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Abstract

We use the derived moduli of sections RSecM(Z/C) to give derived enhancements
of various moduli spaces, including stable maps and stable quasi-maps, which are
compatible with their usual perfect obstruction theories. As an application, we prove
that G-theoretic stable map and quasi-map invariants of projective spaces are equal.
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Introduction

Statements of the main results. This work suggests a new approach to virtual push-
forward formulae via derived geometry. In the first part we explain how to obtain quasi-
smooth derived enhancement for certain moduli spaces of curves. These enhancements
encode both the classical and the virtual geometry of many well-studied moduli spaces,
such as moduli of stable maps and quasi-maps (see Sect. 2); in the second part we use
these derived moduli spaces to give a novel geometric proof of the following theorem.

Theorem 0.0.1 Let g, n, r and d be positive integers and let RMg,n(Pr , d) and

RQg,n(Pr , d) denote the derived moduli space of genus g, degree d stable maps,

respectively quasi-maps to a projective space Pr .

(1) We have a derived morphism

c : RMg,n(Pr , d) → RQg,n(Pr , d)

and an isomorphism

c∗ORMg,n(Pr ,d) ≃ ORQg,n(Pr ,d) in Db
Coh(RQ(Pr , d)).

(2) There is an equality of virtual structure sheaves

t0(c)∗O
vir
Mg,n(Pr ,d)

= Ovir
Qg,n(Pr ,d)

in G0(Qg,n(Pr , d)). (1)

Consequently, G-theoretic stable map and quasi-map invariants are the same

(see Corollary 5.2.3).

The second part of the theorem generalises the already known cohomological result
(see [11], [47, Theorem 3] and [44, Proposition 5.19]):

t0(c)∗[Mg,n(Pr , d)]vir = [Qg,n(Pr , d)]vir in A∗(Qg,n(Pr , d)). (2)
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This shows that our statement is a categorification of (2).
The equality above is part of a family of results on wall-crossing formulae on

moduli spaces of quasi-maps. In [14] Ciocan-Fontanine and Kim provide a wall-
crossing formula for complete intersections in projective spaces and Zhou generalises
this to (certain) GIT quotients [67]. Recently, Zhang and Zhou proved the analogue
statement in G-theory [68]. These proofs rely on the construction of a clever master
space and localisation on this space.

Our strategy is new, since endowing the moduli spaces with a derived structure
allows us to give local geometric arguments while still carrying the information about
the virtual structures of these spaces. We first construct a contraction morphism c (see
Theorem 0.0.1.(1)) at the derived level. Then, it is enough to prove the isomorphism
of the structure sheaves of the derived enhancement locally, which is easier. As the
virtual sheaves Ovir

Mg,n(Pr ,d)
and Ovir

Qg,n(Pr ,d)
are shadows (see (4)) of the structure

sheaves ORMg,n(Pr ,d) and ORQg,n(Pr ,d), our result implies the G-theoretic statement.
The main part of our local argument consists in constructing compatible derived atlases
on the space of stable maps and on the space of quasi-maps.

The advantage over the classical situation is that local information can now be used
to obtain global statements: rather than having external information based on choices
of perfect obstruction theories, this data is now encoded in the geometry of the derived
moduli spaces. We hope that having a derived enhancement of the quasimap moduli
space will give a new perspective on wall-crossing and mirror symmetry.

In the following we introduce the moduli of sections (see Chang–Li [20, §2]), which
is the central object of study in this paper. Consider an Artin stack M with a flat, nodal,
projective curve C and a morphism of M-Artin stacks π : Z → C. For any test scheme
S → M the moduli of sections is defined as

SecM(Z/C)(S → M) =
{

f : CS → ZS|πS ◦ f = idCS

}
,

for πS : ZS :=Z ×M S → CS :=C ×M S. In order to obtain a representable derived
enhancement of this space, we additionally need to require that the Artin stack Z is
smooth relative to C.

If M = M
pre
g,n is the moduli space of genus g, n-pointed prestable curves and C is

its universal curve, we can take π : Z → C to be a trivial fibration Z:=C×M X where
X is a smooth projective variety or DM stack. Then SecM(C × X/C) is the moduli
stack of prestable maps, containing as an open the usual moduli space of stable maps
to X (see Example 1.1.3). For nontrivial fibrations, this construction recovers moduli
of quasi-maps and twisted theories such as stable maps with fields (see examples in
Sect. 1.2).

In Sect. 1, we recall a construction of Lurie [42, 19.1] which gives a natural derived
structure, denoted by RSecM(Z/C), on the moduli of sections. Its relative tangent
complex turns out to be compatible with the perfect obstruction theory defined by [20]
and vastly generalized by [66] (see 1.2). For a precise statement, see Corollary 1.3.2.

The moduli space of curves on projective spaces (or more generally on toric DM
stacks) admits various compactifications, which are all substacks of a common moduli
of sections. As a map to the projective space Pr is a line bundle with sections, the
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(underived) moduli of quasi-maps to Pr , denoted by Qg,n(Pr , d), and the moduli of
stable maps, denoted by Mg,n(Pr , d), are both open substacks of a moduli of sections
over Pic = Picg,n,d—the moduli space of line bundles over pre-stable curves. We
thus obtain derived structures on the moduli space of stable maps and quasi-maps,
denoted by RMg,n(Pr , d) and RQg,n(Pr , d) respectively. In [57] the authors define
another derived structure on Mg,n(Pr , d), which is induced by a Hom-space over
M

pre
g,n . In Sect. 2, we prove that the derived structure in [57] and the derived structure

described above are the same (see Theorem 2.3.2).

Outline of the paper.

In Sect. 1 we review the natural derived structure on the moduli of sections and its
properties. We also investigate the case when Z is a bundle (see Proposition 1.2.3).

In Sect. 2 we study in detail the cases of the moduli of stable maps and quasi-
maps viewed inside the derived stacks of sections. We prove that the two derived
structures—the one coming from the moduli of sections and the one from maps—are
equivalent (see Theorem 2.3.2).

In Sect. 3 (see Theorem 3.3.10) we construct the derived morphisms

c : RSecPic(L
⊕r+1/C) → RSec}Pic

(qL
⊕r+1

/qC), (3)

where Pic denotes the stack parametrising pre-stable curves together with a line bun-
dle and }Pic denotes the stack parametrising pre-stable curves without rational tails1

together with a line bundle. Over Pic we have a universal curve and a universal line
bundle:

L → C → Pic.

Similarly, over }Pic we have a universal family

qL → qC → }Pic.

The truncation of morphism (3) recovers the map

c : Mg,n(Pr , d) → Qg,n(Pr , d)

defined in [11], [47, Theorem 3] and [44, Proposition 5.19], which contracts rational
tails.

In Sect. 4 we prove that the pushforward by c of the derived structure sheaf of the
moduli space of stable maps is the structure sheaf of the space of quasi-maps (see
Theorem 5.2.1). The main idea is to find compatible derived atlases on the two spaces.
On RMg,n(Pr , d) each chart consists of a triple (W , F, θ), where W is a smooth
stack over Pic, F is a vector bundle over W and θ is a section of F such that locally
RMg,n(Pr , d) ≃ Zh(θ). Here Zh(θ) denotes the derived vanishing locus of θ . We
construct a similar atlas for RQg,n(Pr , d).

1 Rational tails are trees of P1 that do not have marked point. See Definition 3.1.1 for details.



Derived moduli of sections and push-forwards Page 5 of 46    40 

Historical note on derived algebraic geometry applied to moduli spaces. Mod-
uli spaces appearing in Gromov–Witten theory and, more broadly, in enumerative
geometry, are usually singular and they may have irreducible components of different
dimensions. To extract information about enumerative problems, such as various types
of invariants, one needs to integrate over these moduli spaces. As such spaces do not
carry a fundamental class of pure dimension, various techniques have been developed
to construct an ersatz.

Historically, Li–Tian [40] and Behrend–Fantechi [6] have proposed solutions to
the integration problem by introducing virtual cycles, which allowed cohomologi-
cal Gromov–Witten invariants to be formally mathematically defined. Using similar
techniques, Lee [38] constructed a virtual structure sheaf, which is key in defining
K -theoretical (or in fact G-theoretical) invariants. These constructions formalize the
objects used by Kontsevich in [36]. The definitions of these virtual objects are not
intrinsic; rather, they depend on the choice of a replacement for the cotangent com-
plex of the singular moduli space. The unworkable cotangent complex is replaced
locally by a 2-term complex of vector bundles: this is the perfect obstruction theory.
For many moduli spaces, the choice of this replacements comes from the geometry of
the original moduli problem.

In the seminal paper [36], Kontsevich proposed a different approach to solve this
problem via the notion of differential graded manifolds (or schemes), in short, dg-
manifolds. This idea was developed by Kapranov and Ciocan-Fontanine in [9] and
[10].

In [57], Schürg–Toën–Vezzosi use derived algebraic geometry to give a more
geometric interpretation of these virtual objects. This idea is one of the numerous
applications of the field derived algebraic geometry developed by Toën–Vezzosi (e.g.
[60, 61], see [59, §3.1] for a nice overview) and by Lurie in [42]. The derived and dg

approach are related, but they are not equivalent (see [59] for the difference).
On the side of differential geometry, Joyce has developed parallel theories of d-

manifolds and d-orbifolds and closely related theories of Kuranishi spaces (see [28]
for a summary of d-manifolds, [30] for Kuranishi spaces). Central to the study of
moduli spaces are the ideas of derived critical loci [64], studied by Vezzosi, and the
parallel concept of algebraic d-critical loci introduced by Joyce [29], as well as those
of shifted symplectic structures [53] of Pantev–Toën–Vaquié–Vezzosi, applied to the
study of Donaldson–Thomas invariants by Brav–Bussi–Joyce [5]. Nowadays, many
works use derived algebraic geometry to study moduli spaces amongst them we recall
[1, 4, 7, 31–34, 48, 49, 54]. Just as perfect obstruction theories, derived structures on
a scheme (or stacks) are not unique: they depend on a choice. In many cases there are
natural ones coming from the geometry.

Virtual structure sheaves via derived algebraic geometry. In this paper, we use
derived algebraic geometry to study the moduli space of sections. In the following
we sketch the way in which derived algebraic geometry recovers virtual objects. For
a derived stack RX, its truncation t0(RX) = X has a closed embedding or derived

enhancement:

j : X −֒→ RX.
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Informally, RX and X have the same underlying geometric space, but the derived stack
is akin to a nilpotent thickening. If the derived stack RX is quasi-smooth, that is its
cotangent complex is cohomologically supported in (−1,∞], its structural sheaf ORX

has only finite cohomology. We can define a sheaf class on X via

O
vir,DAG
X :=( j∗)

−1ORX ∈ G0(X), (4)

where j∗ is the induced map between G-theory groups, which by dévissage is invert-
ible.

