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Genome-wide association study identifies
common variants associated with breast
cancer in South African Black women

Mahtaab Hayat 1,2,17 , Wenlong C. Chen 1,3,4,17, Chantal Babb de Villiers 5,

Sang Hyuck Lee6,7, Charles Curtis6,7, Rob Newton8,9, Tim Waterboer 10,

Freddy Sitas11,12,13, Debbie Bradshaw11, Mazvita Muchengeti 3,14,15,

Elvira Singh3,15, Cathryn M. Lewis 6,16, Michele Ramsay 1,

Christopher G. Mathew 1,5,16,18 & Jean-Tristan Brandenburg 1,4,18

Genome-wide association studies (GWAS) have characterized the contribution

of common variants to breast cancer (BC) risk in populations of European

ancestry, however GWAS have not been reported in resident African popula-

tions. This GWAS included 2485 resident African BC cases and 1101 population

matched controls. Two risk loci were identified, located between UNC13C and

RAB27A on chromosome 15 (rs7181788, p = 1.01 × 10−08) and in USP22 on chro-

mosome 17 (rs899342, p = 4.62 × 10−08). Several genome-wide significant signals

were also detected in hormone receptor subtype analysis. Thenovel loci did not

replicate in BCGWAS data from populations ofWest Africa ancestry suggesting

genetic heterogeneity in different African populations, but further validation of

these findings is needed. A European ancestry derived polygenic risk model for

BC explained only 0.79% of variance in our data. Larger studies in pan-African

populations are needed to further define the genetic contribution to BC risk.

Breast cancer (BC) is the most common cancer in women worldwide,

and the second most common cancer in South Africa. In 2020, the

global incidence of BCwas 2.26million cases, with 129,415 cases in sub-

Saharan Africa (SSA)1. Both genetic and environmental factors

contribute to the risk of BC, and genetic risk factors may account for

up to 30% of all BC cases2. These include both rare variants with large

effect sizes and common variants identified by genome-wide associa-

tion studies (GWAS). The first BC GWAS was published 16 years ago3,
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and this approach has been successful in identifying more than 200

loci associated at genome-wide significance with BC4.

Most GWAS of BC have been performed in non-African popula-

tions, with almost 80% of all GWAS done in populations of European

ancestry5. A large study of BC in Asian and European populations

detected significant ancestral differences in the frequencies and

association strengths of risk variants, and also identified 32 risk loci

which showed differences in association between estrogen receptor

(ER) positive and ER negative BC, indicating potentially important

differences in the etiology of breast cancer subtypes4.

There is a substantial emerging literature on the genetics of BC

in African American (AA) populations6–8, particularly from a colla-

borative study of three AA consortia for BC genetics which included

the GWAS in Breast Cancer in the African Diaspora (ROOT), the

African American Breast Cancer (AABC) and African American Breast

Cancer Epidemiology and Risk (AMBER)9–11. In 2013 a study of 67

known BC loci discovered in non-African populations was investi-

gated in an AA population. Only seven signals showed suggestive

evidence of replication (p < 0.05) in this AA dataset12. Similarly, sug-

gestive associations were reported in a study of candidate loci and a

GWAS that included participants from the ROOT and AABC

consortia10,13. However, in a meta-analysis by Huo et al. three variants

were associated with BC in women of African ancestry at genome-

wide significance7. Two single nucleotide polymorphisms (SNPs),

rs13074711 upstream of TNFSF10 and rs10069690 in TERT, were

associated with ER negative BC. The third, rs12998806, was asso-

ciated with the risk of ER positive BC. Ruiz-Narvaez et al. used

admixture mapping that included participants from the AMBER

consortium to identify two novel associations, rs112545418 in

ZFYVE28 and rs55850050 on chromosome 17, with ER positive BC14.

Another study that included participants from the AMBER con-

sortium tested 65 SNPs for association with BC, but did not find any

significantly associated SNPs15. A meta-analysis of African ancestry

cohorts and European ancestry cohorts from Breast Cancer Asso-

ciation Consortium (BCAC) found four loci associated with overall

BC risk (1p13.3, 5q31.1, 15q24 and 15q26.3) and two with ER negative

BC (1q41 and 7q11.23), with modest contributions from the African

cohorts16. Recently a large GWAS of BC cases and controls of African

ancestry predominantly from the Unites States identified 12 loci

associated with breast cancer risk which included a low frequency

missense variant in the ARHGEF38 gene and a common variant

associated with triple negative breast cancer (TNBC)17. The sample

sizes in the African-American GWAS in these studies ranged from

3153 BC cases and 2831 controls to the most recent study which

included 18,034 cases and 22,104 controls17.

In contrast to GWAS in AA populations no GWAS have been car-

ried out exclusively in resident SSA populations. A number of small

candidate gene association studies investigated the contribution of

common variants to BC in SSA. Six of these studies were reviewed by

Hayat et al., and three further studies were published more

recently8,18–20. The sample sizes in these studies ranged from 40 to 392

cases and 39–250 controls, and none reported strong evidence for

association with BC. A recent study examined four FGFR2 SNPs which

are associatedwith BC inpopulations of Europeanor AfricanAmerican

ancestry in 1001 cases and 1006 controls from southern African Black

women and did not find evidence of association with BC21.

