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Coherent energy transfer in coupled
nonlinear microelectromechanical
resonators

Hemin Zhang 1,2 , Haojie Li1, Jiangkun Sun 2, Samuel Kirkbride 2,

Geer Teng1, Zhenxing Liu1, Dongyang Chen2, Madan Parajuli 2, Milind Pandit2,

Guillermo Sobreviela2, Chun Zhao3, Weizheng Yuan 1 ,

Honglong Chang 1 & Ashwin A. Seshia2,4

Energy decay, describing the leakage of system energy to the environmental

bath, is a universal behavior in oscillators. It has been utilized to elucidate

energy transfer between vibrational modes of a resonator. In coupled reso-

nators, achieving an ultra-low coupling rate is essential for observing energy

interactions between resonators and environmental bath. Here, we observe

periodic transient beating phenomenon by analyzing the transient responses

of coupled nonlinear resonators with a coupling rate of 9.6Hz. The energy

transfer rate indicating the hybrid energy manipulation is impacted by

asymmetry-induced energy localization and enhanced by nonlinearity. Time-

resolved eigenstates, characterized by amplitude ratios, are employed as a

quantitative tool to uncover the energy transfer and localization in coupled

resonators under nonlinear operations. This work opens the possibilities to

manipulate energy transfer, to probe energy localization, and to develop high-

precision sensors utilizing the energy transfer between coupled nonlinear

resonators.

Coupled microelectromechanical resonators offer valuable model

systems for investigating classical and quantum phenomena,

mimicking two-level systems and enabling studies of adiabatic

passage1, Landau-Zener transitions2, and coherent control3–5. Under-

standing energy transfer between these coupled resonators is para-

mount for realizing quantum phononic applications and information

processing6–8. For coupled resonators, the vibration energy of a reso-

nator can be coherently transferred to its coupled partner, which

means that in addition to dissipating to the surrounding environ-

mental bath, the resonator can also supply energy to or harvest energy

from its coupled companion9.

However, comprehending suchmechanisms remains challenging,

particularly in cases involving nonlinearity10 and structural asymmetry

associated with the coupled resonators. For instance, micro-

mechanical resonators are commonly associated with the Duffing

nonlinearity. This type of nonlinearity results in an amplitude-

frequency (A-f) coupling such that the natural frequency shifts with

an increase in vibration amplitude11,12 and Saddle-Node bifurcations

with transition from the stable branch to unstable branch13. Structural

asymmetry in coupled resonators induces vibration energy redis-

tribution in the system, also known as the vibration mode

localization14,15. Coupled nonlinear modes have been exploited in

improved oscillator stability16,17 and in the generation of mechanical

frequency combs18,19 while the vibration mode localization phenom-

enon has been adapted to provide the basis for an alternative sensing

approach20,21. Previous studies on coupled resonators have primarily
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featured typical coupling rates spanning from GHz22, MHz4 to kHz

levels23. Consequently, the coherent energy transfer represented by

the beating patterns is not directly visible as the energy transferred

every cycle is too low to be recognized, if the coupling rate is too high.

The energy transfer betweenmodes of a single resonator structure has

been studied with the utilization of necessary tools including para-

metric pump23–26 and internal resonance27–29 to generate lower cou-

pling rates. Bothparametric pumpand internal resonancemethods are

fundamentally limited by coherence loss when parameters deviate, or

internal resonance is disrupted. Direct mechanical coupling between

resonators with a low coupling rate is an evident choice for observing

energy transfer. However, at low coupling rates, the coupled resona-

tors become highly sensitive to even slight perturbations. There is a

significant gap in studies investigating the complex dynamics of

energy transfer in such systems, particularlywhen considering the role

of nonlinearity in this modulation.

This paper introduces a mechanically coupled resonator

system with an ultra-low coupling rate of 9.6 Hz, allowing for the

direct observation of energy exchange between resonators

through the measured transient response. The transient energy

balance analysis reveals that nonlinearity plays a crucial role in

amplifying the energy transfer rate. Furthermore, this study

demonstrates that the transient amplitude ratio can quantita-

tively capture the intrinsic energy transfer and localization phe-

nomena that are not accessible through conventional frequency

sweep-based measurement approaches. This work provides

valuable insights and framework into the complex dynamic

energy transfer behaviors in microelectromechanical coupled

nonlinear resonators, potentially opening the avenues for the

fields of sensing, energy harvesting, and signal processing.

Results
Design and characterization of the coupled resonators
The proposed coupled micromechanical resonators system (Fig. 1a)

was constructed with two double-ended-tuning-fork (DETF) resona-

tors connected via a mechanical disc coupler anchored at the base30.