On the other hand, the derived enhancement gives a perfect obstruction theory for
X, as long as RX is quasi-smooth and X is a Deligne–Mumford stack. The differential
of the inclusion j gives a morphism

d j : j∗LRX → LX,

which, under our assumptions, is a perfect obstruction theory [57, Proposition 1.2].
Using this perfect obstruction theory, we can follow the recipe of Lee [38] to construct
a virtual sheaf O

vir,POT
X for X. We get an a priori different sheaf on X. The equality of

O
vir,POT
X and O

vir,DAG
X in the G-theory of X is a deep statement, which was proved in

[7, MR, §5.4 and §5.5] (see also [54, §6]).

Historical note on quasi-map wall-crossing. The moduli of quasi-maps for a
toric variety was defined in 2010 by Ciocan-Fontanine and Kim in [11]. These moduli
spaces carry enumerative information closely related to the one of moduli of stable
maps, but with an easier geometry. Previous related spaces appeared in [46, 47]. The
definition of stable quasi-maps was generalised by many authors in [8, 15, 58]. One
of the main uses of quasimaps is in mirror symmetry (see [18, 23–25, 55, 68]). A nice
overview of the quasi-map theory can be found in [12].

Wall-crossing between quasi-map spaces has been extensively studied (see [8, 13,
14, 17, 18, 63, 67]). Wall-crossing is trivial for sufficiently Fano varieties and non-
trivial in the non-Fano case. This translates into no-mirror transformation in the first
case and a non-trivial mirror transformation in the second. In the case of Grasmannians
it is easy to obtain a statement using virtual push-forwards, giving a good geometric
understanding. For the more general case, we do not have an analogous proof of the
wall-crossing formula in [13]. We hope that derived geometry will shed light on this
case.

Further directions. We believe that our main theorem is part of a new strategy to
prove equalities between virtual objects. The strategy is:

(1) to construct a morphism at the derived level so that we have a morphism
between virtual structure sheaves, and

(2) to prove locally that this morphism is an isomorphism.

For more general statements, one needs to develop a more general machinery: we
expect situations in which we have a simple virtual push-forward theorem, but a more
complicated relation between derived structure sheaves.



Derived moduli of sections and push-forwards Page 7 of 46    40 

In terms of applications of such a machinery, it is natural to consider stable maps
and quasi-maps to a general toric variety X and to try to derive a relation between
(derived) structure sheaves. This is not straight-forward, as for a general X there is no
morphism

c : RMg,n(X , d) ��� RQg,n(X , d).

On the other hand, it is possible to get an easy local picture.
We will treat these problems in future works.

Notation

• Everything is over C.
• For locally free sheaf E on a space X (a scheme, stack, or derived stack) the vector

bundle of E is V(E):=SpecX SymOX
E∨.

• Let M be an Artin stack with a flat proper family π : C → M of relative dimension
1. For any morphism U → M, we denote πU : CU → U the pullback of (π,C).
The most classical example would be M being the moduli of prestable curves,
denoted by Mg,n of genus g with n marked points and Cg,n its universal curve.

• We use R to mean a derived structure on a geometric object (for example RX ),
and R (respectively L) a right (resp. left) derived functor, for example R f∗ (resp
L f ∗).

• For X , Y , Z non-derived stacks HomX (Y , Z) are Hom-stacks (relative internal
hom) whereas HomX (Y , Z) are groupoids.

• For X , Y , Z derived (or non-derived) stacks RHomX (Y , Z) are derived Hom-
stacks whereas RHomX (Y , Z) are simplicial sets.

• For X a non-derived stack, F, G sheaves on X , HomOX −mod(F,G) is the
global Hom of sheaves. For X a derived stack and F, G complexes of sheaves,
RHomOX −dgm(F,G) denotes the simplicial set associated by the Dold–Kan corre-
spondence to the complex Hom•(F,G) defined as Homi (F,G):=Hom0(F,G[i]).

• Picg,n,d (or Pic for short) is the moduli space of prestable curves of genus
g with n marked points together with a degree d line bundle, more formally,
Picg,n,d :=HomMg,n

(Cg,n, BGm × Mg,n). When we impose some stability con-
ditions, we will write Pics (see Notation Sect. 3.1).

• Mg,n(Pr , d) and RMg,n(Pr , d) are the (derived) moduli of stable maps of genus
g with n marked points to projective space Pr .

• Qg,n(Pr , d) and RQg,n(Pr , d) are the (derived) moduli of quasi-maps of genus g

with n marked points to projective space Pr .
• We use the notations Mg,n,Cg,n,Pic,Pics, RU , RV , W , UU , ... for all the objects

related to stable maps (for example prestable curve), that is objects where the
curve could have rational tails. We put a “check” on the same kind of objects
|Mg,n, qCg,n, }Pic, }Pics, R qU , R qV , qW , |UU , ... for all the objects related to quasi-
maps, that is without rational tails.
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1 Background on the derivedmoduli of sections

In this section, we recall the definition and basic properties of the derived moduli of
sections, also known as Weil restriction, constructed by Lurie in [42, 19.1]).

1.1 Derived structure of themoduli of sections

Let M be a (possibly derived) Artin stack, π : C → M a flat, proper morphism
of relative dimension 1. Let Z be a (possibly derived) Artin stack with a smooth
morphism p : Z → C. We have an ∞-functor π∗ called the Weil restriction of scalars,
right adjoint to the base-change ∞-functor π∗ (and constructed for example in [42,
Construction 19.1.2.3]), that will be seen to preserve derived Artin stacks of locally
finite presentation as stated in [62]:

dSt/M
π∗

dSt/C.
π∗

⊥

Definition 1.1.1 [42, §19.1] For a derived Artin stack Z
p
−→ C, we denote

RSecM(Z/C):=π∗Z.

Proposition 1.1.2 [42, §19.1]

(1) The derived moduli of sections RSecM(Z/C) is the homotopical cartesian

product

RSecM(Z/C) M

RHomM(C,Z) RHomM(CC).

�h i

q

(5)

where q is induced by composition by p : Z → C and i is given by the identity

morphism.

(2) If Z → M is a locally almost finitely presented (relative) 1-Artin derived stack

with quasi-affine diagonal, then RSecM(Z/C) → M is a locally almost finitely

presented 1-Artin derived stack, with quasi-affine diagonal.

(3) If Z,C,M are classical (non derived) stacks, the truncation

SecM(Z/C):=t0
(
RSecM(Z/C)

)

is given by the functor SecM(Z/C) : (Sch/M)op → Gpoid taking sections of

Z over C, that is:

SecM(Z/C)(T → M) =
{
s : CT :=T ×M C → ZT :=CT ×C Z|pT ◦ s = idCT

}

= HomCT
(CT , ZT )
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where pT : ZT → CT is the projection induced by p.

Example 1.1.3 (Moduli of stable maps) Let C
π
−→ M be the moduli space of pre-stable

genus g, n-pointed curves with its universal family. Let Z = C × X for a smooth
projective variety X . Then

SecM(C × X/C) = HomM(C,M × X).

For any choice of effective class β, the moduli space M(X , β) of stable maps to X is
then an open substack of the moduli of sections SecM(C × X/C). Similarly,

RSecM(C × X/C) = RHomM(C,M × X).

The usual derived enhancement of the moduli of stable maps [57, Section 2], denoted
RM(X , β), is the unique derived structure on M(X , β) which makes the following
diagram homotopy Cartesian

M(X , β) RM(X , β)

SecM(C × X/C) RSecM(C × X/C).

Remark 1.1.4 The stack RSecM(Z/C) is in general a derived stack even if (M,C,Z)

is a triple of classical stacks.

We also record here the following functoriality result, which we will use in Sect. 2.
If we have stacks Z2 → Z1 → C → M, we can take sections of Z2 → C by passing
through sections of Z1 → C first.

Proposition 1.1.5 Consider

Z2 Z1

C

M

q

p2 p1

π

(6)

with Z1,Z2 as in Definition 1.1.1. For i ∈ {1, 2}, we form the moduli of sections

Si :=RSecM(Zi/C) → M

with their universal curves πi : CSi
→ Si and evaluations evi : CSi

→ Zi . We can

also form the moduli of sections over S1 of the morphism q:

S̃2:=RSecS1
(CS1 ×h

Z1
Z2/CS1).
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Then S2 and S̃2 are derived equivalent as derived stacks over M.

Proof To fix ideas and notation, consider the following diagram

Z2

Z2 ×Z1 CS1 Z1

CS̃2
CS1 C CS2

S̃2 S1 = RSecM(Z1/C) M S2.

q
pr1

p1

π̃2

ẽv
ev1

π1 π π2

ev2

r

The composition pr1 ◦ ẽv gives an evaluation map CS̃2
→ Z2 over C, which in turn

defines a morphism f : S̃2 → S2. For simplicity, we consider f a morphism over
S1, where the map r : S2 → S1 is that corresponding to the evaluation ev2 ◦ q. The
classical truncation of this morphism is an isomorphism, as proved in [19, Lemma
A.1.2]. Moreover, the differential of f induces an equivalence of tangent complexes
(we anticipate here the formulae of 1.3). We have a distinguished triangle

TS2/S1 → TS2/M = R•π2,∗ev∗
2TZ2/C → r∗TS1/M = R•π2,∗ev∗

2q∗TZ1/C

which we can use to identify TS2/S1 with R•π2,∗ev∗
2TZ2/Z1 . On the other hand,

TS̃2/S1
= R•π̃2,∗ẽv∗TZ2×

h
Z1

CS1/CS1
= R•π̃2,∗ẽv∗ pr∗

1 TZ2/Z1

So the result follows by identifying r ◦ f : S̃2 → S1 with the structure morphism
of S̃2 = RSecS1

(CS1 ×h
Z1

Z2/CS1) → S1, which is simply the observation that the
square

Z2 Z1

CS̃2
CS1

q

pr1◦ẽv ev1

of the big diagram is commutative. ⊓⊔

1.2 The linear case: Z is a vector bundle

We will now consider the important special case where Z is a linear stack. As we will
see, this case covers many disparate constructions: moduli of stable maps to projective
spaces (see Sect. 2.3), and more generally to varieties which are GIT quotients by linear
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groups, as well as moduli spaces of quasi-maps (see Sect. 2.4) and moduli of stable
maps with fields (Example 1.2.5). In this case, the derived moduli of sections is an
affine stack over its base.

We start with a review of the classical (non derived) construction. Let Z =

V(E):=SpecCSym(E∨) for E a locally-free sheaf over C. As proved in [20], sections
of V(E) over M are an affine scheme, in fact an abelian cone:

SecM(V(E)/C) = SpecMSym(R1π∗E
∨ ⊗ ωπ ).

Indeed, let f : T → M and f̂ : CT → C, by Serre’s duality and flat base change we
have

SecM(V(E)/C)(T → M) = HomCT
(CT , f̂ ∗E)

= HomOT −mod(R
1πT ∗ f̂ ∗E∨ ⊗ ωπT

,OT )

= HomOT −mod(R
1πT ∗ f̂ ∗(E∨ ⊗ ωπ ),OT )

= HomOT −mod( f ∗R1π∗E
∨ ⊗ ωπ ,OT )

= SpecMSym(R1π∗E
∨ ⊗ ωπ )(T → M).

