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Abstract
We study the quantum dynamics of de Sitter space formulated as a minisuper-
space model with flat spatial hypersurfaces in unimodular gravity, both in the
Wheeler–DeWitt approach and in loop quantum cosmology. Time evolution is
defined naturally in unimodular time, which appears as conjugate to the cos-
mological (integration) constant. We show that requiring unitary time evolution
‘resolves’ the de Sitter horizon where the flat slicing breaks down and leads
to strong quantum effects there, even though locally nothing special happens
at this surface. For a cosmological constant that is far below the Planck scale,
loop quantum gravity corrections do not alter the main results in any substantial
way. This model illustrates the fundamental clash between general covariance
and unitarity in quantum gravity.

Keywords: quantum cosmology, de Sitter space, unitarity, unimodular gravity

1. Introduction

One of the main obstacles in our attempts to find a consistent quantum framework for grav-
ity arises from the different concepts of time in general relativity and quantum mechanics.
While general relativity allows general transformations from one coordinate frame to another,
quantum mechanics relies on notions of time evolution and unitarity based on a more restric-
ted concept of time. One immediate difficulty arises from the fact that the (bulk) Hamiltonian
of a generally covariant theory vanishes due to diffeomorphism invariance, obstructing any
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interpretation of such a Hamiltonian as generator of time evolution. These issues have long
been discussed in the literature as the problem of time [1–5].

A popular strategy for addressing the lack of an absolute notion of time in quantum gravity
is to choose a suitable degree of freedom as a ‘relational’ clock for the remaining variables
[6, 7]. Such a clock may not be valid globally if, e.g. it experiences a turnaround during its
evolution, and one may want to restrict to the ideal case of a monotonically evolving variable
[8]. One then faces amultiple-choice problem [2] with no general expectation that the theories
obtained for different clock choices would be equivalent (see, e.g. [9] and the recent work
[10, 11]).

There are many proposals for circumventing these conceptual and technical difficulties;
in the following we will focus on using the clock degree of freedom introduced by passing
from general relativity to unimodular gravity [12]. In unimodular gravity, the cosmological
constant Λ is an integration constant rather than a fundamental parameter of Nature. As such,
this theory is classically equivalent to standard general relativity up to one additional global
degree of freedom (see, e.g. [13, 14]). The conjugate variable to the ‘total energy’ given by
the value of Λ then provides a global time variable, proportional to the total 4-volume in the
past of a given spatial slice [15]. Of course, this is still a particular choice of clock [16] but it
has the advantage of being defined directly in terms of spacetime geometry, independently of
any other degrees of freedom (in contrast to models in which specific matter is coupled [17],
for example).

In this context of (quantum) unimodular gravity, we will study the simplest type of geo-
metries: homogeneous and isotropic Friedmann–Lemaître–Robertson–Walker (FLRW) space-
times. Classically, without matter and for a given value of the cosmological integration con-
stant, the unique solution is given by eitherMinkowski, de Sitter, or anti-de Sitter space. Hence,
the quantum theory is expected to be rather simple, only introducing the novelty of allowing
for superpositions of the cosmological constant and hence superpositions of these distinct clas-
sical spacetimes. However, there is an important additional subtlety in that these spacetimes
can be represented as different types of FLRWgeometry using either closed, open or flat slices.
Even though classically these apparently different cosmologies represent the same spacetime,
crucial properties of the resulting quantum theories, even in this simplest possible case, can
be sensitive to the choice of foliation, adding additional ambiguity beyond those related to a
choice of time coordinate or clock.

In the example of de Sitter spacetime that we will focus on here, the crucial difference
between the different slicings is that a closed slicing is global (it covers the entire spacetime)
while the flat slicing only covers half of the spacetime; there is a horizon at which the foli-
ation breaks down (see, e.g. [18], for details on the different foliations of de Sitter spacetime).
This horizon can be reached in finite time along past-directed geodesics, so that the spacetime
becomes geodesically incomplete. In the Hamiltonian picture, one would say that past evolu-
tion terminates in finite time. Requiring that the quantum theory remains unitary means that
the quantum evolution extends beyond this horizon, necessitating strong departures from the
classical evolution in a regime where locally nothing special happens and no local observer
would notice the presence of a horizon. Hence, it seems one has to give up either general
covariance or unitarity (see also [19]).

The arguments presented here are somewhat reminiscent of discussions in the context of
a possible breakdown of unitarity in black hole evaporation [20]. For the black hole, requir-
ing global unitarity, locality and general covariance—nothing special should happen where
curvature is small—leads to a paradox one possible resolution of which, the ‘firewall’ idea
[21], likewise suggests that the black hole horizon becomes a region of strongly non-classical
behaviour. As in many other contexts, there are important similarities between the black hole
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and de Sitter horizons (most famously, de Sitter horizons show thermodynamic behaviour [22])
but important differences too; while the black hole horizon has a unique ‘teleological’ defin-
ition, the de Sitter horizon is observer (or foliation) dependent. Nevertheless, the simpler de
Sitter case poses the same fundamental questions about the meaning of locality, unitarity and
general covariance in quantum gravity. See also [23] for a recent study of a quantum planar
black hole model using methods similar to those applied here, where quantum departures from
the classical solution are seen both at the singularity and at the horizon of the black hole; the
results for the horizon are similar to ours here.

