
This is a repository copy of Carbyne: An Ultra-Lightweight DoS-Resilient Mempool for
Bitcoin.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/225617/

Version: Submitted Version

Preprint:
Binte Haq, Hina, Ali, Syed Taha, Salman, Asad et al. (2 more authors) (2025) Carbyne: An
Ultra-Lightweight DoS-Resilient Mempool for Bitcoin. [Preprint]

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse
This article is distributed under the terms of the Creative Commons Attribution (CC BY) licence. This licence
allows you to distribute, remix, tweak, and build upon the work, even commercially, as long as you credit the
authors for the original work. More information and the full terms of the licence here:
https://creativecommons.org/licenses/

Takedown
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

Carbyne: An Ultra-Lightweight DoS-Resilient Mempool for Bitcoin

Hina Binte Haqa, Syed Taha Alia, Asad Salmanb, Patrick McCorryc and Siamak F. Shahandashtid,∗

aNational University of Sciences and Technology (NUST), Islamabad, Pakistan
bX (formerly Twitter), USA
cArbitrum, London, United Kingdom
dUniversity of York, York, United Kingdom

A R T I C L E I N F O

Keywords:
Cryptocurrency
Mempool
Optimization
Denial-of-service attack
Bitcoin

A B S T R A C T

The Bitcoin mempool plays an integral role in transaction processing and propagation through
the network. Frequent transaction congestion events, as well as spam and dust attacks can clog
the mempool, leading to dropped transactions, processing delays, and increased transaction fees.
Moreover, increasing transaction loads on the network result in higher resource costs to operate full
nodes, thereby restricting Bitcoin’s network footprint and negatively impacting its overall health and
performance. In this paper, we present Carbyne, a novel mempool optimization scheme, which uses
counting bloom filter constructions to adapt to increased transaction flows, thereby making nodes
resilient to congestion and spam and dust attacks. We implement Carbyne in C++ and benchmark its
performance using a novel data set of Bitcoin mempool activity over a 90-day period. We dramatically
reduced the mempool’s memory consumption by up to two orders of magnitude (from 300 MB
to 3 MB) while verifying and forwarding transactions with 99.9% fidelity and a slight increase in
computational load. We simulate extensive spam attacks on Carbyne and demonstrate that mempool
loads of 1 GB can be accommodated in as little as 10 MB. Carbyne does not necessitate a hard fork, it
will help deploy high-functioning nodes on resource-constrained platforms, and it may also be adapted
to other cryptocurrencies.

1. Introduction

Bitcoin and cryptocurrencies are achieving mainstream
success. Bitcoin has a market capitalization of over $806
billion, and the top 5 cryptocurrencies, collectively account
for a valuation over $ 1.4 trillion [27]. Bitcoin exceeded
130 million users in 2021 amid predictions it will grow
to a billion users in the next four years [13]. Some 46
million Americans, 17% of the adult population, now own
Bitcoins [100], and 36% of small-medium businesses accept
it [32].

This popularity has motivated considerable research on
the scalability of Bitcoin, to improve Bitcoin’s transaction
throughput (e.g. [103] [101]) and reduce its growing mem-
ory requirements (e.g. [77] [102]). Interestingly, these prob-
lems may also be interpreted as security challenges that
typically manifest as degradation or denial of service attacks.
However, this particular research domain has received little
attention from a security perspective. Is it possible to rec-
oncile these twin aims, scalability and security, to develop
solutions to help Bitcoin grow in ways that also harden the
Bitcoin network in terms of security and robustness?

In this paper, we consider the motivating example of
growing transaction loads and network congestion. Bitcoin
nodes use local memory (RAM) to store state information,
primarily the unspent transaction output (UTXO) set and the
Bitcoin transactions memory pool (mempool). The mem-
pool plays an integral role in transaction processing: it logs
unconfirmed transactions and assists in their propagation

A preprint of this paper is available on arXiv.
∗Corresponding author

siamak.shahandashti@york.ac.uk (S.F. Shahandashti)
ORCID(s):

through the network. Storing these transactions in RAM as
opposed to disk is efficient, as disk latency slows transaction
processing by up to two orders of magnitude [77].

The average number of transactions in the Bitcoin mem-
pool, has more than doubled in 2021 [53]. Transaction
congestion frequently results in significant increase in local
RAM utilization which may negatively impact the overall
performance of the network. If the queue of unconfirmed
transactions exceeds a node’s allocated mempool size limit,
the node starts to drop or ignore transactions. This in turn
causes a degradation in service in terms of prolonged pro-
cessing delays and increased transaction fees [104] [111] [105].
For instance, a large spike in transaction volumes in Oc-
tober, 2020, led to some 145k transactions being stalled
and median transaction fees reaching a three-year peak
of $11.66 [26]. There are frequent reports of mempool
congestion on the Ethereum network, due in part to the
popularity of decentralized finance applications [109]. Surge
in transaction loads have led to extended network outages on
Solana [69].

The mempool’s susceptibility to congestion is also a
highly potent attack vector which parties exploit by deliber-
ately flooding the network with very low-cost transactions
to clog the mempool. These activities, variously referred
to as stress tests, spam campaigns, and dust attacks, may
be considered effective Denial of Service (DoS) attacks.
One spam campaign in October, 2015 grew the mempool to
nearly 1 GB, with over 88,000 transactions, and reportedly
caused 10% of nodes in the Bitcoin network to crash [76].

Moreover, sophisticated attacks have emerged which
directly exploit mempool dynamics for profit. For instance,
in March, 2020, when large sell-offs in crypto markets trig-
gered collateral auctions on the Ethereum-based MakerDAO

H Binte Haq, ST Ali, A Salman, P McCorry, SF Shahandashti: Preprint submitted to Elsevier Page 1 of 22

Carbyne: An Ultra-Lightweight DoS-Resilient Mempool for Bitcoin

platform, unknown actors flooded the network with low-
cost transactions [110]. Many bidders could not adapt to the
resulting spike in gas prices in time, thereby enabling the
attackers to sweep the auctions with $0 bids, and pocket
$8.3 million. In 2022, the Solana network was flooded
by “complex-compound-instruction transactions”, prevent-
ing certain users from updating collateral positions in time,
suffering liquidation, and abandoning Solana in protest. [68]

In response, researchers have devised mempool eviction
strategies which screen incoming transactions for various
features, including size, age, and fee, to identify and drop
potential dust transactions [38] [44]. However, this approach
has significant shortcomings: first, the solutions developed
thus far have significant false positive rates, resulting in
legitimate transactions being classified as spam, which some
argue may constitute a DoS attack in its own right [76]. Sec-
ond, attackers can discover filter heuristics and potentially
craft spam transactions to evade them.

We propose Carbyne, a novel and flexible Bitcoin mem-
pool optimization scheme to provide resilience against esca-
lating transaction loads and spam and dust attacks. Carbyne
uses space-efficient probabilistic data structures to store
fingerprints of unconfirmed transactions. This reduces the
mempool to a fraction of its size in RAM, while still verify-
ing and forwarding incoming transactions with high fidelity.

Our key insight is that the two prime functions of the
mempool, transaction forwarding and transaction inven-

tory, can be dissociated, to prioritize one function over the
other. A similar philosophy has commonly been employed to
build lightweight clients, such as pruned nodes, simplified
payment verification (SPV), EPBC [108], FlyClient [60],
etc.

Moreover, Carbyne users can still choose to maintain a
subset of transactions in RAM to mine blocks or to bootstrap
new nodes on the network. Decoupling forwarding and in-
ventory functions gives users the flexibility to control RAM
usage and still contribute to the network in an accurate and
efficient manner as per the resources available to them.

Thus, Carbyne also helps address the related but over-
looked problem concerning Bitcoin’s growing local mem-
ory consumption. A sustained increase in transaction loads
results in higher resource costs for users to operate Bitcoin
nodes and, unlike miners, these parties are not incentivized
for their contribution. This in turn restricts the footprint
of the Bitcoin network, and may render it vulnerable to
certain attacks. Our solution can help develop lightweight
clients and alleviate these growing costs. Thus, Carbyne is
not meant to supplant full nodes - but to lower entry costs
for certain parties. Our specific contributions are:

• We describe Carbyne, an optimized DoS-resilient

mempool construction for Bitcoin which uses multiple
counting bloom filters to replicate the mempool’s core
inventory functions. Carbyne reduces the mempool
space requirements in local memory by up to two or-
ders of magnitude while still processing unconfirmed
transactions with very high fidelity.

• We implement Carbyne in C++ and benchmark its

performance on a novel dataset of Bitcoin mempool
activity logged over a 90-day period, comprising ap-
proximately 29 million distinct transactions – an in-
dependent contribution and useful for various ap-
plications apart from Carbyne (see Appendix A).
Researchers can use this dataset and the accompany-
ing scripts to efficiently reconstruct Bitcoin mempool
state. We define various metrics to undertake a fine-
grained comparison of Carbyne versus the Bitcoin
Core mempool. We also provide multiple parameters
to fine-tune the trade-off between memory usage, fi-
delity, and robustness when deploying Carbyne.

• We simulate extensive congestion and spam attacks

to demonstrate that Carbyne easily copes with high
transactions loads, up to a threefold increase over
the maximum flows ever witnessed in the Bitcoin
network. We further propose mechanisms to dynam-
ically adapt to rising transaction rates with modest
computational and memory overheads.

We achieve a dramatic reduction in memory consump-
tion: we are able to fit approximately 300 MB worth of
Bitcoin transactions in 3 MB while processing them with
99.915% accuracy. If 12 MB are allocated for Carbyne,
accuracy increases to 99.997%. In our simulated congestion
experiments, 600,000 transactions, which would ordinarily
require over 1 GB, can be handled in under 10 MB.

Carbyne has some limitations: it does not resolve block
congestion issues or directly reduce transaction fees. Car-
byne does not detect or evict spam but it can easily be
integrated with spam filtering mechanisms [38] [44]. The
use of probabilistic data structures results in a minute false
positive rate in the form of dropped transactions, which are
significantly smaller than that reported in related work.

There are other considerable benefits: Carbyne can be
deployed without necessitating a fork. Carbyne enables re-
source constrained systems (e.g. Raspberry Pi, smartphones
[107]) to run high-performing functional mempools which
validate and propagate incoming transactions, and can scale
to handle congestion and spam attacks. Moreover, this appli-
cation of bloom filters may hold value for other cryptocur-
rencies, such as Litecoin, Ethereum, Ripple, and Solana.

Our solution is orthogonal to other space-efficient opti-
mizations for Bitcoin, including pruning, Segwit, and UTXO
optimizations, and may therefore be combined with these
strategies to aggregate their individual benefits.

We believe we are the first to rethink the structure
of the mempool to combat congestion and spam attacks.
Carbyne aligns with other ongoing attempts to harden the
overall security and resilience of the Bitcoin network (such
as MIT’s Bitcoin Software and Security Effort [106]). Our
work also contributes to local memory optimization, which
is a neglected domain in the research literature.

The paper is organized as follows: In ğ2, we present es-
sential background material. We describe Carbyne in ğ4 and
present our dataset in ğ6. This is followed by experimental

H Binte Haq, ST Ali, A Salman, P McCorry, SF Shahandashti: Preprint submitted to Elsevier Page 2 of 22

Carbyne: An Ultra-Lightweight DoS-Resilient Mempool for Bitcoin

results, discussion and security analysis in ğ7. In ğ9, we
simulate congestion and spam attacks. We conclude in ğ10.

2. Background

In this section we overview spam attacks, discuss prior
work and present our threat model. We also describe the
mempool and its structure.

2.1. Spam, Stress Tests, and Dust Attacks
The first major campaign, advertised as a “stress test",

occurred in July, 2015, with a daily average of 150,000 pend-
ing transactions. Another campaign in October, 2015 in-
creased mempool size to nearly 1 GB, with more than 88,000
pending transactions. This incident reportedly knocked up to
10% of Bitcoin nodes offline, many of which were running
on memory-constrained platforms like Raspberry Pi [76].

Numerous congestion and spam incidents have occurred
since. In November, 2017, with the cancellation of the
SegWit2x hard fork, many users started selling their coins,
causing the mempool size to exceed 182,000 transactions
and 125 MB in raw transaction size [104]. In December
2017, a DoS attack on Bitfinex inflated the mempool over
80,000 pending transactions and 135 MB in raw transaction
size [111]. In November 2019 the mempool spiked to over
115,000 pending transactions and 90 MB in raw transaction
size when Binance moved its coins in bulk [105]. Fig. 1
shows these spikes in transaction rates and fees.

Other sources of spam include mixing services that use
dust as a promotional tool [112]. Dust attacks have also
been used as a tactic to compromise privacy [76]. Games
like Satoshi Dice also generate large numbers of low-value
transactions that some categorize as ‘dust-like’ [65].

Other cryptocurrencies with a mempool-based architec-
ture are also vulnerable to congestion and spam attacks. In
2019, over 200,000 Litecoin wallets received spam transac-
tions as part of a publicity stunt by a mining pool [115]. The
attack on the Ethereum-based MakerDAO platform specif-
ically focused on spiking transaction fees so that bidders
using automated scripts could not adapt in time to compete
in collateral auctions [110]. In September 2021 the Solana
network stalled for 17 hours as bots generated 400,000 trans-
actions per second, overflowing the transaction processing
queue, and causing some validator nodes to crash [121].

Our solution, in principle extends to other cryptocurren-
cies, including Litecoin, Ethereum, and Solana. We discuss
these applications in §8.

2.2. Prior Work
Carbyne contributes to the literature on improving the

security, resilience, and health of the Bitcoin network. It also
aligns with research on scalability that improve Bitcoin’s
transaction throughput (e.g. [122][103][19][37]) and ongo-
ing efforts to develop lightweight clients (e.g. [43] [60] [80][123]).

The mempool has been largely overlooked in the re-
search literature. Baqer et al. conducted a post-attack analy-
sis of one of the first spam attacks on Bitcoin in 2015 [76].
They use clustering to classify approximately 23% of the

(a) Mempool size and transaction count

(b) Transaction fees

Figure 1: Bitcoin mempool & transaction fee trends [54]

observed transactions as spam. They explicitly identify the
mempool as a vulnerable component and recommend evict-
ing transactions to “relieve the pressure”. The authors sug-
gest Bitcoin implements a mintxfee per output similar to
Litecoin or a dynamic fees model to counter spam.

However, the authors also caution that filtering strategies
can misclassify legitimate transactions as spam, and even a
small 1–2% false positive rate amounts to a DoS attack in
its own right. Furthermore, attackers can gain knowledge of
filtering parameters and craft transactions to evade them.