Example 1.2.1 (Hodge bundle) For M = M
pre
g,n , the moduli of pre-stable curves, the

Hodge bundle H is the cone of sections

SecM(V(ωπ )/C) = SpecMSym(R1π∗OC).

This is a vector bundle of rank g, since R0π∗OC
∼= OM.

Example 1.2.2 (Stable maps with fields) Let X = Mg,n(X , β) with its universal fam-
ily

(πX, evX) : CX → X × X .

Let E be a locally-free sheaf over X . The moduli space of stable maps with fields in
E = V(E) → X (see [19, 20, 51]) denoted XE can be seen as

XE = SecX(V(ev∗
XE∨ ⊗ ωCX/X)/CX) = SpecXSym(R1πX∗ev∗

XE).

We will now cover the general case where Z is a derived vector bundle, that is

Z = V(E):=RSpecC

(
Sym(E∨)

)

for E ∈ Perf≥0(OC).
In this specific case, the derived space of section is itself a derived vector bundle.

Proposition 1.2.3 Let Z = V(E) for E as above. Then

RSecM(V(E)/C) = RSpecMSym((RπX∗E)∨).
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Proof Let f : T = RSpecA• → M be an affine derived scheme over M with
f̂ : CT :=T ×h

M C → C the induced map and πT : CT → T the induced projection.
From Definition 1.1.1, we have

RSecM(V(E)/C)(T → M) = RHomT (CT , V(L f̂ ∗E)) ×h
RHomT (CT ,CT ) T

= RHomCT
(CT , V(L f̂ ∗E))

= RHomOCT
−dgm(OCT

, L f̂ ∗E).

The second line follows by [41, 5.5.5.12]. On the other hand,

RSpecXSym((RπX∗E)∨)(T → M) = RHomOM−cdga(Sym((RπX∗E)∨, R f∗OT )

= RHomOT −dgm((L f ∗ RπX∗E)∨,OT ).

By flat base-change,

RHomOT −dgm((L f ∗RπX∗E)∨,OT ) = RHomOT −dgm((RπT ∗L f̂ ∗E)∨,OT ).

By the sheafified Grothendieck duality statement of [50, Corollary 4.4.2],

RHomOT −dgm((RπT ∗L f̂ ∗E)∨,OT ) = RHomOT −dgm(RπT ∗RHomCT
(L f̂ ∗E, ωπT

),OT )

= RHomOT −dgm(RπT ∗(L f̂ ∗E∨ ⊗ ωπT
),OT ).

By the global duality statement of [50, Theorem 4.1.1],

RHomOT −dgm(RπT ∗(L f̂ ∗E∨ ⊗ ωπT
),OT ) = RHomOCT

−dgm(L f̂ ∗E∨ ⊗ ωπT
, π !

T OT ).

So finally,

RHomOCT
−dgm(L f̂ ∗E∨ ⊗ ωπT

, π !
T OT ) = RHomOCT

−dgm(L f̂ ∗E∨ ⊗ ωπT
, ωπT

)

= RHomOCT
−dgm(OCT

, L f̂ ∗E).

⊓⊔

Example 1.2.4 (Derived Hodge bundle) The derived version of the Hodge bundle of
Example 1.2.1 is

RH = RSecM(V(ωπ )/C).

In [7, Theorem 5.4.2] (see also [54, § 8.1]), we have a deformation from this
derived bundle to

H ×M A1
M[−1].

The latter consists of the usual Hodge bundle in degree 0 and a trivial line bundle in
degree 1.
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Example 1.2.5 (Derived stable maps with fields) Keeping the notation from Example
1.2.2, we define the derived version of the moduli space of stable maps with fields.
We have from Example 1.1.3 a derived enhancement of the moduli of stable maps to
X , RX:=RMg,n with a universal family πRX, evRX : CRX → RX × X . The derived
enhancement of the moduli of stable maps can be constructed as

RXE = RSecRX(V(ev∗
RXE∨ ⊗ ωCRX/RX)/CRX) = RSpecRXSym(RπRX∗

ev∗
RXE[1]),

the second equality coming from Proposition 1.2.3 and Grothendieck duality.

Remark 1.2.6 The formation of the derived definition of the moduli of sections com-
mutes with flat base-change, so for a flat morphism U → M we have

RSecU(V(EU)/CU) ≃ U ×M RSecM(V(E)/C).

1.3 Tangent complex and perfect obstruction theory

Recall that for a derived Hom-stack H :=RHomX (Y , Z) we have a universal family

H ×h
X Y

evH

πH

Z

H

and the relative tangent complex TH/X is given by the following simple expression
(see [10, Thm 5.4.8] or [57, p.13] or the proof of [48, Prop.4.3.1] or [16, Proposition
B.10.21]):

TH/X = RπH∗Lev∗
H TZ/X . (7)

Applying this fact to the diagram in Definition 1.1.1 allows us to compute
TRSecM(Z/C)/M. The cotangent complex of a Weil restriction is also computed in [42,
§19.1.4].

Theorem 1.3.1 [42, §19.1.4] Let RS:=RSecM(Z/C), as per our convention we have

πRS : CRS = RS ×h
M C → RS and evRS : CRS → Z.

TRSecM(Z/C)/M = RπRS∗Lev∗
RSTZ/C.

Using the well-established relationship between quasi-smooth derived enhance-
ments and perfect obstruction theories, we obtain the following.

Corollary 1.3.2 (c.f. [57, §2.2]) If Z → C is a smooth Deligne–Mumford (not derived)

stack,

S:=SecM(Z/C) = t0(RSecM(Z/C))
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has a relative perfect obstruction theory in the sense of [6] given by

TS/M → ES/M:=RπS∗ev∗
STZ/C.

2 Derived structure on stable maps and quasi-maps

There are several ways of constructing derived moduli spaces of maps to a quotient.
The rest of the paper is concerned with maps to projective space Pr . Below we describe
the construction of the stacks of prestable curves with line bundles, stable maps and
quasi-maps to projective spaces as particular cases of the moduli space of sections.

2.1 Background on the classifying stack BGm

We first recall the following algebro-geometric description of the classifying space
of line bundles, which is representable by a smooth algebraic stack of locally finite
type by [39]. The classifying stack of line bundles, or equivalently Gm-torsors, is the
quotient stack BGm = [•/Gm]. By definition a morphism T → BGm is given by
Cartesian diagram

P •

T BGm

�

where the vertical morphisms are Gm-torsors. The universal Gm-torsor over the clas-
sifying stack BGm is the quotient morphism • → BGm . The associated universal line
bundle is [A1/Gm] = A1 ×Gm

• → BGm , so that a line bundle L → T is a pullback

L [A1/Gm]

T BGm

� .

Finally, as first observed by Lafforgue, and shown in the derived setting in [37, Propo-
sition 3.2.6], [A1/Gm] is the classifying stack of line bundles together with a global
section, since given T → BGm , the dashed arrow in the following Cartesian diagram
is equivalent to specifying a section of L:

L [A1/Gm]

T BGm

� .

By the same token, [Ar/Gm] is the stack classifying a line bundle together with r

global sections.
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2.2 Prestable curves with a line bundle

The stack parametrizing prestable curves with a line bundle can be viewed as an
example of a derived moduli of sections. We require line bundles to be sufficiently
ample when restricted to unmarked components, this slight modification simplifies
the arguments of Sect. 3.

Let M = M
pre
g,n be the moduli space of pre-stable genus g, n-pointed curves with

universal curve C. Consider the moduli space Pics
d :=Pics

g,n,d parametrizing pairs
(C, L) of a pre-stable curve and a line bundle of degree d with the additional “stability”
conditions

(1)

ω
log
C ⊗ L⊗3 > 0

where ω
log
C is the canonical bundle of the curve twisted by the sum of the n

marked points.
(2)

deg(L)|Ci
≥ 0

on all components Ci of C .

This is an open substack of the usual stack of curves with a degree d line bundle,
denoted by Pics

d .
Then Pics

d and an open substack of the derived moduli of sections of C × BGm ,
that is

Pics
d ⊂ RSecM(C × BGm/C).

The pullback of the universal curve over Pics
d is denoted as usual by πPics

d
: CPics

d
→

Pics
d . The universal section induces an evaluation ℓd : CPics

d
→ BGm . By Theorem

1.3.1, the relative tangent of the morphism Pics
d → M is

TPics
d/M = RπPics

d∗Lℓ∗
dTBGm

= RπPics
d∗OCPicsd

[1].

Pics
d → M is a smooth Artin stack of relative dimension g − 1.

2.3 Stable maps to Pr as sections

From Example 1.1.3, we can construct RMg,n(Pr , d) as an open substack of
RSecM(C × Pr/C). Then Theorem 1.3.1 recovers the usual formula

TRMg,n(Pr ,d)/M = RπRMg,n(Pr ,d)∗ f ∗TPr
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where f : CRMg,n(Pr ,d) → Pr is the second component of the universal evaluation
evRMg,n(Pr ,d).

On the other hand, we may view degree d maps into Pr as (an open substack of)
sections of r + 1 degree d line bundles over a curve. With notation from Example 2.2
we can define the universal bundle of Pics

d as the pullback of the universal bundle
[A1/Gm] over the classifying space BGm = [•/Gm]:

Ld

[
A1/Gm

]

CPics
d

BGm .

�

ℓd

The corresponding locally-free sheaf is denoted by Ld . In the non-derived setting,
this is indeed well-known that we can think of stable maps to projective space as an
open substack of the moduli of sections of line bundles:

Mg,n(Pr , d) ⊂ SecPics
d
(L⊕r+1

d /CPics
d
).

This description gives rise to a perfect obstruction theory relative to Pics
d which has

been proved to be compatible with the usual one (see for example [11, 20]). In the
discussion below, we strengthen previous results by proving a derived statement (our
Theorem 2.3.2) which easily implies the classical one (Theorem 2.3.4).

Lemma 2.3.1 The derived stack of sections RSecM(C × Pr/C) is an open substack

of RSecPics
d
(L⊕r+1

d /CPics
d
), the derived stack of (r + 1)-tuples of sections of the

universal bundle of Pics
d .

Proof By definition, L⊕r+1
d = CPics

d
×[•/Gm ] [Ar+1/Gm]. Since Pr = [Ar+1 \

{0}/Gm] is open in the global quotient stack [Ar+1/Gm], then at the level of derived
moduli of sections we obtain an open immersion:

RSecPics
d
(CPics

d
×[•/Gm ] Pr/CPics

d
) ⊂ RSecPics

d
(L⊕r+1

d /CPics
d
). (8)

Finally, can identify the derived stacks of sections RSecPics
d
(CPics

d
×[•/Gm ]

Pr/CPics
d
) and RSecM(C×Pr/C) by applying Proposition 1.1.5 with Z1 = C× BGm ,

Z2 = C × Pr . ⊓⊔

So far, we have two ways of obtaining a derived enhancement of Mg,n(Pr , d):

• RMg,n(Pr , d) obtained from the open immersion Mg,n(Pr , d) ⊂ SecM(C ×

Pr/C) and the enhancement SecM(C × Pr/C) −֒→ RSecM(C × Pr/C), or
• R′Mg,n(Pr , d) obtained from the open immersion Mg,n(Pr , d) ⊂ SecPics

d

(L⊕r+1
d /CPics

d
) and the derived enhancement SecPics

d
(L⊕r+1

d /CPics
d
) −֒→

RSecPics
d
(L⊕r+1/CPics

d
).

