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Reduced bone density accrual among peripubertal
boys with HIV in Zimbabwe

Lisha Jeenaa, Rashida A. Ferrandb,c, Victoria Simmsc,d, Cynthia Kaharic,e,

Tsitsi Bandasonc, Ruramayi Rukunib,c, Andrea M. Rehmand,

Sarah Rowland-Jonesa, Anthony Y.Y. Hsieha,M and Celia L. Gregsonc,f,M

Objective: To investigate bone density accrual over 1 year among peripubertal
children with HIV (CWH) compared to children without infection (CWOH); and risk
factors associated with bone density accrual among CWH.

Design: A prospective cohort study in urban Zimbabwe.

Methods: CWH on antiretroviral therapy aged 8–16 years, and CWOH, frequency-
matched by age were recruited in Zimbabwe. Z-scores for height-adjusted total-body
less-head bone mineral content for lean mass (TBLH-BMCLBM) and size-adjusted
lumbar spine bone mineral apparent density (LS-BMAD) were calculated from dual
X-ray absorptiometry (DXA) scan measurements. Linear regression compared bone
density accrual by HIV status.

Results: Of 609 participants, 492 (80.7%) completed a follow-up visit (50.2% boys,
49.6% CWH). Mean baseline age was 12.5 years. More girl CWH than CWOHwere in
Tanner stages I/II at baseline. Bone density accrual (D) adjusted for age, Tanner stage and
baseline DXA Z-score was less in boy CWH than boy CWOH {adjusted mean (95%
confidence interval (CI)] DLS-BMAD Z-score�0.14 (�0.25 to�0.02) vs. 0.01 (�0.09 to
0.12), P¼0.020, and DTBLH-BMCLBM Z-score�0.19 (�0.33 to�0.04) vs. 0.07 (�0.07
to 0.20), P¼0.015}, but similar in girls with and without HIV [DLS-BMAD Z-score 0.05
(�0.07 to 0.17) vs.�0.01 (�0.09 to 0.07), P¼0.416, andDTBLH-BMCLBM Z-score 0.08
(�0.07 to 0.22) vs. �0.03 (�0.12 to 0.07), P¼0.295]. Viral load greater than
1000 copies/ml and tenofovir disoproxil fumarate use were associated with less gain
in LS-BMAD Z-score among boys, whereas Tanner stage IV and V were associated with
greater gains in LS-BMAD and TBLH-BMCLBM Z-scores among CWH.

Conclusion: Among boys only, CWH had impaired bone accrual, associated with high
viral load and tenofovir use. Bone density gains were greater in later puberty among
CWH suggesting potential to correct deficits.
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Introduction

The growing paediatric population living with HIV
experience chronic HIV-associated morbidities as they
transition through adolescence, including low bone
density, which increases risk of fractures and the
development of osteoporosis in later adulthood [1–3].
Puberty is an important period when rapid linear growth
and bone mass accrual occur until peak bone mass is
reached in early adulthood [4–6]. The rate of pubertal
development differs by sex, with girls having an earlier
onset and shorter duration of puberty compared to boys
[7–9].

Stunting (height-for-age Z-score <�2) is common
among African children with HIV (CWH) [10].
Furthermore, a higher prevalence of low bone density
is observed among prepubertal and pubertal CWH
compared to children without HIV infection (CWOH)
[11,12], and to children who are HIV-exposed but
uninfected [13]. In a cross-sectional analysis of CWH
established on antiretroviral therapy (ART) aged 8–
16 years in Zimbabwe, we identified marked deficits in
skeletal size-adjusted bone density among CWH com-
pared to CWOH that were more pronounced in those at
the end of puberty and were associated with stunting [14].
There are few studies describing bone density accrual in
children growing up with perinatal HIV. A 2-year
longitudinal cohort study conducted among South
African prepubertal CWH showed persistently lower
bone mass compared to CWOH at both baseline and
follow-up visits, but no difference in the annual
percentage change of bone mass between groups [15].

Since the effect of living with HIVon peripubertal bone
growth is unclear, we aimed to investigate bone density
accrual over 1 year among peripubertal CWH compared
to CWOH. We further aimed to identify factors
associated with bone density accrual among CWH.

Methods

Study design and participants
The IMVASK (Impact of vertical HIV infection on child
and adolescent skeletal development) cohort study
recruited CWH aged 8–16 years, established on ART
for at least 2 years, from HIV clinics at the two public
hospitals, Parirenyatwa and Sally Mugabe Central
Hospitals, in Harare, Zimbabwe. CWOH in the same
age range were recruited from government schools in the
corresponding catchment areas using quota sampling by
sex and age group (8–10, 11–13 and 14–16 years) to
ensure equal numbers per group (Supplementary Table 1,
http://links.lww.com/QAD/D443) [16]. Exclusion cri-
teria included children requiring immediate hospitalisa-
tion, residing outside Harare, or unaware of their HIV

diagnosis. Baseline recruitment occurred between June
2018 and November 2019 with a follow-up clinic
betweenMay 2019 and February 2021. The first National
lockdown in Zimbabwe due to the COVID-19 pandemic
started on 30 March 2020 resulting in delayed follow-up
for some participants. Follow-up visits were completed
for 47.2% prior to this date and study activity resumed
from May 2020.

Questionnaire
At both baseline and follow-up visits, research staff
administered questionnaires to collect sociodemographic
(age, sex, orphanhood), lifestyle (physical activity, vitamin
D and calcium intake, history of tuberculosis) and HIV-
specific data [age at diagnosis, age at ART initiation, ART
regimens and duration of ART (calculated as a percentage
of years lived)].