GWAS has also led to the development of polygenic risk scores

(PRS) for the stratification by BC genetic risk. Risk prediction tools,

such as BOADICEA, developed in a European setting using both clinical

and genetic data has demonstrated to be effective in the management

of BC risk22. BC PRS are primarily developed using European genetic

data, and previous studies have demonstrated poor transferability of

European PRS to non-European populations23,24. This reinforces the

need for population diverse GWAS for BC in order to develop PRS that

are more appropriate.

Genotyping and whole genome sequencing studies have revealed

a very high degree of genetic diversity among the populations of the

African continent, with principal component analysis showing clear

separation of populations from West, East, Central and Southern

Africa25. African-Americans originated from Africans forced into slav-

ery and are descended mostly from ethnic groups that lived in West

Africa, with admixture mostly of European ancestry26. It is therefore

likely that genetic studies of breast cancer in African-Americans will

captureonly a subset of the contributionof the genetic contribution to

breast cancer susceptibility on the African continent, and argues for

broadening the diversity of genetic studies in Africa. In view of the

paucity of genetic research into the etiology of BC in Africa8, and the

genetic diversity of African populations25,27, we carried out a GWAS to

identify common genetic variants that contribute to BC risk in a South

African Black population. This included cases and controls from the

Johannesburg Cancer Study (JCS) and ethnically matched controls

from the Africa Wits-INDEPTH Partnership for Genomic Research

(AWI-Gen) study27–30. The JCS samples formed part of a larger

study, Evolving Risk Factors for Cancer in African Populations (ERICA-

SA) (https://www.samrc.ac.za/intramural-research-units/evolving-risk-

factors-cancers-african-populations-erica-sa) which is investigating the

contributions of lifestyle, infection and genetics to cancer. We also

performed ameta-analysis of the African ancestryGWASdatasets from

Jia et al.17 and the UK Biobank (UKBB) to identify potential shared risk

loci for populations of African ancestry. Finally, we examined the

transferability of a BC PRS developed from populations of European

ancestry to our dataset.

Results
Study participants, structure control and dataset
Although all participants were from the Soweto region of greater

Johannesburg in South Africa, we controlled and adjusted for the

population substructure that was present. Following population sub-

structure analysis, 226 cases and 69 controls were removed, leaving

2485 cases and 1101 controls to be included in the association analysis

(Table 1, Supplementary Dataset 1). PCs 1–5 accounted for most of the

variance observed from the Eigenvalue curve (Supplementary Fig. S1)

and were selected as covariates in the linear mixed model (LMM). The

admixture plot (Fig. 1A) shows clear differences between West, East

and South African populations. The PC plot showed that the South

African BC cases and controls were well matched and clustered away

fromnon-South African samples and thatWestAfricanpopulations are

distinct from South African populations (Fig. 1B). Finally, participant

relatedness was accounted for with genetic relationship matrices

(GRMs) that were generated with 500,000 markers using the leave-

one-chromosome-out (LOCO) approach and used in the LMM (see

Methods).

The total genotyping rate was 97.83% before data QC but

improved to 99.92% after QC. The final dataset included 1,699,678

genotyped SNPs, and a total of 18,020,999 genotyped and imputed

SNPs to be tested for association with BC.

Genome-wide association analysis for BC in the South African
population
SNPs were tested for association with BC using an LMMmethod which

was used because it is effective in correcting for relatedness and

structure, therefore limiting genetic inflation31. The genomic inflation

factor (λ genomic control) for themodel was 1.01 (Fig. 2A). Two signals

that were significantly associated with BC in our dataset were identi-

fied. The first is a genotyped SNP on chromosome 15 that is located

between the genes UNC13C and RAB27A/RSL24D1 (rs7181788,

p = 1.01 × 10−08). The second is an intronic variant within USP22

(rs899342, p = 4.62 × 10−08) on chromosome 17 (Table 2, Fig. 2B).

Regional association plots show that there are multiple correlated

SNPs in the region of both signals (Fig. 3). The 95% credible set from
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the FINEMAP analysis included the top signal on chromosome 15 and

three SNPs on chromosome 17, particularly the top signal identified in

this GWAS (Supplementary Dataset 2).

Additionally, 89 SNPs, from 39 independent loci were identified

with suggestive association with BC (p < 5 × 10−06) (Supplementary

Dataset 3). The estimated genetic heritability (h2g) was 17.50% (stan-

dard deviation: 6.52%) on the liability scale.

Replication of JCS associations in African ancestry BC GWAS
We first carried out a meta-analysis of African ancestry (AA) cases and

controls from Jia et al.17 and theUKBB (seeMethods) to generate a joint

AA data set (Supplementary Fig. S2). SNPs from the South African JCS

BC GWAS with at least suggestive evidence of association (pJCS
<5 × 10−6) were then assessed for replication in this joint dataset AA

dataset. A subset of 33 independent markers from our JCS study were

present in the AA dataset (Supplementary Dataset 4), none of which

reached a Bonferroni p value threshold (p < 1.52 × 10−3), including the

top hits fromour study. Of the 33markers, 20 had the samedirectional

effect (exact binomial test p =0.296).