Assuming FLRW symmetry means the geometric degrees of freedom are reduced to just
the scale factor, here seen as evolving in unimodular time. The resulting quantum theories are
simple and can be defined straightforwardly. We will see how unitary evolution enforces a
‘resolution’ of the de Sitter horizon, replacing it by a highly quantum region that interpolates
between two classical solutions each associated to one half of de Sitter spacetime.Wewill work
both in a traditional Wheeler–DeWitt (WdW) quantisation and in loop quantum cosmology
(LQC), where many results show resolution of classical singularities through loop quantum
gravity effects [24–26], so one could ask whether that approach also shows ‘fake singularity
resolution’. Specifically, we will follow the proposal of [27] for defining LQC for unimodular
gravity.Wewill find agreement with the general conclusions of that article in that loop quantum
corrections are small assuming that the cosmological constant is far away from the Planck
scale, so the qualitiative features are similar to those of the WdW theory. The fact that the
quantum evolution continues through a highly quantum region replacing the classical horizon
was however missed in [27] due to some errors in the analysis, as we will clarify later.

In section 2 we summarise the classical formalism of unimodular gravity for FLRW geo-
metries and written in Ashtekar–Barbero variables. Section 3 discusses the WdW quantisation
of the model, a choice of Gaussian state and derivation of expectation values and standard
deviations in the volume. We show our main result, namely strong quantum effects at the clas-
sical horizon. Section 4 extends the results to LQC, where we encounter some new features
such as a maximum value for the cosmological constant and a quantum correction toΛ coming
from fundamental discreteness. Qualitative features of our solutions are similar to the WdW
case. We conclude in section 5. The Appendix contains some technical details of the LQC
calculations.

2. Classical dynamics

In this section we briefly introduce the classical formalism of a ‘parametrised’ version of unim-
odular gravity, reduced to FLRW spacetimes. Our exposition is similar to the one of [27], and
in particular based on the Ashtekar–Barbero variables used in loop quantum gravity and LQC.
In the symmetry-reduced setting, these variables arise from a canonical transformation of the
usual metric variables, with the additional novelty that they also include an orientation factor
so that the volume variable (which we will mainly focus on in the following) can be positive
or negative.

In unimodular gravity, fixing the determinant of the metric in the action leads to a theory
of gravity in which only the trace-free part of the Einstein equations is imposed, and (after
using the Bianchi identities) the cosmological constant emerges as an unspecified constant of
integration in the missing trace equation (see, e.g. [28] on the trace-free Einstein equations
and [29, 30] for recent reviews). The group under which the theory is invariant reduces to
(volume-preserving or transverse) coordinate transformations that preserve the determinant of
the metric. One can restore full diffeomorphism invariance by introducing additional fields,
making the theory manifestly covariant, in a parametrised formalism for unimodular gravity
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[15]. In this setting, the action is given by

S=
1
2κ

ˆ

M
d4x
[√−g(R− 2Λ)+ 2Λ∂µT

µ
]

(1)

where κ= 8πG, and Λ and Tµ are dynamical fields. Variations of the action with respect to
Tµ imply that

∂µΛ = 0 (2)

and thus Λ is identified with the cosmological constant. The field Tµ is a spacetime vector
density that evolves according to the equation of motion obtained by varying the action with
respect to Λ:

√−g= ∂µT
µ . (3)

For a spacetime manifold M=Σ×R, where R denotes a time direction parametrised by a
time coordinate τ , the time evolution of Tµ is arbitrary except for the zero mode of T0,

T(t0) =
ˆ

τ=t0

d3x T0 , (4)

which defines a global time coordinate related to the spacetime four-volume: T(t2)− T(t1)
is the total four-volume of the region bounded by the hypersurfaces τ = t1 and τ = t2. The
remaining components of Tµ are pure gauge, needed to preserve locality while ensuring gen-
eral covariance.

In the interest of later following the quantisation procedure of LQC, we adopt a Hamiltonian
formalism and introduce connection-triad variables. We will summarise this procedure here,
for more details see, e.g. [24, 25]. We start by performing the usual (3+1) decomposition
writing the line element as

ds2 =
(
−N2 +NiNi

)
dτ 2 + 2Ni dτ dx

i + qij dx
i dxj (5)

where N is the lapse function and Ni the shift vector, and qij is the three-metric induced on
the spacelike slices Σ. Restricting to cosmological FLRW models, the line element is usually
written in terms of a scale factor a(τ): in Cartesian coordinates,

ds2 =−N2 (τ) dτ 2 + a2 (τ) hijdx
i dxj (6)

where

hij = δij+ k
xi xj

1− kxkxk
(7)

is a fiducial metric, and k is spatial curvature, which takes the values +1,0,−1 for closed, flat
or open slices, respectively. In the following we will focus on the flat case k= 0.