Physical activity was assessed using the International
Physical Activity Questionnaire (IPAQ), validated in
multiple countries including South Africa [17], and
quantified as multiples of the resting metabolic rate in
MET-minutes (metabolic equivalent of task). Vitamin D
and calcium intake were assessed using a questionnaire-
based tool validated in India and Malawi and adapted to
Zimbabwe in accordance with international guidelines
[16,18]. The tool estimates dietary intake based on the
number of locally relevant animal-sourced food types
(eggs, dairy, fish, meat, fortified oils, margarine and
kapenta fish) consumed at least three times per week.

Clinical examination
Two standing height and weight measurements were
taken to the nearest 0.1 cm (using a Seca 213 stadiometer)
and 0.1 kg (using Seca 875 weight scales) respectively. If
height measurements differed by more than 0.5 cm, or
weight measurements by more than 0.5 kg, a third reading
was taken, and the final height and weight values was the
mean of the two or three measurements. Height-for-age
and weight-for-age Z-scores were calculated using 1990
UK reference data [19]. Tanner pubertal staging was
assessed by a nurse or doctor. Testicular volume, penile
size (length and circumference) and pubic hair growth
(quality, distribution and length) were assessed for boys,
while breast size and contour, pubic hair growth and age
of menarche were assessed for girls. These characteristics
were used to grade the children from I to V based on
Tanner descriptions [20–22]. Where there was discor-
dance between the stages, testicular and breast develop-
ment stage were used to assign Tanner stage for boys and
girls, respectively.

Bone density measurement
Trained radiographers performed dual X-ray absorpti-
ometry (DXA) scans using a Hologic QDR WI
densitometer with Apex software V.4.5 (Hologic, Bed-
ford, Massachusetts, USA). Repeat scans were performed
in a subgroup of participants (n¼ 30) to confirm

684 AIDS 2025, Vol 39 No 6

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
://jo

u
rn

a
ls

.lw
w

.c
o
m

/a
id

s
o
n
lin

e
 b

y
 B

h
D

M
f5

e
P

H
K

a
v
1
z
E

o
u
m

1
tQ

fN
4
a
+

k
J
L
h
E

Z
g
b
s
IH

o
4
X

M
i0

h
C

y
w

C
X

1
A

W
n
Y

Q
p
/IlQ

rH
D

3
i3

D
0
O

d
R

y
i7

T
v
S

F
l4

C
f3

V
C

4
/O

A
V

p
D

D
a
8
K

2
+

Y
a
6
H

5
1
5
k
E

=
 o

n
 0

4
/1

7
/2

0
2
5

http://links.lww.com/QAD/D443


reproducibility. Bone measurements included total-body
less-head bone mineral content for lean body mass
(TBLH-BMCLBM) and lumbar spine bone mineral
apparent density (LS-BMAD). As per the International
Society of Clinical Densitometry (ISCD) recommenda-
tions, LS-BMAD was calculated from DXA-measured
lumbar spine data using the Carter method [23]. TBLH-
BMCLBM was calculated using published equations for
Hologic DXA scans that adjust for log-transformed total
body lean mass, total body fat mass, height and age [24].
Measurements were adjusted for skeletal size, as per ISCD
recommendations, as the two-dimensional bone density
are highly dependent on bone size; thus, DXA under-
estimates bone density in children [25]. Bone density Z-
scores were generated using a Hologic UK population
reference dataset of white children aged 4–20 years,
collected from 1996 to 2012 as recommended by the
ISCD, as no local reference data were available [24,26].

Blood sample collection
Children who were not known to have HIV infection on
enrolment underwent a rapid HIV test as part of their
assessment. One participant tested positive and was
referred for HIV care and excluded from this study
(Supplementary Table 1, http://links.lww.com/QAD/
D443). In children with a known HIV diagnosis on
enrolment, CD4þ T-cell count, and HIV viral load were
measured using an Alere PIMACD4 machine (Waltham,
Massachusetts, USA) and the GeneXpert platform
(Cepheid, California, USA) respectively. Viral suppres-
sion was defined as 50 copies/ml or less.

Statistical analysis
Analyses were performed using RStudio (version 4.1.2).

A socioeconomic status (SES) score was derived using
principal component analysis that combined a list of
variables (number of people in the household, age of the
head of the household, maternal and paternal education,
ownership of the household, monthly income, access to
electricity,water and flush toilet, and household ownership
of fridge, bicycle, car, television or radio) split into tertiles.

The dataset had 93.8% complete entries, with the
‘orphanhood’ variable having the most missingness at
2.4%. Missing data were imputed using multiple imputa-
tion by chained equations, and assuming data were missing
at random [27]. Imputed variables included bone density
outcomes and previously mentioned participant charac-
teristics including age, sex, Tanner stage, SES, orphan-
hood, physical activity, dietary calcium and vitamin D
intakes, and history of tuberculosis. Sociodemographic
characteristics of participants who completed follow-up
visit were compared to those lost-to-follow-up.