Transaction eviction is the primary theme in papers that
follow. Saad et al propose Contra, a solution which consid-
ers various metrics to identify and evict spam [38]. These
consist of defining minimum thresholds for transaction age
and fees, beyond which transactions are classified as dust and
discarded. There is a tradeoff here: increasing the threshold
values can result in false positives (when legitimate trans-
actions are classified as spam) and decreasing it can yield
false negatives (when spam transactions are categorized as
legitimate). The authors undertake a modelling exercise and
predict a maximum accuracy of 60% in identifying spam.
This model has not yet been validated on real-world data.

The authors make two more noteworthy contributions:
they describe how dust attacks may be extended by creating
new dust transactions descended from earlier ones. They also
recommend increasing block size dynamically during dust
attacks to increase the probability that dust transactions are
mined and thereby escalating the cost of the attack.

Wang et al. analyse Bitcoin transactions from 2009–2017
to construct Anti-dust, a classification model based on the
Gaussian distribution [44]. Similar to Contra, the authors
set a threshold for the amount of Bitcoins being transacted
and any value below the threshold is forwarded to a dust
transaction pool, making the mechanism susceptible to false
positives and false negatives. If the mempool is not full
transactions from the dust pool are moved into it. If the
dust transaction pool becomes full, dust transactions are
discarded. The authors undertake simulations where they
generate 500 legitimate transactions and mix in different

H Binte Haq, ST Ali, A Salman, P McCorry, SF Shahandashti: Preprint submitted to Elsevier Page 3 of 22

Carbyne: An Ultra-Lightweight DoS-Resilient Mempool for Bitcoin

amounts of dust transactions. When only genuine transac-
tions are present, transaction validation time is estimated
at 200 seconds which increases to 25,000 seconds in the
presence of dust, and reduces to 215 seconds when Anti-dust
is deployed.

The problems with this filtering approach identified ear-
lier still persist: there is as yet no rigorous definition of spam
or dust transactions. False positive rates using these methods
are significantly higher than the 1–2% threshold Baqer et al.
discussed. If multiple nodes were to deploy these filters, they
may function as inadvertent blacklists. Attackers can modify
spam transactions to evade filters. As yet, there is no dynamic
filtering solution which adapts to network conditions in real-
time to identify and filter spam. Implementing real-time
filters and separate pools for spam transactions, will incur
computation costs and increased local memory consumption
which remain to be evaluated. Moreover, solutions such
as adapting a fee-per-output policy or dynamic block sizes
require hard forks which can be a contentious process.

In a broader sense, moreover, these solutions are spam-
centric. They do not address the general problem of in-
creasing transaction flows and mempool congestion in the
network. Our work differs in that our primary focus is local
memory consumption. We do not identify or filter spam. In-
stead, we make the mempool resilient to larger traffic flows.
Carbyne is orthogonal to filtering and eviction strategies and
may easily be integrated with these if needed.

Previously, Neonpool [2] introduced a novel transaction
pool design based on Bloom filter variants, offering a scal-
able solution for light clients. It enables resource-constrained
devices, such as smartphones, browsers, and IoT platforms,
to perform full-node functions effectively. In Carbyne, we
extend this work by conducting a detailed study on Bitcoin,
utilizing counting Bloom filters with datasets three times
larger than those used previously. This analysis includes
an in-depth examination of mempool architecture and an
exploration of the trade-offs among error rates, memory
utilization, reprocessing costs, security, and computational
overhead. We also make our scheme resilient to DDoS
attacks.

2.3. Threat Model
In our scenario, we assume users Alice, Bob, and others

operate full nodes connected to the Bitcoin network. Their
goal is to contribute to the health and footprint of the
network by validating and circulating Bitcoin transactions.
We assume the network encounters increasing transaction
flows and is also prone to frequent congestion events and
DoS attacks. Previous analyses mainly considered DoS at-
tacks on mining pools [124], Bitcoin exchanges [125] or the
blockchain [76]. In our case, our attacker Eve deliberately
targets the mempool.

Eve’s strategy is to flood the network with transactions
and clog the mempool of individual nodes. Her potential
goals include delaying transaction processing, increasing
fees or negatively impacting user experience. Goals also

Figure 2: Memory and Disk Schematic

include publicity stunts or controversy (‘griefing’ the net-
work). Eve may also use spam to cover for double-spends
or sophisticated attacks like the MakerDAO attack detailed
earlier.

We assume Eve can generate dust transactions at a rate
higher than the throughput of the Bitcoin network and of
considerable cumulative size, thereby creating a large back-
log of unconfirmed transactions in the mempool. She may
accomplish this using sybil accounts and automated scripts.
However, Eve does not have any control over Bitcoin users or
the ability to directly modify the functioning of their nodes.

Carbyne fundamentally rearchitects the mempool by
storing transaction fingerprints instead of complete transac-
tions. We are able to process large transaction flows with a
dramatically reduced memory footprint (up to two orders of
magnitude less) and very low false positive rates (< 0.5%).

To clarify, Carbyne does not filter transactions or prevent
spam and dust attacks. It does not resolve transaction con-
gestion in blocks or directly affect transaction fees. Carbyne
does not protect against attacks leveraging spam to compro-
mise user privacy [126]. However, since Carbyne optimizes
mempool storage, it effectively copes with congestion and
provides strong resilience against dust attacks. Our experi-
ments, using real-world data, indicate that Carbyne can han-
dle up to three times the maximum traffic loads documented
on the Bitcoin network in just 10 MB.

Carbyne uses probabilistic data structures which yield
false positives or false negatives, resulting in a minute
amount of transactions being dropped or reprocessed re-
spectively. However, the effect on transaction propagation
in the network is not significant: each node initializes its
filters independently using random seeds, which makes it
highly unlikely that large numbers of nodes drop the same
transactions. With a false positive probability of 𝑝, the
probability that the same transaction is categorized as a
false positive by 𝑛 nodes is 𝑝𝑛. As 𝑝 is less than 10−3, the
probability of more than two nodes categorizing it as a false
positive is infinitisemally small. The same argument applies
to false negatives.

2.4. Bitcoin Mempool and Structure
We briefly describe the Bitcoin mempool and its struc-

ture. The mempool is an in-memory repository for uncon-
firmed transactions and is essential to Bitcoin’s transaction
propagation mechanism. When a node receives a valid new
transaction, it stores it in the mempool while it is being

H Binte Haq, ST Ali, A Salman, P McCorry, SF Shahandashti: Preprint submitted to Elsevier Page 4 of 22

Carbyne: An Ultra-Lightweight DoS-Resilient Mempool for Bitcoin

processed by the network. Nodes use this real-time index of
transactions to ensure they broadcast incoming transactions
over the network only when first received. This minimizes
traffic overhead and prevents infinite loops in the network.

The size of the mempool depends on the number of trans-
actions it contains and their individual size, as determined
by the transaction content, including the number of inputs
and outputs and the length of the scripts. Fig. 1a shows
raw transaction data size. Raw transactions of almost 100
MB take up to 300 Mb of memory [92]. Bitcoin’s mempool
size has varied dramatically over the years, ranging from the
order of a few megabytes to over several hundred megabytes,
and potentially impacting live transaction fees (Fig. 1b).

Fig. 2 depicts node storage components distributed over
hard disk and RAM. Major components in RAM are the
mempool and the UTXO set which stores unspent transaction
outputs to validate incoming transactions. Other components
include memory pool cache which temporarily stores new
transactions pending validation before being accepted to the
mempool; block validation cache which stores signature ver-
ification results of unconfirmed transactions to avoid repeat-
ing the computationally expensive verification operations
when blocks arrive; block index map which optimizes lo-
cating specific block data on disk; and network connections

data about peers, threads, etc.
Major components of disk storage are raw block data

(blocks/blk*.dat) i.e. block data that make up the blockchain;
block metadata (blocks/index/*) which optimize the pro-
cess of locating specific block data; and rollback data

(blocks/rev*.dat)which caters to block reorganization events.
These latter databases are redundant as they can be recon-
stituted from the raw block data, but they are maintained
on disk to speed up and optimize block validation and other
operations [127].

Some local memory storage components are also main-
tained on disk: the entire UTXO set (chainstate/*) (over 79
million inputs, 4 GB in size) stored on disk and partially
mirrored in RAM [102]. Similarly, the mempool is main-
tained in RAM, but since Bitcoin Core version 0.14.0, raw

mempool transactions are saved to disk at node shutdown,
so the Bitcoin mempool state persists across restarts [118].

Storage within the mempool is governed by two main
classes: 1. CTxMemPoolEntry has a bookkeeping role and stores
transactions data including size, fee, fee delta, entry height,
coinbase status, and information about ancestor and descen-
dant transactions [88]; 2. CTxMemPool is particularly rele-
vant to our study and comprises 3 main structures: mapTx

(boost::multi_index) [9] sorts the mempool on five criteria:
transaction hash, witness-transaction hash, descendant and
ancestor fee rate, and time; mapNextTx (std::map) [88] tracks
the transaction inputs; and mapLinks (std::map) [88] tracks
in-mempool ancestor and descendant transactions.

CTxMemPool and CTxMempoolEntry introduce upto 3x mem-
ory overhead in terms of pointers, indexes, and meta-
data [92]. The minimum recommended storage to set up
a Bitcoin full-node is 2 GB RAM and 350 GB hard disk

space [116]. The mempool is allocated 300 MB by de-
fault [134]. Users can define a custom mempool acceptance
policy. In a low memory environment, it can be reduced
(-maxmempool) or disabled entirely (-blocksonly).

3. Building Blocks: Counting Bloom Filters

Bloom filters are memory-efficient probabilistic data
structures used to test for set membership [24]. A Bloom
filter is essentially a bit vector 𝑣, of a predefined size of 𝑚
bits, initially set to zero. To insert an element 𝑥, belonging
to a set 𝑆 = {𝑥[1], 𝑥[2],… , 𝑥[𝑛]} of 𝑛 elements, we hash
each 𝑥 using 𝑘 independent hash functions with uniformly
distributed outputs over the range {1, 2,… , 𝑚}, to get ℎ1(𝑥),
ℎ2(𝑥), …, ℎ𝑘(𝑥), and set the corresponding indices in the bit
vector to 1, i.e. 𝑣[ℎ1(𝑥)] = 𝑣[ℎ2(𝑥)] = … = 𝑣[ℎ𝑘(𝑥)] = 1. In
Fig. 3a we insert three elements 𝑥[1], 𝑥[2], 𝑥[3] in the filter,
which map to indices {2, 9, 15}, {6, 10, 15} & {0, 4, 9}.

To query for set membership, an element 𝑦 is hashed 𝑘

times and the corresponding indexes are then checked. If any
of the indexes is 0, we can be certain that 𝑦 is not in the set,
a true negative. If all relevant indexes are set to 1, 𝑦 may be
in the set. We illustrate this with two examples: If we query
the filter regarding 𝑥[1] which maps to indices {2, 9, 15},
the element was in the set and the bloom filter reported it so,
referred to as a true positive. If we query the filter regarding
𝑥[4], which maps to indexes {0, 2, 6}, we observe that, even
though 𝑥[4] was not inserted into the filter, the combination
of earlier insertions has set those same bits to 1, resulting in
a false positive. The probability of false positives, 𝑝, or false

positive rate (FPR) [23] is:

𝑝 ≈
(
1 − 𝑒

−
𝑘𝑛

𝑚

)𝑘

(1)

FPR highlights the trade off between space and accuracy.
Filter size 𝑚 can be provisioned as per set size 𝑛:

𝑚 ≈ 𝑛 ⋅
− ln(𝑝)

(ln(2))2
(2)

(a) Insertion and queries in a bloom filter

(b) Insertion and queries in a counting bloom filter

(c) Deletion in a counting bloom filter

Figure 3: Bloom filters example (𝑚 = 16, 𝑘 = 3, 𝑛 = 3)

H Binte Haq, ST Ali, A Salman, P McCorry, SF Shahandashti: Preprint submitted to Elsevier Page 5 of 22

Carbyne: An Ultra-Lightweight DoS-Resilient Mempool for Bitcoin

(a) Carbyne Data Structures (b) Mempool Entry and Inventory for Bitcoin Core and Carbyne

Figure 4: Entry and Inventory Processes

Optimum value of number of hash functions, 𝑘 is given by:

𝑘 ≈
𝑚

𝑛
⋅ ln(2) (3)

Counting bloom filters extend bloom filter indices from
a single bit to a multi-bit counter (or bucket), enabling
delete operations. Insert and delete operations increment and
decrement the corresponding counters by 1, respectively. For
instance, in Fig. 3b, the counting bloom filter contains ele-
ments 𝑥[1], 𝑥[2], 𝑥[3]. When 𝑥[3] is deleted, index {2, 9, 15}

are decremented to {0, 1, 1}, as shown in Fig. 3c.
Counting bloom filters also produce false negatives. For

instance in Fig. 3c, a query for 𝑥[4] will result in a false
positive. Deleting 𝑥[4] will result in indexes {0, 2, 6} being
decremented. Hence, a subsequent query for 𝑥[1] or 𝑥[2]will
results in a false negative. Thus incorrect deletion of the false
positive items lead to false negatives. The occurrence of false
negatives also increases the false positive rate with time as
an item is not deleted, although it should be [48].

4. Proposed Solution: Carbyne

We now describe the design of Carbyne. Carbyne stores
fingerprints of transactions instead of retaining full transac-
tions, whilst preserving essential transaction verification and
forwarding functionality.

Counting bloom filters are commonly used to cache
unbounded real-time data streams (for a primer on counting
bloom filters, see ğ3). However, we face considerable ad-
ditional challenges as we seek to preserve key functions of
the mempool: devising a mechanism to expire transactions
based on age; devising a mechanism for the bulk expiry of
transaction inputs; tracking and preventing double-spends;
and ensuring resilience against DoS attacks.

To address these requirements, we propose a novel de-
sign that comprises two counting bloom filter constructions,
as shown in Fig. 4a: the first filter, CbTxFilter maps valid
incoming transactions using the unique transaction hash
TxID. Its counterpart in Bitcoin Core is mapTx. The second
filter, CbTxInputsFilter checks for duplicate inputs using the
tuple <TxIn, Index>, i.e. the TxID of the previous transaction
and index of the input within the specified transaction. Its
counterpart in Bitcoin Core is mapNextTx. Transactions are

removed by deleting the TxID from CbTxFilter and its inputs
from CbTxInputsFilter.

4.1. Entry
Fig. 4b details the mempool entry process and associated

structures for Bitcoin Core [117] and Carbyne, depicted in
blue and red respectively.

1 A transaction, entryTx, is received over the network
via an inventory message. 2 In Bitcoin Core, the TxID of
the transaction entryTx is used to query mapTx to check if the
transaction already exists in the mempool. In Carbyne, TxID
is used to query CbTxFilter. An already-received transaction
is dropped. 3 If the transaction is new, it undergoes syntax
and semantics checks. These checks are identical for both
Bitcoin Core and Carbyne and invalid transactions are re-
jected in either case.