We will see below that these two enhancements are equivalent, thus we use the notation
RMg,n(Pr , d) freely for either of them.



Derived moduli of sections and push-forwards Page 17 of 46    40 

Theorem 2.3.2 The derived enhancement RMg,n(Pr , d) and R′Mg,n(Pr , d) of

Mg,n(Pr , d) described above are equivalent derived stacks.

Proof The proof easily follows from Lemma 2.3.1 and the fact that given an open
substack i : X → Y and a derived enhancement Ỹ of Y, there exists a unique (up to
derived equivalence) derived open substack ĩ : X̃ → Ỹ enhancing i .

More explicitly, observe that the open immersion

Mg,n(Pr , d) ⊂ SecPics
d
(L⊕r+1

d /CPics
d
)

factors as

Mg,n(Pr , d) ⊂ SecPics
d
(CPics

d
×[•/Gm ] Pr/CPics

d
) ⊂ SecPics

d
(L⊕r+1/CPics)

and by the proof of Lemma 2.3.1 the middle space has equivalent derived enhance-
ments RSecPics

d
(CPics

d
×[•/Gm ] Pr/CPics

d
) and RSecM(C × Pr/C). Moreover,

RSecPics
d
(CPics

d
×[•/Gm ] P

r/CPics
d
) is also equivalent to the enhancement of its clas-

sical truncation coming from

SecPics
d
(CPics

d
×[•/Gm ] Pr /CPics

d
) ⊂ SecPics

d
(L⊕r+1/CPics ) −֒→ RSecPics

d
(L⊕r+1/CPics )

by Eq. 8. This shows that there is a unique derived enhancement RMg,n(Pr , d) of
Mg,n(Pr , d) that is open in both RSecM(C × Pr/C) and RSecPics

d
(L⊕r+1/CPics).

⊓⊔

From this discussion, we can write a point in RMg,n(Pr , d) as (C, L, s0, . . . , sr )

where C is a genus g, n-marked prestable curve (we suppress the notation for the
marked points), L is a degree d line bundle on C and s0, . . . , sr are sections. In this
notation, the stability conditions of stable maps translate to the following.

Definition 2.3.3 (Stability conditions of stable maps as sections)

(1) The bundle ω
log
C ⊗ L⊗3 is ample, which is a condition on the pair (C, L) already

present in Pics,
(2) The sections (s0, . . . , sr ) have no common zeros.

Corollary 2.3.4 There is a forgetful morphism Mg,n(Pr , d) → Pics
d sending

(C, L, s0, . . . , sr ) �→ (C, L).

The morphism is quasi-smooth with dual perfect obstruction theory

T
Mg,n(Pr ,d)/Pics

d
→ E

Mg,n(Pr ,d)/Pics
d

= R•π
Mg,n(Pr ,d)∗L

⊕r+1
Mg,n(Pr ,d)

where L
Mg,n(Pr ,d) is the locally-free sheaf on C

Mg,n(Pr ,d) obtained from the map into

Pics
d . This perfect obstruction theory is compatible with the usual perfect obstruction

theory of stable maps in the sense of [43].

Proof This follows from the discussion above and Corollary 1.3.2. ⊓⊔
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2.4 Quasi-maps to Pr as sections

We have another way of understanding maps of curves to Pr , by relaxing the concept
of map and allowing a linear system (L, s0, . . . , sr ) on a curve C to develop some base
points. Consider Picd = Picg,n,d the usual stack parametrizing genus g, n-marked
pre-stable curves with a degree d bundle without stability conditions. Let CPicd

,Ld

denote the universal curve and universal bundle respectively.

Definition 2.4.1 (Stable quasi-maps[11, Definition 3.1.1])

Qg,n(Pr , d) ⊂ SecPicd
(L⊕r+1

d /CPicd
)

is the open substack defined by imposing following conditions on each geometric fiber

(1) (non-degeneracy )The linear system (L, s0, . . . , sr ) has finitely many base
points away from the nodes and the markings of C .

(2) (stability) The line bundle ω
log
C ⊗ L⊗ǫ > 0 for any ǫ ∈ Q>0.

The derived enhancement SecPicd
(L⊕r+1

d /CPicd
) −֒→ RSecPicd

(L⊕r+1
d /CPicd

) gives

a derived enhancement Qg,n(Pr , d)
j

−֒→ RQg,n(Pr , d). The usual perfect obstruction
for the moduli of quasi-maps (e.g. [11]) comes from this derived extension. Indeed,
the computation in Theorem 1.3.1 shows that

T
Qg,n(Pr ,d)/Pic → j∗TRQg,n(Pr ,d)/Pic = Rπ∗ f ∗OPr (1),

where as usual π and f are the universal projection and evaluation respectively
from CRQg,n(Pr ,d). We will see in the next section a slightly different construction

of Qg,n(Pr , d) that yields an equivalent derived enhancement.

3 Stable maps and quasi-maps to Pr

In this section, we construct a morphism between the derived enhancement of the
moduli space of stable maps to Pr and of quasi maps that is

c : RMg,n(Pr , d) → RQg,n(Pr , d).

We prove that

c∗ORMg,n(Pr ,d) = ORQg,n(Pr ,d) in Db
Coh(RQg,n(Pr , d)).

3.1 Revised notation

From here, we will adopt a slightly different notation from that of the preceding
sections in the interest of clarity. Let M:=Mg,n denote the moduli space of genus
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g pre-stable curves with n marked points and let π : C → M denote its universal
curve. Let Pics:=Pics

g,n,d denote the moduli space defined in Example 2.2 and let
π : C → Pics denote its universal curve. Recall, that Pics parametrizes pairs (C, L),
with C a prestable curve in M and L is a line bundle of fixed degree d over C subject
to the stability conditions in 2.2. Then we define C by the following cartesian diagram

C C

Pics M.

π
�

π

Notice that C → M is flat so that the stack fiber product is also the homotopical
fiber product. Let L over C denote the universal bundle so we have

L C Pics M.π (9)

Definition 3.1.1 Let C be a point in M. A rational tail Ŵ in C is a maximal tree of
rational components without marked points and such that Ŵ ∩ C \ Ŵ is a point.

Let |M denote the moduli space of pre-stable curves of genus g with n marked
points without rational tails. Let π : qC → |M denote the universal curve. In [11, p.12],
the authors prove that |M is an open substack of finite type in M, with universal curve
isomorphic to the restriction of C to |M.

Let }Pic denote the Cartesian product

}Pic Pic

|M M.

�

A closed point in }Pic is a pair ( qC, qL) of a marked pre-stable curve with no rational
tails and a line bundle.

Definition 3.1.2 As in the case of Pics let }Pics denote the substack of }Pic with the
additional stability conditions:

(1) for any ǫ ∈ Q>0, we have

ω
log
qC

⊗ qL⊗ǫ > 0,

Here ω
log
qC

denotes the dualizing sheaf of the curve twisted by the sum of the
n marked points.

(2) on all components qCi of qC , we have

deg(qL)|qCi
≥ 0.
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We have that }Pics is an open substack of }Pic.
We define qC as the following fiber product

qC qC

}Pics |M.

qπ
�

qπ

We have a universal line bundle, denoted by qL over qC. As in (9), we have the following
morphisms.

qL qC }Pics |M.qπ (10)

3.2 Quasi-maps are defined over }Pics

In Sect. 2.4 we defined

RQg,n(Pr , d) ⊂ RSecPic(L
⊕r+1/CPic). (11)

Given the definitions of this sections, we have a new substack }Pics ⊂ Pic. The
stability conditions of quasi-maps imply that the source curve cannot have rational
tails. So the morphism RQg,n(Pr , d) → Pic factors through }Pic. Moreover, the
stability conditions of RQg,n(Pr , d) imply those of Definition 3.1.2, so we obtain a

morphism RQg,n(Pr , d) → }Pics ⊂ Pic.
By Remark 1.2.6, we have that

RSec }Pics(qL
⊕r+1

/qC) = }Pics ×h
Pic RSecPic(L

⊕r+1/CPic).

So the open embedding in (11) factors through an open embedding RQg,n(Pr , d) ⊂

RSec }Pics(qL
⊕r+1

/qC). We state the implications of this below.

Proposition 3.2.1 The moduli space of quasi-maps Qg,n(Pr , d) has a forgetful mor-

phism to the stack }Pics of pre-stable curves with no rational tails with a stable line

bundle (Definition 3.1.2). Over }Pics it admits an open embedding into the derived stack

of sections RSec }Pics(qL
⊕r+1

/qC). This endows Qg,n(Pr , d) with a derived enhancement

RQg,n(Pr , d) which is compatible with the derived enhancement from Sect.2.4.

In particular, this derived enhancement recovers the canonical perfect obstruction

theory of the moduli space of quasi-maps.
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3.3 Derivedmorphism between stable maps and quasi-maps

In this subsection, we want to construct the following.

(1) A commutative diagram

L qL

C qC

Pics }Pics

M |M

k

π qπ

c

c

(12)

which relates (9) and (10).
(2) A morphism (see Proposition 3.3.10 below)

c : RSecPics(L⊕r+1/C) → RSec }Pics(qL
⊕r+1

/qC)

that restricts to a morphism RM(Pr , d) → RQ(Pr , d).

3.3.1 Construction of contraction morphism c : M → |M

Recall that in [52, proof of Thm 7.1] or [45, Prop 2.3]) one can construct a non
separated2 morphism

c : M → |M

which contracts the rational tails. For S → M,

c : M → |M

(CS, S) �→ ( qCS, S)

where qCS is the family CS with rational tails contracted in each fiber. Recall that C

(resp. qC) is the universal curve of M (resp. |M). Moreover, we have a commutative
diagram which is not Cartesian

C qC

M |M.

π

k

qπ

c

(13)

2 This morphism is not separated because, the trivial family P1 × A1 \ {0} → A1 \ {0} can be completed
at {0} by P1 or the blowup of the trivial family in any number of points in the special fibre.
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Notice that c is a birational morphism.

3.3.2 Construction of contraction of tails morphism c : Pics → }Pics

Recall that we have (9),

L C Pics M.π

Let Mrt be the divisor in M where the curve has rational tails. We obtain a divisor
D on C by pulling back Mrt to C and taking the irreducible components of each fiber
which correspond to rational tails.