Themechanical couplingbetween resonators is facilitated by the slight

deformation of the coupler, due to the stress generated when the two

tines of a resonator vibrate in parallel. The coupling is geometry

dependent and can bemanipulatedby designing the parameters of the

coupler, as detailed in Supplementary Information Note 1. The reso-

nators are capacitively actuated and sensed via the electrodes on

either side of the tines. The device is excited only by thermal noise,

when the twoswitches are off.We therefore obtain the intrinsic natural

frequencies of the first two modes: ω1=2π � 122721:6Hz and

ω2=2π � 122731:2Hz, as shown in Fig. 1c. Such a state of two modes

having equivalent amplitudes is named as the symmetric state, at

where the frequency split Δω=2π � 9:6Hz between the two modes is

lowest. This split is referred to as the coupling rate (Δ=9:6Hz), as it is

proportional to the coupling factor of the system, which is defined by

the ratio between coupling stiffness (kc) and stiffness of the resonator

(k). The coupling factor can be experimentally characterized by using

the coupling rate15,31 κ =Δω=ω1 � 7:82× 10�5.

The other critical parameter of the coupled resonators is the

quality factor (Q), which demonstrates the energy dissipation of

resonators to the environmental bath. For our device, Q �42000 is

characterizedbyusing the −3 dBbandwidthmethod32 for resonators at

both modes, demonstrating a damping rate of γ � 1:46Hz. This cal-

culated damping is applicable in linear operating conditions without

modal overlap. Our subsequent theoretical and experimental studies

will explore how damping behaves under conditions of significant

energy exchange with structural asymmetry and Duffing nonlinearity.

Based on the comparisons of κ>1=Q andΔ>γ, and the case that there is

no modal overlap between modes in the linear regime, the coupled

resonators system is considered to be operating in the strong coupling

regime33–35 with resonators exchanging energy more rapidly than dis-

sipating to the environmental bath.

The experimentally measured noise spectra of the two resonators

demonstrates a base voltage noise level of ~300nV√Hz. With the var-

iation of the tuning voltage, avoided crossing13 and loci veering is

observed as shown in Fig. 1d, e, splitting this diagram into an upper

branch as the representative of the higher-frequency mode (ω2) and a

lower branch as the representative of the lower-frequency mode (ω1).

The energy gets redistributed and confined to a particularmodewith δ

deviating from the symmetric point where VTuning = −5.85 V. The mea-

surements align remarkably well with the theoretical analysis in Sup-

plementary Information Note 2 and Fig. S4. Combining energy

redistribution and loci veering, it can be remarked that mode

localization36,37 is evident as an intrinsic character of the coupled

resonators. This experimental observation of thermal noise spectra

offers an alternative visualization of localization, contrasting with the

frequency sweeping method as shown in Supplementary Informa-

tion Fig. S5.

Frequency responses analysis with nonlinearity
When concerning the coupling, cubic nonlinearity term and noise and

assuming the resonators have equivalent damping, the dynamic

equations of the system can be written as:

€x1 + _x1ω0=Q+ω2
0 1 + κ +β1x

2
1

� �

x1 � κω2
0x2 = f + ξ1ðtÞ

� �

=m ð1Þ

€x2 + _x2ω0=Q+ω2
0 1 + κ + δ +β2x

2
2

� �

x2 � κω2
0x1 = ξ2ðtÞ=m ð2Þ

where x1 and x2 are the displacements of the coupled resonators, ω0

the initial natural frequency, δ =Δk=k the stiffness asymmetrybetween

resonators, k the symmetric resonator stiffness, ω0 =
ffiffiffiffiffiffiffiffiffiffi

k=m
p

the initial

frequency of the first mode, f = F sinðωt + θÞ the applied force to Res 1,

and ξ1ðtÞ and ξ2ðtÞ the random noisy forces. Nonlinear springs for the

two resonators are defined as kn1 = kð1 +β1x
2
1 Þ, and kn2 = kð1 +β2x

2
2Þ,

where β1 and β2 are the Duffing nonlinear coefficients.

With drive level rising, nonlinear response is evident character-

ized by an increased in the natural frequency with drive level, which is

defined as stiffness hardening effect or amplitude-frequency (A-f)

effect, as shown in Fig. 2. The linear and nonlinear frequency responses

can be theoretically modelled based on Eqs. (1) and (2) using the

multiple scales method38. In the nonlinear regime, the coupled reso-

nators demonstrated Saddle-Node bifurcations13 with transition from

the stable branch to the unstable branch for both modes, as shown in

the upper plots in Fig. 2, and Supplementary Information Fig. S10.