LQC is an application of loop quantum gravity techniques to cosmological models. Instead
of describing the phase space of general relativity with standard geometrodynamical variables
(the spatial metric qij and extrinsic curvature Kij), one uses a reformulation of gravity in terms
of an SU(2) connection (known as Ashtekar–Barbero connection) Aai and its canonically con-
jugate densitised triad Eia (see, e.g. [31]),

Aai = Γai [E] + γKai , Eia =
1
2
ϵijkϵabce

b
j e
c
k (8)

4
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where Γai is the torsion-free Levi–Civita connection associated to E, Kai is the extrinsic
curvature 1-form, ebj is a spatial triad such that qij = δab eai e

b
j , and γ is a free parameter known

as the Barbero–Immirzi parameter. In the case of flat FLRW cosmology, these fields take the
form

Aai = V−1/3
0 c(τ) oeai , Eia = V−2/3

0

√
hp(τ) oeia (9)

where oeai is a fiducial (co-)triad adapted to the metric hij, i.e. hij = δab(
oeai )(

oebj ), and
oeia is

the corresponding inverse triad. Notice that compared to the metric formulation there is now a
new symmetry under the orientation reversal of the fiducial triad. The quantity V0 corresponds
to the coordinate volume V0 =

´

d3x
√
h of a finite ‘fiducial cell’ one wants to study. This

cell could be the entire spatial slice if one assumes compact topology, such as a 3-torus, or
a compact subset in case of infinite spatial slices. In the case of non-compact topology, the
introduction of a fiducial cell is required to obtain regular expressions since otherwise the
total action or Hamiltonian would diverge. The powers of V0 appearing in (9) are needed to
ensure that none of the properties of the resulting Hamiltonian system depend on the value
of V0, which is coordinate dependent. More details on these technical aspects and the general
construction can be found in [24, 25].

The variables c and p form a canonical pair {c,p}= κγ/3. For simplification of future
calculations, it is then conventional to switch to a new canonical pair (we drop the explicit
dependence on τ from now on)

b≡ c√
|p|

, ν ≡ sign(p)
4|p|3/2
κ~γ

, {b,ν}= 2
~
. (10)

These are related to the more familiar variables of (6) by

|ν|= 4
κ~γ

a3V0 , b=±γ
ȧ
aN

. (11)

Symmetry under the reversal of triad orientation oeai →−oeai is now translated to the symmetry
under the change of signs of ν and b. Notice that |ν| is proportional to the physical three-volume
while b is proportional to the Hubble rate ȧ/(aN); since the proportionality factors involve
γ, the combinations γ|ν| and b/γ are directly related to the physically relevant variables in
cosmology. Again, we stress that the overall sign of ν is interpreted as related to orientation
of the triad.

In the extension of the formalism to the unimodular setting, the fields Tµ and Λ remain
unchanged. FLRW symmetry implies that all Tµ vanish except for T0 = T0(τ). Then, the
global time (4) is simply given by T= T0V0, and forms a canonical pair with the cosmolo-
gical constant:

{T,Λ}= κ. (12)

The final consequence of homogeneity and isotropy is that spatial diffeomorphisms are
trivially satisfied, and the Hamiltonian reduces to the product of the lapse N with a function C
given by

H= N

(
−3~

4γ
b2|ν|+ γ~

4
Λ|ν|

)
≡ NC . (13)

5
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The function C is constrained to vanish through the equation ∂H/∂N= 0, and it is a generator
of time reparametrisations on the constraint hypersurface in phase space. In the interest of
choosing T as the internal clock, in the following we will fix the lapse to N= 4

κγℏ|ν| . Thus,
we obtain the classical Hamiltonian

H=− 3
κγ2

b2 +
Λ

κ
≈ 0 (14)

which is again constrained to vanish. (With this lapse choice, indeed Ṫ= {T,H}= 1.)
Implementing (14) at the quantum level is the basis of quantum cosmology both for WdW

and LQC-type quantisations. However, in the quantisation of LQC, there is no operator that
directly represents the connection and so no b operator. Instead, fundamental variables must be
represented as finite holonomies of the connection and fluxes of the densitised triad. Following
the improved dynamics prescription of LQC [32], the holonomies of the connection are taken
along straight lines in the fundamental representation of SU(2) with a length such that they
enclose a physical area λ2, where λ2 is chosen to represent the minimum non-vanishing eigen-
value of the loop quantum gravity area operator. In the variables (ν,b), the holonomies produce
a constant shift in ν, rather than acting as a derivative in ν as b itself would. We will present
details of this theory shortly and compare it with the more conventional WdW quantisation.

We can obtain classical trajectories by computing Poisson brackets of variables with the
Hamiltonian. Λ and b are constants of motion related through (14). We are then particularly
interested in tracking the physical volume, which is proportional to |ν|: setting an integration
constant corresponding to a shift in T to zero, the classical solution is

|ν (T)|= 4
~κγ

√
3Λ|T| . (15)

The classical trajectories are therefore those of a contracting Universe for T < 0 and expanding
Universe for T > 0. We also note that with this choice of clock the volume vanishes at a finite
time, T = 0. This is simply a coordinate singularity since the curvature is constant, and the
point T = 0 is of no special relevance to the dynamics. If we had chosen cosmic time t instead
(N= 1), we would have found that |ν(T)| ∼ e

√
3Λt, and vanishing volume is only reached in

the infinite past. This seemingly harmless coordinate singularity will become crucial when we
demand unitarity in time T.

3. WdW quantisation

Let us consider first the more straightforward WdW quantisation of the theory defined by the
Hamiltonian constraint (14). We take the representation where T̂ and ν̂ act by multiplication
and their conjugates by derivative: Λ̂ =−i~κ ∂

∂T , b̂= 2i ∂
∂ν (the unusual factors for b̂ arise from

the conventions set in (10)).
The action of the quantum representation of the constraint on states Ψ(ν,T) leads to the

WdW equation which here is of Schrödinger form

i~
∂Ψ(ν,T)

∂T
=

12
κγ2

∂2

∂ν2
Ψ(ν,T) . (16)

This is simply a free particle in one dimension, with general solution

Ψ(ν,T) =
ˆ ∞

0
dΛ ei

ΛT
ℏκ

(
A(Λ)ei

√

Λγ2

12 ν +B(Λ)e−i
√

Λγ2

12 ν

)
. (17)

6
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While the solution depends on the free parameter γ, it is only in the combination γν which
is related to the physical three-volume (see (11)). Also recall that the sign of ν corresponds
to a triad orientation and geometric observables are insensitive to this sign. The quantum
Hamiltonian constraint commutes with the parity operator Π̂ sending Ψ(ν,T) to Ψ(−ν,T).
It is then conventional to assume that the wavefunction is even under parity [24, 27], and we
will make the same assumption here.