Replication of suggestive hits from AA BC GWAS in JCS GWAS
We then tested whether loci that were associated with BC (pAA
<5 × 10−6) in the African Ancestry meta-analysis were associated with

BC in the South African JCS GWAS. There were 54 independent loci in

the AA meta-analysis, two of which met Bonferroni correction with

same sign of the effect (pJCS <9.3 × 10−04) in the SA JCS data. These

included 19 SNPs near TOX3 on chromosome 16 led by rs3112570 (pJCS
= 1.37 × 10−04) and rs7734992 (pJCS = 3.44 × 10−04) in TERT on chromo-

some 5, while several others had nominal evidence of association with

Table 1 | Sample sizes

SA GWAS datasets N

BC GWAS cases 2485

GWAS controls 1101

ER-positive 1155

ER-negative 766

HER2-positive 499

TNBC 262

Other studies Cases Controls

UK Biobank (African Ancestry) 163 3774

Jia et al. (2024) (African

American)

18,034 22,104

Total (Meta-analysis) 18,197 25,878

SA South African, ER-positive estrogen receptor positive, ER-negative estrogen receptor nega-

tive,HER2-positive human epidermal growth factor positive, TNBC triple negative breast cancer.

K
h

o
is

a
n

A

B

Fig. 1 | Admixture and principal component plots. A The Admixture plot at K = 6

of cases, controls and reference populations: East Asian (EAS) (KGP), South-East

Asian (SAS) (KGP) and European (EUR) (KGP), West African (West) (KGP and AWI-

Gen); African American (AA) (KGP); Khoe-San55; East African (East) (KGP, AGVP and

AWI-Gen); South African (SA) (AGVP, AWI-Gen and JCS). B PCA Plot (1st and 2nd

components) showing JCS cases and controls, African Americans, Non-African

(CEU, SAS and EAS) and West Africans. KGP Thousand Genomes Project, AGVP

African Genome Variation Project, JCS Johannesburg Cancer Study.
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p <0.05 including loci on chromosomes 2, 3, 15 and 19 (Supplementary

Dataset 5).

Receptor sub-type analysis
Potential differences in the genetic etiology of breast cancer subtypes

were investigated by additional association analyses of TNBC vs con-

trols, TNBC vs ER-positive BC, TNBC vs HER2-positive BC, ER-positive

and ER-negative BC vs controls, and ER-positive vs ER-negative BC.

The TNBC vs controls analysis identified six SNPs at two loci that

reached genome-wide significance (Table 3, Fig. 4) including

rs111999709, EAF =0.058, pTNBCvsctrl= 2.08× 10−08 on chromosome 3,

and rs11598380onchromosome10, EAF =0.015,pTNBCvsctrl=2.97 × 10
−08.

The TNBC vs ER-positive BC analysis revealed one significantly asso-

ciated SNP, rs189230042, on chromosome 6, EAF =0.025, pTNBCvsER

+= 2.33 × 10
−8 (Table 3, Supplementary Fig. S3). No genome-wide sig-

nificant signals were found in the TNBC vs HER2-positive analysis (Sup-

plementary Fig. S4) or in the analysis of ER-positive BC vs controls

(Supplementary Fig. S5). Analysis of ER-negative BC vs controls showed

one genome-wide significant signal on chromosome 10: rs11593018,

pERneg =4.92 × 10
−08 (Table 3, Supplementary Figs. S6 and S7). This was

supported by two other SNPs in close proximity. The next strongest, but

not genome-wide significant, signal was rs7181788 on chromosome 15,

which was the top signal in the overall BC GWAS (Supplementary

Fig. S7B). The ERpositive vs ER negative analysis identified genome-wide

significant signals at two loci, on chromosomes 3 and 1 (Table 3, Sup-

plementary Figs. S8 and S9A). The strongest signal was rs112965634,

pERpvn= 2.22 × 10
−08 on chromosome 3. Two SNPs on chromosome 1

reached genome-wide significance: rs113934974, pERpvn= 3.06× 10−08

and rs113425481, p=3.09× 10−08 (Supplementary Fig. S9B). The asso-

ciations at both of these loci were supported by multiple other SNPs in

these regions (Supplementary Fig. S9).

Potential replication of signals with p < 5 × 10−06 in the JCS ER-

negative subtype vs control analysis was assessed in the Jia et al. Afri-

can data using their ER-negative vs control analysis17.

The genome wide significant association on chromosome 10 in

the JCS ER-negative vs controls analysis was not replicated in the Jia

et al. African data; interestingly, the EAF in the Jia et al. data (0.051) was

substantially higher than in the South African data (0.016). None of the

suggestive associations in the JCS data were replicated in the Jia et al.