Data were sex-stratified given known sex-specific differ-
ences in pubertal maturation [9] and compared between
CWH and CWOH using independent sample t tests for

means and chi-squared (x2) tests for proportions. Annual-
ised change (D) in LS-BMAD, TBLH-BMCLBM and
height Z-scores were calculated as the difference between
baseline and follow-up measurements, divided by the
number of days between visits, multiplied by 365.25 days
(this accounted for variation in follow-up period). Means
and mean differences with 95% confidence intervals (CIs)
for DLS-BMAD, DTBLH-BMCLBM and Dheight Z-
scores between CWH and CWOH were calculated using
linear regression adjusting for baseline age, Tanner stage
and bone and height measurements [14,15,28]. Interac-
tions between HIV status, age and Tanner stage on change
in bone densities and height were investigated. To visualize
growth patterns, a locally estimated scatterplot smoothing
method (LOESS) was used to plotDLS-BMAD,DTBLH-
BMCLBM and Dheight Z-scores against age.

Among the CWHwho completed follow-up, associations
between HIV-related factors and DLS-BMAD and
DTBLH-BMCLBM

Z-scores, stratified by sex, were
investigated using a linear regression model adjusted for
first visit (baseline) covariates (determined a priori)
including age, Tanner stage and baselineZ-score. Potential
confounding variables were identified and assessed using a
directed acyclic graph to inform the necessary adjustments.
HIV-related factors included baseline ARTduration (years),
HIV viral load (�50, 50–1000, �1000 copies/ml) and
current use of tenofovir disoproxil fumarate (TDF).
Physical activity level at baseline (low <600 MET
minutes/week,moderate 600–3000METminutes/week,
high >3000 MET minutes/week) was also investigated
given its potential skeletal benefits [29,30].

Ethical considerations
Written informed consent was obtained from parents or
guardians and assent from children. The study was
approved by theMedical Research Council of Zimbabwe
(MRCZ/A/2297), Parirenyatwa Hospital and College of
Health Sciences Joint Research Ethics Committee
(JREC/11/18), the Harare Central Hospital Ethics
Committee (HCHEC 170118/04), the Biomedical
Research and Training Institute Institutional Review
Board (AP145/2018) and the London School of Hygiene
and Tropical Medicine (15333) Ethics Committee.

Results

Study population

Of 609 participants recruited, 492 (80.8%) completed the
1-year follow-up visit (Supplementary Figure 1, http://
links.lww.com/QAD/D443). Characteristics of those
who did and did not complete a follow-up visit were
largely similar except for being older and girls having
higher daily dietary calcium intakes (Supplementary Table
1, http://links.lww.com/QAD/D443). Characteristics
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between participants with complete data and thosemissing
at least one bone outcome at follow-up visit were similar
except for daily dietary calcium and vitamin D intake
among girls (Supplementary Table 3, http://links.lww.
com/QAD/D443). There were no differences between
participantswith complete data for bone densityoutcomes,
Tanner stage, orphanhood and CD4þ T-cell count and
viral load (for CWH), compared to those missing one or
more variable (Supplementary Table 4, http://links.lww.
com/QAD/D443).

Follow-up duration was mean� SD 445� 95 days overall
(CWH: 475� 104 days and CWOH: 415� 73 days).
The cross-sectional demographic characteristics and bone
and height baseline data presented are of participants who
completed follow-up.

Among the 492 participants who completed a follow-up
visit, those with and without HIV were of similar ages,
whilst those with HIV were more likely to have been
orphaned, have a history of tuberculosis, and to have
reported a lower physical activity level at their baseline
visit (Table 1). Having HIV was weakly associated with
lower SES among girls. Daily dietary calcium and vitamin
D intakes did not differ by HIV status or sex. At both
baseline and follow-up visits, more girls with HIVwere in
earlier Tanner stages compared to those without HIV; for
boys, there was no association of HIV status with Tanner
stage (Table 1 and Supplementary Table 2, http://links.
lww.com/QAD/D443).

Among CWH who were successfully followed-up,
median age at HIV diagnosis, age at ART initiation,
duration of ARTas a percentage of years lived, proportion
on a TDF-based regimen, viral load less than 50 copies/
ml, and CD4þT-cell count greater than 500 cells/ml were
similar between sexes (Table 1). There were 50 children
whowere less than 10 years old, of whom 3 (all boys) were
taking tenofovir at baseline. Of the 193 children older
than 10, 75 (38.9%) were on a TDF-based regimen.
Other reported ART regimens at baseline included
Zidovudine-based and Abacavir-based regimens (Sup-
plementary Table 5, http://links.lww.com/QAD/D443).

Bone density at baseline and follow-up
Of the boys who completed follow-up, absolute TBLH-
BMCLBM at baseline was substantially lower among boys
with HIV compared to boys without HIV [mean
difference (95% CI) 145.95 g (80.91–220.99),
P< 0.001 (Table 1)]. Weak evidence was observed for
a difference in baseline LS-BMAD in boys with and
without HIV [0.006 g/cm3 (�0.001 to 0.014), P¼ 0.082
(Table 1)]. Although no differences by HIV status were
seen in baseline TBLH-BMCLBM

Z-score, weak
evidence of a difference was seen in LS-BMAD Z-score
between boys with and without HIV [0.11 (�0.14 to
0.35), P¼ 0.393 and 0.32 (�0.01 to 0.64), P¼ 0.056
respectively (Table 1)]. At the follow-up visit, absolute

and Z-score values for LS-BMAD and TBLH-BMCLBM

were lower in boys with HIV compared to boys without
HIV (Fig. 1a and 1c, Supplementary Table 2, http://links.
lww.com/QAD/D443).