4 Next inputs, TxIn, of entryTx are scanned for double-
spends. In-mempool inputs are verified from mapNextTx in
Bitcoin Core and using CbTxInputsFilter in Carbyne. This
step was a particular challenge for Carbyne and necessitated
the deployment of a separate dedicated filter. If any of
the inputs already exist in the mempool, the transaction is
dropped. 5 Transaction inputs are also validated using the
UTXO set. This check is also identical for Bitcoin Core and
Carbyne and transactions with invalid or spent UTXOs are
not permitted to enter the mempool. If any transaction input
(referred to as parent or ancestor) is missing, entryTx is
added to the orphan pool. It resides in the orphan pool until
its ancestor is received.

6 If entryTx and its inputs are successfully verified,
in Bitcoin Core it is added to mapTx, and each of its inputs
to mapNextTx. In Carbyne, the TxID is added to CbTxFilter

and each of its inputs, <TxIn, Index>, is added to CbTx

InputsFilter. 7 In Bitcoin Core, the ancestor-descendant
transaction chains are also updated in mapLinks. This in-
formation is required by miners to identify and prioritize
transactions to be mined in the next block. Carbyne users
have the flexibility to store a subset of complete transactions
as per their resources, for purposes of mining or to bootstrap
new nodes (see detailed discussion in Appendix B).

8 The transaction hash TxID is then broadcast to the
node’s peers with an inv message and full transactions are
forwarded on request. After a short interval to propagate the

H Binte Haq, ST Ali, A Salman, P McCorry, SF Shahandashti: Preprint submitted to Elsevier Page 6 of 22

Carbyne: An Ultra-Lightweight DoS-Resilient Mempool for Bitcoin

transaction, Carbyne discards it. The length of the interval
that full transactions are stored can vary and may be config-
ured (the trade-off is quantified in Appendix C).

9 Nodes typically receive inv messages announcing a
transaction multiple times. To check if a transaction already
exists in the mempool, mapTx in Bitcoin Core and CbTxFilter

in Carbyne is queried using TxID. A fresh transaction is
requested via the getdata message [117].

4.2. Exit
Transactions exit the mempool for six reasons: 1. in-

clusion in a block, 2. the transaction, or one of its un-
confirmed ancestors, conflict with a transaction included in
a block, 3. replacement by a newer version paying more
fee, 4. eviction due to mempool size limitation, 5. a chain
reorganization event at the node, and 6. expiry due to age.

Fig. 5 depicts the exit process for Bitcoin Core and
Carbyne: 1 When a block arrives over the network, it
includes transactions that have been confirmed and should
be removed from the mempool. 2 In Bitcoin Core, mapTx,
and in Carbyne CbTxFilter, are queried to confirm that the
transaction exists in the mempool. 3 In Bitcoin Core, the
transaction is removed from mapTx, mapNextTx, and mapLinks,
and in Carbyne, it is removed from CbTxFilter only.

4 If the transaction needs to be removed for reasons
other than inclusion in a block, Bitcoin Core will remove the
transaction as well as its descendants from mapTx, mapNextTx,
and mapLinks. In Carbyne, however, these transactions ac-
cumulate and are removed by clearing the filter at periodic
intervals. For this purpose, we cascade an additional filter
to CbTxFilter (as shown in Fig. 4a) to work in rotation. This
configuration enables us to separate mempool transactions
based on age. This process is detailed in ğ7.

CbTxInputsFilter is also cleared after a predefined in-
terval, to prevent overflow and degradation in performance.
Batch deletion relieves us of the need to store individual
mappings of transactions and their inputs, and also saves
time over deleting each transaction individually.

Replace-by-Fee (RBF) is an opt-in node policy enabling
to replace a transaction with a new version by paying a
higher fee [46]. Carbyne does not specifically cater to RBF,
but it allows nodes to process and circulate new versions of
prior transactions regardless of fee (described in ğ7.2.2). We
discuss potential strategies to enable RBF in Appendix D.

Figure 5: Mempool Exit for Bitcoin Core and Carbyne

5. Methodology

We follow a systematic approach to evaluate Carbyne’s
performance against the traditional Bitcoin Core mempool.
The methodology consists of six key steps:

Data Collection: We deployed an instrumented version
of Bitcoin Core to collect data over a 90-day period, captur-
ing real-time network activity. Our dataset includes mem-
pool activity and statistics along with network activity. The
details of the dataset are provided in ğ6. This dataset enables
a comprehensive reconstruction of the Bitcoin mempool
state, serving as the foundation for our evaluation.

Design and Implementation: Carbyne is implemented
in C++, the same language as Bitcoin Core, the most widely
used Bitcoin client. C++ provides a robust standard library
optimized for performance, efficient memory management,
and low-overhead data handling. We implement CbTxFilter
and CbTxInputsFilter, both counting Bloom filters using the
Berkeley libbf library [90], replacing Bitcoin Core’s mapTx

and mapNextTx structures.
Experimental Setup: We conduct our evaluation, run-

ning a simulated Bitcoin Core mempool and Carbyne in par-
allel while processing the recorded dataset. Bitcoin Core’s
default mempool serves as the ground truth, while Car-
byne represents the experimental condition. Each transac-
tion event, entry, exit, and inventory, is replayed in both
environments under identical workloads, allowing a direct
performance evaluation.

Performance Evaluation: We evaluate the system based
on false positive and negative rates, memory, and computa-
tional efficiency. The results are presented through graphs,
statistical analysis, and comparative tables to provide a clear
and quantitative performance comparison.

Discussion and Analysis: We analyze the system’s be-
havior, linking theoretical expectations to experimental re-
sults. This includes an examination of false positives and
negatives, a challenge addressed through careful parameter
tuning. Additionally, we evaluate the security of our ap-
proach, particularly in adversarial conditions, to assess its
robustness against potential attacks.

Stress Testing for Dos-Resilience: To assess Carbyne’s
resilience against Denial-of-Service (DoS) attacks, we con-
duct controlled stress tests designed to evaluate its ability
to handle extreme transaction loads while maintaining effi-
ciency and accuracy. We simulate extreme congestion with
600,000 transactions—over three times Bitcoin’s peak ob-
served volume. To quantify the impact of congestion on filter
accuracy and memory usage, we examine two mitigation
strategies in ğ9.

Our dataset does not specifically include dust or spam
transactions, as Carbyne is not a spam filtering mechanism.
Instead, it optimizes transaction processing and enhances
network capacity without differentiating between legitimate
and spam transactions. Since our approach treats all trans-
actions identically, incorporating spam transactions into the
dataset would not alter the results. However, Carbyne is
complementary to existing spam mitigation techniques and
can operate alongside them.

H Binte Haq, ST Ali, A Salman, P McCorry, SF Shahandashti: Preprint submitted to Elsevier Page 7 of 22

Carbyne: An Ultra-Lightweight DoS-Resilient Mempool for Bitcoin

6. The MempoolState Dataset

To test Carbyne we create an instrumented customized
version of Bitcoin Core version 0.11. We used it to set up
a full Bitcoin node, running on Intel Core i7-8700 CPU
@3.2 GHz ×12, 16 GB RAM, 2 TB HDD, running Ubuntu
18.04. We assume that our observation of the network is
largely consistent with the rest of the network. Research
confirms high similarity in mempools of full nodes [15]
and this approach has been widely used in the literature
(e.g. [14] [76]). Our dataset is longitudinal, spanning 90 days
from 1 January, 2021 to 31 March, 2021 (2160 hours). It
comprises:

1. Mempool Activity: We modify Bitcoin Core, specif-
ically src/txmempool.cpp, to capture all mempool en-
tries and exits in JSON format. We log ∼29 million
unique transactions with ∼88 million inputs. This
dataset is novel and enables researchers to efficiently
reconstruct the Bitcoin mempool state for various
applications apart from Carbyne.

2. Network Inventory: includes the inv messages re-
ceived over the network. We log ∼89 million inv

messages via the -network flag in the Bitcoin config-
uration file. We store them together with timestamps
in CSV format.

3. Mempool Statistics: includes the raw transaction size,
resulting memory usage, and transaction count in
the mempool, obtained using the Bitcoin daemon’s
JSON-RPC interface, specifically the getmempoolinfo

method. We invoked the getmempoolinfo method at 10-
minute intervals and stored the data as JSON.

7. Experiments and Results

In this section we describe our experiments. We under-
take a detailed assessment of Carbyne versus the Bitcoin
Core mempool for a range of performance metrics, including
accuracy, memory consumption, and processing time.

7.1. Implementation and Methodology
We use the Mempool Activity and Network Inventory data

set components to recreate transaction flow at a Bitcoin node
over a 90-day period. Each of 𝑒𝑛𝑡𝑟𝑦, 𝑒𝑥𝑖𝑡, and 𝑖𝑛𝑣 is treated
as a distinct event that changes the mempool state. We replay
these events and process them in parallel, using Carbyne and
a simulated version of the Bitcoin Core mempool. The latter
serves as ground truth, enabling us to document precisely
how Carbyne processes each event compared to the how
Bitcoin Core originally handled it.

We use C++ to implement Carbyne and simulate the
Bitcoin Core mempool. We use the Berkeley libbf library
[90] to implement counting bloom filters. This library uses
the H3𝚎𝚡𝚙 class of hashing functions designed by Carter
and Wegman [58]. The Carbyne implementation consists of
probabilistic data structures CbTxFilter and CbTxInputsFilter.
We simulate Bitcoin Core mempool’s key structures, mapTx,

mapNextTx and mapLinks. The CbTxFilter in Carbyne and the
mapTx structure in Bitcoin Core are independently queried at
every 𝑒𝑛𝑡𝑟𝑦, 𝑖𝑛𝑣 and 𝑒𝑥𝑖𝑡 event in our dataset to check if the
relevant transaction exists in the mempool or not. Due to its
probabilistic nature, Carbyne’s CbTxFilter will sometimes
deviate from the ground truth and yield false positives and
negatives. We define metrics for these next.

7.1.1. Performance Metrics

The responses to mempool queries can be categorized
into a confusion matrix: True Positives (TP): Bitcoin Core
mempool and Carbyne both indicate that the queried transac-
tion is present; True Negatives (TN): Bitcoin Core mempool
and Carbyne both indicate that the transaction is not in the
pool; False Positives (FP): Bitcoin Core mempool indicates
that the transaction is not in the pool, but Carbyne erro-
neously records it as present; and False Negatives (FN): Bit-
coin Core mempool indicates that the transaction is present,
but Carbyne erroneously reports it as absent.

At the filter level, the outcomes as per event are as
follows: For an 𝑒𝑛𝑡𝑟𝑦 event, when the mempool is queried
on adding a received transaction: TPenty: the transaction
already exists in the pool and will be discarded; TNentry: the
transaction is new and will be added to the pool; FPentry: the
transaction is new and should be added to the pool but will
erroneously be discarded; FNentry: the transaction already
exists in the pool, but will erroneously be added again.

For an 𝑖𝑛𝑣 event, when the mempool is on a transaction
being available at a node: TPinv: the transaction already ex-
ists in the pool and the full transaction will not be requested;
TNinv: the transaction is new and the full transaction will be
requested to add to the pool; FPinv: the transaction is new
but will erroneously not be requested to add to the pool;
FNinv: the transaction already exists in the pool but the full
transaction will erroneously be requested to add to the pool.

At 𝑒𝑥𝑖𝑡, when the mempool is queried to remove a
transaction: TPexit : the transaction exists in the pool and will
be removed; TNexit : the transaction does not exist in the pool
and cannot be removed; FPexit : the transaction does not exist
in the pool but is erroneously ‘removed’ by decrementing
the filter counters; FNexit : the transaction exists in the pool
but is erroneously not removed.

Each filter-level outcome has different consequences for
Carbyne performance. False positives at all three events lead
to transactions not being processed and hence a reduction in
the overall accuracy of the system. Therefore, an overall false
positive rate is a vital metric to consider. Specifically, any
false positives at inventory and entry result in transactions
being discarded and the rate of such discarding needs to be
kept down. Looking at false negatives, any such outcome
at inventory (or equivalently entry) will cause unnecessary
reprocessing of transactions. False negatives at exit will not
inflict any immediate cost to the system, but will eventually
cause more false positives and hence their effect can be
captured by the overall false positive rate. Based on these
insights, we define performance metrics for Carbyne:

H Binte Haq, ST Ali, A Salman, P McCorry, SF Shahandashti: Preprint submitted to Elsevier Page 8 of 22

Carbyne: An Ultra-Lightweight DoS-Resilient Mempool for Bitcoin

CbTx Bu- Hash False Positive Rate Discarded Transactions Reprocessed Transactions
Filter ckets Func. Theore- No Expiry Expiry No Expiry Expiry No Expiry Expiry
size (m) (k) tical Num/(%) Num/(%) Num/(%) Num/(%)

600 KB 2.4M 8 1.2E-03 1.5E-02 3.7E-03 1,646,878(1.402) 497,795(0.339) 82,028(0.1964) 30,034(0.0339)
800 KB 3.2M 11 4.6E-04 9.3E-03 1.4E-03 1,050,915(0.893) 195,073(0.133) 58,063(0.0655) 10,186(0.0115)

1 MB 4M 14 6.7E-05 8.1E-03 8.1E-04 911,695(0.774) 109,338(0.074) 52,650(0.0594) 5,822(0.0066)
2 MB 8M 28 5.0E-09 3.8E-03 1.3E-04 427,242(0.362) 17,441(0.012) 30,712(0.0346) 803(0.0028)
3 MB 12M 42 < 1E-10 2.3E-03 4.9E-05 263,263(0.223) 7,096(0.005) 22,608(0.0255) 298(0.0003)
4 MB 16M 55 < 1E-10 1.4E-03 2.8E-05 163,923(0.139) 4,273(0.003) 15,600(0.0176) 77(0.0001)

Table 1
Performance Metrics for CbTxFilter of various sizes dimensioned for 𝑛 = 200, 000 transactions

• False Positive Rate (FPR) is a measure of accuracy,
defined as the ratio of the false positives to the total
number of queries (entry, inv and exit).

FPR =
FPentry + FPinv + FPexit

Queriesentry + Queriesinv + Queriesexit

• Discarded Transactions is a measure of the proportion
of new transactions at 𝑒𝑛𝑡𝑟𝑦 and 𝑖𝑛𝑣𝑒𝑛𝑡𝑜𝑟𝑦 that were
erroneously discarded due to false positives.

DiscardedTxs =
FPinv + FPentry

Queriesinv + Queriesentry

• Reprocessed Transactions is a measure of transactions
that were processed twice due to false negatives at
𝑖𝑛𝑣𝑒𝑛𝑡𝑜𝑟𝑦.

ReprocessedTxs =
FNinv

Queriesinv
.

We note here that there is precedent for erroneous trans-
action handling in the Bitcoin ecosystem, especially for
resource-constrained clients. For instance, false positives in
SPV clients occasionally result in forwarding of erroneous
transactions. However, circulating these transactions does
not equate to actual double-spends, since nodes in the net-
work, including Carbyne nodes, will still screen transactions
in all incoming blocks to ensure there is no double-spending.

