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ABSTRACT 

 

Single-molecule (fluorescence) localization microscopy 

(SMLM) finds the position of markers for target proteins at 

approx. 10 nm precision. Diagnosis of some diseases 

currently relies on inspection of nanoscale morphology by 

electron microscopy (EM), an expensive and slow test with 

limited sample coverage. Nanoscale biological processes also 

underlie health and disease in general, and so there is a need 

for more efficient diagnostic methods. We demonstrate that 

SMLM of routine biopsy samples can be used to assist 

diagnosis via data classification models. We predict diagnosis 

of 20 patients with chronic renal diseases (focal segmental 

glomerulosclerosis or minimal change disease) with a mean 

area under the receiver operating characteristic curve of 0.97 

in cross-validation, and balanced accuracy of 90%. We tested 

state-of-the-art pretrained feature extraction from image tiles 

at 0.045 microns per pixel, followed by training of weakly 

supervised, attention-based models. SMLM and automated 

analysis has the potential to save time to diagnosis and costs 

compared with EM, with greater sample coverage, as well as 

for finding new nanoscale biomarkers in other disease areas. 

 

Index Terms— Single-molecule localization microscopy, 

renal disease diagnosis, weakly supervised learning, 

attention-based learning, nanoscale protein distribution 

 

 

1. INTRODUCTION 

 

Information from immunohistochemistry, standard 

histopathology slides and confocal microscopy is limited by 

the diffraction of light to features larger than 200 nm in the 

best case. However, clinically important biological processes 

take place at much shorter length scales. Therefore, electron 

microscopy (EM) is used when it is necessary to visualize 

nanoscale features to make a diagnosis. Medical EM is a 

specialized technique with specific sample preparation 

procedures and expensive equipment, in which only a small 

area of tissue can be selected for imaging. 

A more recent form of fluorescence microscopy, single-

molecule localization microscopy (SMLM) has the potential 

to assist diagnosis with nanoscale information on a tissue 

section [1]. SMLM fits into the standard sample preparation 

workflow for histopathology, and allows for scanning of a 

stained section of formalin-fixed paraffin-embedded (FFPE) 

tissue [2] and acquiring data from many regions of interest. 

SMLM finds the spatial positions of fluorescently labelled 

target molecules to a precision of approx. 10 nm and outputs 

a point cloud. Therefore, in principle it can be used as a faster, 

cheaper alternative to EM, with data from a larger area, and 

is specific to proteins of interest, while EM is non-specific. 

SMLM and computer-assisted clinical decision making 

has not yet been demonstrated. The main use for SMLM has 

been in sub-cellular studies in biology, and imaging of routine 

FFPE tissue sections has been rare. Analysis methods for the 

data acquired in SMLM are also underdeveloped compared 

with other imaging techniques, despite much progress [3], 

including in machine learning methods [4, 5]. 

We demonstrate the use of SMLM in diagnosing two 

chronic renal diseases that currently require nanoscale 

imaging with EM: focal segmental glomerulosclerosis 

(FSGS) and minimal change disease (MCD). Incorrect 

diagnosis results in suboptimal treatment for both diseases, 

with a failure to appreciate the prognosis associated with 

these very distinct disease processes. In addition to a routine 

immunofluorescence panel (IF), EM is used in these diseases 

to show a loss of podocyte foot processes at the glomerular  



basement membrane (GBM) and an absence of electron- 

dense deposits. However, these techniques can be of limited 

value in FSGS cases when EM does not sample the focal 

nanoscale changes. We use SMLM data on sections from 

archived routine medical renal biopsies (FFPE tissue blocks), 

fluorescently stained for collagen IV, a GBM protein. 

Diagnosis by gold standard (IF and EM) is available as 

ground truth at the patient level for diagnosis predictions. 

We predict FSGS or MCD diagnosis using image tiles 

constructed from the SMLM point cloud data, with multiple 

SMLM fields of view (FOVs, 50 x 80 µm each) per tissue 

section. Testing pretrained feature extractors [6, 7] and 

classification networks for tiled images (based on attention-

based multiple-instance learning (attMIL) and vision 

transformer (ViT) [8-12]), we find good prediction of 

diagnosis. We also extract the most influential individual tiles 

in diagnosis prediction, for further use in investigating 

differences between the nanoscale protein distributions in the 

two diseases. 