Girls with HIV who completed follow-up had lower
absolute baseline LS-BMAD and TBLH-BMCLBM

compared to girls without HIV [mean difference (95%
CI) 0.010 g/cm3 (0.001–0.019), P¼ 0.021 and 164.86 g
(84.66–245.07), P< 0.001, respectively (Table 1)].
Baseline LS-BMAD Z-scores and TBLH-BMCLBM

Z-
scores were also lower among girls with HIV compared to
girls without HIV [0.32 (0.02–0.62), P¼ 0.034 and 0.40
(0.13–0.67), P¼ 0.004, respectively (Table 1)]. Similarly,
at follow-up visit, LS-BMAD and TBLH-BMCLBM

absolute and Z-score outcomes were consistently lower
in girls with HIV compared to girls without HIV
(Supplementary Table 2, http://links.lww.com/QAD/
D443).

Annual change in bone density
Both with and without adjustment for age, Tanner stage
and baseline bone density, bone density accrual was less in
boys with HIV compared to boys without HIV [adjusted
mean (95% CI) DLS-BMAD Z-score �0.12 (�0.23 to
�0.01) vs. 0.01 (�0.09 to 0.12) such that the mean
difference was �0.14 (�0.25 to �0.02), P¼ 0.020, and
adjusted meanDTBLH-BMCLBM

Z-score�0.12 (�0.27
to 0.03) vs. 0.07 (�0.07 to 0.20) such that the mean
difference was �0.19 (�0.33 to �0.04), P¼ 0.015]
(Table 2). This difference was seen most in boys aged 12–
16 years (Fig. 1b and 1d). Bone accrual appeared to
increase around the age of 12 in boys without HIV, and at
the later age of 14 in boys with HIV (Fig. 1b and 1d).

However, unlike boys, annualized change in LS-BMAD
and TBLH-BMCLBM

Z-scores were similar in girls with
and without HIV [adjusted mean (95% CI) DLS-BMAD
Z-score 0.04 (�0.06 to 0.13) vs. �0.01 (�0.09 to 0.07)
with an adjusted mean difference 0.05 (�0.07 to 0.17),
P¼ 0.416], and DTBLH-BMCLBM

Z-score 0.05 (�0.07
to 0.16) vs. �0.03 (�0.12 to 0.07), with adjusted mean
difference 0.08 (�0.07 to 0.22), P¼ 0.295]. Although
bone density at follow-up was lower among older girls
living with HIV (Fig. 1a and 1c), bone accrual was similar
among girls with and without HIV (Fig. 1b and 1d). No
evidence was detected for two-way interactions between
variables age, HIV status and Tanner stage (as an ordinal
variable) on DLS-BMAD or DTBLH-BMCLBM, in boys
or girls.

Baseline and follow-up height and annual change
in height
Among boys who completed follow-up, those living with
HIV were shorter than boys without HIV [absolute mean
difference (95% CI) at baseline by 7.01 cm (3.61–10),
P< 0.001 and height-for-age Z-score �1.08 (0.83–
1.34), P< 0.001 (Table 1)]. This difference persisted at
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Table 1. Baseline characteristics of study participants who were followed up to 1 year.

Boys
N¼247

Girls
N¼245

HIV Negative
n¼122

HIV Positive
n¼125 p-value

HIV Negative
n¼126

HIV Positive
n¼119 p-value

Sociodemographic characteristics
Age years, mean (SD) 12.4 (2.5) 12.6 (2.5) 0.383 12.7 (2.6) 12.4 (2.5) 0.385
Socioeconomic status, n(%)

Tertile 1 (low) 30 (24.6) 45 (36.0) 44 (34.9) 49 (41.2)
Tertile 2 (middle) 44 (36.1) 39 (31.2) 34 (27.0) 41 (34.5)
Tertile 3 (high) 48 (39.3) 41 (32.8) 0.148 48 (38.1) 29 (24.4) 0.067

Orphanhood (one or both parents deceased)a 9 (7.4) 51 (40.8) <0.001 9 (7.1) 52 (43.7) <0.001
Pubertal stage
Tanner I 37 (30.3) 49 (39.2) 23 (18.3) 48 (40.3)
Tanner II 32 (26.2) 31 (24.8) 26 (20.6) 19 (16.0)
Tanner III 19 (15.6) 16 (12.8) 23 (18.3) 25 (21.0)
Tanner IV 31 (25.4) 17 (13.6) 39 (31.0) 17 (14.3)
Tanner V 2 (1.6) 4 (3.2) 0.157 14 (11.1) 5 (4.2) <0.001

Lifestyle factors
Physical activity level

Low, <600 MET mins/week 41 (33.6) 58 (46.4) 49 (38.9) 63 (52.9)
Moderate, 600–3000 MET mins/week 43 (35.2) 28 (22.4) 34 (27.0) 29 (24.4)
High, >3000 MET mins/week 38 (31.1) 39 (31.2) 0.048 43 (34.1) 27 (22.7) 0.061

Daily dietary calcium intake
Very low, <150 mg/day 54 (44.3) 53 (42.4) 53 (42.1) 46 (38.7)
Low, 150–299 mg/day 24 (19.7) 24 (19.2) 28 (22.2) 29 (24.4)
Moderate, 300–450 mg/day 44 (36.1) 48 (38.4) 0.929 45 (35.7) 44 (37.0) 0.850

Daily dietary vitamin D
Very low, <4.0mg/day 13 (10.7) 21 (16.8) 18 (14.3) 13 (10.9)
Low, 4.0–5.99mg/day 79 (64.8) 82 (65.6) 81 (64.3) 81 (68.1)
Moderate, 6.0–8.0mg/day 30 (24.6) 22 (17.6) 0.209 27 (21.4) 81 (68.1) 0.710