7.1.2. Dimensioning CbTxFilter

The highest transaction volumes observed to date have
edged close to the 200k transactions mark, as depicted in
Fig. 1a. We therefore choose a maximum transaction load
of 200k as a starting point to dimension CbTxFilter and a
false positive rate of 10−3 (1 in 1000). This is an order of
magnitude less than the 1% failure rate Baqer et al. suggest
may be ‘disruptive’ and ‘a denial of service in itself’ [76].
Using Eq. 2 and Eq. 3, we derive a starting bloom filter size
of 600 KB consisting of 2.4M buckets and 8 hash functions.

We also test other bloom filter sizes, listed in Table 1.
For comparative purposes, we focus on two other filter
candidates for our experiments, sized at 2 MB (medium)
and 4 MB (large), with 8M and 16M buckets each, and
provisioned with 14 and 28 hash functions respectively. Fan

et al. recommend a bucket width of 4 at which probabil-
ity of overflow in counting bloom filters is infinitesimally
small [119]. However, in our experiments, counters in the
filters did not exceed 2. We therefore allocate a bucket width
of 2 bits.

7.2. Empirical Results and Discussion
We replay transaction events in the MempoolState dataset

for the three month period through all filters. Table 1 shows
the average false positive rate is highest for the 600 kB filter
at 1.46×10−2, reducing marginally to 8.07×10−3 for a 1 MB
filter, and further to 1.43×10−3 for the 4 MB filter. For the
600 kB, 1 MB, and 4 MB filters we also observe 1.402%,
0.774%, and 0.139% of transactions being erroneously dis-

carded due to false positives and 0.1964%, 0.0594%, and
0.0176% of transactions being reprocessed due to false
negatives. These trends are as expected with false positives
and negatives decreasing with increasing filter size.

Fig. 6 depicts in real-time the number of transactions
in these filters along with the false positive rate for the
entire three month period. We also plot the corresponding
number of transactions in the Bitcoin Core mempool, the
ground truth in our evaluation. In all three cases, we observe
the number of transactions closely tracks the pattern in the
Bitcoin Core mempool, with an increasing offset.

This offset is due to two main sources: first, transactions
that should have been removed from the mempool because
of age or were replaced or in conflict with other transactions.
The Bitcoin Core mempool ‘expires’ old transactions after a
two-week (default) period and may evict certain transactions
if they are in-conflict with any in-mempool transactions.
Counting bloom filters have no inherent mechanism to track
age or conflicts. Second, false negatives result in some trans-
actions being erroneously added to the mempool at entry

events and some, due to be removed, to persist at exit events.
We term these erroneous artifacts debris, which accumulates
over time and corresponds to growing deterioration in per-
formance.

We also observe in Fig. 6a–6c, a marked increase in
the false positive rate in all three filters, after the number
of transactions reach 200,000, i.e. the size the filters were
originally dimensioned for. For the 600 kB and 1 MB fil-
ters, transaction numbers for Carbyne and Bitcoin Core do
not diverge indefinitely but stabilize around the 300,000

H Binte Haq, ST Ali, A Salman, P McCorry, SF Shahandashti: Preprint submitted to Elsevier Page 9 of 22

Carbyne: An Ultra-Lightweight DoS-Resilient Mempool for Bitcoin

(a) CbTxFilter= 600 kB (b) CbTxFilter= 1 MB (c) CbTxFilter= 4 MB

(d) CbTxFilter= 600 kB×2 (e) CbTxFilter= 1 MB×2 (f) CbTxFilter= 4 MB×2

Figure 6: Number of Transactions in Bitcoin vs Carbyne, Debris Transactions and False Positive Rate

mark. Our investigation reveals this is due to the high false
positive rate, which has the interesting effect of evicting
large numbers of transactions from the filter at exit events
(by decrementing the counters). This, in turn, significantly
reduces the transactions count and the false positive rate.

This is similar to expiry in temporal counting bloom
filters, where counters are periodically decremented by a
decay factor to prevent saturation of the filters for continuous
streams of item insertions [120]. This effect does not occur
in the 4 MB filter, because the false positive rate is too low to
evict large numbers of transactions, and the offset between
Carbyne and Bitcoin Core continues to grow.

Empirical false positive rates are also significantly higher
than our theoretical target of 10−3 for all filters, almost by an
order of magnitude (e.g. 6.7×10−5 vs. 8.1×10−4 for the 1 MB
filter). We theorize as to the causes: first, multiple works
have reported false positive rates in real deployments are
higher than theoretically computed [22] [21]. Researchers
contend that this is because theoretical calculations assume
that “each hash transformation is perfect” [22] and that
transactions “are independent and uniformly distributed over
all records” whereas real activity tends to be “clumped” [21].
In this context, Bose et al. prove that Eq. 1 actually gives us
a lower bound on the false positive rate [23].

Second, repeated insertion and deletion from an un-
bounded set over time, leads to increased false positives and
false negatives. Moreover, debris rapidly causes transactions
in CbTxFilter to exceed the 200,000 mark for which it was
provisioned. This results in a complex dynamic and interde-
pendent effects that compound over time. For instance, Guo
et al. note in their study that false negatives at exit will cause
items that should be removed to persist in the filter, in turn
resulting in yet more false positives [114]. We can confirm
that we observe this specific effect in our own experiments.

7.2.1. Transaction Expiry

There is no inherent mechanism to resolve the issue of
debris in counting bloom filters. We propose a solution to
periodically ‘clean up’ the filters. This is done by employ-
ing two identical counting bloom filters, a primary and a
secondary, working together in rotation, which switch status
after a predefined interval. This configuration enables us to
clearly separate transactions on the basis of age.

All queries are directed to the primary filter first. If a
transaction is not present there, then the secondary filter is
queried. Transactions are removed from the filter that first
reports them to be present. However, insertions only occur
into the primary filter. After every predefined interval, the
secondary filter is reset, i.e. all counters are decremented
to zero, and status of the two filters is switched again. This
cycle repeats after every interval, and effectively simulates
Bitcoin’s transaction expiry mechanism, where transactions
are automatically removed from the mempool after a default
period of 14 days.

We implement this mechanism with an expiry period of
14 days. Results are in Table 2 and Figs. 6d–6f. The filters
first switch roles on 15 January, followed by the first expiry
event on 29 January, and then again every 14 days, corre-
sponding to sharp drops in transaction numbers in the filters.
The Carbyne mempool now more closely tracks the contours
of the Bitcoin Core transactions pattern. Average false pos-
itive rates for our three filters of interest are reduced by at
least one order of magnitude, to the point that performance
of filters with expiry is comparable to that of larger filters.
For instance, the 1 MB filter, with expiry demonstrates an
average false positive rate of 8.1×10−4, which is less than
1.4×10−3 resulting from the 4 MB filter without expiry. The
number of discarded and reprocessed transactions are also
dramatically reduced.

H Binte Haq, ST Ali, A Salman, P McCorry, SF Shahandashti: Preprint submitted to Elsevier Page 10 of 22

Carbyne: An Ultra-Lightweight DoS-Resilient Mempool for Bitcoin

Expiry False Positive Rate Discarded Transactions Reprocessed Transactions
Time 600 kB 1 MB 4 MB 600 kB 1 MB 4 MB 600 kB 1 MB 4 MB
(days) Num/(%) Num/(%) Num/(%) Num/(%) Num/(%) Num/(%)

14–28 3.7E-03 8.1E-04 2.8E-05 497,795(0.339) 109,338(0.074) 4,273(0.003) 30,034(0.034) 5,822(0.007) 77(< 0.001)
7–14 2.1E-03 4.6E-04 2.2E-05 287,670(0.196) 62,271(0.042) 3,519(0.002) 34,549(0.039) 18,169(0.021) 16,562(0.019)
1–2 6.2E-04 1.5E-04 1.6E-05 85,589(0.058) 20,814(0.014) 2,654(0.002) 148,128(0.167) 126,017(0.142) 146,265(0.165)
𝟏

𝟐
–1 4.4E-04 1.2E-04 1.5E-05 60,852(0.042) 16,258(0.011) 2,537(0.002) 231,543(0.261) 191,210(0.216) 231,428(0.261)

𝟏

𝟒
– 𝟏

𝟐
3.1E-04 8.3E-05 1.4E-05 43,085(0.030) 11,790(0.008) 2,400(0.002) 294,164(0.332) 262,567(0.296) 294,530(0.280)

Table 2
False positive rates for different Expiry times and CbTxFilter sizes, dimensioned for n=200,000 transactions

The expiry period here is not strictly 14 days but in the
range of 14–28 days, since a filter is cleared every 28 days.
The false positive rate can be further improved by reducing
the expiry period. A case could be made for this given
that, since 2016, the median transactions confirmation time
for Bitcoin has not exceeded 30 mins [51] and the average
confirmation time of a transaction is around 104 mins [52].

This means that even 6–12 hours is a plausible value
for expiry. As shown in Table 2, when the expiry pe-
riod is reduced from 14–28 days to 1

4
– 1

2
day, there is an

order of magnitude decrease in the false positive rate for
the 600 kB and 1 MB filters which reduced from 3.7×10−3

to 3.1×10−4 and 8.1×10−4 to 8.3×10−5, respectively. For the
4 MB filter the decrease is only marginal. Similarly, the
discarded transactions percentage for the 600 kB and 1 MB
filters reduced from 0.339% to 0.030% and from 0.074%

to 0.008%, respectively. However shorter expiry intervals
result in increased reprocessing costs: if an old transaction
is received again after the filter has been cleared, Carbyne
will consider it a new transaction and process it again. For a
600 kB filter, reprocessed transactions increase from 0.034%

to 0.332%, for a 1 MB filter from 0.007% to 0.296%, and for
a 4 MB filter from less than 1×10−5% to 0.280%.

7.2.2. CbTxInputsFilter Dynamics

CbTxInputsFilter scans inputs of incoming transactions
to prevent double spends. The implications are:

• TPinputs: a transaction bearing that input was recently
added to CbTxInputsFilter and the new transaction
should be discarded;

• TNinputs: a transaction bearing that input does not exist
in CbTxInputsFilter and the new transaction should be
added;

• FPinputs: a transaction bearing that input does not
exist in CbTxInputsFilter but the new transaction was
erroneously discarded;

• FNinputs: a transaction bearing that input already ex-
ists in CbTxInputsFilter, but the new transaction was
erroneously added.

In our dataset incoming transactions average 40,000 in-
puts hourly and peak at 191,947 inputs. We therefore dimen-
sion CbTxInputsFilter for 200,000 transactions, similar to
CbTxFilter. We reset CbTxInputsFilter hourly. This relieves
the requirement of tracking individual inputs to transactions.
With hourly reset and CbTxInputsFilter of 600 kB, 1 MB

CbTx Buckets False Positives
Inputs m 1 hour 3 hour
Filter Num/(FPR) Num/(FPR)

600KB 2.4M 69,644(7.9E-04) 446,476(5.1E-03)
800 KB 3.2M 26,665(3.0E-04) 152,865(1.7E-03)

1 MB 4M 15,258(1.7E-04) 91,480(1.0E-03)
2 MB 8M 2,249(2.6E-05) 20,554(2.3E-04)
3 MB 12M 781(8.9E-06) 10,312(1.2E-04)
4 MB 16M 411(4.7E-06) 6,128(7.0E-05)

Table 3
CbTxInputsFilter, n=200,000

and 4 MB the false positive rate is 7.9×10−4, 1.7×10−4 and
4.7×10−6 respectively as shown in Table 3.

As we do not individually delete transactions from CbTx

InputsFilter, no false negatives occur due to incorrect dele-
tion of false positive items. False negatives occur due to
expiry of transaction inputs. Thus an attacker can resend
a transaction with the same input after the expiry interval.
With regards to transactions that have conflicting inputs
there is no hard and fast policy as to which transaction
nodes accept. Typically, nodes accept and forward the first
seen transaction and the first seen can differ for nodes.
Moreover, Core clients with disabled mempools forward all
valid incoming transactions. It is the job of miners to not add
conflicting transactions to a block and the network nodes to
screen incoming blocks. Since Carbyne maintains complete
UTXO information, nodes will reject blocks that include
double-spend transactions.

For a 600 kB CbTxFilter (14-28 day expiry) discarded
transactions stand at 0.387%, i.e. 99.613% of transactions
are accurately processed. With a 600 kB CbTxInputsFilter,
an additional 69,644 transactions are discarded due to false
positives. For a 1 MB CbTxInputsFilter, 15,258 transactions
are discarded. If we factor this in for a 1 MB CbTxFilter (14-
28 day expiry), the discarded transactions stand at 0.0849%,
i.e. 99.915% of transactions are accurately processed. For
a 4 MB CbTxInputsFilter (14-28 day expiry), 411 transac-
tions are discarded due to false positives. Thus for a 4 MB
CbTxFilter discarded transactions stand at 0.003%, that is
99.997% transactions are accurately processed.

H Binte Haq, ST Ali, A Salman, P McCorry, SF Shahandashti: Preprint submitted to Elsevier Page 11 of 22

Carbyne: An Ultra-Lightweight DoS-Resilient Mempool for Bitcoin

Figure 7: Raw transaction size and memory footprint

7.2.3. Memory and Computation Footprint

We compare here the memory footprint and computa-
tional overhead of Carbyne and Bitcoin Core. Fig. 7 depicts
the size of the raw transactions versus the actual size of the
mempool over the three month period of our experiments.
This information is derived from the Mempool Statistics
component of our dataset, described in ğ6. As depicted, raw
transaction data of 100 MB typically has a footprint of 300
MB or more in the mempool due to data structure overheads
to optimize functionality (as noted in ğ2). The graph clips at
300 MB, i.e. the maximum size allocation of our node and
the default allocation for Bitcoin Core.

As baseline, we consider a straightforward mempool
optimization scheme, which uses deterministic data struc-
tures but only keeps transaction hash in memory and with
fewer indices. Rudimentary calculations indicate that the
storage size for this scenario would be significantly more
than Carbyne. For complete transaction validation, we would
need to store the following indices: transaction ID (32 bytes),
transaction input hash (32 bytes) and index (4 bytes) -
amounting to (32+36𝑛) bytes for each raw transaction where
𝑛 is the number of transaction inputs. Using standard data
structures, such as maps) would incur a memory overhead
almost three times the size of the raw data. Overall, we get
savings of up to one order of magnitude.

This approach reduces memory consumption from an
optimization perspective, but the disadvantages are still sig-
nificant. It is less resilient to congestion events and spam
attacks. This node does not store full transactions, it is
equally limited as Carbyne from an inventory perspective,
i.e., it cannot bootstrap mempools of other nodes. The only
benefit is that it does not suffer from false positives.