 

 

2. MATERIALS AND METHODS 

 

2.1. Data acquisition 

In sections from FFPE renal needle biopsy (one section per 

patient, 3 µm thick), we identified glomeruli and imaged 50 

x 80 µm FOV glomerular regions with direct stochastic 

optical reconstruction microscopy (dSTORM), a type of 

SMLM [1, 13]. Collagen IV was stained with a primary 

antibody and a secondary antibody labelled with Alexa Fluor 

647. As well as biopsies from renal patients diagnosed with 

FSGS or MCD, we imaged control sections from FFPE 

material from autopsy renal transplantation donors with no 

known renal condition, as a check on data acquisition quality 

(Fig. 1). Standard SMLM data processing steps resulted in 

the final point cloud of 2D collagen IV molecular positions, 

including drift correction over the five-minute acquisition 

time for a FOV and filtering for high-quality localizations [1]. 

We retained localizations with an estimated precision (s.d.) < 

15 nm. 

A 2D histogram of the localizations at 0.045 microns per 

pixel (mpp) gave an image to tile at 10 x 10 µm, 224 x 224 

pixels (Fig. 1D–F). For effective training, we excluded tiles 

containing fewer than 1000 molecular localizations and 

subsequently excluded any FOVs from training and testing 

that had fewer than 8 tiles remaining. After filtering, the 

remaining data was from 400 FOVs across 20 patients out of 

23 (3 sections had no FOVs remaining) (Table 1). 

The number of FOVs available for an individual patient 

depended on the number of glomeruli captured by the 3 µm 

thick section of renal tissue and the area of the slice captured 

through a glomerulus (FOVs obtained from 2–28 glomeruli 

per section, median 10, after filtering as described; 1–4 FOVs 

available per glomerulus, mean 2.1). This resulted in a large 

range in the number of FOVs available for training and 

prediction per patient (2–41, median 19). 

 
Normal FSGS MCD 

Fig. 1. Data acquisition and preprocessing. On a section of 

routine clinical material (A), fluorescence staining for 

glomerular proteins such as collagen IV (B) allows the 

location of glomeruli (box in B, C). SMLM data is acquired 

from 50 x 80 µm regions of a glomerulus (e.g. dashed black 

box in C), from sections from donors with no known 

condition (Normal, for control quality check) and from 

FSGS and MCD patients (D–F). 2D histograms of single 

collagen IV molecular positions (D–F) are tiled at 10 x 

10 µm, 224 x 224 pixels (F). Images saturated here for 

visualization, but raw 2D histograms are used for feature 

extraction. 

 
Table 1. Patient and SMLM FOV counts before and after 

filtering for higher-content tiles (> 1000 localizations) and 

FOVs (> 8 remaining tiles). 

 
FSGS MCD 

Patients FOVs Patients FOVs 

Unfiltered 11 222 12 351 

Filtered 9 154 11 246 

 
2.2. Feature extraction 

We tested the embedding of tiles as feature vectors with 

pretrained networks, to subsequently feed into classification 

networks. DINOv2 is a self-supervised foundation model 

pretrained on 142M natural images [6]. UNI is an encoder 

that uses the DINOv2 model after fine-tuning on 100k whole-

slide images from histopathology (WSIs) [7]. Our data is 

related to microscopic biological structures seen in 

histopathology, but may be out of domain for effective 

feature extraction with UNI, since resolution is ~10× higher 

than in the pretraining dataset (acquired at ~0.5 mpp [7]). 

There is also only a single information channel (collagen IV 

localization density), not RGB with a characteristic color 

spectrum as in WSIs. The fine-tuning of UNI may therefore 

be redundant, improve or worsen feature extraction versus 



DINOv2, in our case. Thus, we tested both DINOv2-L/14 and 

UNI as feature extractors in our pipeline. We replicated the 

single-channel information in three channels, to mimic the 

dimensionality in their RGB training data. 

 

2.3. Classification networks 

We trained attMIL and ViT models previously optimized for 

weakly supervised learning, from tiled WSIs, of diagnosis 

and biomarkers for cancers [8, 10, 11]. The gold standard 

diagnosis for a renal biopsy (by IF and EM) labelled all tiles 

for that section, for model training and testing. We tested 

model performance for different batch sizes and selected the 

best parameters in cross-validation: batch size 16 for attMIL 

and batch size 1 for ViT, as previously found in its application 

to WSIs [11]. Training finished if there was no further 

improvement in validation loss over 16 consecutive epochs 

(patience), resulting in training over 77–142 (attMIL) and 8–
89 (ViT) epochs in cross-validation experiments. With longer 

patience, the ViT tended to overfit to the training set. 