African data (Supplementary Dataset 6). There were no genome-wide

significant signals in the JCS ER-positive vs controls analysis, and the Jia

et al. study did not include an analysis of ER-positive vs ER-negative

subtypes.

Replication of ER-negative vs controls and ER-positive vs controls

signals (p < 5 × 10−06) from Jia et al. were assessed in the JCS dataset.

None of these met the Bonferroni threshold for either set of analyses

(p = 2.5 × 10−04 and p = 1.36 × 10−04, respectively). However, considera-

tion of only the three genome-wide significant loci from Jia et al. in the

ER-negative vs controls analysis found that SNPs at two of these loci,

led by rs7734992 on chromosome 5 and rs11668840 on chromosome

19 showed evidence of association in the JCS data with pJCS = 7.55 × 10−3

and 9.30 × 10−04 respectively (Supplementary Dataset 7). Similarly, for

the 7 genome-wide significant loci in the ER-positive vs controls in Jia

et al., SNPs at two of these loci, on chromosome 2 (led by rs17778798,

pJCS= 4.68 × 10−04) and chromosome 16 (led by rs3112570,

pJCS= 6.94 × 10−04) also showed evidence of association (Supplemen-

tary Dataset 8).

Functional analysis
The top signal on chromosome 15 at rs7181788 is flanked by potential

candidate genes UNC13C and RAB27A. RAB27A is a member of the RAS

oncogene family involved in exosome secretion and is associated with

consequent invasive growth and metastasis. The top SNP on chro-

mosome 17, rs899342, is located in an intron of USP22. This SNP is a

strong eQTL for expression ofUSP22 in a wide range of tissues, and on

PancanQTL it affected the expression ofUSP22 in lower grade gliomas

and thyroid carcinoma. Data on GTEx shows that the C allele down-

regulates expression of USP22 in the thyroid gland. Regarding the

associations identified in the ER-negative subtype analysis, the nearest

gene to the locus identified on chromosome 10 is SGMS1 (sphingo-

myelin synthase 1), but no eQTL data is available for the associated

SNPs at this locus. In the ER-positive vs ER-negative analysis, the eQTL

analysis using FUMA showed that the SNPs rs113934974 and

rs113425481 upstream of TMEM52 on chromosome 1 are eQTLs for

expression of this gene in mammary tissue (p = 1.2 × 10−6 and 8.1 × 10−6

respectively).

Little is known of the function of TMEM52; it encodes a trans-

membrane protein and is positively regulated by p53 so may be

involved in the cellular stress-response system32.

Polygenic risk score
A polygenic risk score was generated with 202 SNPs that were in our

South African JCS GWAS dataset and in common with the 313 SNP PRS

model from Mavaddat et al. (PRS313/202)
33. This model explained only

0.79%of variance in our dataset, with anAUCof 0.56 (Fig. 5). A PRSwas

also generated with 2819 SNPs in common with the 3820 SNPs that

Mavaddat et al. (PRS3820/2819) reported to have optimal predictability.

This model explained only 0.6% of variance in our dataset with an AUC

of 0.55 (Fig. 5).

Discussion
Although a wealth of information now exists on the contribution of

common genetic variants to susceptibility to breast cancer, the

majority of genome-wide studies have been carried out in populations

of European ancestry. There is also a burgeoning literature on the

genetics of breast cancer in African American populations, but we are

A
USP22

rs899342

UNC13C/RAB27A

rs7181788

B
Lambda genomic control: 1.014 

Fig. 2 | Quantile-Quantile plot andManhattan plot of the South African JCS BC

association results. A Quantile-Quantile (QQ) plot, λ = 1.014. B Manhattan plot

with genome-wide significant hits (p < 5 × 10−08) highlighted on chromosomes 15

and 17. Red line indicates genome-wide significance (p < 5 × 10−08), blue line indi-

cates suggestive significance (p < 5 × 10−06). JCS Johannesburg Cancer Study, BC

breast cancer, λ Lambda genomic control.
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not aware of any genome-wide studies in resident African populations.

The immense genetic diversity among the populations of sub-Saharan

Africa and differences in environmental exposures between resident

and non-resident African populations suggests that there may be

substantial differences in the genetic determinants of cancer sus-

ceptibility both within continental Africa and across continents34.

Bridging this knowledge gap is needed to increase our understanding

of the genetic etiology of African breast cancer and to develop clinical

tools such as polygenic risk scores that can guide screening approa-

ches in Africa, and globally. Our genome-wide study in Black South

African women is a step towards this goal.

Correcting for the complex genetic diversity and population sub-

structure on a regional level was important in generating a robust

dataset to be used in the association analysis. A substantial contribu-

tion of genetics to BC risk was observed in this population, with a SNP-

based heritability (h2g) estimate of 17% in the South African JCS

dataset. This is lower but comparable to the h2g estimate from an

African Ancestry study of 22%17.