With this symmetry assumption, our general solution simplifies to

Ψ(ν,T) =
ˆ ∞

0
dΛ A(Λ) ei

ΛT
ℏκ cos

(√
Λγ2

12
ν

)
. (18)

We assume the natural Schrödinger L2 inner product

(Ψ1,Ψ2) =

ˆ ∞

−∞
dν Ψ̄1 (ν,T)Ψ2 (ν,T) (19)

which evaluates to

(Ψ,Ψ) =
4π
γ

ˆ ∞

0
dΛ |A(Λ) |2

√
3Λ . (20)

Since the classical volume of spatial slices is proportional to |ν|, we are particularly inter-

ested in tracking the expectation value of |̂ν|,
(
Ψ, |̂ν|Ψ

)
=

ˆ ∞

−∞
dν |ν|Ψ̄(ν,T)Ψ(ν,T) . (21)

An attempt to evaluate this expectation value in terms of the amplitude A(Λ) requires the
knowledge of the Fourier transform of |x|, which is usually (e.g. [33]) given as

ˆ

dx |x|eikx =− 2
k2

(22)

and so formally we could write

(
Ψ, |̂ν|Ψ

)
=−12

γ

ˆ ∞

0
dΛ
ˆ ∞

0
dΛ ′ A(Λ)A(Λ ′)

×


 1
(√

Λ+
√
Λ ′
)2 +

1
(√

Λ−
√
Λ ′
)2


 . (23)

The resulting integral clearly has singularities for Λ = Λ ′ which require regularisation1.
As a concrete example, we focus on simple states defined by a Gaussian profile in

√
Λ,

A(Λ) = Ne−
(
√

Λ−
√

Λ0)
2

2σ2 (24)

1 In the Fourier transform (22), the expression 1/k2 should really be understood as a homogeneous distribution defined,

e.g. as acting on test functions via [34] k−2(ϕ) =
´

dk φ(k)−φ(0)−kφ ′(0)
k2

. This definition of the Fourier transform
could be used to make (23) well-defined. We thank Sofie Ried for clarifying this to us.

7
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where N is a normalisation constant. Then we can perform a change of integration variable to
u=

√
Λ and write the states as

Ψ(ν,T) = N
ˆ ∞

0
duu

(
e−f(T)u2+g(ν)u− Λ0

2σ2 + e−f(T)u2+ḡ(ν)u− Λ0
2σ2

)
, (25)

where the bar denotes complex conjugation and we have defined

f(T)≡ 1
2σ2

− i
T
~κ

, (26)

g(ν)≡
√
Λ0

σ2
+ i

√
γ2

12
ν . (27)

The u integral can be performed exactly, yielding (with suppressed arguments in f and g)

Ψ(ν,T) = N
e−

Λ0
2σ2

2f

{
4+

√
π

f

(
ge

g2

4f

[
1+ erf

(
g

2
√
f

)]
+ ḡe

ḡ2

4f

[
1+ erf

(
ḡ

2
√
f

)])}
(28)

where erf(x) = 2√
π

´ x
0 dy e−y2 denotes the error function.

It may be useful to consider that due to the peaked nature of the profile, the integral (25)
can be well approximated by taking it over the whole real line, resulting in

Ψ(ν,T)≈ N
e−

Λ0
2σ2

2f(T)

√
π

f(T)

(
g(ν) e

g2(ν)
4f(T) + ḡ(ν) e

ḡ2(ν)
4f(T)

)
. (29)

One can then perform the integral (21) numerically. Choosing some example values for
the parameters of the Gaussian, we compute this expectation value and plot it alongside the
classical trajectories in figure 1. We also include error bars showing the standard deviation

in |ν|, ∆|ν|=
√
⟨|̂ν|2⟩− ⟨|̂ν|⟩2. As expected and alluded to in the introduction, the quantum

trajectory deviates from the classical one close to the de Sitter horizon, where it interpolates
between the two classical solutions corresponding to different halves of the whole de Sitter
spacetime. This is a consequence of imposing unitarity in a region where the classical solution
goes to zero.

This situation is analogous to computing the expectation value of the absolute value of the
position of a wavepacket for a free particle moving in one direction. The position variable x can
take on positive and negative values, as can ν in our case. For a wavepacket, ⟨x̂⟩ would follow
the classical trajectory and eventually reach and cross x= 0. However, once we consider |x̂|,
the negative and positive x parts of the wavefunction both contribute positively to ⟨|x̂|⟩, and
⟨|x̂|⟩ can never reach exactly 0. The trajectory of ⟨|x̂|⟩ therefore closely tracks the classical
trajectory of |x| when far from x= 0, but as it approaches this point (of no special significance
in the classical trajectory), it necessarily deviates from it. Unitarity does not allow for the
quantum trajectory to simply end there and ⟨|x̂|⟩ ‘bounces’ close to x= 0, resulting in the
effect we observe in figure 1. Here, because of the symmetry Ψ(ν,T) = Ψ(−ν,T), our state
contains two wavepackets corresponding to an expanding and a contracting de Sitter solution;
this is the equivalent of a superposition of two wavepackets that are mirror images of each
other, moving in opposite directions. Both of them will contribute to ⟨|x̂|⟩ equally.