 

2.4. Tasks and validation 

We trained classification models on SMLM FOVs labelled 

with a diagnosis of FSGS or MCD, and tested their 

performance in two tasks: 1. Initial feasibility investigation of 

the pipelines in diagnosis prediction for a single FOV, 

without grouping the FOVs by patient; and 2. diagnosis 

prediction for a patient. 

Task 1 used stratified 5-fold cross-validation of 

performance on the 400 FOVs, giving an estimate of the area 

under the receiver operating characteristic curve (AUROC) 

and balanced accuracy (BA) of predictions for the two 

diagnoses. We concatenated the test set prediction 

probabilities from all five folds as input to DeLong’s test on 
differences in AUROC between the pipelines. 

In task 2, the set of FOVs from each patient was held out 

in turn as test data, in a 20-fold cross-validation. The training 

and validation sets were each allowed to contain FOVs from 

all other patients. The best model pipeline from task 1 was 

chosen to extract features and learn classification. The 

median confidence in FSGS and MCD diagnosis among the 

FOVs in the test set provided aggregated confidence values 

for the patient. We calculated BA of the 20 per-patient 

predictions, and estimated the model AUROC using 10,000 

bootstrap samples of the 20 per-patient aggregated 

confidence values. 

BA and recall calculations used a threshold of 0.5 for 

prediction of either diagnosis (FSGS or MCD). 

 

2.5. Top tiles extraction 

We ran tiles through the best model after training (highest 

AUROC), extracting the tiles ranked as the most influential 

in diagnosis prediction for the most confidently, correctly 

predicted patients. We also extracted the most influential tiles 

for the incorrectly predicted patients. 

 

3. RESULTS 

 

3.1. Testing pipelines on diagnosis prediction from single 

FOVs 

Including all FOVs in 5-fold cross-validation without 

grouping by patient, mean AUROC for diagnosis prediction 

was above 0.88 for all feature extractors and trained 

classification models. Mean BA varied from 0.78 to 0.93 

(Table 2). The best performing pipeline used tile feature 

extraction with UNI and prediction training with attMIL, 

resulting in mean AUROC 0.98 and BA 0.93. 

 

Table 2. Performance of model pipelines in diagnosis 

prediction (FSGS or MCD) from single FOVs, not separated 

by patient. Mean and 95% confidence interval calculated 

from 5-fold cross-validation. 

Pretrained 

feature 

extractor 

Trained 

classifier 
AUROC 

Balanced 

accuracy 

(BA) 

UNI attMIL 0.979 ± 0.018 0.933 ± 0.024 

DINOv2 attMIL 0.965 ± 0.007 0.893 ± 0.055 

UNI ViT 0.958 ± 0.030 0.845 ± 0.090 

DINOv2 ViT 0.889 ± 0.049 0.778 ± 0.145 

 

Training on tile features extracted with UNI, attMIL 

resulted in a greater AUROC and improved BA compared 

with ViT. The difference between attMIL and ViT results was 

statistically significant (p < 0.001, two-tailed DeLong’s test). 
Feature extraction with DINOv2 increased this performance 

difference between attMIL and ViT.  

The UNI tile feature extractor resulted in higher 

estimates of AUROC and BA than DINOv2 trained on natural 

images. The difference between results with the two feature 

extractors was less statistically significant when used with 

attMIL (p = 0.06) than with ViT (p < 0.001). 

 

3.2. Diagnosis prediction for patients 

Training the attMIL model on tile features extracted with 

UNI, we obtained BA of 0.899 (18 out of 20 patients correct, 

Table 3). The bootstrapped AUROC estimate was 0.970 

[0.879–1.000] (mean [lower–upper 95% confidence 

interval]). 

Patients had between 2 and 41 FOVs available for 

diagnosis prediction. Excluding patients with fewer FOVs for 

prediction may improve recall and BA (Table 3). Therefore, 

conversely, taking further sections and obtaining further 

images may be useful in practice, to improve accuracy. Only 

one patient out of 13 with more than 10 SMLM FOVs after 

filtering for information content was misclassified, and with 

low confidence (median FSGS confidence: 0.56; diagnosis 

MCD). 