Past or current tuberculosis 1 (0.8) 21 (16.8) <0.001 0 (0.0) 16 (13.4) <0.001
HIV characteristics
Age at HIV diagnosis years, median(IQR) – 3.0 (1.2; 5.8) – – 3.0 (1.2; 5.9) –
Age at ART initiation years, median (IQR) – 3.8 (2.0; 6.8) – – 3.7 (1.8; 7.5) –
% of life on ART, mean (SD) – 64.7 (22.3) – – 65.0 (22.9) –
TDF use (at baseline visit)b, n(%) – 40 (33.0) – – 38 (32.2) –
Viral loadc, n(%)

�50 copies/ml – 61 (51.7) – – 65 (57.5) –
50–1000 copies/ml – 34 (28.8) – – 21 (18.6) –
�1000 copies/ml – 23 (19.5) – – 27 (23.9) –

CD4þ T-cell count <500 cells/mLd, n(%) – 27 (22.0) – – 21 (19.1) –
Anthropometry
Height (cm), mean (SD) 146.7(14.8) 139.7 (12.3) <0.001 147.1 (12.0) 140.1 (13.3) <0.001
Height Z-score, mean (SD) �0.4 (1.2) �1.7 (1.1) <0.001 �0.6 (1.2) �1.6 (1.0) <0.001
Height-for-age Z-score <-2e, n (%) 10 (8.2) 46 (36.8) <0.001 13 (10.4) 41 (34.7) <0.001
Weight (kg), mean (SD) 37.6 (11.1) 32.7 (7.6) <0.001 42.0 (13.0) 35.2 (10.9) <0.001
Weight-for-age Z-score, mean (SD) �0.8 (1.0) �1.8 (1.1) <0.001 �0.4 (1.2) �1.4 (1.1) <0.001
Weight-for-age Z-score <-2f, n(%) 15 (12.4) 49 (39.2) <0.001 9 (7.2) 31 (26.3) <0.001

Bone density measures
LS-BMAD (g/cm3), mean (SD) 0.193 (0.028) 0.186 (0.030) 0.082 0.227 (0.036) 0.217 (0.034) 0.021
LS-BMAD Z-score, mean (SD) �0.60 (1.15) �0.92 (1.41) 0.056 0.18 (1.10) �0.14 (1.26) 0.034
TBLH-BMCLBM (g), mean (SD) 1006.27 (338.21) 860.32 (253.11) <0.001 1084.21 (343.67) 919.35 (290) <0.001
TBLH-BMCLBM Z-score, mean (SD) �0.57 (0.91) �0.67 (1.03) 0.393 �0.18 (1.02) �0.59 (1.2) 0.004

MET, resting metabolic rate; TDF, tenofovir disoproxil fumarate; LS-BMAD, lumbar spine bone mineral apparent density; TBLH-BMCLBM, total
body- less head bone mineral content for lean body mass.
Missing datapoints:
aOrphanhood (one boy without HIV, six boys with HIV; two girls without HIV; four girls with HIV). Tanner stage (one boy without HIV, eight boys
with HIV; one girl without HIV, five girls with HIV).
bMissing ART regimen (five boys, one girl).
cViral load <50 copies/ml (seven boys; six girls).
dCD4þ cell count <500 cell/ml (two boys; nine girls).
eDefined as stunted growth.
fDefined as underweight.
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688 AIDS 2025, Vol 39 No 6

Fig. 1. Scatter plot showing age and bone and height Z-score outcomes. (a) Height-for-age Z-score at follow-up; (b) LS-BMAD
Z-score at follow-up; (c) TBLH-BMC Z-score at follow-up; (d) change in height-for-age Z-score; (e) change in LS-BMAD Z-score
and (f) change TBLH-BMCLBM

Z-score, stratified by sex and HIV status (NU492 for all plots). Age is continuous, and is at follow-
up for (a), (c) and (d); and at baseline for (b), (d) and (f). Unadjusted data are shown. Solid line created using cross-validated locally
estimated scatterplot smoothingmethod (span¼0.75). Error bars indicate 95%CIs. Data are presented as grey dots [children living
without HIV (CWOH) and black dots (children with HIV (CWH)]. LS-BMAD, lumbar spine bone mineral apparent density. D,
change in bone or height outcome; TBLH-BMCLBM, total body less head bone mineral content for lean body mass.
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follow-up (Fig. 1e and Supplementary Table 2, http://
links.lww.com/QAD/D443). Boys with HIV gained
more height compared to boys without HIV over 1 year
[adjusted mean (95% CI) Dheight 0.32 (0.01–0.28) vs.
0.17 (0.05– 0.30) with a mean difference of 0.15 (0.01–
0.28), P¼ 0.036]. At follow-up, older boys with HIV
were continuing to gain height-for-age Z-score, whilst
change in height-for-age Z-score among boys without
HIV was similar to that of the reference population
(Fig. 1f).

At both baseline and follow-up, absolute height and
height-for-age Z-scores were lower among girls with
HIV compared to girls without HIV [mean difference
(95% CI) 7.00 cm (3.81–10.20), P< 0.001 and 0.91
(0.64–1.19), P< 0.001 (Table 1, Fig. 1e and Supple-
mentary Table 2, http://links.lww.com/QAD/D443).
Annual mean height Z-score accrual was similar among
girls with and without HIV [adjusted mean difference
�0.02 (�0.08 to 0.05), P¼ 0.652]. Height gains were
similar in girls with and without HIV until age 14 where
girls with HIV appear to gain less height compared to
their peers (Fig. 1f).