In the symmetric scenario with δ � 0, the coupled resonators

exhibit similar stiffness hardening effect, implying comparable A-f

curvatures, with equivalent nonlinear coefficients for both modes:

β1 = β2�1:0× 1010m�2. The onset of nonlinearity marking by the cri-

tical amplitudes39 is evaluated by numerical simulation, as shown in

Fig. S9. The nonlinear terms here are extracted using the fitting

equation39 ω=ω0ð1 +
3
8 x

2βÞ, while the backbone curves of the coupled

resonators demonstrating the A-f effect are numerically modelled

using the derivations (S24a) and (S24b) in Supplementary Informa-

tion Note 3.

In the asymmetric scenario, vibrational energy is redistributed

due tomode localization37. In such a case, the vibration amplitude and

frequency coupling behaviors are further modified. The apparent A-f

effect is modulated simultaneously by nonlinearity and degree of

asymmetry. The nonlinear coefficients of the two resonators at the two

modes can no longer be fitted well using the above fitting equation39,

but should be fitted using the derivations from Supplementary Infor-

mation equations (S24a, b). This can be explained by the presence of

the apparent amplitude-dependent damping effect in asymmetric

cases. While our theoretical framework explicitly assumes the absence
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of nonlinear damping terms in the governing equations, the asym-

metric coupled resonator system exhibits apparent amplitude-

dependent damping characteristics, as shown in Supplementary

Fig. S11c, d. These are observable through comparative analysis of

force-normalized response amplitudes under conditions of stiffness

mismatch. Such apparent nonlinear responses set limitations in

observing energy transfer and localization using conventional

frequency-domain analysis due to the absence of discernible mode

splitting or intermodal energy transfer in frequency-swept responses

in nonlinear operation cases as shown in Fig. S12. This characterization

necessitates time-resolved transient analysis of ringdown dynamics,

where energy transfer can be observed through decay rate extraction.

Nonlinear characterization with transient responses
The amplitude decay of a single resonator is the transient response

when switching off the actuation. It is of an exponential naturewith the

decay time related to the damping rate γ=mω ⁄ Q40,41. Energy decay in

coupled resonators is more complicated as it may show significant

beating29orRabi oscillations41–43. However, the beating phenomenon is

not always observable in coupled resonators in previous studies, as it

requires a sufficient low coupling rate to facilitate noticeable energy

transfer. Our basic coupling rate ofΔ=9.6Hzprovides sufficient energy

transfer per cycle, and our ringdown phase-locked-loopmeasurement

setup ensures the possibility of tracking the evolution of the transient

responses.
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Fig. 1 | Illustration of the coupled resonators and experimentally measured

noise spectral density. a False-color optical image of the coupled resonators and

associated electrical measurement interface. The finite element simulations on the

right indicate how the two resonators are coupled together. The modes I, II, V and

VI where the two tines vibrate in parallel are of particular interest while the modes

III and IVwhere the two tines vibrate in the opposite direction are notbecause there

is almost no coupling at these modes. Dimensions of the device are provided in

Supplementary Information Table SII. TIA here indicates transimpedance amplifier,

BPF the bandpass filter, PLL the phase-locked-loopmodule including a phase delay,

DM the demodulator, OSC the digital oscillator, Amp the amplitude of a specific

resonator, andSWthecontrol switch. PLL, DM,OSCand amplitude recording are all

realized by the integrated components in Zurich Instruments HF2LI lock-in

amplifier. b Model of the coupled resonators, showing the noise, drive and dis-

sipation. The environmental bath here indicates all dissipation means of a reso-

nator including the air damping, anchor damping, and thermoelastic damping.

c Measured thermal noise of the two resonators in case there is no structural

mismatch between resonators. d, eMeasured spectral density of the thermal noise

of Res 1 (d) and Res 2 (e) with different tuning voltages (from −6.5 V to −5.2 V with a

step of 0.05 V) when switches were cutoff. The simulated data can be found in

Supplementary Materials Fig. S2. The DC bias voltage was set as 10 V in all experi-

ments. Source data are provided as a Source Data file.
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The time-resolved transient signal amplitudes of the two resona-

tors with initial drive AC of 5mV and 20mV are shown in Fig. 3a, b. A

significant beating phenomenon can be observed. The first pulse is

with energy being transferred from Res 1 to Res 2 and exactly in the

moment when all energy is transferred, the amplitude of Res 1 keeps

constant, and Res 2 starts to transfer energy back. Both spectrogram

and PLL-tracking results demonstrate frequency coinciding with the

natural frequency of the coupled system i.e., ω1=2π. If the two reso-

nators operate initially nonlinearly, the spectrogram in Fig. 3d shows a

progressive decreasing frequency from ~122.740 kHz which is the

result of the A-f effect, and ultimately converges to the corresponding

small-amplitude eigenfrequencyω1, linear�122:727kHz which is defined

by the structural asymmetry δ. More frequency and amplitude ring-

down information can be found in Supplementary Information

Fig. S18.