We also consider excluding patients where a binomial 

test on the sample sizes (# FOVs in predicted class / total 

# FOVs for patient) indicates that we cannot be statistically 

confident that prediction by a majority vote among the FOVs 



Table 3. Per-patient prediction performance, including a 

subset with the most SMLM FOVs available in the tissue 

section (> 10 FOVs available) and a subset with a statistically 

significant majority vote on prediction from the FOVs 

available (p < 0.05, binomial test). 

Patients 

included 

FSGS MCD 

N Recall N Recall 

All 9 89% (8 / 9) 11 91% (10 / 11) 

> 10 FOVs 

available 
5 100% (5 / 5) 8 88% (7 / 8) 

Significant 

majority for 

prediction 

3 100% (3 / 3) 9 100% (9 / 9) 

 

reflects a true majority. A low number of total FOVs available 

or a balanced distribution of FOVs in the two prediction 

classes would cause a tissue section to fail this test (e.g. p > 

0.05, one-tailed binomial test). Excluding patients at p > 0.05, 

we retain 12 patients, with 100% correct predictions. Use of 

such a criterion therefore improves confidence in model 

results for the retained samples and could be a helpful 

indicator of when further sections and data acquisition are 

needed in practice, or when results should be considered 

inconclusive. 

 

3.3. Tile extraction 

The most influential tiles in correct predictions appear to 

show thicker, more continuous collagen structures and 

patterns over broader areas for FSGS than for MCD (Fig. 2, 

correct predictions). Diffuse or punctate collagen patterns 

occurring in MCD may lead to an incorrect FSGS prediction 

in this pipeline (Fig. 2: Predicted FSGS; diagnosis MCD). 

Other patterns may be found to influence the model result in 

downstream analysis of highly predictive tiles, including the 

size, shape and spacing of small collagen patches. 

 

 

4. DISCUSSION AND CONCLUSION 

 

We have demonstrated that SMLM can be used to predict 

diagnosis from the nanoscale distribution of specific proteins 

in clinical FFPE tissue samples. We used tiled SMLM FOVs 

(50 x 80 µm, 0.045 mpp) acquired from chronic renal disease 

biopsies (FSGS and MCD), which are currently assessed by 

EM for nanoscale morphological features of the glomeruli 

and podocytes. Over 20 patients, we obtained a mean 

AUROC estimate of 0.97 and balanced accuracy of 0.90 for 

diagnosis, using a pretrained feature extractor, trained on tiled 

WSIs [7], and attMIL [8, 10]. Future research will include the 

assessment of confidence in diagnostic prediction and 

practical decisions on when to acquire extra data for patients, 

which takes five minutes per FOV. 

Both attMIL and ViT with pretrained feature extractors 

have previously been applied to classification and regression 

of tiled WSIs [11, 14, 15]. We found that the UNI feature 

 

Predicted: FSGS; diagnosis: FSGS 

 

Predicted: MCD; diagnosis: MCD 

 

Predicted: FSGS; diagnosis: MCD 

 

Predicted: MCD; diagnosis: FSGS 

  

Fig. 2. Most confidently predicted 10 x 10 µm tiles, from the 

most confidently predicted patients, for correct (top) and 

incorrect (bottom) predictions. 

 

 

extractor, pretrained on WSIs at ~0.5 mpp [7], extracts 

relevant features for classification outside of its training 

domain, from our greyscale images of molecular density at a 

much higher resolution of 0.045 mpp. Feature extractors 

pretrained on fluorescence microscopy data are desirable and 

may emerge from the development of non-clinical models 

[16, 17]. 

Diagnosis prediction was more accurate with attMIL 

than with ViT, but only 400 FOVs from 20 patients were 

available for training and testing. We expect a larger cohort 

to improve both attMIL and ViT performance in a future 

validation study. Combining SMLM data on additional 

proteins (including nephrin in these renal diseases) and 

experimentation with resolution of the rendered FOVs may 

also improve model performance. 

SMLM and prediction models have the potential to assist 

in diagnosis as a faster, cheaper, and protein-specific 

alternative to EM. Nanoscale protein distributions from 

SMLM also hold new data for understanding markers and 

underlying processes in disease, including in disease areas 

where EM is not currently considered. As such, our study 

points towards the value of SMLM and automated data 

analysis as a new technique in routine pathology. 
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