Example 3.3.3 Consider a trivial family of smooth curves C × A1 → A1, and let
p ∈ C a closed point. We can obtain a family of curves with rational tails C =

Blp×{0}(C × A1) → A1. Then the divisor of rational tails on C is the exceptional
divisor E , which is an irreducible component of the pullback of the divisor 0 ∈ A1.

Definition 3.3.4 Let denote D be the divisor in C described above. By considering the
restriction of the universal bundle L on D we can split the divisor into

D =

d⊔

i=1

Di

such that L|Di
has degree δi . We write δD for

∑
i δiD.

We first define c : Pics → }Pics at the level of points (see [45, §2.2]). Let (C, L) ∈

Pics. Let Ti be the rational tails of C and let δi denote the total degree of L on Ti .
Notice that

∑
i δi = deg(L|⊔i Ti

). Let qC be the closure of C\
⋃

i Ti . Let Qi denote the
point Ti ∩ qC . We define

qL:=L|qC
(
∑

i

δi Qi ).

In families we proceed similarly: let S → Pics with a family of curves CS → S and
a line bundle LS . We define qCS :=c(CS) contracting rational tails. We put

qLS :=L||CS
(δD) ,

and we obtain a morphism

c : Pics → }Pics

(CS,LS) �→ ( qCS, qLS).
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To show it factors as the required morphism

c : Pics → }Pics

we need to check that the following are true:

(1) If L has non-negative degree on each component of C , then qL has non-negative
degree on each component of qC .

(2) If ω
log
C ⊗ L⊗3 > 0, then ω

log
qC

⊗ qL⊗ǫ > 0 for all ǫ ∈ Q>0.

The first statement is clear. The only case where the first condition does not immedi-
ately imply the second is that of a genus 0 component Ci with less than two marked
points. The first condition then requires that the degree of L|Ci

is at least 1. Note that

any component of qC has at least one marked point, so the degree of ω
log
qC

is greater or

equal than −1. This shows that the degree of qL|c(Ci ) is at least 1 and thus the claim.
We thus get the following commutative diagram

Pics }Pics

M |M.

c

c

(14)

3.3.5 Construction of the morphism k : C → qC

As C:=C ×M Pics (resp. qC:=qC ×|M
}Pics) and the Cartesian diagram (13), writing all

the diagrams, we get the morphism k : C → qC such that the following diagram is
commutative

C qC

Pics }Pics

M |M.

k

π qπ

c

c

(15)

3.3.6 Construction of the morphismL → qL

We can decompose the morphism k as ℓ ◦ κ as in the following diagram:
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L ℓ∗qL qL

C c∗qC qC

Pics }Pics

M |M.

�

κ

π
c∗ qπ

ℓ

�
qπ

c

c

(16)

Notice that qπ, π and c∗qπ are projective, so κ is projective. As κ is birational and
L(δD) is trivial on rational tails, we have that

R1κ∗L(δD) = 0.

Then R0κ∗L(δD) is a line bundle on c∗qC. (See [52, Lemma 7.1 and p.652-654].

Claim 3.3.7 We have that

R0κ∗L(δD) = ℓ∗qL.

Proof of the claim 3.3.7 As κ is birational, the two sheaves are isomorphic away from
the tails. On the tails, both are trivial. On a smooth atlas of c∗qC, they are isomorphic
away from the locus where the tails are attached to the curve which is of codimension
2. We deduce the statement. ⊓⊔

Remark 3.3.8 At the level of sheaves we have:

L → L(δD) and by adjunction κ∗κ∗L(δD) → L(δD).

Notice that κ∗κ∗L(δD) = L(δD) because both are isomorphic outside tails and
trivial on tails. Finally, we get a morphism from

L → L(δD) = κ∗κ∗L(δD) = κ∗ℓ∗qL,

which leads to a morphism L → κ∗L(δD) = ℓ∗qL that fills the diagram (16).

3.3.9 Construction of the morphism c : RSecPics(L
⊕r+1/C) → RSec}Pics

(qL
⊕r+1

/qC)

Theorem 3.3.10 We have a morphism

c : RSecPics(L⊕r+1/C) → RSec }Pics(qL
⊕r+1

/qC).

Moreover, the restriction of c to RMg,n(Pr , d) factors through

RQg,n(Pr , d) ⊂ RSec }Pics(qL
⊕r+1

/qC),
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giving a morphism, denoted by the same name,

c : RMg,n(Pr , d) → RQg,n(Pr , d).

Proof Multiplication by the canonical section gives a morphism a : L → L(δD). We
have the divisor exact sequence

0 → L → L(δD) → L(δD)|δD → 0 (17)

over Pics.
The morphism a of sheaves induces a morphism L → L(δD) of total spaces, which

induces

RSecPics(L/C) → RSecPics(L(δD)/C). (18)

Now recall the locally-free sheaves

L(δD) R0κ∗L(δD) = ℓ∗qL

C c∗qC

Pics

κ

π
c∗ qπ

and let κ∗L(δD) denote the total space of R0κ∗L(δD). There is an equivalence

RSecPics(L(δD)/C) = SpecPicsSym((Rπ∗L(δD))∨)

≃ SpecPicsSym((R(c∗
qπ)∗κ∗L(δD))∨)

= RSecPics(κ∗L(δD)/c∗qC). (19)

This equivalence is simply a restatement of the fact that the sections of the push-
forward of a sheaf on an open are sections of the original sheaf on the preimage. Then
by claim 3.3.7 and (19), we have

RSecPics(L(δD)/C) ≃ RSecPics(κ∗L(δD)/c∗qC) ≃ RSecPics(ℓ∗qL/c∗qC). (20)

Now we just have to construct a morphism

RSecPics(ℓ∗qL/c∗qC) → RSec }Pics(qL/qC).
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Let us consider the cartesian diagram

c∗qC qC

Pics }Pics.

ℓ

ρ=c∗ qπ qπ

c

By cohomology and base change, we get an isomorphism

Rρ∗ℓ
∗qL → c∗Rqπ∗

qL,

that is we deduce that at the level of spaces, we have

RSecPics (L (δD) /C) ≃ c∗RSec }Pics(qL/qC) = RSecPics(ℓ∗qL/c∗qC).

By composing, we deduce a morphism

RSecPics(L(δD)/C) ≃ c∗RSec }Pics(qL/qC) → RSec }Pics(qL/qC). (21)

Composing (18) with (21) we get a morphism

RSecPics(L/C) → RSecPics(L(δD)/C)→RSec }Pics(qL/qC).

By applying the same argument to L⊕r+1, we deduce the desired morphism c

RSecPics(L⊕r+1/C)
c

RSec }Pics(qL
⊕r+1

/qC)

Pics c }Pics.

(22)

Now we are left to check that the restriction of c to RMg,n(Pr , d) takes image in
RQg,n(Pr , d). We can check this on points, let (C, L, s0, . . . , sr ) ∈ RMg,n(Pr , d).
We need to see that stability conditions of stable maps on (C, L, s0, . . . , sr ) imply
those of quasi-maps on c(C, L, s0, . . . , sr ). The conditions about the ampleness of
the bundles, are already checked at the level of c : Pics → }Pics. We only need to
show that if (L, s0, . . . , sr ) has no base points, then (qL,qs0, . . . ,qsr ) has finitely many
base points away from markings and nodes. Let Qi be the attaching nodes of the
rational tail Ti on C . The only base points that are acquired by applying c are on the
images of the Qi s in qC , but these are smooth and unmarked points of qC .

Thus we have a well-defined map given by the restriction of 22, which we will still
denote by the same name:

c : RMg,n(Pr , d) → RQg,n(Pr , d).
⊓⊔
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4 Local embeddings

The idea of this section is to control the map c locally. In this section, by a slight abuse
of notation we also denote by c the restriction/ base-change of c to various charts of
RMg,n(Pr , d).

For any point ξ ∈ RMg,n(Pr , d) we construct

(1) RV → RMg,n(Pr , d) an étale neighbourhood of ξ ,
(2) R qV → RQg,n(Pr , d) an étale neighbourhood of qξ :=c(ξ), where the map

c : RV → R qV is the base change of c : RMg,n(Pr , d) → RQg,n(Pr , d),
(3) A smooth Deligne–Mumford stack W and a smooth scheme qW with a mor-

phism q : W → qW which is proper and birational,
(4) a vector bundle qF on qW together with a section θ such that

• the homotopical zero locus of θ is R qV ,
• the homotopical zero locus of q∗θ is RV .

Let us sum up the situation in the following diagram, where each square is Cartesian.

RV W

R qV qW

qW qF

W q∗ qF

�h�h
c

q

0

�h

�h 0

θ

�h

q

q∗θ

(23)

Practically, we have that

R qV = Zh(θ) and RV = Zh(q∗θ).

Notice that the right and bottom squares are homotopically Cartesian by [56, Lemma
08I6].

We will construct a different collection of open stacks: RU ⊂ RSecPics(L⊕r+1/C),

and R qU ⊂ RSec }Pics(qL
⊕r+1

/qC). We will also construct UU , |UU smooth stacks such

that RU and R qU sit inside them as a derived vanishing locus. These are all moduli of
sections with a minor stability condition. Later, by imposing the full stability conditions
for stable maps and quasi-maps respectively, we will obtain schemes RV , W and R qV ,
qW .
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4.1 Constructions

For any point ( qC, qL,qs0 . . . ,qsr ) ∈ RQg,n(Pr , d), let BL(qs) = ∩r
i=0 Z(qsi ) be the base

locus of (qs0, . . . ,qsr ). By construction, RQg,n(Pr , d) comes with a universal curve, a
universal line bundle over it and a universal (r + 1)-tuple of sections qσ . We have that
BL(qσ) → RQg,n(Pr , d) is a finite morphism.

Fix a closed point ξ ∈ RMg,n(Pr , d) and qξ = ( qC ′, qL ′,qs′) its image in
RQg,n(Pr , d). We construct here some open substacks of the moduli of sections

RSecPics(L⊕r+1/C) and RSec }Pics(qL
⊕r+1

/qC) containing ξ and qξ in respectively. Later
on, we will impose stability conditions on these opens.

Construction 4.1.1 (Construction of the DM stacks UU , RU and |UU , R qU ) The first

step will be to choose an open substack qU ⊂ }Pics containing the point ( qC ′, qL ′) and

a divisor qA on the universal curve qC that behaves nicely over qU. These choices will

depend on the choice of the quasi-map qξ and not just on its source curve.

By the stability conditions on }Pics, the line bundle ωqπ ⊗ qL is qπ -relatively ample.

After replacing ωqπ ⊗ qL by an appropriate multiple, we may assume we have a very

ample line bundle with vanishing R1 qπ∗. The divisor qA is given by a choice of a

section of this very ample line bundle, i.e. a hyperplane on the projective space of

sections of this bundle. We can choose one such hyperplane that intersects the image

of ( qC ′, qL ′) transversally at non-special points, and we can restrict to the complement
qU of the closed substack where qA intersects the curves in the fiber at special points

or is ramified. We can moreover guarantee by a change of coordinates that qA ∩ qC ′

consists of points disjoint from BL(qs′). Recall that BL(qs′) comes from the choice of
qξ . By construction,

R1
qπ∗

qL( qA) = 0 (24)

on all curves in this chosen neighborhood. To sum up, by our choice of hyperplane we

have that

(1) qA does not contain 1-dimensional fibers of the restriction of qCqU
→ qU and

(2) qA on the chosen curve qC ′ is disjoint from the base locus of qs′ of the fixed

quasi-map qξ .