While this is all clear from the analogy with a free particle and not a surprise from the
quantum point of view, the suggested implications for quantum gravity seem dramatic. The
result suggests that the classical horizon (which is foliation-dependent with nothing special

8
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Figure 1. Expectation value of |ν̂| as a function of T for Wheeler–DeWitt theory and
LQC for a state characterised by a Gaussian profile (24) withΛ0 = 1 and σ= 0.1, shown
with the standard deviation and corresponding classical trajectories. Here ~= G= 1 so

that κ= 8π; we also set λ=

√

4
√
3πγ and γ= 0.2375 as discussed below (33). Then

Λp ≈ 10.29.

happening locally) is replaced by a quantum region that deviates strongly from the classical
solution: the ratio of quantum and classical volumes ⟨|ν̂(T)|⟩/|νcl(T)|, where νcl(T) is the clas-
sical solution corresponding to our chosen parameter values, evidently diverges as T→ 0. This
conclusion seems inevitable for any choice of semiclassical state, regardless of how sharply
peaked it was chosen to be away from T = 0; the qualitative features seen in figure 1 are not
sensitive to the details in the state, as long as it is semiclassical. Away from T = 0, expectation
values closely follow the classical solution, while there are strong departures near T = 0.

More quantitatively, we can compute ⟨|ν̂(0)|⟩ using the approximation (29). For σ ≪
√
Λ0,

⟨|ν̂ (0) |⟩ ≈
√

3
π

2
γσ

. (30)

The scaling of the minimal value of the volume in the quantum theory with 1/σ agrees with
that seen in similar constructions in quantum cosmology such as [35]. In particular, the precise
value depends on the details of the state. However, given that the classical volume goes to
zero here, we would see any non-zero value as a strong quantum departure from the classical
solution. The dependence on σ is more explicitly illustrated in figure 2. We have checked in
particular that the results for ⟨|ν̂(0)|⟩ match with the analytical approximation (30).

As a last point, we notice that the dispersion in |ν| grows away from T = 0, as indicated by
an increasing length of the error bars shown in the previously discussed figures. However, if
one looks at the relative standard deviation ∆|ν|/⟨|ν̂|⟩, a dimensionless ratio which might be
more meaningful to study, one can see that it is actually greatest around the quantum bounce
and then falls off as the volume grows towards the future or past. This is also illustrated in
figure 3.
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Figure 2. Expectation value of |ν̂| as a function of T for Wheeler–DeWitt theory for
a state with Gaussian profile (24) with different values for σ and Λ0 = 1, plotted along
with standard deviations and the corresponding classical trajectory with Λ = Λ0 (black
lines).

In contrast to the results presented here, the analysis of [27, section VI] suggests that the
expectation value ⟨|ν̂|⟩, and hence the volume of spatial slices, always remains linear in T
following the classical solution (15) for positive T, so it does eventually go to zero (and then
turns negative, which is impossible). Closer inspection of that paper (e.g. equation (6.7)) shows
that the authors actually calculate the expectation value of ν̂ rather than of |ν̂|, which would
be zero at all times due to the assumed symmetry.

4. LQC quantisation

In this section we investigate the impact of moving from a standard WdW quantisation to an
LQC model, very similar to what was proposed in [27]. LQC mimics loop quantum gravity
effects in effectively replacing the continuum of space by a lattice; the connection b cannot

directly be represented as an operator b̂ but must be approximated by finite holonomies êiλb/2

where the limit λ→ 0 is not well-defined in the theory. We refer the interested reader to the
reviews [24, 25] for more on the motivations and technical aspects of such an approach. Here
we are mainly interested in the implications for the quantum resolution of the de Sitter horizon
that we have observed, given that resolution of classical singularities (usually the curvature
singularity at the Big Bang) is perhaps the main result of LQC.

As replacing the connection by holonomies is similar to putting the theory on a lattice,
it introduces discretisation ambiguities. There are additional ambiguities, e.g. ‘inverse triad’
corrections coming from the fact that inverse powers of the volume variable |ν| must also be
regularised in loop quantum gravity. As a result, using different prescriptions leads to dif-
ferent, inequivalent models (see, e.g. [36, 37]). Qualitative features of these models, such as

10
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Figure 3. Relative standard deviation∆|ν|/⟨|ν̂|⟩ as a function of T forWheeler–DeWitt
theory and LQC, with state parameters chosen as in figure 1.

singularity resolution by a bounce, are more generic and can already be obtained in simplified
solvable models [38], which we will also restrict ourselves to. Again this is very similar to the
treatment of [27].

In these simplified models, the main change compared to a standard quantisation is to make
the replacement

b→
̂sin(λb)
λ

, (31)

where λ can in general be a constant or a function of other variables, chosen through physical
requirements and a heuristic connection with loop quantum gravity. The choice of constant λ
is usually preferred [24].