Carbyne results thus far are immensely promising: to
process an equivalent volume of transactions with 99.9151%
accuracy, Carbyne requires only 3 MB of memory, cor-
responding to CbTxFilter sizes of 1 MB×2 (with expiry)
and a CbTxInputsFilter size of 1 MB. Carbyne represents
a two-order-of-magnitude reduction compared to Bitcoin
Core, with memory usage dropping from 300 MB to just
3 MB. Notably, this value remains constant regardless of
transaction volume. Given this significant efficiency gain,
we characterize Carbyne as "ultra-light." This improvement
is quantitatively illustrated in Fig. 7.

Figure 8: Computation Time

We have identified various parameters users can tweak to
navigate the tradeoff between accuracy, memory footprint,
and computation overhead as per their own requirements.
Filters can be dimensioned based on expected transaction
flows and expiry can be tweaked, enabling smaller filters to
achieve accuracy comparable to much larger ones.

We next calculate the computational overheads. Bitcoin
Core components mapTx, mapNextTx and mapLinks undertake
query, insertion and deletion operations in 𝑂(log 𝑛) time,
where 𝑛 is the number of stored transactions, Counting
bloom filters in Carbyne operate in constant time, 𝑂(𝑘),
for query, insertion and deletion operations, where 𝑘 is the
number of hash functions.

We compare their timings, depicted in Fig. 8, using an
Intel Core i7 system with 8700 CPU @3.2GHZ ×12 and
32 GB RAM, running Ubuntu 18.04 with GCC 5.4.0. We
replicate Bitcoin Core structures mapTx (Boost multi-index),
mapNextTx and mapLinks (C++ STL maps). We use libbf to
instantiate counting bloom filters and perform query, insert
and delete operations, averaging over 1 million iterations.

• CbTxFilter vs. mapTx: Query, insert and delete op-
erations in mapTx take 358 ns, 4,735 ns, and 272 ns,
respectively, whereas CbTxFilter (for 𝑘 = 14) requires
2,724 ns, 3,354 ns, and 3,223 ns, respectively. For a
complete transaction lifecycle comprising query, in-
sert and removal, mapTx requires 5,365 ns compared to
9,301 ns for CbTxFilter.

• CbTxInputFilter vs. mapNextTx: Query, insert and
delete operations for mapLinks and mapNextTx require
997 ns, 1,173 ns, and 1,158 ns, respectively, whereas
CbTxInputsFilter (for 𝑘 = 14) takes 2,724 ns and
3,354 ns for query and insert operations. There is no
delete operation for this filter as it is periodically reset
(as described in ğ4). Over a single transaction input
life-cycle, mapNextTx requires 3,328 ns compared to
6,078 ns for CbTxInputsFilter.

• mapLinks:Maintaining unconfirmed transaction chains
in mapLinks is memory and computation intensive. For
each entry, ancestor-descendent information is kept in
the mempool to prioritize transactions for blocks. But
with every entry or exit in the mempool, all ancestors
and descendants need to be recursively updated. A sin-
gle series of operations requires 3,328 ns. To cap these
costs, also be a potential DDoS vector, Bitcoin Core

H Binte Haq, ST Ali, A Salman, P McCorry, SF Shahandashti: Preprint submitted to Elsevier Page 12 of 22

Carbyne: An Ultra-Lightweight DoS-Resilient Mempool for Bitcoin

0.12 introduced a default policy limiting unconfirmed
chains to 25 transactions and total size of 101 kB.
Carbyne does not store these mappings as explained
in ğ4 and does not incur these costs.

For a complete transaction lifecycle—including query, in-
sertion, and removal—mapTx in Bitcoin Core requires 5,365
ns, whereas CbTxFilter incurs a slightly higher cost of 9,301
ns. Considering the transaction lifecycle, mapNextTx in Bit-
coin Core requires 3,328 ns, while CbTxInputsFilter in Car-
byne demands 6,078 ns. Managing unconfirmed transaction
chains within mapLinks over a single sequence of operations
requires 3,328 ns in Bitcoin Core. Typical Bitcoin transac-
tions have around 2–3 inputs. Assuming the addition of a
2 input transaction necessitates two sets of query, insertion
and removal operations, the total cost in mapLinks amounts
to 6,656 ns. In contrast, Carbyne eliminates this overhead
entirely. Summing these computational costs, the total pro-
cessing time per transaction lifecycle amounts to 15,349 ns
for Bitcoin Core and 15,379 ns for Carbyne. These figures
indicate that Carbyne and Bitcoin Core exhibit comparable
computational loads.

From a practical standpoint, Carbyne is demonstrably
capable of supporting real-time transactions. Given that each
transaction requires 15,379 ns, the system can theoretically
sustain a transaction throughput of approximately 65,000
transactions per second (tps). This significantly exceeds Bit-
coin’s current throughput of 3–7 tps, highlighting Carbyne’s
scalability potential. If Bitcoin’s throughput increases, Car-
byne can seamlessly scale to accommodate loads to the order
of thousands of transactions per second.

As we noted, there are no financial incentives in the
Bitcoin protocol for full nodes (as compared to miners), and
the resource costs for this exercise are constantly increasing.
On our part, we assume that users operate nodes primarily
to contribute to the Bitcoin network out of a sense of com-
munity or altruism – similar to how people operate nodes for
the Tor network.

In this sense, we believe it is useful to provide such
users, via our solution, with control over the local memory
resources they allocate for this task to make it cost-efficient.
This is conceptually similar to Bitcoin Core’s inbuilt ‘pruned
node’ option which aims to reduce hard disk requirements.
i.e., pruned nodes do not store the entire blockchain on disk
but still contribute to the footprint and health of the network
by validating and forwarding transactions.

Carbyne, as a lightweight solution, lowers the entry
cost for participation in the Bitcoin network. Similar to
pruned nodes, Carbyne should be viewed as a solution not to
supplant mining nodes but to reduce costs for certain users
while enhancing network health by validating transactions
and improving congestion resilience. In summary, Carbyne
minimizes memory costs while preserving computational
efficiency, making it a practical, cost-effective solution for
Bitcoin node operators.

7.3. Security Analysis in an Adversarial Setting
Here, we consider if an adversary can exploit Carbyne’s

design or properties in unintended ways. We specifically
discuss two situations: can an adversary craft transactions
to evade or trigger filters at individual Carbyne nodes? If so,
can the adversary trigger censorship of select transactions
across large numbers of Carbyne nodes in the network?

To recap the fundamental point in ğ2.3 each node ini-
tializes its filters independently using random 128-bit seeds
that are kept secret. This makes it highly unlikely that large
numbers of nodes drop the same transactions. The seeds we
are using to initialize the filters are 128 bits long and kept
secret by the nodes (as explicitly recommended in the liter-
ature [1]). This means that individual nodes are effectively
using independent hash functions to construct their filters.

To trigger a false positive in a certain Carbyne node,
an adversary would therefore have to access two pieces of
information: 1) the seeds used to initialize that node’s most
recent filter, and 2) the current state of that filter (i.e. which
transactions it has already logged). We assume the first item
would be difficult for an attacker to procure. A node can
even change its random seeds every time a new CbTxFilter

is generated (every two weeks in our basic scenario).
Seeding CbTxFilter with secret random seeds effectively

reduces the adversary’s capability from mounting a chosen
transaction attack to a random transaction attack: although
the adversary controls the transactions they broadcast, with-
out knowledge of the seeds, the output of the hash function
and hence the marked indices in the filters will be effectively
unpredictable for the adversary. Hence, the adversary cannot
do much better than broadcasting random transactions. He
will not be able to effectively craft specific transactions that
lead to false positives with higher probability.

Moreover, since individual nodes use random seeds,
even if an adversary somehow crafts a transaction that in-
duces a false positive in a targeted node, the probabil-
ity of inducing a false positive in another node using the
same transaction will be very very low (as described in
ğ2.3). Adversarial attempts targeted at individual nodes will,
therefore, not scale to Carbyne nodes network-wide. We do
not believe there is any low-cost means for an attacker to
censor specific transactions across all Carbyne nodes on the
network.

8. Carbyne for Other Cryptocurrencies

The Carbyne approach, in principle, can be extended
to other cryptocurrencies. However the design of such a
scheme has to be tweaked considerably according to the
specific protocols. Adapting Carbyne to Bitcoin forks such
as Bitcoin Cash, Bitcoin Gold, Litecoin and Dogecoin is
straightforward, as they are all based on the UTXO model.
For these currencies only certain parameters such as trans-
action expiry time, bloom filter size, etc. need to be tweaked
according to the traffic on the network and the block time.

H Binte Haq, ST Ali, A Salman, P McCorry, SF Shahandashti: Preprint submitted to Elsevier Page 13 of 22

Carbyne: An Ultra-Lightweight DoS-Resilient Mempool for Bitcoin

Figure 9: Carbyne vs CarbEth

8.1. CarbEth (Carbyne for Ethereum)
An accounts-based cryptocurrency like Ethereum will

necessitate considerable changes in addition to the changes
identified above. We propose an equivalent scheme for
Ethereum, CarbEth (Carbyne for Ethereum). However, the
empirical analysis regarding the various parameters users
can tweak to navigate the tradeoff between accuracy, mem-
ory footprint, and computation overhead will have to be
determined based on a dataset specific to the Ethereum net-
work. This investigation warrants a separate and dedicated
examination. We will address this in our future research.

8.2. Ethereum txpool vs Bitcoin mempool
The transaction pool in Ethereum, namely the Txpool

comprises three primary map structures: pending holds ex-
ecutable transaction data; queued manages non-executable
transaction data and beats keeps a record of the most recent
heartbeat from each known account.

As outlined in ğ2.4, the Bitcoin mempool is composed
of two primary structures: the CTxMemPoolEntry, which plays
bookkeeping role, and the CTxMemPool, which encompasses
three key data structures: mapTx indexes transactions on five
criteria: transaction hash, witness-transaction hash, descen-
dant and ancestor fee rates, and timestamp; mapNextTx tracks
transaction inputs; mapLinks monitors in-mempool ancestor
and descendant transactions.

8.3. Primary components of CarbEth & Carbyne
CarbEth is composed of two components: The first com-

ponent, a counting bloom filter named pendingFilter, uti-
lizes the transaction hash (<txHash>) to map and track valid
incoming transactions. In Carbyne, the first component, a
counting bloom filter named CbTxFilter maps valid incom-
ing transactions using the unique transaction hash <TxID>.

In CarbEth, the second component a bloom filter with
key-value storage, named accountFilter ensures that double-
spend transactions are identified. It does this by storing key-
value pair <address, nonce>, which represent the sender’s
address and the nonce value of the most recent transaction
added to pendingFilter. In Carbyne, the second component,
a counting bloom filter, CbTxInputsFilter checks for dupli-
cate inputs using the tuple <TxIn, Index>.

Entry 1 In Ethereum the process begins with the
arrival of a complete transaction, referred to as entryTx,
over the network through a Transaction message. In Bit-
coin, a transaction announcement which only includes the
transaction hash is made via the inv message and a full
transaction is relayed only on request. This means that the
Bitcoin node has to hold on to transactions, in anticipation of
a complete transaction request (quantitative analysis offered
in Appendix C). Ethereum can forego this. 2 In CarbEth the
transaction’s txHash is used to query the pendingFilter and
queued data structures to determine if the transaction already
exists in the txpool. In Bitcoin Core, the transaction hash of
entryTx, the TxID is used to query CbTxFilter to check the
same. 3 If the transaction is new, it undergoes syntax and
semantics checks in both CarbEth and Carbyne.

4 Next, in CarbEth, the <address, nonce> of entryTx is
scanned in the accountFilter to detect any potential double
spends. If a transaction exists in pendingFilter that has
the same <account, address> as the incoming transaction,
it is flagged as a potential double-spends and dropped. In
Carbyne, the inputs, TxIn, of entryTx are scanned for double-
spends using CbTxInputsFilter in Carbyne.

5 In CarbEth transactions are also validated against
the State Trie using the key-value pair <address, nonce>.
In Carbyne, transaction inputs are also validated using the
UTXO set. If any transaction input (referred to as parent or
ancestor) is missing, entryTx is added to the orphan pool.

6 Upon successful verification, in CarbEth, the txHash

is added to pendingFilter, and the key-value pair <address,

nonce> is added to accountFilter if the nonce is in order, or to
queued if the nonce is out of order. In Carbyne If the entryTx

and its inputs are successfully verified, the TxID is added to
CbTxFilter and each of its inputs, <TxIn, Index>, is added
to CbTxInputsFilter. 7 In CarbEth the node then attempts
to promote any eligible transactions from queued to pending.
In Bitcoin Core, the ancestor-descendant transaction chains
are updated and transactions are unorphaned. 8 In CarbEth
the complete transaction is then relayed to a small, random
fraction of connected peers via a Transaction message. The
transaction hash TxID is then broadcast to the node’s peers

H Binte Haq, ST Ali, A Salman, P McCorry, SF Shahandashti: Preprint submitted to Elsevier Page 14 of 22

Carbyne: An Ultra-Lightweight DoS-Resilient Mempool for Bitcoin

(a) CbTxFilter= 1.8 MB×2 (b) CbTxFilter= 3 MB×2 (c) CbTxFilter= 12 MB×2

(d) CbTxFilter= 600 kB×4 (e) CbTxFilter= 1 MB×4 (f) CbTxFilter= 4 MB×4

Figure 10: Dimensioning for larger transaction volume and dynamic adaptation for congestion and DDoS

with an inv message and full transactions are forwarded on
request. This entry process is summarized in Fig. 9.

Exit transactions are removed from the txpool for several
reasons: inclusion in a block, replacement by higher fee ver-
sions, reaching size limits, removal during chain reorganiza-
tion, transaction age expiry. Additionally in Ethereum trans-
actions may be removed for running out of gas during ex-
ecution, and demotion to “queued” (non-executable) status.
To remove transactions in CarbEth, the txHash is deleted from
pendingFilter, and the corresponding <address, nonce> entry
in accountFilter is updated. In Carbyne, the transaction is
removed from the CbTxFilter and the CbTxInputsFilter is
cleared periodically.

Nonetheless, it is imperative to empirically validate
the suggested approach using Ethereum-specific data. We
require accurate measurements and quantification of out-
comes, particularly concerning the rates of false positives
and negatives and to understand various parameters through
evidence-based analysis.

9. Stress Testing Carbyne

We simulate a stress test to evaluate Carbyne’s perfor-
mance under high transaction flows, congestion or spam
attacks. We consider a transaction load of over 600,000
transactions, more than 3x the peak amount considered in
ğ7. This load is generated by artificially halting exit of
transactions for 55 hours to let entry transactions accu-
mulate. Once 600,000 transactions accumulate, we resume
transaction exits at the natural rate.

