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Large-baseline quantum telescopes assisted by partially distinguishable photons
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Quantum entanglement can be used to extend the baseline of telescope arrays in order to increase the spatial

resolution. In one proposal by Marchese and Kok [Phys. Rev. Lett. 130, 160801 (2023)], identical single

photons are shared between receivers and interfere with a star photon. In this paper we consider two outstanding

questions: (i) what is the precise effect of the low photon occupancy of the mode associated with the starlight? and

(ii) what is the effect on the achievable resolution of imperfect indistinguishability (or partial distinguishability)

between the ground and star photons? We find that the effect of distinguishability is relatively mild, but low

photon occupancy of the optical mode of the starlight quickly deteriorates the sensitivity of the telescope for

higher auxiliary photon numbers.

DOI: 10.1103/PhysRevA.111.043701

I. INTRODUCTION

Large baseline imaging is a well-known technique for im-

proving the resolution of telescopes [1–4]. It has recently been

used to resolve the spatial features of a black hole in the

radio-frequency spectrum [5], with a baseline comparable to

the diameter of the earth. This was possible because antennas

can track both the amplitude and the phase of radio-frequency

waves and reconstruct the wave propagation characteristics. In

contrast, at optical frequencies the amplitude and phase infor-

mation must be retrieved via interferometry, which severely

limits the baseline of optical telescopes. Light collected in the

telescopes must travel through light pipes or optical fibers,

which practically limits the baseline due to construction con-

straints or photon losses, respectively.

Quantum technologies can be used to improve the per-

formance of telescopes by choosing the optimal quantum

observable [6–12] or extending the baseline using quantum

repeater protocols [13] and quantum error correction [14].

Recently, Marchese and Kok proposed a repeaterless method

to extend the baseline of a telescope by employing multiple

single-photon sources at the ground level that interfere at

the receiver sites with photons originating from astronomical

objects [15] (see Fig. 1). This minimizes the distance traveled

by the photons that carry information about the astronomical

objects and allows for redundancy in the ground-based pho-

tons to combat transmission losses over large distances. In this

paper we address two outstanding open questions that arose

from Ref. [15]: (i) what is the precise effect of the low photon

occupancy of the mode associated with the starlight? and (ii)

what is the effect on the achievable resolution of imperfect
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indistinguishability (or partial distinguishability) between the

ground and star photons.

This paper is organized as follows. In Sec. II, we recall

the technical details of the repeaterless quantum telescope of

Ref. [15], and in Sec. III, we provide the analysis of par-

tially distinguishable photons. In Sec. IV, we establish the

achievable resolution for the telescope, taking into account

single-mode photon occupancy. We conclude in Sec. V.

II. THE QUANTUM TELESCOPE PROTOCOL

We assume that a pointlike astronomical object, such as a

distant star, is sufficiently far away that the incoming light can

be effectively approximated by a plane wave. A photon from

this object will arrive in two receivers of the telescope, A and

B, separated by a distance L, in the superposition state

|ψin〉 =
|1〉A |0〉B + eiφ |0〉A |1〉B√

2
, (1)

where φ = kl = kL sin θ is the phase difference between the

two receivers due to the path difference l that originates from

the direction θ of the incoming wave with wave number k (see

Fig. 1). The star photon is collected by the receivers A and B,

and interferes locally at the receivers with N ground-based

photons in interferometers U . The ground-based sources sn

each emit a photon |sn〉 in a superposition of two modes, an

and bn, that propagate towards receivers A and B, respectively:

|sn〉 =
|1〉an

|0〉bn
+ |0〉an

|1〉bn√
2

. (2)

This state is easily achieved with a 50:50 beam splitter placed

behind the single-photon source. The two-mode state |sn〉 is

entangled in the photon number degree of freedom, since in

field theory, photons are excitations of the field modes and

it is the optical modes that constitute the entangled systems.

To avoid confusion with qubit entanglement, we refer to this

as “mode-entangled” states. For the original debate on this

distinction, see Refs. [16–19].

2469-9926/2025/111(4)/043701(9) 043701-1 Published by the American Physical Society



SUBHRAJIT MODAK AND PIETER KOK PHYSICAL REVIEW A 111, 043701 (2025)

FIG. 1. The proposal of Ref. [15]: two receivers, A and B, sepa-

rated by a distance L, receive photons from a pointlike astronomical

object and from sources S2, . . . , SN located midway between the

receivers. The path length of the star photon is kept short by colo-

cating the interferometers U with the receivers. The photons sent

from sources S2 to SN experience reduced transmission η2 � 1 due

to fiber losses. The measurement statistics are used to estimate the

declination angle θ , encoding the position of the star.