The South African JCS GWAS identified two strongly associated

genetic risk loci for BC in a South African Black population namely a risk

allele rs7181788 on chromosome 15, which lies between the genes

UNC13C andRAB27A, and a risk allele rs899342within theUSP22 gene on

chromosome 17. RAB27A is a small GTPase and member of the RAS

oncogene family, with an important role in exocytosis. Overexpression

of Rab27A protein has long been associated with increased invasive and

metastatic abilities in breast cancer cells both in vitro and in vivo35. More

recently, silencing of this gene was found to inhibit proliferation, inva-

sion and adhesion of triple negative breast cancer cells36. Also,migration

and invasion of colon cancer cells were shown to be suppressed by

RAB27AknockdownbutwerepromotedbyRAB27A ectopic expression37.

UNC13C is oneof a family of proteinswith key roles in exocytosis andhas

been reported todownregulate tumorprogression inoral squamous cell

carcinomas through its role in regulating epithelial-to-mesenchymal

transition (EMT) signaling pathways38. A recent study found high num-

bers ofmutations inUNC13C in head and neck cancer patients of African

ancestry, which suggests these variations can lead to aggressive formsof

head and neck cancer in patients of African ancestry39.

The risk allele rs899342 lies within the USP22 gene on chromo-

some 17 and affects expression of this gene inmany tissues. USP22 is a

ubiquitin hydrolase and is a component of the SAGA coactivator

complex which is essential for eukaryotic transcription. It is highly

expressed in breast cancer samples compared to benign breast tissue,

and high expression of USP22 is significantly associated with poorer

overall survival in breast cancer40,41. It also associates with estrogen

receptor α to maintain ERα stability and contributes to chemotherapy

resistance in triple negative BC tumors40,41.

Receptor subtype analysis of TNBC vs controls revealed associa-

tion with two loci in gene ‘desert’ regions, with the nearest genes being

IL20RB and HACD1 on chromosomes 3 and 10 respectively. The TNBC

vs ER-positive top signal on chromosome 6 is in a long non-coding

RNA,with thenearest gene beingRGS17, which is a negative prognostic

marker for TNBC42. The ER-negative BC vs controls analysis revealed an

intergenic signal that reached genome-wide significance and was

supported by two other SNPs in close proximity. The nearest gene is

SGMS1, a sphingomyelin synthase, which, if overexpressed in breast

cancer cell lines, inhibits TGF-β1-induced EMT and the migration and

invasionof cells43. Receptor subtype analysis for ERpositive-BCdidnot

detect any signals at genome-wide significance.

An analysis of ER-positive vs ER-negative BC cases was done to

screen for genetic signals that are specific to a particular subtype. The

signal from this analysis, rs112965634 on chromosome 3, is intergenic

and is extremely rare in non-African populations. The nearest gene at

this locus is the histone acetyltransferase KAT2B, which is upregulated

by a transcriptional complex, NELF-E-SLUG, and promotes the EMT

process in the development of breast cancer44. Inactivation of KAT2BT
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was associated with downregulation of the EMT pathway, whereas ele-

vated expression of KAT2B was correlated with reduced survival in

breast cancer patients. The SNPs in the locus identified on chromosome

1 in the ER-positive/ER-negative analysis are located just upstreamof the

TMEM52 gene and are eQTLs for its expression in mammary tissue, but

this locus has not previously been reported to be associated with BC.

There was limited evidence for replication of our GWAS findings

in theAfricanAncestrydatasets. Our top signals from theoverall GWAS

on chromosome 15 and chromosome 17 were not replicated in the AA

data meta-analysis. The lack of shared risk loci could be explained in

part by African Americans mostly being descended fromWest African

populations with European admixture while the South African JCS

GWASwas composed of cases and controls from South Africa, who are

South-Eastern Bantu-speaking populations with Koisan admixture27.

Our admixture analysis and PCA plot shows very substantial genetic

diversity between West African and South African populations. Also

there are potential differences in environmental exposures between

these populations. However, the lack of replication in the AA dataset

requires further investigation as theymay be false positives. Some, but

not all the signals from the African ancestrymeta-analysis dataset were

replicated in our JCSdataset, whichcould be attributed toboth genetic

diversity and the limited power for replication in our dataset.

The PRS models evaluated in our study showed that models

generated in European populations had substantially lower predictive

efficacy for BC in the South African JCS population, with AUCs of 0.56

and 0.55 for the PRS313/202 and PRS3820/2819 respectively as compared

to 0.63 and 0.64 in the European ancestry study33. The 313 SNP PRS

also did not performwell on the Jia et al. African Ancestry dataset with

anAUCof 0.5817. This is consistentwithfindings on the performanceof

PRSfindings inother disorders5,23,24.MoreGWASneed to be carried out

in resident African populations to generate more predictive PRS, the

inclusion of diverse populations in PRS generation can improve the

transferability of risk loci and PRS across different populations45. PRSs

have been shown to have attenuated risk prediction both in dis-

crimination and calibration when used in non-European ancestry

populations. PRS represents a significant advance inBC riskprediction,

with potential for further enhancing personalized care46. The role of

PRS in the clinical management of BC is being extensively researched,

Fig. 3 | Regional association plots of the top signals in the South African JCS

GWAS using locuszoom software and the JCS Soweto as a reference for LD.