Our dataset does not include dust or spam transactions
as Carbyne, which is not a spam filtering technique, handles
both genuine and dust or spam transactions identically. It

improves transaction flow and enhances the network’s ca-
pacity to handle a greater volume of transactions. Since our
approach does not differentiate between benign and spam
transactions, incorporating spam into the dataset would yield
the same results. That said, our scheme is orthogonal to
existing spam mitigation mechanisms and can complement
them without altering its core functionality.

By demonstrating that Carbyne efficiently processes
even extreme transaction volumes, we provide empirical
evidence validating its DoS-resilient properties. We consider
two strategies:

Dimensioning for Large Transaction Volumes. We ex-
plore a preemptive strategy to sustain a transaction volume
of 600k transactions. We consider CbTxFilter with expiry of
sizes of 1.8 MB×2, 3 MB×2, and 12 MB×2, three times the
size of filters considered in ğ7. CbTxInputsFilter similarly
expands to 1.8 MB, 3 MB and 12 MB respectively. The sec-
ondary filter activates when transactions exceed 600,000.

Figs. 10a–10c depict how preemptive dimensioning per-
forms. The first filter stores the first 600,000 transactions.
However when the volume exceeds 600,000 the second filter
is activated, marked by a pronounced decrease in the false
positive rate in Figs. 10a–10c. The first filter expires after
14 days, and the number of transactions in the mempool
returns to normal levels. Figs. 10a–10c shows the average
false positive rate at three key points: when transactions
cross 600,000, when the first filter expires, and at the end of
90 days. We see that 1.8 MB, 3 MB experience degradation
but quickly recovers from the congestion event, however the
12 MB filter is unperturbed throughout. As expected, the
FPR is significant for the smaller filters and decreases for
larger filters. The 1.8 MB, 3 MB and 12 MB filters process
transactions with 99.698%, 99.914% and 99.997% accuracy.

H Binte Haq, ST Ali, A Salman, P McCorry, SF Shahandashti: Preprint submitted to Elsevier Page 15 of 22

Carbyne: An Ultra-Lightweight DoS-Resilient Mempool for Bitcoin

Dynamic Adaptation for Congestion. Our next strategy
considers a more dynamic strategy. We initialize a counter
to track total number of transactions in CbTxFilter, and as
soon as filter capacity of 200,000 is exceeded, additional
bloom filters are generated recursively as per demand [48]
[99]. The user can tweak the filter capacity parameter as
per resources available at the node. The filters can then be
expired in the order of their age at defined intervals. New
filters can be generated repeatedly if congestion persists.

Figs. 10d–10f show the results for filter sizes 600 kB,
1 MB and 4 MB filter sizes. In all three case, additional
filters are generated at the 200k, 400k, and 600k transaction
marks. This means that four filters are functional at the
peak of the congestion event (consuming 2.4 MB, 4 MB and
16 MB respectively). Each filter expires 14 days after it was
generated. When transaction volume normalizes, additional
filters are no longer needed. We also highlight the average
FPR at three key points: when transactions cross 600,000,
when the first filter expires, and at the end of 90 days.

As expected, the false positive rate decreases with in-
creasing filter sizes for the duration of the congestion period
and otherwise: the 600 kB, 1 MB and 4 MB filters process
transactions with 99.222%, 99.766% and 99.994% accuracy
over the 90 day period. We see that the 600 kB and 1 MB
filters experience significant performance degradation but
quickly recover from the congestion event, whereas the 4 MB
filter does not deviate much. Even in the worst case scenario,
for the 600 kB filter false positive rates over the 55 hour
period of congestion, the cumulative false positive rate is
4.6×10−2. Medium size filters of size 1 MB can process this
load with a false positive rate of approximately 1.1×10−3.

Both approaches perform well in combating increased
spam events and have their pros and cons. The first strategy
of preempting congestion performs slightly better in terms
of false positives but has a larger memory footprint. The
second approach dynamically adjusts to congestion and has
a considerably smaller memory footprint. Overall, though
a transaction load of 600,000, over three times the historic
maximum witnessed on the network, is estimated to push
mempool space over the 1 GB mark, but Carbyne processes
it within a few tens of MBs with extremely high accuracy.

10. Conclusion and Future Work

In this paper, we propose Carbyne, an ultra-lightweight
counting bloom filter-based scheme to improve the perfor-
mance and resilience of the Bitcoin network to increased
transaction flows, network congestion and spam.

Carbyne reduces the footprint of the mempool by two
orders of magnitude while preserving key functions for
processing and forwarding transactions. We devise a mech-
anism to expire transactions based on age, tracking and
limiting double-spends, and explore potential strategies to
enable Replace-by-Fee transactions. We also demonstrate
strategies to cope with congestion and spam. Implementing
Carbyne does not necessitate forking the network.

Carbyne supports typical real-world transaction volumes
of 300 MB in as little as 3 MB of memory, with more than
99.9% accuracy in processing and forwarding transactions.
In simulated stress tests, Carbyne is demonstrated to cope
with congestion and spam attacks with a total footprint of
around 9 MB as opposed to around 1 GB in Bitcoin Core, and
with very high fidelity. Our experimental results are obtained
using Bitcoin transaction data over 90 days. This dataset is a
distinct contribution, of independent interest to researchers.

In future work, we intend to further explore and fine tune
trade offs in memory, accuracy, and computation. We hope
to develop a functional prototype for live deployment. We
are also currently adapting Carbyne to Ethereum.

We hope this effort motivates research on the mempool
and its intricacies and contributes to the security and robust-
ness of the Bitcoin ecosystem.

References

[1] R. Bayer, “Symmetric binary B-trees: Data structure and
maintenance algorithms,” Acta Informatica, vol. 1, no. 4, pp.
290–306, 1972.

[2] H. Binte Haq, S. T. Ali, A. Salman, P. McCorry, and S.
F. Shahandashti, “Neonpool: Reimagining Cryptocurrency
Transaction Pools for Lightweight Clients and IoT Devices,”
arXiv preprint 2412.16217, 2024. [Online]. Available: https:
//arxiv.org/pdf/2412.16217

[3] R. Patgiri, S. Nayak, and S. K. Borgohain, “Hunting the per-
tinency of bloom filter in computer networking and beyond:
A survey,” Journal of Computer Networks and Communica-

tions, vol. 2019, 2019.

[4] J. Larisch, D. Choffnes, D. Levin, B. M. Maggs, A. Mislove,
and C. Wilson, “CRLite: A scalable system for pushing all
TLS revocations to all browsers,” in Proc. IEEE Symposium

on Security and Privacy (SP), 2017, pp. 539–556.

[5] Ú. Erlingsson, V. Pihur, and A. Korolova, “Rappor: Random-
ized aggregatable privacy-preserving ordinal response,” in
Proc. ACM SIGSAC Conference on Computer and Commu-

nications Security, 2014, pp. 1054–1067.

[6] S. Nayak, R. Patgiri, and A. Borah, “A survey on the roles of
Bloom Filter in implementation of the Named Data Network-
ing,” Computer Networks, vol. 196, p. 108232, 2021.

[7] Carbyne, GitHub, 2025, Mar. [Online; accessed 24. Mar.
2025]. Available: https://github.com/hbhaq/Carbyne

[8] Mempool state Bitcoin | Kaggle, 2025, Mar. Available: https:
//www.kaggle.com/datasets/mempoolstate/mempool-state-bit

coin

[9] Boost Multi-Index, “Boost.MultiIndex Documentation - Per-
formance,” Oct. 2004. [Online]. Available: https://cs.brown
.edu/~jwicks/boost/libs/multi_index/doc/performance.html

[10] J. Waldo, “A hitchhiker’s guide to the blockchain universe,”
Communications of the ACM, vol. 62, no. 3, pp. 38–42, 2019.

[11] M. Pisa, “Reassessing expectations for blockchain and devel-
opment,” Innovations: Technology, Governance, Globaliza-

tion, vol. 12, no. 1–2, pp. 80–88, 2018.

[12] T. Gayvoronskaya and C. Meinel, “Projects and Application
Areas of Blockchain Technology,” in Blockchain, Springer,
2021, pp. 79–96.

H Binte Haq, ST Ali, A Salman, P McCorry, SF Shahandashti: Preprint submitted to Elsevier Page 16 of 22

Carbyne: An Ultra-Lightweight DoS-Resilient Mempool for Bitcoin

[13] Nasdaq, “Can Bitcoin Grow Faster Than the Internet,” Jul.
2021. [Online]. Available: https://www.nasdaq.com/articles/
can-bitcoin-grow-faster-than-the-internet-2021-05-07

[14] S. T. Ali, P. McCorry, P. H.-J. Lee, and F. Hao, “ZombieCoin
2.0: managing next-generation botnets using Bitcoin,” Inter-

national Journal of Information Security, vol. 17, no. 4, pp.
411–422, 2018.

[15] D.-Y. Kim, E. Meryam, and H. Ju, “Examining Bitcoin mem-
pools resemblance using Jaccard similarity index,” in Proc.

Asia-Pacific Network Operations and Management Sympo-

sium (APNOMS), 2020, pp. 287–290.

[16] C. Decker and R. Wattenhofer, “Information propagation in
the bitcoin network,” in Proc. IEEE P2P, 2013, pp. 1–10.

[17] K. Joshi, V. Fernando, and S. Misailovic, “Statistical al-
gorithmic profiling for randomized approximate programs,”
in Proc. IEEE/ACM International Conference on Software

Engineering (ICSE), 2019, pp. 608–618.

[18] G. Yu, X. Wang, K. Yu, W. Ni, J. A. Zhang, and R. P. Liu,
“Survey: Sharding in blockchains,” IEEE Access, vol. 8, pp.
14155–14181, 2020.

[19] G. Wang, Z. J. Shi, M. Nixon, and S. Han, “SoK: Sharding
on blockchain,” in Proc. ACM Conference on Advances in

Financial Technologies, 2019, pp. 41–61.

[20] S. Park, S. Im, Y. Seol, and J. Paek, “Nodes in the bitcoin
network: Comparative measurement study and survey,” IEEE

Access, vol. 7, pp. 57009–57022, 2019.

[21] L. L. Gremillion, “Designing a Bloom filter for differential
file access,” Communications of the ACM, vol. 25, no. 9, pp.
600–604, 1982.

[22] J. K. Mullin, “A second look at Bloom filters,” Communica-

tions of the ACM, vol. 26, no. 8, pp. 570–571, 1983.

[23] P. Bose, H. Guo, E. Kranakis, A. Maheshwari, P. Morin, J.
Morrison, M. Smid, and Y. Tang, “On the false-positive rate
of Bloom filters,” Information Processing Letters, vol. 108,
no. 4, pp. 210–213, 2008.

[24] B. H. Bloom, “Space/time trade-offs in hash coding with
allowable errors,” Communications of the ACM, vol. 13, no.
7, pp. 422–426, 1970.

[25] J. Thomas, “Bitcoin Transaction Volume Primed to Overtake
PayPal in 2020,” BeInCrypto, Feb. 2020. [Online]. Available:
https://beincrypto.com/bitcoin-transaction-volume-prime

d-to-overtake-paypal-in-2020

[26] “Your BTC transaction is stuck in the mempool? Here’s what
you can do,” CoinGate, Nov. 2020. [Online]. Available: http
s://blog.coingate.com/2020/11/btc-mempool-stuck/

[27] “Cryptocurrency Market Capitalizations,” CoinMarketCap,
Jan. 2022. [Online]. Available: https://coinmarketcap.com

[28] “Home,” Ethereum.org, Jan. 2022. [Online]. Available: http
s://ethereum.org

[29] “Instantly Move Money to All Corners of the World,” Ripple,
Apr. 2020. [Online]. Available: https://ripple.com

[30] G. Hileman and M. Rauchs, “Global cryptocurrency bench-
marking study,” Cambridge Centre for Alternative Finance,
vol. 33, 2017.

[31] B. Bambrough, “As Bitcoin Nudges $8,000, Survey Reveals
The ’Rapid’ Pace Of Crypto Adoption,” Forbes, May 2019.

[Online]. Available: https://www.forbes.com/sites/billyba
mbrough/2019/05/13/as-bitcoin-nears-8000-survey-reveals

-the-rapid-pace-of-crypto-adoption

[32] “HSB Survey Finds One-Third of Small Businesses Accept
Cryptocurrency,” Apr. 2020. [Online]. Available: https://ww
w.businesswire.com/news/home/20200115005482/en/HSB-Surve

y-Finds-One-Third-Small-Businesses-Accept

[33] R. Schultze-Kraft, “How Many Entities Hold Bitcoin?,”
Glassnode, Jan. 2020. [Online]. Available: https://medium

.com/glassnode-insights/how-many-entities-hold-bitcoin-e

945ecc5d0a1

[34] O. Faridi, “700% Increase in Bitcoin Adoption Worldwide,
Kaspersky’s Survey Reveals,” CryptoGlobe, Feb. 2019. [On-
line]. Available: https://www.cryptoglobe.com/latest/2019/
02/700-increase-in-bitcoin-adoption-worldwide-kaspersky

-s-survey-reveals

[35] M. Saad, L. Njilla, C. Kamhoua, J. Kim, D. Nyang, and A.
Mohaisen, “Mempool Optimization for Defending Against
DDoS Attacks in PoW-based Blockchain Systems,” in Proc.

IEEE ICBC, 2019, pp. 285–292.

[36] A. P. Ozisik et al., “Graphene: Efficient Interactive Set Recon-
ciliation Applied to Blockchain Propagation,” in Proc. ACM

SIGCOMM, 2019, pp. 303–317.

[37] J. Poon and T. Dryja, “The Bitcoin Lightning Network: Scal-
able Off-Chain Instant Payments,” 2016. [Online]. Available:
https://lightning.network/lightning-network-paper.pdf

[38] M. Saad, J. Kim, D. Nyang, and D. Mohaisen, “Contra-*:
Mechanisms for Countering Spam Attacks on Blockchain
Memory Pools,” arXiv preprint arXiv:2005.04842, 2020.

[39] L. Yang et al., “Prism: Scaling Bitcoin by 10,000x,” arXiv

preprint arXiv:1909.11261, 2019.

[40] I. Eyal et al., “Bitcoin-NG: A scalable blockchain protocol,”
in Proc. USENIX NSDI, 2016, pp. 45–59.

[41] A. Broder and M. Mitzenmacher, “Network Applications of
Bloom Filters: A Survey,” Internet Mathematics, vol. 1, no.
4, pp. 485–509, 2004.

[42] E. Georgiadis, “How Many Transactions per Second Can
Bitcoin Really Handle? Theoretically.,” IACR Cryptol. ePrint

Arch., vol. 2019, p. 416, 2019.

[43] Zamyatin, Alexei and Avarikioti, Zeta and Perez, Daniel and
Knottenbelt, William J. TxChain: Efficient Cryptocurrency
Light Clients via Contingent Transaction Aggregation. IACR

Cryptol. ePrint Arch., 2020, 580.