Factors associated with change in bone density
among children with HIV
Boys in later Tanner stages, gained more LS-BMAD Z

score compared to boys in earlier Tanner stages (Table 3).
Among girls, those in Tanner stages II to IV had greater
gains in DLS-BMAD and DTBLH-BMCLBM

Z-scores
compared to those in Tanner stage I, with a trend towards
greater gains at later Tanner stages (Table 4). Higher
baseline Z-scores were associated with less gain in bone
density among both boys (Table 3) and girls (Table 4).

Among HIV-specific factors, viral load of at least
1000 copies/ml was associated with less gain in bone
density among boys [adjusted DLS-BMAD Z-score
�0.24 (�0.48 to 0.00) P¼ 0.073 and DTBLH-BMCLBM

Z-score�0.28 (�0.60 to 0.04), P¼ 0.054 (Table 3)). Use
of TDF-containing ARTwas associated with less gain in

LS-BMAD Z-scores among boys [�0.28 (�0.19 to
�0.05), P¼ 0.033 (Table 3)]; however, this was not
observed among girls. Age, physical activity and duration
of ART were not associated with DLS-BMAD or
DTBLH-BMCLBM

Z-score in neither boys nor girls
(Tables 3 and 4).

Discussion

We have shown that, over 1 year of childhood growth,
girls with and without HIV had similar gains in bone
density, while boys with HIV gain less bone density than
boys without HIV. Later Tanner stage was associated with
gains in LS-BMAD and TBLH-BMCLBM, suggesting
that the deficits seen in earlier Tanner stages may be
partially recovered as CWH progress through an albeit
later puberty. Among HIV-relevant factors, high viral
load and use of TDF-based ART were associated with
attenuated bone density gains in boys.

Few data quantify changes in bone density among
adolescents from highly HIVendemic regions, and fewer
still investigate sex-specific effects. In the United States,
Jacobson et al. [28] showed that lower total body bone
mineral content and total body and spinal bone mineral
density were more pronounced at later Tanner stages
(V vs. III–IV) among boy but not girl CWH, compared
to CWOH (mean age 12.6 and 11.9 years, respectively).
However, this study was cross-sectional, with no size-
adjustment made for DXA-measured bone density. In a
cross-sectional study of Thai and Indonesian adolescents
(mean age 15 years), low LS-BMAD Z-scores were seen
in older girls, suggesting bone deficits are more
pronounced towards the end of puberty [31]. As HIV
can delay the onset of puberty, gains in height and bone
mass may also be delayed [32]. This could explain the
positive trend between later Tanner stage and LS-BMAD
accrual in boys and LS-BMAD and TBLH-BMCLBM

accrual in girls. Physiologically, girls start puberty earlier

Reduced bone density among boys with HIV Jeena et al. 689

Table 2. Mean difference (95%confidence interval) in change in LS-BMAD, TBLH-BMCLBM and heightZ-scores between participants livingwith
and without HIV.

Unadjusted b
a (95% CI) P value Adjusted bb(95% CI) P value

Boys (n¼247)
DLS-BMAD Z-scorec �0.16 (�0.28; �0.04) 0.011 �0.14 (�0.25; �0.02) 0.020
DTBLH-BMCLBM Z-scorec �0.16 (�0.31; �0.01) 0.040 �0.19 (�0.33; �0.04) 0.015
DHeight Z-scorec 0.12 (�0.02; 0.27) 0.092 0.15 (0.01; 0.28) 0.036

Girls (n¼245)
DLS-BMAD Z-scorec 0.02 (�0.10; 0.14) 0.754 0.05 (�0.07; 0.17) 0.416
DTBLH-BMCLBM Z-scorec 0.02 (�0.12; 0.16) 0.774 0.08 (�0.07; 0.22) 0.295
DHeight Z-scorec 0.08 (0.01; 0.14) 0.024 �0.02 (�0.08; 0.05) 0.652

D, change in bone or height outcome; LS-BMAD, lumbar spine bone mineral apparent density; TBLH-BMCLBM, total body- less head bone mineral
content for lean body mass.
aLinear regression model for the mean difference.
bLinear regression model for the mean difference adjusted for baseline age, Tanner stage (included as a variable with five levels) and baseline DXA
Z-score and checking for interaction terms between HIV status, Tanner stage and age.
cChange in DXA or height Z-score calculated by subtracting the follow-up from baseline Z-score and dividing by number of days between
visits�365.25.
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Table 3. Characteristics associated with annualized change in LS-BMAD and TBLH-BMCLBM
Z-scores among boys with HIV.

Boys
DLS-BMAD Z-score DTBLH-BMC Z-score
Unadjusted b

Coefficient (95% CI) p value Adjusted b (95% CI) p value
Unadjusted b

Coefficient (95% CI) p value Adjusted b (95% CI) p value

Age (per year) 0.03 (�0.01; 0.07) 0.122 �0.01 (�0.07 to 0.05) 0.725 0.00 (�0.05; 0.05) 0.963 0.02 (�0.06; 0.09) 0.691
Tanner Stage