The creation and annihilation operators of the ground-

based modes are {a†
n, an} and {b†

n, bn}, and the input state

becomes

|ψ〉in
tot =

(

1

2

)
N
2

N
∏

n=1

(a†
n + eiφδn,1 b†

n)|0〉, (3)

where the Kronecker delta ensures that the phase shift φ is

applied to mode 1, the starlight mode. Here |0〉 is the vacuum

state. The interferometers U implement a discrete quantum

Fourier transform (QFT), and detecting D � N photons al-

lows one to reconstruct the probability distributions Pd(φ) in

the presence of losses, where d indicates the detector sig-

nature. Reference [15] showed that this distribution contains

a significant amount of information about the phase φ and

therefore the angular position of the star θ . We assume perfect

number-resolving detectors.

The Fisher information, which measures the information

about φ in the probability distribution, is given by [15]

FN (φ) =
σN
∑

d

Pd(φ)

(

∂lnPd(φ)

∂φ

)2

, (4)

where σN is the total number of possible detector outcomes.

Including transmission losses for the ground photons, the

FIG. 2. The dependence of the Fisher information on φ for vari-

ous numbers N of photons in the setup under the ideal condition of

no loss (solid black line, N = 2; dashed blue line, N = 3; and dot-

ted line, N = 4). The Fisher information increases with the photon

number as FN (φ) = 1 − 1/N .

Fisher information reduces to

F loss
N =

N−1
∑

k=0

pk (1 − p)N−1−k

(

N − 1

k

)

F ′
N−k, (5)

where F ′
N−k is the Fisher information for D = N − k detected

photons, k is the number of photons lost, and p is the proba-

bility of a single-photon loss. We assume that the loss on the

star photon is negligible and that the dominant loss is from

the fiber transmission losses over long distances. In the case

of no loss (p = 0), the Fisher information still depends on φ,

as shown in Fig. 2 for N � 3. Hence, the optimal arrangement

is to include a variable phase shift in one receiver that balances

the interferometer in such a way that the receivers “point” to

the source, i.e., φ ∼ 0.

III. DISTINGUISHABILITY OF PHOTONS

Next, we consider how the distinguishability between pho-

tons affects the Fisher information. We take the star photon as

the reference photon and study how imperfect mode-matching

of the ground-based photons to the star photon affects the

resolution. Our approach is as follows: the spatiotemporal

characteristics of the star photon are labeled with index μ. A

ground-based photon in a single mode a j with a slightly differ-

ent spatiotemporal character can then be described by a mode

that is a superposition of mode aμ and an orthogonal mode

aν
j . These modes have corresponding mode operators that

satisfy the usual bosonic commutation relations: [âμ, â†ν] =
[b̂μ, b̂†ν] = δμν and [âμ, âν] = [b̂μ, b̂ν] = 0. There are two

possibilities: all the ground-based photons may be different

from the star photon but identical to each other or all the

ground-based photons are also slightly distinguishable from

each other. In the latter case, the part of the mode for photon

j that is orthogonal to the star photon mode must also be

orthogonal to the other ground-based photons, and we re-

quire an extra index j on the orthogonal mode: aν → aν
j . We

model the distinguishability between the photons using the

043701-2
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parameter I ∈ [0, 1]:

â1 = â
μ

1 ,

â j =
√

I â
μ

j +
√

1 − I â
ν j

j ,

b̂1 = b̂
μ

1 ,

b̂ j =
√

I b̂
μ

j +
√

1 − I b̂
ν j

j . (6)

In this work, we focus on the problem of phase estimation

with multiple ground-based photons, where the degree of

indistinguishability I is assumed to be known and uniform

across the photons.

The initial state of the incoming star photon and the

ground-based photons is given by

|ψ〉in
tot =

1
√

2
(a†

1 + eiφb
†
1) ⊗

N
∏

j=2

a
†
j + b

†
j√

2
|0〉. (7)

Following the transformation in Eq. (6), the distinguishability

between photons is then modeled by

a
†
j =

√
I a

†μ

j +
√

1 − I a
†ν j

j ,

b
†
j =

√
I b

†μ

j +
√

1 − I b
†ν j

j , (8)

where j ∈ [2, N] accounts for only the ground-based photon

sources.