The phase difference between resonators, as depicted in

Fig. 3e, f, demonstrates a locked condition with excitation on,

yielding a mean value Φ0 � �0:25 radians, in good agreement with

our measurements using the frequency-phase sweep method

(Fig. S8). When ringdown starts, the phase difference shows oscilla-

tory variations between Φmax�0:38 radians and Φmin close to Φ0. It

is known that the in-phase mode and out-of-phase mode introduce a

phase difference of Φ=0 and Φ=π, respectively. Such oscillatory

observations on phase difference indicate that the resonators are

oscillating close to the in-phase mode in the steady state and vibrate

in a hybrid mode resulting from the superposition of both modes

during the ringdown process.

By extracting the envelopes of transient signals, the amplitude

ringdown curves can be obtained. As the frequency of Res 1 has been

tracked using a PLL, it is easy to draw the amplitude-frequency plot in

the ringdown process, as indicated in Fig. 3g–j. It is interesting that the

resonator initially vibrates nonlinearly, followed by an amplitude and

frequency decrease aligning the A-f curves as that in the frequency

sweeping section in Fig. 2a, c until converging to its intrinsic low-

amplitude frequency, which is also verified in Fig. S18. The ringdown

trajectory of Res 1 always follows the nonlinear backbone curves

exactly, which can be fitted using the fitting equation39

ω=ω0ð1 +
3
8 x

2βÞ, as shown in Fig. Fig. S16. However, for Res 2, the

ringdown trajectories do not follow such fitting equation if the cou-

pled resonators are asymmetrically localized, as indicated by Supple-

mentary Information Fig. S17, which is attributed to the apparent

amplitude-damping in the asymmetrically coupled resonators.

Thermal noise
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cba d

Fig. 2 | Transmission spectra of the coupled resonators with the theoretical

analysis on the backbone curves and stable analysis. a, b Responses of the two

resonators with different drive AC levels when the system is approximately sym-

metric (VTuning = −5.85 V). c, d Responses with different drive AC level when the

system is asymmetric (VTuning = −5.2 V). The sweeping method here is forward

sweeping as indicated by the solid black arrows in the upper plot in (a). The

backbone curve, i.e., the amplitude-frequency (A-f) effect showing the shift in fre-

quency with increasing amplitude is observable for the resonators in both the

symmetric and asymmetric cases. Thedashedbackbone curves in (a–z) are drawing

using simulated data based on the extracted peak amplitudes in the experiments

and the theoretical equations in Supplementary Information equations (S24a, b).

The fitting nonlinear coefficients for bothmodes and both resonators in symmetric

cases are β1 � β2 � 1:0× 1010m�2. In asymmetric cases, the fitting nonlinear coef-

ficients for Res 1 are β11 = 2:2 × 10
10m�2 for the 1st mode, β21 = 7:5 × 10

10m�2 for the

2nd mode, and for Res 2 are β21 = 7:4× 10
10m�2 for the 1st mode, β22 = 2:0× 1010m�2

for the 2nd mode which are affected by the apparent nonlinear damping effect. It

can be found that the effective nonlinearA-f effect is significantlymodulated by the

extent of energy localization. The theoretically analyzed and experimentally mea-

sured frequency responses of the coupled resonators with a specific drive AC of

8mV are shown at the top of the figure corresponding to different configurations.

The navy circle indicates the unstable solutions while the magneto diamonds

represent the stable solutions. Only stable points can be extracted in the frequency

sweep. There are critical amplitudes that the resonators operate from the linear

regime transiting to the nonlinear regime39. Bifurcations are clearly seen while

transitioning to the Duffing-dominated nonlinear regime. The green dashed arrows

in the top insets of c and d indicate the intermodal coupling of the system. Source

data are provided as a Source Data file.
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Energy transfer with Duffing nonlinearity
Another key result is related to the capacity to manipulate energy

transfer by adjusting the initial conditions of the coupled resonators,

such as asymmetry and nonlinearity. For this purpose, we changed the

initial conditions and recorded a series of ringdown responses for an

energy balance analysis. When Res 1 was initially actuated linearly with

a drive AC of 1mV while Res 2 was perturbated by δ, clear beating

phenomenon can be observed in ringdown curves as shown in

Fig. 4a, b. The simulations in Supplementary Information Fig. S13 clo-

sely aligns with the experimental results.