[44] Wang, Yunpeng and Yang, Jin and Li, Tao and Zhu, Fangdong
and Zhou, Xiaojun. Anti-Dust: A Method for Identifying and
Preventing Blockchain’s Dust Attacks. In Proc. of 2018 Int.

Conf. on Information Systems and Computer-Aided Educa-

tion (ICISCAE), IEEE, 2018, pp. 274–280.

[45] Bitcoin wiki - Network. Available: https://en.bitcoin.it/wi
ki/Network, Jan. 2022.

[46] Transaction Replacement. Available: https://en.bitcoin.it/
wiki/Transaction_replacement, Jan. 2022.

[47] Bitcoin Core, Compact Blocks FAQ. Available: https://bitc
oincore.org/en/2016/06/07/compact-blocks-faq/.

[48] Guo, Deke and Wu, Jie and Chen, Honghui and Yuan, Ye and
Luo, Xueshan. The dynamic bloom filters. IEEE Trans. on

Knowledge and Data Engineering, vol. 22, no. 1, pp. 120–
133, 2009.

H Binte Haq, ST Ali, A Salman, P McCorry, SF Shahandashti: Preprint submitted to Elsevier Page 17 of 22

Carbyne: An Ultra-Lightweight DoS-Resilient Mempool for Bitcoin

[49] Yoon, MyungKeun. Aging bloom filter with two active
buffers for dynamic sets. IEEE Trans. on Knowledge and Data

Engineering, vol. 22, no. 1, pp. 134–138, 2009.

[50] Naor, Moni and Yogev, Eylon. Sliding bloom filters. In Proc.

of Int. Symp. on Algorithms and Computation, Springer, 2013,
pp. 513–523.

[51] Blockchain Charts - Median Confirmation Time. Available:
https://www.blockchain.com/charts/median-confirmation-t

ime, Jan. 2022.

[52] Blockchain Charts - Average Transaction Confirmation Time.
Available: https://www.blockchain.com/charts/avg-confirm
ation-time, Jan. 2022.

[53] Mempool Transaction Count. Available: https://www.blockc
hain.com/charts/mempool-count, Jan. 2022.

[54] Mempool Transaction Size. Available: https://www.blockcha
in.com/charts/mempool-size, Jan. 2022.

[55] Saad, Muhammad and Spaulding, Jeffrey and Njilla, Laurent
and Kamhoua, Charles and Shetty, Sachin and Nyang, Dae
Hun and Mohaisen, David. Exploring the Attack Surface
of Blockchain: A Comprehensive Survey. IEEE Commun.

Surveys & Tutorials, 2020.

[56] Caffyn, Grace. Bitcoin Network Stress Test Could Occur Next
Week. Available: https://www.coindesk.com/bitcoin-network
-stress-test-could-occur-next-week, Sept. 2015.

[57] Caffyn, Grace. Bitcoin Node Numbers Fall After Spam Trans-
action ‘Attack’. Available: https://www.coindesk.com/bitco
in-node-numbers-fall-after-spam-transaction-attack, Oct.
2015.

[58] Carter, J. L. and Wegman, M. N. Universal classes of hash
functions. J. Comput. and Syst. Sci., vol. 18, no. 2, pp. 143–
154, 1979.

[59] Matzutt, Roman and Kalde, Benedikt and Pennekamp, Jan
and Drichel, Arthur and Henze, Martin and Wehrle, Klaus.
How to Securely Prune Bitcoin’s Blockchain. In Proc. of 2020

IFIP Networking Conf., IEEE, 2020, pp. 298–306.

[60] Bünz, Benedikt and Kiffer, Lucianna and Luu, Loi and Za-
mani, Mahdi. Flyclient: Super-light clients for cryptocurren-
cies. In Proc. of 2020 IEEE Symp. on Security and Privacy

(SP), IEEE, 2020, pp. 928–946.

[61] Gervais, Arthur and Capkun, Srdjan and Karame, Ghassan O
and Gruber, Damian. On the privacy provisions of bloom fil-
ters in lightweight bitcoin clients. In Proc. of the 30th Annual

Computer Security Applications Conf., 2014, pp. 326–335.

[62] Mišić, Jelena and Mišić, Vojislav B and Chang, Xiaolin. On
the benefits of compact blocks in Bitcoin. In Proc. of ICC

2020 IEEE Int. Conf. on Commun. (ICC), 2020, pp. 1–6.

[63] Franzoni, Federico and Daza, Vanesa. SoK: Network-Level
Attacks on the Bitcoin P2P Network. IEEE Access, vol. 10,
pp. 94924–94962, 2022.

[64] Apostolaki, Maria and Zohar, Aviv and Vanbever, Laurent.
Hijacking bitcoin: Routing attacks on cryptocurrencies. In
Proc. of 2017 IEEE Symp. on Security and Privacy (SP),
IEEE, 2017, pp. 375–392.

[65] Bruce, J. D. The Mini-Blockchain Scheme. White Paper,
2014.

[66] Wood, Gavin. Ethereum: A secure decentralised generalised
transaction ledger. Ethereum project yellow paper, vol. 151,
no. 2014, pp. 1–32, 2014.

[67] Hearn, M. and Corallo, M. BIP37: Connection Bloom filter-
ing. Available: https://github.com/bitcoin/bips/blob/maste
r/bip-0037.mediawiki, 2012.

[68] Haqshanas, Ruholamin. Solana’s Network Congestion
Prompts Liquidations, Drives Away Users. Available:
https://cryptonews.com/news/solanas-network-congestion-p

rompts-liquidations-drives-away-users.htm, Dec. 2022.

[69] Binance Is Facing Issues with Solana Withdrawals. Available:
https://www.financemagnates.com/cryptocurrency/news/bina

nce-is-facing-issues-with-solana-withdrawals, Dec. 2022.

[70] Bitcoin Network Monitor - DSN Research Group, KASTEL
@ KIT. Available: https://www.dsn.kastel.kit.edu/bitcoin
/index.html, Apr. 2022.

[71] RapidJSON Documentation. Available: https://rapidjson.
org, 2015.

[72] Frey, D., Makkes, M. X., Roman, P.-L., Taïani, F., and Voul-
garis, S. Dietcoin: Hardening bitcoin transaction verification
process for mobile devices. Proceedings of the VLDB Endow-

ment (PVLDB), 12(12):1946–1949, 2019.

[73] Kattis, A. and Bonneau, J. Proof of necessary work: Succinct
state verification with fairness guarantees. Cryptology ePrint

Archive, 2020.

[74] Rottenstreich, O. Sketches for blockchains. In 2021 Interna-

tional Conference on COMmunication Systems & NETworkS

(COMSNETS), pages 254–262. IEEE, 2021.

[75] 250+ companies and stores that accept cryptocurrency. Bit
Pay, 2023. Available at: https://bitpay.com/directory.

[76] Baqer, K., Huang, D. Y., McCoy, D., and Weaver, N. Stressing
out: Bitcoin “stress testing”. In International Conference

on Financial Cryptography and Data Security, pages 3–18.
Springer, 2016.

[77] Jiang, S., Li, J., Gong, S., Yan, J., Yan, G., Sun, Y., and
Li, X. BZIP: A Compact Data Memory System for UTXO-
based Blockchains. In 2019 IEEE International Conference

on Embedded Software and Systems (ICESS), pages 1–8.
IEEE, 2019.

[78] Nakamoto, S. Bitcoin P2P e-cash paper. The Cryptography

Mailing List, 2008.

[79] "Transactions Bitcoin, Raw Transactions format." Available
at: https://developer.bitcoin.org/reference/transactions.html

[80] Kiayias, A., Miller, A., and Zindros, D. Non-interactive
proofs of proof-of-work. In International Conference on Fi-

nancial Cryptography and Data Security, pages 505–522.
Springer, 2020.

[81] Naor, M. and Yogev, E. Bloom filters in adversarial environ-
ments. ACM Transactions on Algorithms (TALG), 15(3):1–
30, 2019.

[82] Han, Y., Li, C., Li, P., Wu, M., Zhou, D., and Long,
F. Shrec: Bandwidth-efficient transaction relay in high-
throughput blockchain systems. In Proceedings of the 11th

ACM Symposium on Cloud Computing, 2020.

[83] Naumenko, G., Maxwell, G., Wuille, P., Fedorova, A., and
Beschastnikh, I. Erlay: Efficient transaction relay for bitcoin.
In Proceedings of the 2019 ACM SIGSAC Conference on

Computer and Communications Security, pages 817–831.
2019.

H Binte Haq, ST Ali, A Salman, P McCorry, SF Shahandashti: Preprint submitted to Elsevier Page 18 of 22

Carbyne: An Ultra-Lightweight DoS-Resilient Mempool for Bitcoin

[84] "Blockchain.com | Charts - Mempool Size (Bytes)," Decem-
ber 2024. Available at: https://www.blockchain.com/explore
r/charts/mempool-size.

[85] P. Chatzigiannis, F. Baldimtsi, and K. Chalkias, "SoK:
Blockchain light clients," in *Financial Cryptography and
Data Security*, Springer, 2022, pp. 615–641.

[86] Eduardo et al., "Fighting under-price DoS attack in Ethereum
with machine learning techniques," *ACM SIGMETRICS
Performance Evaluation Review*, vol. 48, no. 4, pp. 24–27,
2021.

[87] K. Li, Y. Wang, and Y. Tang, "Deter: Denial of Ethereum
txpool services," in *Proceedings of the 2021 ACM SIGSAC
Conference on Computer and Communications Security*,
ACM, 2021, pp. 1645–1667.

[88] Bitcoin source code. GitHub, 2021. Available at: https://gi
thub.com/bitcoin/bitcoin/blob/master/src/txmempool.h.

[89] Ethereum, go-ethereum. GitHub, 2023. Available at: https:
//github.com/ethereum/go-ethereum/blob/master/light/txpo

ol.go.

[90] libbf Bloom filters for C++11. Available at: http://mavam.gi
thub.io/libbf.

[91] Jochen Hoenicke, "Johoe’s Bitcoin Mempool Size Statistics,"
Available at: https://test.jochen-hoenicke.de/queue/#BTC,
all,weight.

[92] "The 300 MB default maxmempool Problem," December
2017. Available at: https://b10c.me/blog/001-the-300mb

-default-maxmempool-problem/.

[93] "Glassnode Studio - On-Chain Market Intelligence," Decem-
ber 2024. Available at: https://studio.glassnode.com/chart
s/transactions.TxTypesBreakdownRelative?a=ETH&category=&

ema=0&mAvg=7&mMedian=0&pScl=log&s=1667924083&u=167570008

3&zoom=90.

[94] Etherscan.io, "Daily Pending Transactions | Etherscan,"
Ethereum (ETH) Blockchain Explorer, December 2024.
Available at: https://etherscan.io/dashboards/daily-pen

ding-tx.

[95] Luu, L., Narayanan, V., Zheng, C., Baweja, K., Gilbert,
S., and Saxena, P. A secure sharding protocol for open
blockchains. In Proceedings of the 2016 ACM SIGSAC Con-

ference on Computer and Communications Security, pages
17–30, 2016.

[96] Kim, J.-Y., Lee, J., Koo, Y., Park, S., and Moon, S.-M.
Ethanos: Efficient bootstrapping for full nodes on account-
based blockchain. In Proceedings of the Sixteenth European

Conference on Computer Systems, pages 99–113, 2021.

[97] Ethereum nodes and clients. Ethereum, 2023. Available at: ht
tps://ethereum.org/en/developers/docs/nodes-and-clients.

[98] MSVC’s implementation of the C++ Standard Library.
GitHub, 2023. Available at: https://github.com/microsoft
/STL.

[99] Beyer, K. S., Rajagopalan, S., and Zubiri, A. System and
method for generating and using a dynamic bloom filter.
Google Patents, US Patent 7,937,428, May 2011.

[100] Nasdaq, “About 46 Million Americans Now Own Bitcoin,”
July 2021. [Online]. Available: https://www.nasdaq.com/art
icles/about-46-million-americans-now-own-bitcoin-2021-0

5-14.

[101] C. Decker, R. Russell, and O. Osuntokun, “Eltoo: A simple
layer 2 protocol for Bitcoin,” June 2018. [Online]. Available:
https://blockstream.com/eltoo.pdf.

[102] T. Dryja, “Utreexo: A Dynamic Hash-Based Accumulator
Optimized for the Bitcoin UTXO Set,” IACR Cryptol. ePrint

Arch., vol. 2019, p. 611, 2019.

[103] Y. Gilad, R. Hemo, S. Micali, G. Vlachos, and N. Zeldovich,
“Algorand: Scaling byzantine agreements for cryptocurren-
cies,” in Proceedings of the 26th Symposium on Operating

Systems Principles, 2017, pp. 51–68.

[104] F. Memoria, “$700 Million Stuck in 115,000 Unconfirmed
Bitcoin Transactions,” November 2017. [Online]. Available:
https://www.ccn.com/700-million-stuck-115000-unconfirmed

-bitcoin-transactions/.

[105] A. Zmudzinski, “Bitcoin’s Mempool Saw an Anomalous
Number of Big Transactions on Friday,” November 2019.
[Online]. Available: https://cointelegraph.com/news/bitco
ins-mempool-saw-an-anomalous-number-of-big-transactions.

[106] MIT Digital Currency Initiative, “Bitcoin’s (un)common
good,” MIT Media Lab, February 2021. [Online]. Available:
https://dci.mit.edu/research/2021/2/25/dci-bitcoin-secur

ity-effort.

[107] B. Pirus, “New HTC Exodus Able To Run Full Bitcoin
Node,” October 2019. [Online]. Available: https://www.fo

rbes.com/sites/benjaminpirus/2019/10/19/new-htc-exodus-a

ble-to-run-full-bitcoin-node/#19660abe27d2.

[108] L. Xu, L. Chen, Z. Gao, S. Xu, and W. Shi, “EPBC:
Efficient public blockchain client for lightweight users,” in
Proceedings of the 1st Workshop on Scalable and Resilient

Infrastructures for Distributed Ledgers, 2017, pp. 1–6.

[109] S. O’Neal, “Ethereum Topped Bitcoin in Network Daily
Fees Over Weekend,” June 2020. [Online]. Available: https:
//cointelegraph.com/news/ethereum-topped-bitcoin-in-net

work-daily-fees-over-weekend.

[110] B. Dale, “Mempool Manipulation Enabled Theft of $8M
in MakerDAO Collateral on Black Thursday: Report - Coin-
Desk,” CoinDesk, July 2020. [Online]. Available: https:

//www.coindesk.com/mempool-manipulation-enabled-theft

-of-8m-in-makerdao-collateral-on-black-thursday-report.

[111] K. Sedgwick, “200,000 Unconfirmed Transactions Pile Up
in Another Crazy Day for Bitcoin,” December 2019. [Online].
Available: https://news.bitcoin.com/200000-unconfirmed-t
ransactions-pile-another-crazy-day-bitcoin/.