As in Ref. [15], we analyze the photon loss of

ground-based fiber transmission using the well-known

beam-splitter model where the transmissivity η is determined

by the fiber loss η = e−L/4L0 , where each photon travels over

a length L/2, and L0 is the attenuation length of the fiber. For

simplicity, we assume that L0 is the same for all fibers. The

transformed mode operators for the ground-based photons are

thus written as

a
†κ
j = ηa

†κ
j +

√

1 − η2c
†κ
j ,

b
†κ
j = ηb

†κ
j +

√

1 − η2d
†κ
j , (9)

where κ ∈ {μ, ν j} indicates the mode of the ground-based

photons and {c†
j , c j} ({d†

j , d j}) are the vacuum field operators

on either side of the installation.

At each site, the ground-based photon modes are mixed

with the star photon modes. This is done by implementing

QFT to the set of input photonic modes. This transformation

appears as a simple balanced beam-splitter in the case with

two photons, generating the following outputs for the modes

on the left:

a
†κ
1,out =

1
√

2
(−a

†κ
1,in + a

†κ
2,in),

a
†κ
2,out =

1
√

2
(a†κ

1,in + a
†κ
2,in), (10)

and analogously for the bi modes on the right. Therefore, for

N = 2 the overall initial state in Eq. (7) becomes

|ψ〉out
tot =

1

2

(

(−a
†μ

1 + a
†μ

2 )
√

2
+ eiφ (−b

†μ

1 + b
†μ

2 )
√

2

)

⊗

[

α

(

η
(a

†μ

1 + a
†μ

2 )
√

2
+

√

1 − η2 c
†μ

2

)

+ β

(

η
(a†ν

1 + a
†ν
2 )

√
2

+
√

1 − η2 c
†ν
2

)

+ α

(

η
(b

†μ

1 + b
†μ

2 )
√

2
+

√

1 − η2 d
†μ

2

)

+ β

(

η
(b†ν

1 + b
†ν
2 )

√
2

+
√

1 − η2 d
†ν
2

)]

|0〉, (11)

where α =
√

I and β =
√

1 − I are the amplitudes corre-

sponding to the relative indistinguishability and the opposite,

respectively. For N = 2, we do not need to disambiguate ν

with an index 2.

To find the Fisher information, we must calculate the prob-

abilities

Pd(φ) =
∣

∣〈d|ψ〉out
tot

∣

∣

2
, (12)

for the detector signatures |d〉 = |dμ, dν〉, where |d〉 =
|d1, d2, d3, d4〉 and di ∈ {1, 2} is the number of photons found

in detector i. Evidently, two photons can be distributed among

various modes and detectors in a number of ways. The relative

phase shift will turn to a global phase when both the photons

are picked up by the same detector or by separate detectors

on the same side. Therefore, we can only obtain information

about φ when two photons are detected in the same mode

and on different sides of the detectors. Only the following

configurations give rise to probabilities that contribute to the

Fisher information:

P|a†μ

2 ,b
†μ

1 〉(φ) = P|a†μ

1 ,b
†μ

2 〉(φ) =
η2I

8
(1 − cos φ),

P|a†μ

1 ,b
†μ

1 〉(φ) = P|a†μ

2 ,b
†μ

2 〉(φ) =
η2I

8
(1 + cos φ). (13)

We point out that no information about the correlation is

available with only one observed photon. Hence F ′
1 is always

0 and the total Fisher information is

F loss
2 (φ) = 1

2
(1 − p)I , (14)

where p = 1 − η2 is the probability of losing a single photon.

The situation gets quite different when an extra ground-

based photon is added. We further emphasize that each photon

at the ground base is identifiable from the reference to dif-

ferent degrees. Upon considering all the detection events, the

Fisher information yields

F loss
3 (φ) =

1

2
(1 − p)2 6(1 + cos φ)

5 + 4 cos φ
I2I3

+
1

2
(1 − p)2[(I2 + I3) − 2I2I3]

+
1

2
p(1 − p)(I2 + I3), (15)

where I j measures the degree of indistinguishability for jth

ground-based photons. The Fisher information in Eq. (15)

consists of terms that arise when all the photons are detected

and a single photon is lost. Events with two photon losses are

not relevant, since they do not contribute to the Fisher infor-

mation of the N = 3 case. As the number of ground-based

photons increases, it is expected to contribute more to the
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Fisher information. However, the relative distinguishability of

photons appears to limit this advantage. An improvement over

this can still be made if the photons are kept identical, i.e.,

I2 = I3. Next, we examine the extent to which the number

of ground-based photons can be increased.