I – – – –
II �0.15 (�0.38; 0.08) 0.015 �0.14 (�0.38; 0.10) 0.012 �0.16 (�0.45; 0.14) 0.254 �0.18 (�0.50; 0.13) 0.689
III �0.11 (�0.39; 0.18) �0.11 (�0.45; 0.23) �0.06 (�0.43 0.31) �0.10 (�0.54; 0.34)
IV 0.38 (0.11; 0.65) 0.45 (0.07; 0.82) �0.04 (�0.39; 0.32) �0.14 (�0.64; 0.35)
V 0.42 (�0.11; 0.95) 0.52 (�0.11; 0.95) 0.35 (�0.33; 1.03) 0.28 (�0.55; 1.11)

Baseline Z-scorea �0.12 (�0.19; �0.06) <0.001 �0.12 (�0.19; �0.05) 0.001 �0.25 (�0.36; �0.15) <0.001 �0.27 (�0.39; �0.15) <0.001
Physical Activityb

High – 0.793 – 0.540 – 0.564 – 0.417
Moderate �0.13 (�0.40; 0.14) �0.09 (�0.33; 0.14) �0.24 (�0.56; 0.08) �0.15 (�0.47; 0.16)
Low �0.03 (�0.25; 0.19) �0.10 (�0.31; 0.11) �0.08 (�0.35; 0.19) �0.16 (�0.43; 0.12)

ART duration (per year) 0.00 (�0.03; 0.04) 0.906 �0.02 (�0.06; 0.02) 0.362 0.03 (�0.01; 0.07) 0.154 0.03 (�0.02; 0.07) 0.197
Viral Load (copies/ml)

<50 – 0.256 – 0.073 – 0.896 – 0.054
50–1000 0.10 (�0.12; 0.32) 0.09 (�0.12; 0.29) �0.10 (�0.38; 0.18) 0.03 (�0.24; 0.31)
�1000 �0.06 (�0.31; 0.19) �0.24 (�0.48; 0.00) �0.23 (�0.55; 0.09) �0.28 (�0.60; 0.04)

TDF Use
No – 0.787 – 0.033 – 0.739 – 0.523
Yes �0.03 (�0.28; 0.21) �0.28 (�0.19; �0.05) 0.05 (�0.25; 0.35) �0.11 (�0.44; 0.23)

D, change in bone outcomes; ART, antiretroviral therapy; LS-BMAD, lumbar-spine bone mineral apparent density; TBLH-BMCLBM, total body less head bone mineral content for lean body mass; TDF,
tenofovir disoproxil fumarate. b coefficient denotes change (D) bone density outcome for each one-unit change in the predictor variable adjusting for exposure variables including age, Tanner stage,
baseline Z-score, physical activity, ART duration, HIV viral load, TDF exposure (N¼125).
aZ-score change per baseline Z-score.
bHigh physical activity was >3000 resting metabolic minutes per week; moderate was 600–3000 resting metabolic minutes per week; low was <600 resting metabolic minutes per week.
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Table 4. Characteristics associated with annualized change in LS-BMAD and TBLH-BMCLBM
Z-scores among girls with HIV.

Girls
DLS-BMAD Z-score DTBLH-BMC Z-score
Unadjusted b Coefficient (95% CI) p value Adjusted b (95% CI) p value Unadjusted b Coefficient (95% CI) p value Adjusted b (95% CI) p value

Age (per year) 0.09 (0.06; 0.12) <0.001 0.00 (�0.06; 0.07) 0.906 0.07 (0.03; 0.11) 0.001 �0.03 (�0.11 to 0.04) 0.398
Tanner Stage

I – – – –
II 0.46 (0.24; 0.68) <0.001 0.41 (0.14; 0.67) <0.001 0.32 (0.05; 0.60) 0.028 0.38 (0.05; 0.71) 0.016
III 0.51 (0.31; 0.71) 0.52 (0.22; 0.82) 0.54 (0.29; 0.79) 0.70 (0.32; 1.08)
IV 0.36 (0.14; 0.59) 0.50 (0.14; 0.87) 0.34 (0.05; 0.62) 0.63 (0.18; 1.08)
V 0.94 (0.55; 1.32) 1.04 (0.50; 1.57) 0.58 (0.09; 1.07) 0.87 (0.20; 1.55)

Baseline Z-scorea �0.12 (�0.18; �0.05) 0.001 �0.10 (�0.16; �0.03) 0.004 �0.14 (�0.23; �0.05) 0.003 �0.12 (�0.21; �0.03) 0.009
Physical Activityb

High – – – –
Moderate 0.05 (�0.21; 0.31) 0.955 0.03 (�0.20; 0.26) 0.739 �0.12 (�0.42; 0.19) 0.818 �0.14 (�0.43; 0.15) 0.680
Low 0.01 (�0.23; 0.22) �0.03 (�0.22; 0.16) 0.03 (�0.23; 0.29) 0.06 (�0.19; 0.30)

ART duration (per year) �0.01 (�0.05; 0.02) 0.410 �0.03 (�0.06; 0.01) 0.145 �0.02 (0.06; 0.02) 0.412 �0.01 (�0.05; 0.03) 0.624
Viral Load (copies/ml)

<50 – – – –
50–1000 0.16 (�0.09; 0.40) 0.809 0.13 (�0.08; 0.34) 0.244 0.02 (�0.26; 0.30) 0.261 �0.00 (�0.27; 0.26) 0.796
>1000 0.03 (�0.20; 0.25) �0.11 (�0.30; 0.08) �0.15 (�0.40; 0.11) �0.18 (�0.43; 0.06)

TDF Use
No – 0.408 – 0.250 – 0.320 – 0.893
Yes 0.09 (�0.12; 0.29) �0.12 (�0.33; 0.09) 0.12 (�0.12; 0.37) �0.02 (�0.28; 0.25)