A rs7181788 on chromosome 15 between UNC13C and RAB27A. B rs899342 on

chromosome 17 in USP22. JCS Johannesburg Cancer Study, LD linkage dis-

equilibrium, GWAS genome wide association study.

Table 3 | Top signals from receptor sub-type GWAS

TNBC vs controls

Chr Position (hg19) rsID Alleles (Effect/non-effect) EAF P value OR (95% CI)

3 137142030 rs111999709 C/T 0.058 2.08 × 10−08 1.20 (1.13–1.28)

3 137126170 rs534829894 A/G 0.058 2.74 × 10−08 1.20 (1.13–1.28)

3 137142198 rs113378419 T/C 0.058 2.95 × 10−08 1.20 (1.12–1.28)

3 137124646 rs111295639 C/G 0.063 3.79 × 10−08 1.19 (1.12–1.27)

3 137126730 rs112262998 A/G 0.063 3.93 × 10−08 1.19 (1.12–1.27)

10 17669070 rs11598380 T/C 0.015 2.97 × 10−08 1.45 (1.27–1.66)

TNBC vs ER-positive

6 153702044 rs189230042 A/T 0.025 2.33 × 10−08 1.36 (1.22–1.52)

ER-negative vs controls

10 52055245 rs11593018 A/G 0.016 4.92 × 10−08 0.23 (−0.08–0.54)

10 52054031 rs7073005 T/C 0.016 7.76 × 10−08 0.23 (−0.09–0.54)

15 55015367 rs7181788 T/G 0.219 3.60 × 10−07 1.49 (1.32–1.72)

ER-positive vs ER-negative

3 20660927 rs112965634 G/C 0.060 2.22 × 10−08 0.46 (0.35–0.57)

1 1851188 rs113934974 G/A 0.503 3.06 × 10−08 1.44 (1.39–1.49)

1 1851185 rs113425481 T/G 0.503 3.09 × 10−08 1.44 (1.39–1.49)

SNP is considered significant if p value < 5 × 10−08.

EAF effect allele frequency, OR odds ratio, 95% CI 95% confidence interval.
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including their potential role as part of risk assessment for stratified

breast screening47.

GWAS from African populations are not only of value not only for

the development and understanding of PRS but also to better under-

stand the genetic causes of cancer, which could be of benefit to all.

Differences in ancestral origins are associatedwith differences in allele

frequency and linkage disequilibriumpatterns. Although this study has

a relatively small sample size and is underpowered to detect small

effect sizes, theremay be risk alleles in populations of African ancestry

that are rare or absent in non-African populations and could provide

novel insights into our understanding of disease.

Despite the limitation in the sample size of our study we were

able to identify two genome-wide significant signals associated

with overall BC (rs899342 in the USP22 gene on chromosome 17

and risk allele rs7181788 on chromosome 15), and several com-

parably significant signals in our analysis of BC estrogen receptor

subtypes. The genomic locations of these signals are interesting

in the context of their potential functional significance in the

biology of BC, but verification of their relevance will require

further bioinformatic and experimental analysis. It is however

noteworthy that several of these loci include genes involved in

the epithelial-mesenchymal transition, given the important role of

that pathway in breast tumor cell progression, invasion, and

metastasis. Going forward, the large global Confluence project on

the genetics of breast cancer (https://dceg.cancer.gov/research/

cancer-types/breast-cancer/confluence-project), to which we are

contributing, includes a major expansion in the study of breast

cancer genetics in resident African populations.

Methods
Study design
This genetic association study forms part of a larger study: Evolving

Risk Factors for Cancer in African populations (ERICA-SA) (https://

www.samrc.ac.za/intramural-research-units/evolving-risk-factors-

cancers-african-populations-erica-sa). Our study received approval

from the Human Research Ethics Committee (Medical), University

of theWitwatersrand, South Africa for the breast cancer (M160807)

and AWI-Gen (M121029; M170880) studies. All the participants

signed an Informed Consent Form before any study procedure was

performed.

Study sample
Black female patients with histologically confirmed breast cancer were

recruited to the Johannesburg Cancer Study (JCS)29. All study partici-

pants were enrolled from the Soweto region, Gauteng Province, South

Africa. Non-cancer, ethnically similar female participants also from the

Soweto region, Gauteng Province were selected from the Africa Wits

INDEPTHpartnership for genomic studies (AWI-Gen) study and the JCS

as population controls27.

Sampling and genotyping
We collected and isolated genomic DNA (gDNA) as previously descri-

bed from peripheral blood samples from all study participants48. In

brief, gDNA was isolated using either by the Qiagen DNA FlexiGene kit

as per the manufacturer’s protocol (Cat. No./ID: 51206), or the salting

out method in which cellular proteins are salted out by dehydration

and precipitation with a saturated NaCl solution49. The isolated gDNA

was resuspended in low Tris-EDTA buffer and stored at −80 °C

until use50.

