics," Available at: https://test.jochen-hoeni

cke.de/queue/#BTC,all,weight.

HB Haq, ST Ali, A Salman, P McCorry, SF Shahandashti: Preprint submitted to Elsevier Page 14 of 15

https://bitpay.com/directory
https://bitpay.com/directory
https://www.blockchain.com/explorer/charts/mempool-size
https://www.blockchain.com/explorer/charts/mempool-size
https://github.com/bitcoin/bitcoin/blob/master/src/txmempool.h
https://github.com/bitcoin/bitcoin/blob/master/src/txmempool.h
https://github.com/bitcoin/bitcoin/blob/master/src/txmempool.h
https://github.com/ethereum/go-ethereum/blob/master/light/txpool.go
https://github.com/ethereum/go-ethereum/blob/master/light/txpool.go
http://mavam.github.io/libbf
http://mavam.github.io/libbf
https://test.jochen-hoenicke.de/queue/#BTC,all,weight
https://test.jochen-hoenicke.de/queue/#BTC,all,weight


Neonpool

[27] "The 300 MB default maxmempool Problem," Decem-

ber 2017. Available at: https://b10c.me/blog/001-the

-300mb-default-maxmempool-problem/.

[28] "Glassnode Studio - On-Chain Market Intelligence,"

December 2024. Available at: https://studio.glass

node.com/charts/transactions.TxTypesBreakdownRelat

ive?a=ETH&category=&ema=0&mAvg=7&mMedian=0&pScl=lo

g&s=1667924083&u=1675700083&zoom=90.

[29] Etherscan.io, "Daily Pending Transactions | Ether-

scan," Ethereum (ETH) Blockchain Explorer, Decem-

ber 2024. Available at: https://etherscan.io/dashboa

rds/daily-pending-tx.

[30] Gremillion, L. L. Designing a Bloom filter for differen-

tial file access. Communications of the ACM, 25:600–

604, 1982.

[31] Mullin, J. K. A second look at Bloom filters. Commu-

nications of the ACM, 26(8):570–571, 1983.

[32] Bose, P., Guo, H., Kranakis, E., Maheshwari, A.,

Morin, P., Morrison, J., Smid, M., and Tang, Y. On

the false-positive rate of Bloom filters. Information

Processing Letters, 108(4):210–213, 2008.

[33] Luu, L., Narayanan, V., Zheng, C., Baweja, K., Gilbert,

S., and Saxena, P. A secure sharding protocol for open

blockchains. In Proceedings of the 2016 ACM SIGSAC

Conference on Computer and Communications Secu-

rity, pages 17–30, 2016.

[34] Zamyatin, A., Avarikioti, Z., Perez, D., and Knotten-

belt, W. J. TxChain: Efficient Cryptocurrency Light

Clients via Contingent Transaction Aggregation. IACR

Cryptol. ePrint Arch., 2020:580.

[35] Kim, J.-Y., Lee, J., Koo, Y., Park, S., and Moon,

S.-M. Ethanos: Efficient bootstrapping for full nodes

on account-based blockchain. In Proceedings of the

Sixteenth European Conference on Computer Systems,

pages 99–113, 2021.

[36] Ethereum nodes and clients. Ethereum, 2023. Avail-

able at: https://ethereum.org/en/developers/docs/

nodes-and-clients.

[37] MSVC’s implementation of the C++ Standard Library.

GitHub, 2023. Available at: https://github.com/micro

soft/STL.

[38] Bloom, B. H. Space/time trade-offs in hash coding

with allowable errors. Communications of the ACM,

13(7):422–426, 1970.

[39] Guo, D., Wu, J., Chen, H., Yuan, Y., and Luo, X. The

dynamic bloom filters. IEEE Transactions on Knowl-

edge and Data Engineering, 22(1):120–133, 2009.