[112] C. Harper, “Dust Attacks Make a Mess in Bitcoin Wallets,
but There Could Be a Fix,” August 2020. [Online]. Available:
https://www.nasdaq.com/articles/dust-attacks-make-a-mes

s-in-bitcoin-wallets-here-could-be-a-fix-2020-08-18.

[113] Solana, “9-14 Network Outage Initial Overview,” Solana |

News, September 2021. [Online]. Available: https://solana
.com/news/9-14-network-outage-initial-overview.

[114] D. Guo, Y. Liu, X. Li, and P. Yang, “False negative problem
of counting Bloom filter,” IEEE Transactions on Knowledge

and Data Engineering, vol. 22, no. 5, pp. 651–664, 2010.

[115] Litecoin, “Litecoin - Open source P2P digital currency,” July
2019. [Online]. Available: https://litecoin.org.

[116] Bitcoin.org, “Running a full-node. Support the Bitcoin net-
work by running your own full node,” January 2022. [Online].
Available: https://bitcoin.org/en/full-node#minimum-requi
rements.

H Binte Haq, ST Ali, A Salman, P McCorry, SF Shahandashti: Preprint submitted to Elsevier Page 19 of 22

Carbyne: An Ultra-Lightweight DoS-Resilient Mempool for Bitcoin

[117] Bitcoin Wiki, “Bitcoin Wiki - Protocol Rules,” January
2022. [Online]. Available: https://en.bitcoin.it/wiki/P

rotocol_rules.

[118] Bitcoin Core, “Bitcoin Core version 0.14.0 released,” March
2017. [Online]. Available: https://bitcoin.org/en/release/v
0.14.0.

[119] L. Fan, P. Cao, J. Almeida, and A. Z. Broder, “Summary
cache: A scalable wide-area web cache sharing protocol,”
IEEE/ACM Transactions on Networking, vol. 8, no. 3, pp.
281–293, 2000.

[120] Y. Zhao and J. Wu, “The design and evaluation of an infor-
mation sharing system for human networks,” IEEE Transac-

tions on Parallel and Distributed Systems, vol. 25, no. 3, pp.
796–805, 2013.

[121] Solana, “Solana Status on Twitter,” Twitter, September
2021. [Online]. Available: https://twitter.com/solanast

atus/status/1437856639441424395?lang=en.

[122] Segwit, “Segregated Witness - Bitcoin Wiki,” January 2022.
[Online]. Available: https://en.bitcoin.it/wiki/Segregate
d_Witness.

[123] S. Cao, S. Kadhe, and K. Ramchandran, “CoVer: Collab-
orative Light-Node-Only Verification and Data Availability
for Blockchains,” in 2020 IEEE International Conference on

Blockchain (Blockchain), 2020, pp. 45–52.

[124] D. Vandervort, “Challenges and opportunities associated
with a bitcoin-based transaction rating system,” in Inter-

national Conference on Financial Cryptography and Data

Security, 2014, pp. 33–42.

[125] C. Wueest, “The continued rise of DDoS Attacks,” White

Paper: Security Response, Symantec Corporation, 2014.

[126] C. Rahalkar and A. Virgaonkar, “Summarizing and Analyz-
ing the Privacy-Preserving Techniques in Bitcoin and other
Cryptocurrencies,” arXiv preprint arXiv:2109.07634, 2021.

[127] Bitcoin Core, “Bitcoin Core 0.11 (ch 2): Data Storage -
Bitcoin Wiki,” June 2020. [Online]. Available: https://en

.bitcoin.it/wiki/Bitcoin_Core_0.11_(ch_2):_Data_Storage.

[128] Raw Transactions | Ethereum.org. Ethereum. Available: ht
tps://ethereum.org/en/developers/docs/transactions

[129] Ethereum Transactions Message. devp2p. GitHub. Avail-
able: https://github.com/ethereum/devp2p/blob/master/c

aps/eth.md#transactions-0x02

[130] H. B. Haq, T. Ahmad, A. Buriro, and S. Ullah, Neon-

pool: Reimagining Cryptocurrency Transaction Pools for

Lightweight Clients and IoT Devices, 2024. [Online]. Avail-
able: https://drive.google.com/drive/folders/1KkjPxNI7Nv
WyqlZ3jlrcCGhYxwUbzXEJ?usp=drive_link

[131] Chepurnoy, Alexander, Charalampos Papamanthou, Shra-
van Srinivasan, and Yupeng Zhang. "Edrax: A cryptocur-
rency with stateless transaction validation." Cryptology
ePrint Archive (2018).

[132] "P2P Network—Bitcoin, Inventory Messages." April 2021.
Available at: https://developer.bitcoin.org/reference/p2p-
networking.html.

[133] Bianchi, Giuseppe, Nico d’Heureuse, and Saverio Niccolini.
"On-demand time-decaying bloom filters for telemarketer
detection." ACM SIGCOMM Computer Communication Re-
view 41, no. 5 (2011): 5-12. ACM New York, NY, USA.

[134] Bitcoin Network Guide. "P2P Network Guide - Bitcoin."
May 2020. Available at: https://bitcoin.org/en/p2p-network-
guide.

A. MempoolState Dataset

To date, data-driven research in cryptocurrencies has mostly
focused on price fluctuations and economic trends, analyzing
cryptocurrency transaction graphs, and mapping network topol-
ogy. To the best of our knowledge there is no publicly released
dataset which studies the network state of cryptocurrency networks.
Recording live network state allows us to reconstruct network
state at the client and replay network activity for simulation and
modeling purposes. This has several useful applications which
include the following: Mining strategies to maximize the profit
earned through transaction fee; Retroactively study network state

through the dataset spanning a 90-day period, with network mes-
sage entries; Time-based snapshots can be recreated to visualize
network view for a particular node; Comparison among different

nodes can be made, for instance between the mempool state of
different nodes; Identification of anomalies can be undertaken for
debugging and flagging suspicious activity; Forensic Investigation

can be undertaken by researchers in the wake of incidents (like
the ‘dust’ attack of 2015 and onwards); Client-side optimizations

and security defences can be developed and tested; Network-Wide

Impact of community policies like pay-per-fee can be studied.
Our MempoolState Dataset comprises three datasets, with di-

mensions listed in Table 4, and details as follows:
• Mempool Activity includes all transaction entries and

exits in the mempool in JSON format. Code written in
C++ was used to modify Bitcoin Core, specifically src/

txmempool.cpp, to capture the data. For our 90-day dataset,
we log ∼29 million unique transactions with ∼88 million
inputs. The resulting dataset is sized at 40 GB. Our code
and dataset is publicly available. [7] [8]

• Network Inventory includes the invmessages received over
the network. We log ∼89 million inv messages via the
-network flag in the Bitcoin configuration file. The logs
generated by Bitcoin included other network messages as
well, such as getdata and tx. To prevent the size of the
logs from becoming intractable we maintained daily log
files using Logrotate in Linux. We wrote C++ code to scan
these files and extract only those inv messages relevant
to our application. The resulting inv messages along with
timestamp are stored in CSV format. The resulting dataset
is sized at 10 GB.

• Mempool Statistics includes details for the raw transaction
size, resulting memory usage and transaction count in the
mempool. We used a Python script to invoke the Bitcoin
daemon’s JSON-RPC getmempoolinfo method at 10 minute
intervals and store the output as JSON. We use another
Python script to scrape the JSON data from these files into
a single CSV file for ease of plotting.

The MempoolState Dataset is accompanied by the following tools
we have developed:

• Parallel Simulations for Carbyne and Bitcoin This code
tool simulates the Bitcoin Core and Carbyne mempools in
parallel to evaluate their performance. Carbyne simulation
code is written in C++. It uses the library libbf [90] for
counting Bloom filter and the library RapidJSON [71] to
support JSON operations in C++. This code requires the

H Binte Haq, ST Ali, A Salman, P McCorry, SF Shahandashti: Preprint submitted to Elsevier Page 20 of 22

Carbyne: An Ultra-Lightweight DoS-Resilient Mempool for Bitcoin

Content Data Points Size

Mempool Activity 29 million 40 GB
Network Inventory 89 million 10 GB
Mempool Statistics 12962 readings 4 MB

Table 4
MempoolState Dataset (Jan 01, 2021 – 31 Mar 2021)

Mempool Activity and Network Activity datasets as in-
puts. It logs performance at hourly intervals and generates
hourly as well as cumulative stats in CSV format. It also
generates forensics data to help us analyze the false positive
and false negatives in detail in CSV format.

• Computation Time. This code benchmarks the query-
ing, insertion and deletion times for mapTx, mapLinks and
mapNextTx as well as CbTxFilter and CbTxInputs Filter. It
uses C++ STL std::chrono to perform the computation time
analysis.

• Snapshot. This code written in C++ simulates the Bitcoin
Core mempool. It recreates the state of the Bitcoin Core
mempool for any given time instant. It can be used for
application scenarios described above.

• mapRelay This code written in C++ using the network
logs recreates the mapRelay to report the average number
of transactions in mapRelay over an hour.

• Reconstruct This code, written in C++ is used to check
how multiple Carbyne nodes may be used to bootstrap the
mempool of a newly connected node. We run experiments
where Carbyne nodes store 5%, 10%, 20%, 25%, 33% and
50% of transactions on a random basis. Similarly, we vary
the number of Carbyne nodes that a new node that joins the
network connects to 4,8,12.

• Carbyne. This code, written in C++, runs the Carbyne
mempool. It can be used as a starting point to prototype
Carbyne or integrate it into another client.

B. Storing Full Transactions

By optimizing the mempool, Carbyne users may still choose
to store subsets of full transactions in RAM for various purposes,
depending on the resources available to them.

For instance, users may store full transactions for mining. The
Bitcoin Core protocol limits blocks to 1 MB in size. Carbyne nodes
may maintain a live pool of 1 MB of current transactions and
prioritize them on the basis of fee per size, value, age of inputs,
number of ancestors/ descendants etc. and propose blocks.

A subset of transactions may be saved in RAM to bootstrap
newly connecting nodes. If multiple Carbyne nodes on the network
each randomly store a subset of full transactions, they can collec-
tively bootstrap mempool of new nodes.

We undertake a preliminary analysis using our MempoolState

dataset. We run experiments where Carbyne nodes store 5%, 10%,
20%, 25%, 33% and 50% of total transactions they receive over a
90 day period. We also vary the number of Carbyne nodes that new
nodes may connect to. Our results show: if a new node connects
to 4,8 and 12 Carbyne nodes each maintaining 10% of randomly
selected current transactions, the new node can recover 33%, 56%
and 70% mempool transactions respectively as shown in Fig. 11.

Figure 11: Recovery Rate

(a) mapRelay (Bitcoin Core)

(b) mapRelay (Worst Case)

Figure 12: mapRelay

C. Transaction Retention

When an entryTx and its inputs are successfully verified, the
transaction is added to Carbyne mempool as described in ğ4. The
transaction hash TxID is then broadcast to the node’s peers with
an inv message and full transactions are forwarded on request. In
Bitcoin’s diffusion protocol (a variation on random flooding) peers
inject a random delay before announcing a received transaction to
its peers, to mitigate timing attacks and in-flight collisions.

Bitcoin segregates the cache of transactions for mempool and
relay in separate containers. The data structure mapRelay is re-
sponsible for keeping transactions until they are relayed to peers.
This memory consumption comes under the umbrella of networks

H Binte Haq, ST Ali, A Salman, P McCorry, SF Shahandashti: Preprint submitted to Elsevier Page 21 of 22

Carbyne: An Ultra-Lightweight DoS-Resilient Mempool for Bitcoin

and connections and is in addition to the memory incurred by
the mempool transactions. The length of the interval that full
transactions are stored can vary : it is stored until it is relayed to
all peers, or a 15 minute default expiry can also be configured
by the user. This structure is part of Bitcoin Core’s network and
connection handling mechanism, it is independent of the Bitcoin
mempool, and our solution retains it as it is.

We undertake experiments to quantify the trade-off between
retention time and memory consumption of mapRelay. Our node ran
on default settings with 8 outbound peers and upto 125 inbound
peers. Firstly, we estimate the number of transactions in mapRelay

at any given time using the network logs collected over the 90 day
period. We observe that the number of these transactions average at
1000, with a cap at around 2500 occupying no more than 2 MB at
any given instant as shown in Fig. 12a. Secondly, we estimate the
worst case scenario where each transaction stays in mapRelay for 15
mins. This comes out to be 3,500 transactions on average and no
more than 7000 at maximum, as shown in Fig. 12b. However as
empirical data shows it takes almost 13 seconds on average for a
transaction to propagate 90% Bitcoin nodes [70]. Hence we do not
anticipate the memory consumption of mapRelay to be substantial.

D. Replace-by-Fee

Replace-By-Fee (RBF) is an opt-in node policy that allows
an unconfirmed transaction in a mempool to be replaced with a
different transaction that spends at least one of the same inputs
and pays a higher fee. RBF has multiple variants. Here we briefly
discuss potential strategies for each.

• Full RBF unconditionally allows a transaction to replace
older ones so long as it pays a sufficient fee. We can already
address this within Carbyne in a sense by incrementing the
threshold value of the CbTxInputsFilter counter to 2. The
intuition here is that if a transaction input already exists in
CbTxInputsFilter, then its respective counters will each be 1
or more. When the corresponding RBF transaction arrives,
it is accepted and the counters are incremented to 2, after
which more RBF transactions for this case will be dropped.
A user can choose a custom threshold value. Moreover, at
this point, a variable could also track the moving average
of RBF transactions to detect potential misuse of the RBF
provision, and halt processing these transactions.

• Opt-in RBF allows the replacement when the transactions
being replaced have explicitly signalled they allow replace-
ment via the "sequence" field. Dual-load bloom filter could
be deployed that saves the transaction inputs, along with the
original fee. While Bloom filters usually hold a single type
of information, which is either the membership in a given
set or the return values of elements, the proposed DLBF
holds both the membership and the return values in a single
Bloom filter. If a node has Opt-in RBF then it can initialize
two separate bloom filters for transaction inputs, one which
holds inputs of replaceable transactions and the other which
holds inputs of transactions that can not be replaced. A
transaction should only be replaced if the inputs are in the
filter that signals RBF.

• Delayed RBF is a variant which allows transactions to be
replaced unconditionally, but only after a given number of
blocks have been mined since the replaced transactions were
first seen by the node. A Dual-load bloom filter could be
deployed that saves the transaction inputs, along with the
block number when it is safe to replace the transaction.

• First-seen-safe RBF only allows the replacement if an
additional criteria is met: the replacement transaction must
pay all the same outputs as the transactions being replaced. If
a node employs this policy then it is best to save the complete
transaction as the transaction inputs, outputs and fee all need
to be stored.

We defer the detailed empirical analysis of these strategies as future
work.

H Binte Haq, ST Ali, A Salman, P McCorry, SF Shahandashti: Preprint submitted to Elsevier Page 22 of 22