IV. ACHIEVABLE RESOLUTION

Next, we consider the case of a weak thermal source at

optical frequencies. The rate of photon emission ε within

each coherence time interval is considerably less than 1 [20].

Therefore, the density operator for the optical field in each

interval becomes, to a good approximation,

ρ = (1 − ε)ρ0 + ερ1, (16)

where ρ1 is the one-photon state and ρ0 = |0〉〈0| is the zero-

photon state. Two-photon events are considered insignificant

for the remainder of the discussion. The total probability of

detecting d photons in the N-photon setup becomes

PT (d) = (1 − ε)PA(d) + εPB(d), (17)

where PA(d) and PB(d) are the probabilities for the absence

and the presence of the star photon, respectively. Clearly, we

cannot identify from the detection of d < N photons whether

a star photon is present. In this case, the Fisher information

becomes

F (φ) =
σD
∑

d

ε2

(1 − ε)PA(d) + εPB(d)

(

∂PB(d)

∂φ

)2

, (18)

where PA(d) does not depend on φ because the absence of a

star photon carries no information about φ.

We calculate the Fisher information for various values of

N . For N = 2, the factor ε modifies the total Fisher informa-

tion:

F2(φ) = 1
2
ε(1 − p)I . (19)

Linear scaling in ε reflects the reduced rate of gaining infor-

mation about φ. For N = 3, the scaling in ε remains linear

when all the photons are detected. However, the situation

changes when a single photon is lost (see the Appendix). This

implies a deteriorated estimation due to the uncertain arrival

of the star photon. Upon considering all the events, the total

Fisher information results in

F3(φ) =
ε

2
(1 − p)2 6(1 + cos φ)

5 + 4 cos φ
I2I3

+
ε

2
(1 − p)2[(I2 + I3) − 2I2I3] +

∑

i

F
i
2,

(20)

where F i
2 records various contributions when a single photon

is lost, and i runs over all such possible configurations (see

the Appendix). In the limiting case, ε → 1 and p → 0, the

typical scaling with N is reproduced by the Fisher information

as FN ∝ 1 − 1/N .

Next, we look at the situation using four photons. We

record an additional contribution to the Fisher information

due to the higher number of photons. In order to make the

expression analytically accessible, we assume all the photons

are indistinguishable, while the case with distinct photons is

FIG. 3. The resolution angle δθ for identical photons at a given

optical wavelength λ = 628 nm and over a typical attenuation length

L0 = 10 km. In an ideal situation, we consider the star photon to

arrive with certainty, i.e., ε = 1. The resolution angle decreases at

short distances and approaches a minimum as the baseline increases.

Further increases in the baseline result in reduced resolution due to

the predominant losses across the transmission channel. Thus, with

more ground-based photons, we achieve better resolution and a shift

in the minimum is observed towards larger distances, allowing for an

extension of the baseline.

calculated numerically. This leads to

F4(φ) = 3ε(1 − p)3 (9 + 7 cos φ)

8(5 + 3 cos φ)
+

∑

i

F
i
3 +

∑

j

F
j

2 ,

(21)

where F i
3 records all the instances when a single photon is

lost and F i
2 does the same when two photons are lost (see the

Appendix).

The achievable resolution of the telescope is captured by

the statistical error δθ in the angle θ = φ/kL, where we used

the small-angle approximation, since we are operating the

telescope in the optimal regime where φ ≈ 0. From the error

propagation formula, we have

(δθ )2 =
(δφ)2

k2L2
, (22)

and (δφ)2 is lower bounded by the Fisher information via the

Cramér-Rao bound. The best resolution is, therefore, given by

(δθ )2 =
(

1

kL

)2
1

FN (φ)
. (23)

As expected, an increase in Fisher information leads to a better

resolution.

The resolution for identical photons and ε = 1 is shown in

Fig. 3 as a reference. In our model ε = 1 describes the single-

photon state, which is no longer a thermal state. We include

this to gain insight into how the occupation number affects

the sensitivity of the imaging method. Including low photon

occupancy and ground-based photons that are 96% identical

to the star photon—and identical to each other—leads to the

resolutions shown in Table I, where we optimized the distance

Lopt between the receivers. The last column includes αopt =
Lopt/L0. The values for δθmin are calculated for L0 = 10 km
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TABLE I. The table shows the parameters obtained with different

N for a given emission rate of the star photon. The ground-based pho-

tons are considered to be nearly identical (96%) to the star photon,

and identical to each other. The third column shows the minimum

resolution δθmin at the optimal αopt, keeping the relative phase shift φ

fixed close to 0.