DNA samples were genotyped using the Illumina H3Africa

custom array (https://www.h3abionet.org/h3africa-chip)51. The

genotyping of JCS samples took place at the Genomics Core

Facility, Department of Social, Genetic & Development Psychiatry

Centre, King’s College London. The AWI-Gen samples were geno-

typed using the Illumina FastTrack Sequencing Service (https://www.

illumina.com/services/sequencing-services.html). Raw intensity

files (iDATs) were used for data analysis. Illumina supplied the pre-

defined cluster file and manifest file which was used to call and

cluster the genotypes for all the cases and controls (Supplementary

dataset 1). (https://emea.support.illumina.com/downloads/iaap-

genotyping-orchestrated-workflow.html#:~:text=Support%20Center

%3A,GTC%20format%20and%20PED%20Files). The Illumina Array

Analysis Platform Genotyping orchestrated command-line workflow,

using the Illumina GenCall algorithm, was used for genotype calling.

PLINK version 1.9 was used for genotype data management52. The

H3ABioNet/H3Agwas Pipeline version 3 was used to format data and

carry out data quality control (QC)53.

Quality control: Only autosomal SNPs were retained for analysis.

SNPs were included if SNP-based missingness was ≤0.01, minor allele

frequency (MAF) ≥0.01 and Hardy Weinberg equilibrium (HWE) p-

value ≥0.0005. Samples with individual genotype missingness ≥0.01

were excluded. Unrelated participants were retained for analysis

(piHat ≤0.18). Genotype-gender mismatched individuals were exclu-

ded along with participants outside of the heterozygosity limits of

≤0.15 and ≥0.343.

Imputation
We used the Sanger Imputation Service (https://imputation.sanger.

ac.uk/) with the African Genome Resource panel as the reference.

Pre-phasing was performed using EAGLE2. Parameters for post-

imputation QC were: MAF ≥0.01, Impute2 Score ≥0.3, HWE p-

value ≥0.0001.

Adjusting for population sub-structure
The South African Black populations show complex genetic

architecture and population substructure25,27. Several measures

were taken to account for this. First, admixture analysis was done

with reference population of the European, (CEU, n = 503), East

Asian (EAS, n = 504) and South East Asian (SAS, n = 489)

rs11598380
rs111999709

BA
Lambda genomic control: 0.9942

Fig. 4 | Quantile-Quantile plot and Manhattan plot of the TNBC vs controls

analysis. A QQ plot, λ =0.9942. B The Manhattan plot with genome-wide sig-

nificant (p < 5 × 10−08) hits indicated for chromosomes 3 and 10. Red line indicates

genome-wide significance (p < 5 × 10−08), blue line indicates suggestive significance

(p < 5 × 10−06). TNBC triple negative breast cancer, λ Lambda genomic control.
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individuals from the 1000 Genomes Project (KGP), 220 indivi-

duals with Khoe-San ancestry and 13,261 individuals with SSA

ancestry (West, East and South SSA ancestry) from the African

Genome Variation Project (AGVP), AWI-Gen and the JCS cohort

using Admixture v1.3 51 (see Supplementary Dataset 1a, b)54–56.

Individuals with >10% CEU or Asian genetic contribution and

<70% Bantu and Khoe-San southern sub-Saharan ancestry were

excluded. Secondly, we performed Eigen decomposition for

Principal Component (PC) analysis using linkage-disequilibrium

(LD) pruned SNPs (100 kb window, 20 SNPs within each window,

r2 = 0.2). PCs 1–5 were selected using cases and controls after

quality control and included as covariates in the final model.

Eigen decomposition was performed using PLINK v.1.9 and

visualized in R52.

GWAS Linear-mixed modeling (LMM)
The binary case-control phenotype was regressed with PCs 1–5 with

GRMs and probability of imputation as covariates. The LMM accounts

for genetic relatedness and population structure and was done using

Gemma v.0.98.157,58 GRMs were generated using 500,000 LD

independent genotyped SNPs using the leave-one-chromosome-out

(LOCO) approach. Study methodologies incorporating mixed models

that utilize the LOCO approach have higher statistical power com-

pared to traditional association studies59,60. Odds ratio approximations

were calculated using case-control ratios and beta values61. The

quantile-quantile (QQ) plots andManhattan plots were done using the

fastman library in R26,62.

Receptor sub-type analysis
Receptor sub-type analysis was done with ER positive cases and ER

negative cases against controls, TNBC cases against: controls; ER-

positive cases and HER2-positive cases. An analysis was also done

comparing ER-positive individuals (coded as 1) with ER-negative indi-

viduals (coded as 0). Sample sizes for the receptor subtypes are shown

in Table 1.

We also assessed replication of suggestive signals (p < 5 × 10−06)

from the JCS ER-negative vs controls results in the Jia et al. ER-negative

vs controls dataset17. Further signals (p < 5 × 10−06) from the ER-

negative and ER-positive vs controls analysis from Jia et al. were

looked up in our JCS ER-negative and ER-positive dataset17.