Let us first point out that such a replacement would modify the dynamics even in the clas-
sical limit. Indeed, if we replace the constraint (14) by a loop-modified version

H=− 3
κγ2

sin2 (λb)
λ2

+
Λ

κ
≈ 0 , (32)

the classical solution (15) is replaced by

|ν (T)|= 4
~κγ

√
3Λ−λ2γ2Λ2 |T| . (33)

The λ correction has the effect of ‘screening’ the cosmological constant, so that the classical
solution is now the one corresponding to Λeff = Λ− 1

3λ
2γ2Λ2 < Λ. This is very similar to

the effective dynamics obtained in a classical limit in [27]. The correction depends on the
product λγ which defines a new scale corresponding to discreteness of the geometry. Again,
this can be seen as a free parameter but is often fixed by identifying λ2 with the minimum

11
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non-vanishing eigenvalue of the area operator in loop quantum gravity [31], λ2 = 4
√
3πGγ,

and taking γ= 0.2375 from a calculation of black hole entropy in loop quantum gravity [39].
Requiring that sin2(λb)⩽ 1 implies that there are no solutions for Λ> Λp ≡ 3

γ2λ2 , and so the
LQC corrections introduce an upper limit for a positive cosmological constant allowed in the
theory. If we associate the discretisation scale γλ to the Planck scale, Λp denotes a Planckian
cosmological constant. We then also have Λeff = Λ(1− Λ

Λp
).

In the representation where ν̂ acts by multiplication, the holonomy operator êiλb/2 then
produces a constant shift −λ in ν, and

̂sin(λb)
λ

Ψ(ν) =
1
2iλ

(Ψ(ν− 2λ)−Ψ(ν+ 2λ)) . (34)

Evidently, a formal continuum limit λ→ 0 reproduces the standard WdW quantisation we
discussed previously.

The constraint (14) is now represented as a difference equation

i~
∂Ψ(ν,T)

∂T
=

3
4κγ2λ2

[Ψ(ν− 4λ,T)− 2Ψ(ν,T)+Ψ(ν+ 4λ,T)] . (35)

Because the wavefunction is only propagated in discrete steps in ν, Ψ(ν,T) can be restricted
to have support on Lϵ ×R, where Lϵ = {ϵ± 4nλ, n ∈ Z}, ϵ ∈ [0,4). The choice ϵ= 0 is often
the most interesting one since it would include the classical singularity ν= 0.

The physical inner product in this representation is then simply

(Ψ1,Ψ2) = 4λ
∑

ν∈Lϵ

Ψ̄1 (ν,T0)Ψ2 (ν,T0) . (36)

Again, we can see that the continuum limit is given by (19).
Taking the same separation ansatz as in the previous section,Ψ(ν,T)∼ ei

ΛT
ℏκΨΛ(ν), yields

2

(
1− 2

Λ

Λp

)
ΨΛ (ν) = ΨΛ (ν− 4λ)+ΨΛ (ν+ 4λ) . (37)

This difference equation can be solved exactly with the general solution given by

ΨΛ (ν) =

(
1− 2

Λ

Λp
− 2

√
Λ

Λp

(
Λ

Λp
− 1

)) ν
4λ

c1 (Λ)

+

(
1− 2

Λ

Λp
+ 2

√
Λ

Λp

(
Λ

Λp
− 1

)) ν
4λ

c2 (Λ) . (38)

Demanding againΨΛ(−ν) = ΨΛ(ν) (invariance under triad reversal) leads to c1(Λ) = c2(Λ).
A normalised symmetric solution can then be rewritten as2

ΨΛ (ν) =

{
cos
(

ν
4λαΛ

)
, Λ≤ Λp ,

(−1)
ν
4λ cosh

(
ν
4λβΛ

)
, Λ> Λp

(39)

2 In the limiting case Λ = Λp we have αΛ = π and βΛ = 0, so ΨΛ(ν) = (−1)
ν
4λ from both expressions.

12
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with

αΛ ≡ arctan




2

√
Λ
Λp

(
1− Λ

Λp

)

1− 2 Λ
Λp


 , βΛ ≡ log

(
2
Λ

Λp
− 1− 2

√
Λ

Λp

(
Λ

Λp
− 1

))
, (40)

where we define arctan(x) in the branch [0,π] instead of the principal branch [−π/2,π/2]3.
The general symmetric solution to (35) is

Ψ(ν,T) =
ˆ ∞

0
dΛ A(Λ) ei

ΛT
ℏκ ΨΛ (ν) . (41)

We have written the integration over the whole positive real line as in principleΛ is allowed
to take any positive value. However, we can show that only the solutions with Λ≤ Λp are
normalisable with respect to the inner product (36) . Let us write the norm of a generic
state as

(Ψ,Ψ) = 4λ
ˆ ∞

0

ˆ ∞

0
dΛdΛ ′A(Λ)A(Λ ′) ei

Λ ′−Λ
ℏκ

T
∑

ν∈Lϵ

Ψ̄Λ (ν)ΨΛ ′ (ν) . (42)

For simplicity, let us restrict to the lattice ϵ= 04. In that case, ν/(4λ) ∈ Z, and the sum over ν
has three kinds of terms:

S1 =
∞∑

n=−∞
cos(αΛ n)cos(αΛ ′ n) , (43)

S2 =
∞∑

n=−∞
cosh(βΛ n)cosh(βΛ ′ n) , (44)

S3 =
∞∑

n=−∞
(−1)n cos(αΛ n)cosh(βΛ ′ n) . (45)

Since S2 is a sum over positive and exponentially growing terms, we see that Λ> Λp states
cannot be normalised. We hence cut off the integrals at Λ = Λp and we do not get any contri-
butions to S3. Focusing on S1, let us consider the following representation for the Dirac delta:

δ(x) =
1
2π

∞∑

n=−∞
einx , x ∈ [−π,2π) . (46)

Since the value αΛ = π is also possible in the limiting case Λ = Λp, there is in principle an
extra contribution for x= 2π, however this is an isolated point (of measure zero) which will
not contribute to the norm of the state and which can hence be ignored here.