ε N δθmin (µas) αopt

2 1.9797 4

1 3 1.4311 4.1797

4 1.2347 4.61273

2 2.0303 4

0.99 3 1.4698 4.19205

4 1.6888 4.28221

2 2.8569 4

0.5 3 2.3043 4.891

4 2.4776 4.65838

2 20.2018 4

0.01 3 34.2724 2.07328

4 21.6339 4.90848

and λ = 628 nm. Figure 4 shows the resolution as a function

of α. A minimum indicated the best possible resolution. We

can see that the four-photon setup performs worse than N = 2

and N = 3 in most regimes. In Table II, the resolution δθ

is shown for the case where the ground-based photons are

partially distinguishable from each other. The case of practical

interest is how N = 3 compares to N = 2. For low occupancy

ε = 0.01, the case N = 2 is already optimal. Figure 5 shows

the resolution as a function of α.

We can further compare the performance of our proto-

col to a semiclassical protocol where s2, . . . , sN are replaced

with a coherent state that is distributed between A and B

(for example, by sending a coherent state |α〉 into a beam

splitter, and sending the two outputs to A and B), and photon

counting at the receivers. In the lossless asymptotic limit with

ε = 1 (the best-case scenario), this leads to a precision of

�θ = 2
√

2/kL, which is worse than the achievable resolution

TABLE II. The table presents the parameters for N = 3 with

varying degrees of distinguishability, using the identical N = 2 as

reference. The enhancement in resolution is observed with N = 3;

I = 96% for each case corresponds to a distinct emission rate.

This advantage disappears as distinguishability increases even with

an additional photon at the ground base. As a result, boosting

photon counts in practice does not necessarily guarantee improved

estimation.

ε N ; I % δθmin (µas) αopt

2; 100 2.030 4

0.99 3; 96 1.468 4.192

3; 50 2.033 4.098

3; 25 2.830 4.050

2; 100 3.999 4

0.5 3; 96 2.3030 4.8911

3; 50 3.1456 4.7868

3; 25 4.2040 4.4409

2; 100 19.980 4

0.01 3; 96 34.272 2.0732

3; 50 43.449 2.0621

3; 25 57.230 2.1542

shown in our Figs. 4 and 5. This coherent-state protocol is

semiclassical because it depends on photon counting. We have

not included this in the figures above, since the comparison is

not quite so straightforward. In particular, we need to decide

whether we allow for a very bright coherent state, which will

require detectors that can tell the difference between n and

n + 1 photons, where n ≫ 1. These detectors do not exist

(as opposed to single-photon sources and low-photon-number

resolution detectors). Alternatively, we can choose the average

photon number in the coherent state equal to the number of

auxiliary photons. In this case, the precision will be much

worse than the already inferior ideal case above.

We could further reduce the quantum mechanical nature

from the protocol by considering homodyne detection. How-

ever, as was pointed out by Wang and Zhou in a recent paper

FIG. 4. The resolution angle δθ as a function of baseline length α in units of attenuation length L0 = 10 km. The curves are obtained

using the same optical wavelength as in Fig. 3 (628 nm) and different arrival probabilities of the star photon. The ground-based photons are

considered to be nearly identical (96% indistinguishability) to the star photon. The panels from left to right indicate a decline in the rate of

the arriving star photon. Different solid colors shown in each figure correspond to a different total photon number. The resolution for the first

two figures appears to improve as the number of ground-based photons increases up to N = 3. However, because of complex interferences,

increasing the number above N = 3 does not boost the resolution anymore. The improvement is reported to be broken even beyond N = 2

when the arrival rate of the star photon becomes highly uncertain, as shown in the panel to the right. Unlike the ideal case in Fig. 3, nearly

identical ground-based photons do not always ensure lowering the minimum of resolution even when the arrival of the star photon is slightly

uncertain. However, until N = 3 (Table I), the improvement is robust up to a moderate arrival rate of the star photon.