(3) qA is disjoint from the special points of ( qC, qL) (i.e. nodes and marked points)

for all points ( qC, qL) ∈ qU.

We fix the notation qU ⊂ }Pics for this substack, which depends on a choice of a point

ξ ∈ RQg,n(Pr , d).

Let U:=c−1(qU) and A:=k∗ qA. Since L has positive degree on rational tails (see

Sect.2.2 for the definition of Pics), on U, we have

R1π∗L(A) = 0. (25)
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We define

RU := RSecU(L⊕r+1
U /CU) UU := RSecU(LU(A)⊕r+1/CU)

R qU := RSecqU
(qL

⊕r+1
qU /qCqU

) |UU := RSecqU
(qLqU

( qA)⊕r+1/CqU
).

Note that RU and R qU are open in RSecPics(L⊕r+1/C) and RSec }Pics(qL
⊕r+1

/qC)

respectively by Proposition 1.2.6. Moreover, we have ξ ∈ RU and c(ξ) ∈ R qU. By

(24) and (25) we see that UU and |UU are smooth Artin stacks and have no derived

structure. Multiplication by the defining equations of the divisor A gives a morphism

of sheaves LU → LU(A) that gives a morphism RU → UU . Similarly, we have

R qU → |UU . As in Theorem 3.3.10 we have a morphism q̃ : UU → |UU

Construction 4.1.2 (Labelling of base points) Fix ξ :=(C ′, L ′, s′
0, . . . , s′

r ) ∈

RMg,n(Pr , d) a closed point and qξ :=c(ξ) = ( qC ′, qL ′,qs′
0, . . . ,qs′

r ) ∈ RQg,n(Pr , d)

and construct the neighborhoods described above.

Let qζ = ( qC ′, qL ′, qw′
0, . . . , qw′

r ) be the image of qξ in |UU . Let BL(qs′) be the base locus

of (qs′
0, . . . ,qs′

r ), and BL(qw′) be the base locus of (qw′
0, . . . , qw′

r ).

By construction, we have that the base locus BL(qw′) = BL(qs′) ⊔ qA. This follows

because BL(qs′) and qA are disjoint by construction and for each i , qw′
i is obtained by

multiplying qs′
i by the local defining equation of qA. Then we have a labelling

BL(qw′) = {qw′
0 = · · · = qw′

r = 0} ∩ qA︸ ︷︷ ︸
BL(|w′) qA

⊔ {qs′
0 = · · · = qs′

r }︸ ︷︷ ︸
BL(qw′)qL

.

By Sect.4.1 we have that the pull-back of qA on the universal curve over |UU is finite

and étale over |UU . The chosen point qζ has the sections qsi generically non-degenerate—

i.e. they do not all vanish on any component of qC ′. By passing to the open substack

inside |UU where the sections are generically non-degenerate, we may assume |UU is

itself a Deligne–Mumford stack (see [11, Lemma 3.1.6]). With this assumption, |UU

admits an étale chart, which is a scheme. On this chart we consider a lift of qζ , which

by abuse of notation we denote qζ . Passing to an étale cover of this chart as in [56,

Lemma 04HL], we obtain an étale neighborhood |UU ′ of qζ , i.e. a scheme, such that

on this neighborhood we have that BL(qw′) qA
and BL(qw′)qL

lie on different connected

components. This shows that the base-change of BL(qw) to |UU ′ can be written as a

union of disconnected components BL(qw) qA
and BL(qw)qL

, which contain BL(qw′) qA
and BL(qw′)qL

respectively.

This means that for a point ( qC, qL, qw0, . . . , qwr ) ∈ |UU ′ the base points BL(qw) of

(qL, qw0, . . . , qwr ) are labelled by the connected components of the base locus

BL(qw) = BL(qw) qA
⊔ BL(qw)qL

.
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We define the smooth Artin stack

UU ′ := |UU ′ ×|UU
UU .

Now we define a smooth scheme qW ⊂ |UU ′ by imposing stability conditions.

Construction 4.1.3 (Construction of schemes qW and R qV ) Let

( qC, qL, qw0, . . . , qwr ) ∈ |UU ′ → SecqU
(qLqU

( qA)/qCqU
).

This point is in qW if

(i) the base locus of qw0, . . . , qwr is discrete and disjoint from all the special points

of qC,

(ii) for any ǫ ∈ Q>0,

ω
log
qC

⊗ qL( qA)⊗ǫ > 0.

Note that the base locus is labeled in the sense of construction 4.1.2, because we are

in |UU ′. Finally, we define

R qV :=R qU ×|UU
qW .

Remark 4.1.4 We have that qW is a smooth scheme as it is étale over an an open substack
of V(RπU∗LU(A)) and V(RπU∗LU(A)) is smooth as R1πU∗LU(A) = 0. By possibly
shrinking qW we may assume it is an affine scheme.

Construction 4.1.5 (Construction of W and RV ) Let UU ′ = |UU ′ ×|UU
UU . It is a smooth

Artin stack. We have that UU ′ contains the point ζ , the image of ξ in UU . By construction,

we have a map q : UU ′ → |UU ′ and an induced map between universal curves k. If for

any point (C, L, w) ∈ UU ′, we denote its image under q by ( qC, qL, qw), then we have

that k maps BL(w) to BL(qw). Since the base locus in |UU ′ is labelled, we have that

the base locus in UU ′ is labelled:

BL(w) = BL(w)A ⊔ BL(w)L .

Let

(C, L, w0, . . . , wr ) ∈ UU ′ ⊂ SecU(LU(A)/CU).

This point is in W if

(i) the base locus BL(w) of w0, . . . , wr is discrete and disjoint from the special

points of C,

(ii) the subset BL(w)L of the base locus is empty and

(iii) the line bundle ω
log
C ⊗ L⊗3 is ample.
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Notice that by the definition of UU ′ we have that the base locus is labelled and thus

condition (ii) makes sense. Finally, we define

RV := RU × UU W .

Remark 4.1.5 Notice that for any (C, L, w0, . . . , wr ) ∈ W , the choice of qA and the
stability condition imply that A |C does not intersect rational tails for any C .

This was not the case for points in UU ′ without the stability condition in (i) in
Construction 4.1.5.

Remark 4.1.6 The idea behind the construction is to define compatible atlases on
RMg,n(Pr , d) and RQg,n(Pr , d), in the sense that we want charts RV and R qV respec-
tively such that

RV RMg,n(Pr , d)

R qV RQg,n(Pr , d).

�
h

c

In addition, we want RV and R qV to be derived vanishing loci of triples (W , F, θ)

and ( qW , qF, qθ) where the first family is a pullback of the second. These are triples
of a smooth scheme, a vector bundle and a section. To achieve this, we start by
covering RMg,n(Pr , d) and RQg,n(Pr , d) by sets open in RSecPics(L⊕r+1/C) and

RSec }Pics(qL
⊕r+1

/qC). These sets will be of the form RU = RSecU(L⊕r+1/CU),

R qU = RSecqU
(qL

⊕r+1
/qCqU

). They are chosen so that it is possible to pick sufficiently

ample divisors on qA and A on qCqU
and CU which are away from the rational tails

and base points and give RU and R qU smooth embeddings (see Proposition 4.2.1 and
Lemma 4.2.2 for more details) (Fig. 1).

We end up with a closed embedding m A : RU → UU = RSecU(L(A)⊕r+1/CU)

and a similar one for R qU . Here, m A(RU ) is the space of (r + 1)-tuples of sections
of L(A) which are all divisible by the local equation of A. Now we could define
R qV = R qU ∩RQg,n(Pr , d) and RV = RU ∩RMg,n(Pr , d), but more care is needed
at this stage.

Here W and qW are necessary to define “non-degeneracy conditions” on UU that
will restrict to those of stable maps when restricted to the subvariety RU . This is the
reason we pass to different (étale) neighbourhoods in the construction.

4.2 Properties

Recall that UU :=RSecU(LU(A)⊕r+1/CU) and |UU :=RSecqU
(qLqU

( qA)⊕r+1/CqU
) are

smooth (thus only trivially derived) Artin stacks.

Proposition 4.2.1 There exists a vector bundle E on UU and a section σ such that RU

is the derived zero locus of σ .
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Fig. 1 The ambient space is UU

which is an open in the moduli of
sections of L(A)r+1, RU is an
open in the moduli of sections of
L, RV is RU ∩ RMg,n(Pr , d).
We draw this picture for stable
maps (in UU and not |UU ) but we
should imagine the same for
quasi-maps in a compatible way

Similarly, there exists a vector bundle qE on |UU and a section qσ such that R qU is the

derived zero locus of qσ .

Proof Recall from (25) and (26) that we have R1πU∗LU(A) = R1 qπU∗
qLU( qA) = 0.

Multiplying by a local equation of A and pushing forward gives a distinguished triangle
of sheaves on U.

RπU∗LU → RπU∗LU(A)
s
−→ RπU∗LU(A)|A

+1
−→ (26)

Observe that RU = V(RπU∗LU), and

UU = V(RπU∗LU(A)) = V(πU∗LU(A)).

We also have R1πU∗LU(A)|A = 0, forced by the long exact sequence of (26) and (25).
Then E:=V(πU∗LU(A)|A) is a non-derived vector bundle on U. The distinguished
triangle in (26) can be thus written as a fibered and cofibered diagram of derived
complexes

RπU∗LU πU∗LU(A)

0 πU∗LU(A)|A.

�
s

�

Taking the total space V(−) = RSpecUSym•(−)∨ functor gives us a homotopical
fibered product

RU UU

U E.

�h s

0

(27)

Let E be the pullback of the bundle E by the projection UU → U, and σ be the section
induced by s. We claim that the homotopical fibered square above implies that the
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square below is also homotopically fibered

RU UU

σ

UU
0

E .

(28)

To see this, consider

UU
0

E

U
0

E

(29)

which is obviously fibered. Stacking (28) and (29) yields (27). Since (29) and (27) are
homotopical fibered products, (28) must also be a homotopical fibered product.

The second part of the statement is proved in the same way, with qE and qσ coming
from the following triangle over qU:

RqπqU∗
qLqU

→ qπqU∗
qLqU

( qA)
qs
−→ qπqU∗

qLqU
( qA)| qA

+1
−→ . (30)

⊓⊔

The contraction c : Pics → }Pics restricts to c : U → qU and induces maps
c̃ : RU → R qU and q̃ : UU → |UU by the same construction as 3.3.6, 3.3.10. All these
maps are in particular birational.