D, change in bone outcomes; ART, antiretroviral therapy; LS-BMAD, lumbar-spine bone mineral apparent density; TBLH-BMCLBM, total body less head bone mineral content for lean body mass; TDF,
tenofovir disoproxil fumarate. b coefficient, change (D) bone density outcome for each one-unit change in the exposure variable adjusting for exposure variables including age, Tanner stage, baseline
Z-score, physical activity, ART duration, HIV viral load, TDF exposure (N¼119).
aZ-score change per baseline Z-score.
bHigh physical activity was >3000 resting metabolic minutes per week; moderate was 600–3000 resting metabolic minutes per week; low was <600 resting metabolic minutes per week.
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than boys [7]. As there were more boys at earlier Tanner
stages (I and II) in our study, this could explain the
attenuated gains in bone density observed overall in boys,
not seen in girls. In Zimbabwe, adult women with HIV
have been shown to have lower bone density than HIV-
negative women; however, similar data from adult men
with HIV, or between sex differences are currently
lacking [33].

Sex-specific mechanisms compromising bone accrual
among CWH are likely to be multifactorial. Sex
hormone differences may affect patterns of bone accrual
[34]. Among girls, oestrogen increases endocortical
thickness and inhibits periosteal bone formation, while
among boys, androgens favour periosteal apposition and
cortical thickness [35]. This results in men usually having
larger, denser bones than women. A meta-analysis by
Santi et al. [36] reported higher prevalence of hypogo-
nadism and low testosterone among men with HIV
[mean age (�SD) 42.4� 6.2 years] compared to men
without HIV, attributed to both direct HIVeffects and as a
side effect of ART. For the IMVASK study, the two bone
outcomes together reflect overall bone accrual; LS-
BMAD measures largely trabecular bone (consisting of
lacunae and osteocytes in a lattice-like network, giving
bone its lightness), whilst TBLH-BMCLBM represents
predominantly cortical bone (consisting of lacunae and
osteocytes arranged in concentric circles, giving bone its
strength). Our finding that boys with HIV have less gain
in both bone compartments may suggest an overall
skeletal effect of HIVon anabolic hormones, particularly
androgens, either directly or through indirect effects of
impaired nutrition and/or intercurrent infections associ-
ated with HIV [8]. During the pre-ART era, HIV was
frequently linked to growth hormone resistance and
reduced insulin-like growth factor-1 (IGF-1), both of
which are known to impede bone growth [37]. Even with
ART and viral control, individuals with HIV often
continue to exhibit low levels of growth hormone and
IGF-1. This persistence may be due to chronic
inflammation, which is believed to suppress hormone
production [38].

Approximately 20% of boys and girls with HIV had a viral
load of at least 1000 copies/ml. High HIV viral load at
baseline among boys with HIV was associated with less
gain in LS-BMAD and TBLH-BMCLBM

Z-score. Use of
TDF-based ART was associated with less LS-BMAD
gain. In Zimbabwe, TDF is part of the first-line ART
regimen in both adults and in children when they reach
10 years of age and weigh above 30 kg [39]. In our
previously published cross-sectional IMVASK analysis,
we found a strong negative association between TDF
exposure and both bone outcomes [14]. Schtscherbyna
et al. [40] also showed lower lumbar spine and total body
bone mineral density among Brazilian adolescents with
perinatally acquired HIV (mean age 17.3 years) on TDF-
based regimens. The indirect effect of TDF on renal

phosphate handling is implicated as a potential mecha-
nism behind bone loss observed in adults [41]. Newer
agents such as tenofovir alafenamide may be promising for
reducing bone-related morbidity due to its lower impact
on bone health and kidney function compared to TDF-
based regimens [42].

At baseline, lower levels of physical activity were reported
in both boys and girls with HIV, compared to children
without HIV. Furthermore, most CWH had low (and
lower than recommended) levels of physical activity [43].
These patterns have been seen before among Mozambi-
can adolescents with HIV [44]. Potential explanations
include both physiological and social factors, such as
disease-related fatigue, intercurrent infection, and HIV-
associated stigma [44,45]. However, physical activity
levels were not associated with change in LS-BMAD or
TBLH-BMCBMC outcome in our analysis. It is likely that
any effect of physical activity on bone density is only
observed over longer periods of time than were studied
here.

The strengths of this study are that it is a well powered,
longitudinal analysis with minimal loss to follow-up, that
compared children with HIV to a population representa-
tive sample of children without HIV. Although DXA
measures were determined according to ISCD recom-
mendations with Z-scores generated [46], DXA-scan
measurements underestimate areal bone density in small
skeletons (as occurs with HIV), and the reference data
used were from British children who were mainly white.
Unfortunately, to our knowledge, no equivalent refer-
ence data exist locally or across Africa. We are unable to
conclude whether this partial recovery will fully resolve
bone deficits by the end of puberty, as peak bone mass had
not been reached. Ideally, adolescents would be followed
up again at the end of puberty for further measurement.
We recognize that residual confounding may persist due
to past or current biological or environmental factors that
were not considered in the initial IMVASK protocol [16].

In conclusion, boys with HIV have impaired bone density
accrual through puberty, and this is worse in those with
high viral load and who use TDF. Bone density gains in
later puberty, in both boys and girls with HIV, suggest that
there may be potential to correct or partially correct
deficits. This study thus highlights the importance of
effective treatment as well as the need to investigate bone
accrual later into young adulthood, to inform strategies to
improve bone health outcomes for young adults with
HIV.
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