043701-5
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FIG. 5. The resolution angle δθ as a function of α for the same parametrization as in Fig. 4. The curves are also obtained for optical

wavelengths λ = 628 nm, with the same attenuation length scale L0 = 10 km. The panels, from left to right, indicate different arrival

probabilities of the star photon. Each panel uses the solid red curve as a reference where the ground-based photon is indistinguishable from

the stellar photon. The blue curves denote different levels of mutually distinguishable ground-based photons. The panel on the left shows that

having more photons at the ground improves resolution, even if they can be distinguished to some extent. Once distinguishability reaches a

particular threshold, the advantage is no longer available. The panel in the middle, when the arrival rate is much more uncertain than before,

appears to follow the same pattern, but with a compromised resolution. Finally, if we take into account the situation where the rate of arrival

is very uncertain, employing more ground-based photons is an unnecessary investment. We rule out the case with N = 4 since it appears to be

an unsuitable option due to complex interference.

[21], such an all-Gaussian protocol will do still worse than the

protocols presented here, since the Fisher information will be

bounded by ε2, whereas our protocol scales with ε.

V. CONCLUSIONS

We considered the enhanced baseline two-receiver tele-

scope, where quantum entanglement in the form of mode-

entangled single photons are employed to help increase the

baseline in the presence of loss. The astronomical photons

carry the information about the object of interest, and mini-

mizing their loss dictates that we measure them soon after they

enter the telescope. The photons created on the ground do not

carry information about the astronomical object, and we can

therefore afford to lose some of them. Building redundancy

by sending multiple photons to the receivers allows us to

push the baseline much further, and as long as there is an

appreciable photon flux in the detectors at the two receivers,

we can increase the practical resolution of the telescope. We

measure the resolution using the mean square error on the

angular position in the sky, and we calculate the classical

Fisher information to find the resolution limit via the classical

Cramér-Rao bound.

In this paper we considered two open questions, namely,

the effect of partial distinguishability of the photons and

the effect of low occupancy of thermal modes. When the

occupancy ε = 1, the resolution is relatively robust against

moderate photon distinguishability, and four nearly identi-

cal photons (96% indistinguishability) strongly outperform

the simple N = 2 case for a resolution of δθ = 1.23 µas.

However, even for a small reduction in ε = 0.99 and a indis-

tinguishability of 96%, the four-photon setup is outperformed

by the three-photon case. Hence, we conclude that in practice

we do not need to consider more than three photons, including

the astronomical photon. For an occupancy of ε = 0.5 and

indistinguishability of 96%, the three-photon case just out-

performs the simplest case of N = 2. However, the situation

changes considerably when the occupancy is reduced further.

At ε = 0.01, increased distinguishability of the photons has

a pronounced detrimental effect on the N = 3 case, but the

leading cause of lower resolution is the reduced occupancy of

the astronomical mode.

For thermal states with a large ε (such as for lower-

frequency radiation), our proposal also applies in principle.

However, the analysis will be greatly complicated by the

presence of multiple photons in the thermal modes, and in

practice the calculations will become intractable very quickly,

even using the relatively simple balanced beam-splitter setup

in our interferometers U (the discrete QFTs). We expect to

gain more information about the position of the source in the

sky due to the additional photons, but this will be offset by the

greater uncertainty about the number of photons that originate

from the external source.

Another interesting effect is the contributions to the reso-

lution of different numbers of measured photons in the N = 3

case. There are two contributions to the resolution, namely,

when all photons are detected and when only two out of

three photons are detected. These two contributions have very

different optimal baseline scales, and the resolution curve has

two minima, shown in Fig. 4. As a result, for thermal light

sources in the near infrared or optical frequency domain, the

optimal setup is also the simplest setup, with one auxiliary

photon that is filtered to be indistinguishable to the astronom-

ical photon to within a few percent. Yet, even in this setup

resolutions on the order of ∼20 µas should be achievable.
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APPENDIX: MODIFIED FISHER INFORMATION

We derive an expression for the modified Fisher information using two ground-based photons when a star emits photons at a

rate ε substantially lower than 1. The density operator for the initial state of the starlight is approximated as described in Sec. IV.