3 Note that αΛ is simply the complex phase of z= 1− 2 Λ
Λp

+ 2i
√

Λ
Λp

(1− Λ
Λp

) for Λ ⩽ Λp. Considering the signs

of the real and imaginary parts of z, in the principal branch of arctan(x), one finds αΛ = arctan [Im(z)/Re(z)] for
Λ ⩽ Λp/2, and αΛ = arctan [Im(z)/Re(z)] +π for Λ> Λp/2.
4 In the appendix we show that in fact for any ϵ ∈ [0,4) we obtain the same result for

∑

ν∈Lϵ
Ψ̄Λ(ν)ΨΛ ′ (ν).
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Then, expanding the product of cosines in complex exponentials leads to

S1 = π [δ (αΛ +αΛ ′)+ δ (αΛ −αΛ ′)] . (47)

Since αΛ > 0 for all Λ< Λp, the term δ(αΛ +αΛ ′) will always vanish, and we are left with
only the δ(αΛ −αΛ ′) term, which we can rewrite as

S1 = π
√
Λ(Λp −Λ) δ (Λ−Λ ′) . (48)

Then norm of a generic state (42) can thus be simplified to

(Ψ,Ψ) = 4πλ
ˆ Λp

0
dΛ |A(Λ) |2

√
Λ(Λp −Λ)

=
4π
γ

ˆ Λp

0
dΛ |A(Λ) |2

√
3Λ−Λ2γ2λ2, (49)

where in the second equality we have inserted the explicit form for Λp. Here it is easy to see
that in the continuum limit (λ→ 0) we recover (20), as in that case Λp →∞ and the second
term in the square root vanishes; notice that the inner product now also includes the effective
cosmological constant Λeff < Λ introduced below (33).

Now, we are particularly interested in tracking the expectation value of V̂= γκℏ
4 |ν̂|. Let us

consider first
(
Ψ, ˆ|ν|Ψ

)
= 4λ

∑

ν∈Lϵ

|ν| |Ψ(ν,T)|2 . (50)

Restricting again to the lattices with ϵ= 0 for simplicity we can write this as

(
Ψ, ˆ|ν|Ψ

)
= 16λ2

∑

n∈Z

|n| |Ψ(4λn,T)|2 . (51)

In this case we cannot simplify the discrete sum before computing the integrals inside
|Ψ(4λn,T)|2, so we need to compute first the state

Ψ(4λn,T) =
ˆ Λp

0
dΛ A(Λ) ei

ΛT
ℏκ cos(nαΛ) (52)

(possibly numerically) for a given profile A(Λ).
The resulting expectation values for Gaussian states (24) are given in figure 1, where we

compare with expressions obtained in the WdW (continuum) limit and with the classical tra-
jectory. The qualitative features of both cases are very similar, with corrections coming from
LQC only appearing at large volumes, perhaps counterintuitively. This large-volume effect
can entirely be accounted for by noticing that the LQC corrections induce an effective lower-
ing of the cosmological constant from its ‘bare’ value, see the discussion below (33). As the
classical solution has (small) constant curvature, there are no high-curvature regions where we
would expect holonomy corrections to be large as they are in standard LQC models when the

14



Class. Quantum Grav. 42 (2025) 145001 S Gielen and R B Neves

Big Bang is replaced by a bounce. The conclusions regarding the horizon—sudden appear-
ance of strong quantum effects and deviation from the classical solution—are only due to the
imposition of unitarity in unimodular time, and hence identical in LQC and WdW theory.

For a simpler comparison with the WdW case, one can change the integration variable
u=

√
Λ and perform an approximation of αΛ for small

√
Λ−

√
Λ0:

αΛ = αΛ0 + 2
√
Λ0α

′
Λ0

(
u−

√
Λ0

)
+O

(
u−

√
Λ0

)2
, (53)

where the prime denotes derivative with respect to Λ. Then

ˆ Λp

0
dΛ A(Λ) ei

ΛT
ℏκ einαΛ ≈ 2N

ˆ

√
Λp

0
duue−f(T)u2+g̃(n)u+k (54)

where f (T) is the same as in (26) and

g̃(n)≡ u0
σ2

+ 2in
√
Λ0α

′
Λ0

, (55)

k≡− u20
2σ2

+ in
(
αΛ0 − 2Λ0α

′
Λ0

)
. (56)

These expressions can now refer to the LQC case with αΛ given in (40) or to the WdW case,
which would correspond to αΛ = λ

√
4γ2Λ/3 (compare with (25)).

Then (52) can be approximated as

Ψ(4λn,T)≈ N
1
f

{
ek+ ek̄+

1
2

√
π

f

(
g̃e

g̃2

4f

[
erf

(√
fΛp −

g̃

2
√
f

)
+ erf

(
g̃

2
√
f

)]

+¯̃ge
¯̃g2

4f

[
erf

(√
fΛp −

¯̃g

2
√
f

)
+ erf

( ¯̃g

2
√
f

)])}
. (57)

This expression can be compared with the earlier (28) for the WdW case. We have found
that one can use this approximation to generate approximate expectation values as given in
figure 1 with results that are indistinguishable from the ones obtained using the full numerical
solution.