A B

C D

AUC: 0.555 (0.534-0.575)

AUC: 0.548 (0.524-0.568)

Fig. 5 | Density and receiver operating characteristic (ROC) plots ofnon-African

polygenic risk scores (PRS) applied to the South African JCS dataset. A Density

plot of score separated by disease status using 202 SNPs PRS.B ROC curve plot for

202 SNPs PRS. C Density plot of score separated by disease status using 2819 SNPs

PRS. D ROC curve plot for 2819 SNPs PRS. JCS Johannesburg Cancer Study.
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Heritability estimation
A SNP-based heritability (h2g) estimate was calculated in LDAK using

genotype data63. A restricted maximum likelihood estimations

(REMLs) was used in LDAK. LDAK weighting, which accounted for LD,

was carried out using the default correlation squared threshold of

0.98. A GRM was computed on the smaller set of predictors that

resulted from the LDAK weighting, and this was used for the h2g

estimation. The h2g for BC was estimated on the liability scale using

the Globocan 2020 incidence for BC (age standardized incident rate of

0.000526) in South Africa as a proxy for disease prevalence1.

Replication of JCS African and known BC risk loci
In order to determine whether our findings could be replicated in

existing BC GWAS data from other populations we first performed a

fixed-effect meta-analysis in METAL, allowing for heterogeneity, on

two datasets: African ancestry BC cases and ethnically-matched con-

trols from the UK Biobank (cases = 163, controls = 3774), and the

dataset from the Jia et al. (2024) GWAS (cases = 18,034, controls =

22,104) (Table 1)17,64,65. Suggestive signals in our study (p < 5 × 10−06)

were then assessed for replication in this African ancestry meta-

analysis17,64.

Suggestive signals (p < 5 × 10−06) from the African BC GWAS by Jia

et al. were tested for replication in the JCS BC dataset.

Fine mapping & functional analysis of associated variants
Regional plots were created using LocusZoom v1.4, for all top GWAS

signalswithp< 5× 10−8, with a 400kbflankingnucleotidewindow, using

KGP African LD information66. FUMA was used to annotate67,68 and

interpret associatedGWAS variants with p< 1 × 10−5 using the KGP Phase

3 African data as a reference, as well as annotated co-localized eQTLs in

the breast tissues of interest fromGTEx version 869,70. GCTA COJO-SLCT

was used to perform a stepwise model selection procedure to select

independently associated SNPs and FINEMAP v1.4 was used to identify

variants surrounding the top association signals in our study and cred-

ible interval set at 95%. The top SNPs were also analyzed on Pan-

canQTLv2.0,whichprovides cis and trans eQTLs in 33 cancer types from

TheCancerGenomeAtlas71. Reactomewas used to investigate pathways

linked to the genes that were located near the two top signals72.

Polygenic risk scores
A PRS was generated using PLINK in our dataset using the 313 SNP

model by Mavaddat et al.33. Of the 313 SNPs, 202 were present in our

dataset and used to generate the PRS. In addition, we also generated a

PRS using the 3820SNPsmodel byMavaddat et al.33. Of the 3820 SNPs,

2819 SNPs were present in our dataset and were used to generate the

PRS. PRS and cancers status were compared using logistic regressions

(lm function fromR) includingPCs 1–5 as covariates. Thepercentageof

variance explained by the PRSof cancer status was estimated using the

linear model (lm) from R and the ANOVA function. Only SNPs with an

allele frequency of >0.01 were included in this analysis. The dis-

crimination performance of a PRS was assessed using the area under

the receiver operating characteristic curve (AUC), using roc function

from pROC package in R73.

Reporting summary
Further information on research design is available in the Nature

Portfolio Reporting Summary linked to this article.

Data availability
The full dataset generated in this study is in the EGA database under

the study accession code EGAS00001002482 for AWI-Gen controls

and EGAS00001008032 for breast cancer cases and JCS controls. This

accession IDs for the AWI-Gen phenotype dataset:

EGAD00001006425, and the genotype dataset: EGAD00010001996.

These datasets are available subject to controlled access through the

Data and Biospecimen Access Committee of the H3Africa Consortium.

Summary statistics reported in the paper are accessible on GWAS

Catalog (https://www.ebi.ac.uk/gwas/) at the accession numbers:

GCST90551892, GCST90551893, GCST90551894, GCST90551895,

GCST90551896, GCST90551897, GCST90551898. Publicly available

datasets included in the study are the following: 1000 Genomes Pro-

ject Phase 3 (ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp), BC African

American dataset with summary statistics available at GWAS Catalog

(https://www.ebi.ac.uk/gwas/). The data will be available for compu-

tational benchmarking studies on condition that no attempt ismade to

reidentify participants. Access to the dataset will require ethics

approval from a recognized ethics committee.

Code availability
The quality control pipeline is available on GitHub at https://github.

com/h3abionet/h3agwas/. The version used in this study has been

deposited in the Zenodo repository (https://doi.org/10.5281/zenodo.

14907702; https://zenodo.org/records/14907702). Additional code is

available upon request.
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