[40] Beyer, K. S., Rajagopalan, S., and Zubiri, A. System

and method for generating and using a dynamic bloom

filter. Google Patents, US Patent 7,937,428, May 2011.

[41] Raw Transactions | Ethereum.org. Ethereum. Avail-

able: https://ethereum.org/en/developers/docs/tr

ansactions

[42] Ethereum Transactions Message. devp2p. GitHub.

Available: https://github.com/ethereum/devp2p/blo

b/master/caps/eth.md#transactions-0x02

[43] H. B. Haq, T. Ahmad, A. Buriro, and S. Ullah, Neon-

pool: Reimagining Cryptocurrency Transaction Pools

for Lightweight Clients and IoT Devices, 2024. [On-

line]. Available: https://drive.google.com/drive/fol

ders/1KkjPxNI7NvWyqlZ3jlrcCGhYxwUbzXEJ?usp=drive_l

ink

[44] Chepurnoy, Alexander, Charalampos Papamanthou,

Shravan Srinivasan, and Yupeng Zhang. "Edrax: A

cryptocurrency with stateless transaction validation."

Cryptology ePrint Archive (2018).

[45] "P2P Network—Bitcoin, Inventory

Messages." April 2021. Available at:

https://developer.bitcoin.org/reference/p2p-

networking.html.

[46] Bianchi, Giuseppe, Nico d’Heureuse, and Saverio Nic-

colini. "On-demand time-decaying bloom filters for

telemarketer detection." ACM SIGCOMM Computer

Communication Review 41, no. 5 (2011): 5-12. ACM

New York, NY, USA.

[47] Bitcoin Network Guide. "P2P Network

Guide - Bitcoin." May 2020. Available at:

https://bitcoin.org/en/p2p-network-guide.

HB Haq, ST Ali, A Salman, P McCorry, SF Shahandashti: Preprint submitted to Elsevier Page 15 of 15

https://b10c.me/blog/001-the-300mb-default-maxmempool-problem/
https://b10c.me/blog/001-the-300mb-default-maxmempool-problem/
https://studio.glassnode.com/charts/transactions.TxTypesBreakdownRelative?a=ETH&category=&ema=0&mAvg=7&mMedian=0&pScl=log&s=1667924083&u=1675700083&zoom=90
https://studio.glassnode.com/charts/transactions.TxTypesBreakdownRelative?a=ETH&category=&ema=0&mAvg=7&mMedian=0&pScl=log&s=1667924083&u=1675700083&zoom=90
https://studio.glassnode.com/charts/transactions.TxTypesBreakdownRelative?a=ETH&category=&ema=0&mAvg=7&mMedian=0&pScl=log&s=1667924083&u=1675700083&zoom=90
https://studio.glassnode.com/charts/transactions.TxTypesBreakdownRelative?a=ETH&category=&ema=0&mAvg=7&mMedian=0&pScl=log&s=1667924083&u=1675700083&zoom=90
https://etherscan.io/dashboards/daily-pending-tx
https://etherscan.io/dashboards/daily-pending-tx
https://ethereum.org/en/developers/docs/nodes-and-clients
https://ethereum.org/en/developers/docs/nodes-and-clients
https://github.com/microsoft/STL
https://github.com/microsoft/STL
https://ethereum.org/en/developers/docs/transactions
https://ethereum.org/en/developers/docs/transactions
https://github.com/ethereum/devp2p/blob/master/caps/eth.md#transactions-0x02
https://github.com/ethereum/devp2p/blob/master/caps/eth.md#transactions-0x02
https://drive.google.com/drive/folders/1KkjPxNI7NvWyqlZ3jlrcCGhYxwUbzXEJ?usp=drive_link
https://drive.google.com/drive/folders/1KkjPxNI7NvWyqlZ3jlrcCGhYxwUbzXEJ?usp=drive_link
https://drive.google.com/drive/folders/1KkjPxNI7NvWyqlZ3jlrcCGhYxwUbzXEJ?usp=drive_link