We write the total input state with two possibilities, i.e., one in the absence (A) and the other in the presence (B) of a star photon:

|ψ〉A = |0〉1 ⊗ |1〉2 ⊗ |1〉3,

|ψ〉B = |1〉1 ⊗ |1〉2 ⊗ |1〉3. (A1)

Now, let the photons enter the interferometer and collect the state at the output:

|1〉1 →
1

√
2

(

(e
2iπ
3 a

†
1 + e− 2iπ

3 a
†
2 + a

†
3)

√
3

+
eiφ (e

2iπ
3 b

†
1 + e− 2iπ

3 b
†
2 + b

†
3)

√
3

)

1

,

|1〉2 →
1

√
2

(√
1 − p(e− 2iπ

3 a
†
1 + e

2iπ
3 a

†
2 + a

†
3)

√
3

+ √
pc

†
2 +

√
1 − p(e− 2iπ

3 b
†
1 + e

2iπ
3 b

†
2 + b

†
3)

√
3

+ √
pd

†
2

)

2

,

|1〉3 →
1

√
2

(√
1 − p(a†

1 + a
†
2 + a

†
3)

√
3

+ √
pc

†
3 +

√
1 − p(b†

1 + b
†
2 + b

†
3)

√
3

+ √
pd

†
3

)

3

. (A2)

We have treated all photons as identical and recorded every event associated with a single-photon loss. The contributions to

Eq. (20) are as follows:

F
1
2 =

ε2 p2(1 − p)2 sin2 φ

3[εp(1 − p)(1 + cos φ) + 4(1 − ε)(1 − p)2]
,

F
2
2 =

ε2 p2(1 − p)2(sin φ +
√

3 cos φ)2

3{2εp(1 − p)[2 +
√

3 sin(φ) − cos(φ)] + 4(1 − ε)(1 − p)2}
,

F
3
2 =

ε2 p2(1 − p)2(sin φ −
√

3 cos φ)2

3[2εp(1 − p)(2 −
√

3 sin φ − cos φ) + 4(1 − ε)(1 − p)2]
. (A3)

The situation where each ground-based photon has a distinct distinguishability from the reference photon is now examined. This

will modify the contributions:

F
1
2 =

α4
2β

4
3ε2 p2(1 − p)2 sin2 φ

6
[

εp(1 − p)α2
2β

2
3 (1 + cos φ) + 4(1 − ε)(1 − p)2α2

2α
2
3

] ,

F
2
2 =

α4
3β

4
2ε2 p2(1 − p)2 sin2 φ

6
[

α2
3β

2
2εp(1 − p)(1 + cos φ) + 4α2

2α
2
3 (1 − p)2(1 − ε)

] ,

F
3
2 =

α4
3α

4
2ε

2 p2(1 − p)2 sin2 φ

3
[

4α2
2α

2
3 (1 − p)2(1 − ε) + α2

2α
2
3εp(1 − p)(1 + cos φ)

] ,

F
4
2 =

α4
2β

4
3ε2 p2(1 − p)2

(

sin φ −
√

3 cos φ
)2

6
[

2α2
2β

2
3εp(1 − p)

(

2 −
√

3 sin φ − cos φ
)

+ 4α2
2α

2
3 (1 − p)2(1 − ε)

] ,

F
5
2 =

α4
3β

4
2ε2 p2(1 − p)2

(

sin φ +
√

3 cos φ
)2

6
[

2α2
3β

2
2 p(1 − p)ε

(

2 +
√

3 sin φ − cos φ
)

+ 4α2
2α

2
3 (1 − p)2(1 − ε)

] ,

F
6
2 =

α4
2α

4
3ε

2 p2(1 − p)2
(

sin φ −
√

3 cos φ
)2

3
[

4α2
2α

2
3 (1 − p)2(1 − ε) + 2α2

2α
2
3 p(1 − p)ε

(

2 −
√

3 sin φ − cos φ
)] ,

F
7
2 =

α4
3α

4
2ε

2 p2(1 − p)2
[

sin(φ) +
√

3 cos(φ)
]2

3
[

4α2
2α

2
3 (1 − p)2(1 − ε) + 2α2

2α
2
3 p(1 − p)ε

(

2 +
√

3 sin φ − cos φ
)] ,

F
8
2 =

α4
2β

4
3ε2 p2(1 − p)2

(

sin φ +
√

3 cos φ
)2

6
[

2α2
2β

2
3 p(1 − p)ε

(

2 +
√

3 sin φ − cos φ
)

+ 4α2
2α

2
3 (1 − p)2(1 − ε)

] ,

F
9
2 =

α4
3β

4
2ε2 p2(1 − p)2

[

sin φ −
√

3 cos(φ)
]2

6
[

2α2
3β

2
2 p(1 − p)ε

(

2 −
√

3 sin φ − cos φ
)

+ 4α2
2α

2
3 (1 − p)2(1 − ε)