5. Conclusions

The minisuperspace model we have studied is very simple, only including a single dynamical
degree of freedom corresponding to the cosmological scale factor. We could perform a num-
ber of analytical calculations both in WdW theory and in LQC, even though the calculation
of expectation values of the volume had to be done numerically. The main results are not sur-
prising at face value: given that the classical solutions for ν are simply linear in unimodular
time, for a semiclassical state the expectation value of |ν̂| follows the classical solution all the
way to the classical kink where ν changes sign. The quantum uncertainty principle does not
allow for a kink in the quantum solution and the classical solution gets smeared out, and ⟨|ν̂|⟩
remains bounded away from zero. Assuming that we were only able to measure |ν̂|, in this
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region we would suddenly experience a strong relative deviation from the classical solution
(⟨|ν̂|⟩ ≫ |ν|cl) and strong quantum fluctuations ∆|ν| ∼ ⟨|ν̂|⟩.

In the context of relativity, all this seems troubling since the classical horizon, the instant of
time where the spatial volume goes to zero, is foliation-dependent and has no generally cov-
ariant geometric interpretation. Assuming that quantum theory and general covariance were
compatible, we would require that nothing special could possibly happen here. What we are
seeing in this simple example is the well-known but not always appreciated fundamental clash
between the notion of unitarity and general covariance: unitarity can only apply to particu-
lar, somehow preferred foliations and time coordinates. Here we assumed unitarity in a given
foliation, and one could argue that the unphysical consequences of such a demand mean that
asking for unitarity is not reasonable in this context. However, this does leave us with the gen-
eral question of when and how we can ask for unitarity in quantum gravity. Our unimodular
time is as well-behaved as it gets, always globally defined and guaranteed to be monotonic,
so it seems like it cannot be the culprit. Of course the foliation we have chosen could be con-
sidered unsatisfactory classically since it does not cover the entire spacetime, but using this
criterion would seem to suggest we require knowledge of a global solution before deciding
whether unitarity can be expected, something that seems unpractical outside of the simplest
analytical solutions.

Finally, we saw that using LQC rather thanWdW theory has only minor quantitative impact
on our results, with no new conceptual insights. If unitarity in unimodular time is assumed,
we still observe strong quantum effects in a region of arbitrarily low curvature. The reason
why this behaviour seems to not have been observed previously is that almost the entire LQC
literature uses amassless scalar field as clock, with [27, 40] as notable exceptions, and solutions
withoutmatter are usually not considered. Themassless scalar field can also lead to presumably
clock-dependent strong quantum effects in the infinite future of de Sitter space [41], so again
it is perhaps not surprising to see similar low-curvature quantum behaviour here. A particular
form of unitarity—assuming a self-adjoint Hamiltonian operator in a particular gauge given
by a choice of lapse—seems to be built into the constructions of LQC, and hence the clash
between unitarity and general covariance also affects such models.
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Appendix. Norm of LQC states for generic lattices Lϵ

In the main text we have calculated the norm of LQC states when restricting to the ϵ= 0 lattice.
Here we show that the result is the same for generic ϵ. Let us start by writing

∑

ν∈Lϵ

f
( ν

4λ

)
=
∑

n∈Z

f(ϵ̃+ n) , ϵ̃ ∈ [0,1/λ). (A1)
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This way, S1 can be written as

S1 =
∑

n∈Z

cos(αΛn+αΛϵ̃) cos(αΛ ′n+αΛ ′ ϵ̃)

= cos(αΛϵ̃)cos(αΛ ′ ϵ̃)
∑

n∈Z

cos(αΛn)cos(αΛ ′n)

+ sin(αΛϵ̃)sin(αΛ ′ ϵ̃)
∑

n∈Z

sin(αΛn)sin(αΛ ′n)

+ cos(αΛϵ̃)sin(αΛ ′ ϵ̃)
∑

n∈Z

cos(αΛn)sin(αΛ ′n)

+ sin(αΛϵ̃)cos(αΛ ′ ϵ̃)
∑

n∈Z

sin(αΛn)cos(αΛ ′n) , (A2)

where in the second equality we used cos(x+ y) = cos(x)cos(y)− sin(x)sin(y). Now the sum
in the first term is directly S1|ϵ=0 = πδ (αΛ −αΛ ′) and it is straightforward to see that the last
two terms vanish since they are sums of odd functions. Let us expand the sum in the second
term and make use of the representation of the Dirac delta (46) to find

∑

n∈Z

sin(αΛn)sin(αΛ ′n) =
1
2

∑

n∈Z

{cos [(αΛ −αΛ ′)n]− cos [(αΛ +αΛ ′)n]}

= π [δ (αΛ −αΛ ′)− δ (αΛ +αΛ ′)] . (A3)

Again, since S1 is evaluated in the regime where Λ,Λ ′ < Λp, the second delta does not con-
tribute and we are left with

S1 = π [cos(αΛϵ̃)cos(αΛ ′ ϵ̃)+ sin(αΛϵ̃)sin(αΛ ′ ϵ̃)]δ (αΛ −αΛ ′)

= πδ (αΛ −αΛ ′) = S1|ϵ=0. (A4)

Finally, as in the case of ϵ= 0, the sums S2 and S3 are still ignored as they include real expo-
nentials and so the functions are not normalisable for Λ or Λ ′ > Λp.
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