Lemma 4.2.2 We have a homotopically cartesian diagram

RU UU

R qU |UU .

i

c̃
�h q̃

qi

(31)

Proof By Proposition 4.2.1, it suffices to show that E = q̃∗ qE and σ = q̃∗qσ . Recall
that (E, σ ) is defined by the following diagram coming from (26).

E SpecUSym(πU∗LU(A)|A)

UU U.

�
s

σ
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Similarly ( qE, qσ) is defined by the diagram below coming from (30).

qE SpecqU
Sym(qπqU∗

qLqU
( qA)| qA

)

|UU qU.

�
qs

qσ

For c : U → qU the usual contraction, we need to show that c∗qπqU∗
qLqU

( qA)| qA
∼=

πU∗LU(A)|A and that qs ◦ q̃ = s.
To see these, start with the triangle (30) defining qE and qσ .

c∗RqπqU∗
qLqU

c∗ qπqU∗
qLqU

( qA) c∗ qπqU∗
qLqU

( qA)| qA

RπU∗(k
∗ qLU) πU∗

(
(k∗qLU) ⊗ OU(A)

)
(πU∗

(
(k∗qLU) ⊗ OU(A)

)
|A

RπU∗(LU(δD)) πU∗(LU(δD + A)) πU∗(LU(A))|A

∼=

c∗qs

∼=

+1

∼=

∼= ∼=

+1

∼=

+1

The first set of vertical isomorphisms are by cohomology and base-change and the fact
that k∗ qA = A. The following are given by k∗qL = κ∗ℓ∗qL = κ∗κ∗L(δD) ≃ L(δD)

(see Remark 3.3.8).
By the requirements of our construction, A does not meet D. Then for the last

term we have πU∗(LU(A))|A
∼= πU∗(LU(δD + A))|A. We conclude that c∗(30) is

isomorphic to the following triangle:

RπU∗(LU(δD)) → πU∗(LU(δD + A))
c∗qs
−→ πU∗(LU(δD + A))|A

+1
−→ . (32)

Now we compare c∗(30) =(32) to (26). Twisting by δD induces a map between them

RπU∗LU πU∗LU(A) πU∗LU(A)|A

RπU∗(LU(δD)) πU∗(LU(δD + A)) πU∗(LU(δD + A))|A

RπU∗(LU(δD))|δD πU∗(LU(δD + A))|δD 0.

s

f

+1

∼=

c∗qs +1

∼=

The vertical map f above is as follows:

q̃ : UU
f

−→ c∗|UU → |UU .

This shows that c∗qπqU∗
qLqU

( qA)| qA
∼= πU∗LU(A)|A and that qs ◦ q̃ = s, completing the

proof. ⊓⊔
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Recall that we have that W is a DM stack and UU ′ and UU are Artin stacks such that

W UU ′ UU .
Zariski open étale

We also have

qW |UU
′

|UU
Zariski open étale

where |UU is a smooth Artin stacks and the étale map factors through an open Deligne–

Mumford substack. Also, qW and |UU
′

are smooth affine schemes.
From the definitions of W and qW we see that q̃ restricts to a map q : W → qW .

Lemma 4.2.3 We have a commutative diagram

W UU

qW |UU .

q q̃

Proof We only need to check that the image of W is contained in qW . This follows by
comparing the stability conditions in Construction 4.1.5 and Construction 4.1.3. ⊓⊔

Lemma 4.2.4 We have that RV is an étale neighbourhood of ξ in RMg,n(Pr , d).

Proof Recall that RV is defined by

RV W

RU UU .

�
h

étale

m A

The first observation is that W is étale over UU . Indeed, we have defined an étale
neighborhood UU ′ → UU around ζ , the image of ξ under the morphism m A induced
by tensoring with O(A). In this, W is cut out in Construction 4.1.5 by imposing open
stability conditions. Since the point ζ was the image of a stable point ξ , the stability
conditions hold for it. So W → UU is an étale neighborhood of ζ .

Thus, RV → RU is also étale, and ξ ∈ RV . On the other hand, we have an open
subset V of RU = RSecU(L⊕r+1/CU) given by

V = RMg,n(Pr , d) ×RSecPics (L
⊕r+1/C)

(
RU × UU UU ′

)
,
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that is fits in the cartesian diagram

RV W

V RU × UU UU ′ UU ′

RU UU

RMg,n(Pr , d) RSecPics(L⊕r+1/C).

�
h

ét.

�
h

ét. �
h

ét.

We want to show that RV and V are equivalent. First, we show that their truncations
are isomorphic, that is t0(V) =: V ′ ≃ t0(RV ) = V . It suffices to show that the
conditions of Construction 4.1.5 are equivalent to the stability conditions of stable
maps on points in the image of (the truncation of) m A. We recall them here for the
reader’s convenience. At any point (C, L, s0, . . . , sr ) of U × UU UU ′ Definition 2.3.3
state it is in V ′ iff the following hold:

(1) the bundle ω
log
C ⊗ L⊗3 is ample and

(2) the linear system (L, s0, . . . , sr ) has no base points.

On the other hand, at any point (C, L(A), w0, . . . , wr ) of UU ′, Construction 4.1.5
states it is in W iff:

(i) the base locus BL(w) of w0, . . . , wr is discrete and disjoint from the special
points of C ,

(ii) the subset BL(w)L of the base locus is empty and
(iii) the line bundle ω

log
C ⊗ L⊗3 is ample.

Conditions (1) and (iii) are clearly equivalent. We want to show that for points in m A(U )

condition (ii) implies condition (2), and that (2) holding for points of U implies (i)
and (ii), that is: their image under m A lies in W .

Let (C, L, s0, . . . , sr ) be a point in U ,

m A(C, L, s0, . . . , sr ) = (C, L(A), w0, . . . , wr )

where wi is the image of si under H0(C, L) → H0(C, L(A)). Condition (ii) implies
that the BL(w) ⊂ A. On the other hand, qA and qU were chosen so that BL(qs) does not
intersect qA on the open qU , then also BL(s) does not intersect A in U . Then we see
that BL(s) must be empty.

Conversely, if BL(s) is empty, BL(w) must be contained in A, which implies both
condition (i) and (ii).

We have that V ≃ V ′ = Mg,n(Pr , d) ×SecPics (L
⊕r+1/C) (U × UU UU ′).

Now the two maps V → RSecPics(L⊕r+1/C) and RV → RSecPics(L⊕r+1/C) are
étale maps having the same truncation, so by [60, Corollary 2.2.2.9] V and RV are
equivalent. ⊓⊔
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Lemma 4.2.5 We have that R qV is a neighbourhood of qξ in Qg,n(Pr , d).

Proof This is similar to the proof of 4.2.4.
⊓⊔

Lemma 4.2.6 We have a homotopical cartesian diagram

bbRV W

R qV qW .

c �
h

q

Proof We denote the restriction of (E, σ ) to W by (F, θ). By Proposition 4.2.1 we
had RU = RZh(σ ). Since RV = RU × UU W , we have

RV = RZh(θ). (33)

By Lemmas 4.2.3 and 4.2.2 the restriction of ( qE, qσ) from |UU to qW is (q∗F, q∗θ).
From Proposition 4.2.1 we had that R qU = RZh(qσ). Then by the definition of R qV we
have

R qV = RZh(q∗θ). (34)

⊓⊔

5 Main theorem

We are now ready to prove our main theorem on the derived push-forward of the
structure sheaf of RMg,n(Pr , d). Just recall that contracting rational tails gives a
morphism

c : RMg,n(Pr , d) → RQg,n(Pr , d)

To prove our main theorem (see Theorem 5.2.1) that is

c∗ORMg,n(Pr ,d) = ORQg,n(Pr ,d).

it is enough to do it locally. That’s why Sect. 4 is useful as we have a local picture for
c. In Sect. 5.1, we will prove that q : W → qW is proper and birational (see Proposition
5.1.1. In 5.2, we use the Zariski Main theorem to prove that

q∗OW = O qW
(35)

(see proof of Lemma 5.2.6). Then by cohomology and base change, we prove our
main theorem (see Theorem 5.2.1).
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5.1 Properness of q

Recall that W is a smooth DM stack and qW is smooth affine scheme of finite type.

Proposition 5.1.1 The morphism q : W → qW is proper and birational.

Proof Birationality follows from the fact that q̃ : UU → |UU is birational and W , qW are
open subsets of UU and |UU respectively.

We use the valuative criterion to prove properness. Let R be a valuation ring with
K its field of fractions.

Consider the following diagram

SpecK W

SpecR qW .

ϕ◦

q

qϕ

∃! (36)

The morphism qϕ above is given by a family qC → SpecR, together with a line bundle
qG and sections (qw0, . . . , qwr ). We denote by qC

◦
the restriction of qC to SpecK . The

morphism ϕ◦ gives a family (C◦,G◦, w◦
0, . . . , w

◦
r ) such that

q(C◦,G◦, w◦
0, . . . , w

◦
r ) = (qC

◦
, qG

◦
, qw◦

0, . . . , qw◦
r ).

Here, by abuse of notation we denoted by q the map induced by q : W → qW .
In the following we show that there exists a unique morphism ϕ which extends

ϕ◦ and makes diagram (36) commute. In concrete terms, this amounts to finding
(C,G, w0, . . . , wr ) a family over SpecR which extends (C◦,G◦, w◦

0, . . . , w
◦
r ) and such

that

q(C,G, w0, . . . , wr ) = (qC, qG, qw0, . . . , qwr ).

Existence.

By definition, qW parameterises tuples ( qC, qL( qA), qw0, . . . qwr ), subject to the non-
degeneracy condition in 4.1.3. This shows that qW is a subset of Qg,n(Pr , d + a).

Let W̃ be the fibre product

W̃ Mg,n(Pr , d + a)

qW Qg,n(Pr , d + a).

�
c

In the following we construct a morphism W̃ → W such that W̃ → qW factors
through W̃ → W . The construction is the one in Theorem 3.3.10 with minor modifi-
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cations. Let (̃C, G̃) denote the universal curve and universal bundle on Pics
d+a . We

have

W̃ ⊂ SecPics
d+a

(G̃
⊕r+1

/C̃)

W ⊂ SecPics
d
(L(A)⊕r+1/C) = W ⊂ SecPics

d
(G⊕r+1/C)

qW ⊂ Sec }Pics
d
(qL( qA)⊕r+1/qC) = Sec }Pics

d+a
(qG

⊕r+1
d+a /qCd+a) ≃ Sec }Pics

d+a
(qL

⊕r+1
d+a /qCd+a)

where qCd+a, qLd+a are the universal curve and line bundle over }Pics
d+a

∼= }Pics
d . The

isomorphism }Pics
d → }Pics

d+a is given by ( qC, qL) �→ ( qC, qL ⊗ OqC
( qA)).

Claim. Let (C̃, G̃, w̃) ∈ W̃ and let RT be a rational tail of C̃ . We have

RT = RT
L̃

⊔ RT
Ã

.