] , (A4)
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where α j is the degree of distinguishability between the reference and jth ground-based photon. It is clear that the contribution

from the loss terms begins scaling up linearly as ε is approaching 1. On the other hand, when ε is significantly lower than 1,

this refers to a situation where the rate of gaining information is reduced. Now, we carry out the same procedure using three

ground-based photons. Unlike the earlier case, we have two sets of contributions: one for losing a single photon (F i
3) and

other for losing two photons (F i
2). To keep things simple, we assume all the photons are identical, whereas the cases with

distinguishability have been studied numerically. The following are the contributions to Eq. (21) for a single-photon loss:

F
1
3 =

ε2 p2(1 − p)4 cos2 φ

4[2(1 − ε)(1 − p)3 + εp(1 − p)2(1 − sin φ)]
,

F
2
3 =

ε2 p2(1 − p)4 cos2 φ

4[2(1 − ε)(1 − p)3 + εp(1 − p)2(1 + sin φ)]
,

F
3
3 =

6ε2 p2(1 − p)4 sin2(φ)

4[18(1 − ε)(1 − p)3 + εp(1 − p)2(5 + 4 cos φ)]
,

F
4
3 =

ε2 p2(1 − p)4 sin2 φ

2[2(1 − ε)(1 − p)3 + εp(1 − p)2(5 − 4 cos φ)]
,

F
5
3 =

ε2 p2(1 − p)4(sin φ + cos φ)2

2[4(1 − ε)(1 − p)3 + 2εp(1 − p)2(3 + 2 sin φ − 2 cos φ)]
,

F
6
3 =

ε2 p2(1 − p)4(sin φ − cos φ)2

2[4(1 − ε)(1 − p)3 + 2εp(1 − p)2(3 − 2 sin φ − 2 cos φ)]
. (A5)

Similarly, the contributions are as follows when two photons are lost:

F
1
2 =

p4(1 − p)2ε2 sin2 φ

8[p2(1 − p)ε(1 + cos φ) + 4p(1 − p)2(1 − ε)]
,

F
2
2 =

p4(1 − p)2ε2 sin2 φ

16[p2(1 − p)ε(1 − cos φ) + 2p(1 − p)2(1 − ε)]
,

F
3
2 =

p4(1 − p)2ε2 cos2 φ

16[p2(1 − p)ε(1 + sin φ) + 2p(1 − p)2(1 − ε)]
,

F
4
2 =

p4(1 − p)2ε2 sin2 φ

16[p2(1 − p)ε(1 − cos φ) + 2p(1 − p)2(1 − ε)]
,

F
5
2 =

p4(1 − p)2ε2 cos2 φ

16[p2(1 − p)ε(1 − sin φ) + 2p(1 − p)2(1 − ε)]
,

F
6
2 =

3p4(1 − p)2ε2 sin2 φ

32[p2(1 − p)ε(1 − cos φ) + 4p(1 − p)2(1 − ε)]
,

F
7
2 =

3p4(1 − p)2ε2 sin2 φ

32[p2(1 − p)ε(1 + cos φ) + 4p(1 − p)2(1 − ε)]
,

F
8
2 =

p4(1 − p)2ε2 sin2 φ

8[p2(1 − p)ε(cos φ + 1) + 4p(1 − p)2(1 − ε)]
,

F
9
2 =

p4(1 − p)2ε2 sin2 φ

16[p2(1 − p)ε(1 − cos φ) + 2p(1 − p)2(1 − ε)]
,

F
10
2 =

p4(1 − p)2ε2 cos2 φ

16[p2(1 − p)ε(sin φ + 1) + 2p(1 − p)2(1 − ε)]
,

F
11
2 =

p4(1 − p)2ε2 sin2 φ

16[p2(1 − p)ε(1 − cos φ) + 2p(1 − p)2(1 − ε)]
,

F
12
2 =

p4(1 − p)2ε2 cos2 φ

16[p2(1 − p)ε(1 − sin φ) + 2p(1 − p)2(1 − ε)]
,

F
13
2 =

p4(1 − p)2ε2 sin2 φ

32[p2(1 − p)ε(cos φ) + 1) + 4p(1 − p)2(1 − ε)]
,
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F
14
2 =

p4(1 − p)2ε2 sin2 φ

32[p2(1 − p)ε(1 − cos φ) + 4p(1 − p)2(1 − ε)]
,

F
15
2 =

1

2
(1 − p)p2ε, (A6)

with ε → 1, and both the sets corresponding to the loss start scaling up linearly, whereas for small ε, the error in estimation

becomes more dominant.
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