The claim follows from the fact that w̃ = qw outside the exceptional locus of C̃ → qC

and the fact that BL(w) = BL(w)L ⊔ BL(w)A. We need to show that the labelling
on qW lifts to a labelling of the rational tails of the universal curve of W̃ . We have that
p : C̃ → C contracts rational tails. Since the base loci of wL and wA are disjoint we
get that the base loci of p−1wL and p−1wA are disjoint. Moreover, since the base
loci of wL and wA form disconnected components, the same holds about their inverse
images. This proves the claim.

By possibly shrinking qW and changing the basis of Pr , we have a divisor Z(w̃) Ã

on C̃, which we denote by Ã. Let L̃ denote G̃ ⊗ O(− Ã).
Let S be a scheme. In the following we contract rational tails of C̃S which intersect

Ã. Let DA be the divisor of C̃S , which consists of rational tails RTÃ and let δA be the
degree of L̃S restricted to the tails. We have that L′

S :=L̃S(δA DA) is trivial along the
exceptional locus DA and base point free. Let us define

C = Proj
∑

n

H0(̃CS, (L′
S)⊗n).

Let κ : C̃S → CS and let LS :=κ∗L
′
S . Since L′

S is trivial along DA, Lemma 7.1 in [52]
implies that LS is a line bundle. In the same way as we did in the proof of Theorem
3.3.10, we construct (w0, . . . , wr ) sections of L. We thus obtain a surjective morphism
W̃ → W . It can be seen that W̃ → qW factors through W̃ → W .

Since W̃ → W is surjective, there exists a (non unique) family of maps

(̃C
◦
, G̃

◦
, w̃◦

0, . . . , w̃
◦
r ) ∈ W̃

such that

q ◦ q̃ (̃C
◦
, G̃

◦
, w̃◦

0, . . . , w̃
◦
r ) = (C◦,G◦, w◦

0, . . . , w
◦
r ).
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Equivalently, we have a family ϕ̃◦ : SpecK → W̃ which commutes with ϕ◦. Hence
we have the following diagram

W̃ Mg,n(Pr , d + a)

SpecK W

SpecR qW Qg,n(Pr , d + a).

q̃

c
ϕ◦

ϕ̃◦

q

ϕ̃

ϕ̃

Since Mg,n(Pr , d) is proper, we have that c is proper. This implies that W̃ → qW

is proper. This shows that ϕ̃◦ extends (uniquely) to ϕ̃ : SpecR → W̃ , and thus the
morphism q̃ ◦ ϕ̃ : SpecR → W proves the existence.

we consider the image of (̃C, L̃, w̃0, . . . w̃r ) in W .

Uniqueness. In notations as before, we have morphisms W̃ → W → qW . We have
that W̃ → qW is separated, because by construction it is proper. The map W̃ → W is
surjective and proper by the discussion above. With this, we are under the assumptions
of [56, Tag 09MQ]. This shows that W → qW is separated.

⊓⊔

As W is a smooth DM stacks, we denote its coarse moduli space by |W |. Recall
that qW is a smooth scheme and that we have a morphism q : W → qW .

Lemma 5.1.2 The morphism |q| : |W | → qW is projective.

Proof In the following we show that |W | is projective. This implies that the morphism
|q| : |W | → qW is projective.

Recall that W is open in a DM stack π∗L(A) defined by the following stability
conditions, for a point (C, L(A), w0, . . . wr )

(1) the bundle ω
log
C ⊗ L⊗3 is ample

(2) The base locus BL(w) =
⋂r

i=0 Z(wi ) has dimension 0 and is distinct from
marked points and nodes.

To show projectivity, we can follow the proof of [21]. We sketch here the necessary
modifications, trying to adhere to the notation of the original proof as much as possible.

A family F : S → W consists of a pre-stable curve πS : CS → S with n marked
points (x1, . . . xn) : S → CS , a distinguished divisor AS of degree a, a line bundle L S

of degree d and sections (w0, . . . wr ) of L S(AS). We can define define a line bundle
on S by

VF = 〈ω
log
CS

⊗ LS(AS)
⊗3, ω

log
CS

⊗ LS(AS)
⊗3〉
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using Deligne’s bilinear pairing, explicitly for VF = ω
log
CS

⊗ LS(AS)⊗3, we have

VF = det RπS∗OS ⊗ (det RπS∗VF )⊗−2 ⊗ det RπS∗(VF ⊗ VF ).

We want to show this bundle VF is ample. Following Cornalba’s approach, which
relies on Seshadri’s criterion, it suffices to show that there exists a constant α =

α(g, n, r , d) > 0 such that for any non-isotrivial family F over an integral complete
curve S, since we have already proved that |q| : |W | → qW is proper.

(VF · VF ) ≥ αm(S) (37)

where m(S) denotes the maximum multiplicity of points in S.
Since the number of nodes of the curve CS is bounded in terms of (g, n, d, r) for

any family, we may reduce to the case of a family F whose generic curve is smooth,
as in the original proof. Now the idea is to add marked points to CS to obtain a stable
domain curve. Since we do not have a well-defined map to Pr , we can use the sections
to add 3(d + a) marked points. Indeed, by taking linear combinations of the sections
(w0, . . . , wr ) we may assume that we have a linearly independent set (w0, w1, w2)

such that for i ∈ {0, 1, 2} the following conditions hold (c.f. [21, Lemma 2] note that
our condition (iii) is equivalent to (ii), (iii) and (v)):

(i) Z(wi ) does not contain components of the fiber of πS

(ii) Z(wi ) does not contain x j for j = 1, . . . , n

(iii) Z(wi ) consists of d + a distinct, non-special points on all the fibers of πS which
are singular or lie over singular points of S.

We take

Z(w0) = xn+1 · · · xn+d+a

Z(w1) = xn+d+a+1 · · · xn+2(d+a)

Z(w2) = xn+2(d+a)+1 · · · xn+3(d+a)

where we may assume, up to some finite base change of bounded degree, that
(xn+1, . . . , xn+3(d+a)) are distinct as sections of πS and distinct from the original
sections (x1, . . . , xn). Now, on smooth fibers of πS , some of the xi ’s may still meet,
indeed they will if the w’s defined a linear system with non-empty base-locus. We may
proceed to resolve them as in [21, Proof of Lemma 2] and obtain a family of stable
curves

F ′ =
{

C ′
S → S, x ′

1, . . . , x ′
n+3(d+a)

}

with

(VF · VF ) = (ωCS
(D) · ωCS

(D)) ≥ (ωC ′
S
(D′) · ωC ′

S
(D′)). (38)



   40 Page 42 of 46 D. Kern et al.

where D =
∑n+3(d+a)

i=1 xi and D′ =
∑n+3(d+a)

i=1 x ′
i . We may assume F ′ is a non-

isotrivial family, otherwise we proceed as in [21, Lemma 3]. Now, (S, C ′
S, D′) is a non-

isotrivial stable family, so κ1 = πS′∗(ωC ′
S
(D′)⊗2) is ample on S, thus by Seshadri’s

criterion and (38) we have the required α to conclude that (37) holds.
⊓⊔

5.2 Derived push-forward

In this subsection, we will prove the main theorem of this paper that is:

Theorem 5.2.1 For any, g, n and d, we have that

c∗ORMg,n(Pr ,d) = ORQg,n(Pr ,d) in Db
Coh(RQ(Pr , d)).

Remark 5.2.2 At the level of virtual classes, we have that

c∗[Mg,n(Pr , d)]vir = [Qg,n(Pr , d)]vir.

This was proven in [11, 45, 47].

We deduce the following corollary.

Corollary 5.2.3 The G-theoretic Gromov–Witten invariants and the G-theoretic

quasimaps invariants are equal.

Remark 5.2.4 Let X be a Noetherian derived Artin stack. Recall that by definition (cf.
[35] for this definition for derived stacks)

K (X):=K (Perf(X)) and G(X):=K (Db
Coh(X)).

If X is smooth, Db
Coh(X) and Perf(X) coincide. When X is a scheme, Lee (see [38])

denotes them respectively K ◦(X) and K◦(X). Our G-theoretic Gromov–Witten invari-
ants are often called K -theoretic invariants by other authors.

We prove the theorem by using the étale neighborhoods RV and R qV constructed in
the previous section. With Lemma 4.2.6 in mind, we first want to study the morphism
q : W → qW .

Proposition 5.2.5 We have

R0q∗OW = O qW
in Db

Coh(
qW ) (39)

Ri q∗OW = 0 for i > 0. (40)

Proof of Proposition 5.2.5 Recall that W is a smooth DM stack. Denote its coarse mod-
uli space by W

α
−→ |W |. The scheme |W | is normal with rational singularities (see

[65], Proposition 1), since it is locally the quotient of a smooth scheme by a finite
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group. Since qW is a (smooth) scheme, q factors as W |W | qW ,α |q|
with α

a finite morphism and |q| a projective birational morphism. As |W | is also a good
moduli space (see [2] or [3]), we have

R0α∗OW = O|W | in Db
Coh(|W |)

Riα∗OW = 0 for i > 0. (41)

Now |W | admits, by Hironaka’s work [26], a projective resolution of singularities and
since the singularities were rational we have that

p : A → |W |

with

R0 p∗OA = O qW
in Db

Coh(
qW )

Ri p∗OA = 0 for i > 0. (42)

The composite map

f : A
p
−→ |W |

|q|
−→ qW

is a projective birational map between smooth schemes, then by [22, Theorem 1.1] we
have

R0 f∗OA = O qW
in Db

Coh(
qW )

Ri f∗OA = 0 for i > 0. (43)

The relative Leray spectral sequence, defined by

E
i, j
2 = Ri |q|∗(R

j p∗OA)

converges to Ri+ j f∗OA. By Eq. 42, the spectral sequence degenerates on the second
page and

Ri f∗OA = Ri |q|∗(R
0 p∗OA) = Ri |q|∗O|W |

and the result follows from combining this with Eqs. 43 and 41. ⊓⊔

Recall from Lemma 4.2.6, we have the homotopically Cartesian diagram

RV W

R qV qW .

i

c �
h

q

qi

(44)
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Lemma 5.2.6 We have Rc∗ORV = O
R qV

.

Proof This follows from derived base change, which works by Lemma A.1.3 in [27]
as qi is of finite Tor amplitude thanks to Proposition 4.2.1 and OW is cohomologically
bounded below as W is smooth. We thus get:

Rc∗ORV = Rc∗Li∗OW

= Lqi∗Rq∗OW

= Lqi∗O qW
by (39) and (40)

= O
R qV

.

⊓⊔

Proof of Theorem 5.2.1 The morphism c : RMg,n(Pr , d) → RQg,n(Pr , d). Gives a
morphism of structure sheaves

c : ORMg,n(Pr ,d) → c∗ORQg,n(Pr ,d).

To prove that it is an isomorphism, it is enough to prove it étale locally. That’s exactly
what we have done in Sect. 4. Hence we are in the situation of diagram (44), the
Lemma 5.2.6 finishes the proof. ⊓⊔
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