The total energy ETotal contains the potential energy of each

resonator proportional to the summation of the linear and nonlinear

square displacement 1
2 kix

2
i +

1
4βix

4
i and the coupling energy

Ecoupling =
1
2 kc x1 � x2

� �2
stored in the coupler, as analyzed in the Sup-

plementary InformationNote 5. ETotal is always decaying exponentially

no matter with or without nonlinearity and asymmetry, revealing a

constant damping rate of γ0 = 1:51Hz, as shown in Fig. 4i. This damping

to the environmental bath includes all the dissipation like anchor

damping, thermo-elastic damping and air damping40. This γ0 is

equivalent to that of the coupled resonators with deep asymmetry

(VTuning = −4.5 V) as shown in Fig. 4a, which is extracted based on the

fitting equation of x1 =Xe
�2πγt and the method of recording the serial

damping rates are introduced in Supplementary Information Note 5

and Fig. S20. The value of γ0 also matches with the calculation of

Q=ω0=4πγ0 using the −3 dB bandwidth measurements in the fre-

quency response section.

The alternating energy exchange pattern of the resonators in

suggest timely-variable damping rates. Such variable damping rates

are evidence of energy transfer as the exchanged energy offsets the

dissipation of Res 1 and Res 2. To quantitively describe the energy

transfer between resonators, the time-variable energy decay rates γi
(i = 1, 2) of each resonator are extracted using the slice-fitting method

shown in Supplementary Information Note 5. We define the energy

transfer rate as ζ i = γi � γ0. The case of ζ i =0 means that the energy of

a d

c
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Fig. 3 | Comparison of the transient responses of the coupled resonators.

Steady and transient responses of the coupled resonatorswhen thedriveAC level is

5mV (a) and 20mV (d). The corresponding frequency-time spectrograms of Res 1

with linear (b) and nonlinear steady configurations (e), respectively. b, e share the

same color bar. The dashed-line frequencies are collected using the Phase-Locked-

Loop (PLL) tracking mechanism as introduced in Method. The resonant frequency

of Res 1 when working in the nonlinear regime exhibits oscillatory decline, even-

tually converging to an intrinsic value dictated by structural asymmetry. In the

experiments, switch SW2 is always on to track the frequency and demodulate the

signal, whereas switch SW1 is cut off at a specified time and to commence

measurement of the ringdown responses. The corresponding phase differences

between resonators are extracted in (c, f). The orange lines indicate the theoreti-

cally analyzed phase differences using equation (S23) in Supplementary Informa-

tion. Reproduction of the A-f effects with linear symmetric case (g), linear

asymmetric case (h), nonlinear symmetric case (i) and nonlinear-asymmetric case

(j). The frequencies used in (g–j) are collected using the PLL tracking method. The

offset frequency here is the subtraction results of themeasured frequencywith the

reference frequencyof 122.727 kHz. Themarker ‘t = 0’ in (j) indicates the start of the

ringdown. Source data are provided as a Source Data file.
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the mode is only dissipated to the environmental bath, and there is

almost no internal exchange between resonators. The case of ζ i>0

means that this specific resonator is releasing more energy to its

coupled companion than to the environmental bath. Vice versa, ζ i<0

means that the resonator is scavenging from its coupled companion

more than dissipation to the environment bath. The specific case of

ζ i = �1:5Hz is the initial steady state with external energy compen-

sating the dissipation to the environment.

As expected, it is Res 1, the directly actuated resonator, that first

exhibits the abrupt energy loss, transiting from ζ 1 � �1:5Hz to

ζ 1 � 1:5Hz. The oscillation rate at which the energy transfer occurs

varies with δ, as shown in Supplementary Information Fig. S21. With

linear initial states, the statisticmaximumandminimumvalues of ζ are

� γ0 and � �γ0, suggesting that the energy exchanged between

resonators is at most twice the energy dissipated due to damping. The

periodic oscillation of ζ in Fig. 4c, d are attributed to the energy

coupling and transfer between resonators. There is no apparent

amplitude-dependent damping in this case as shown by the energy

ringdown curves in Fig. 4i where the mean slopes are similar for Res 1,

Res 2 and the total energy during the whole process.

A significant difference with nonlinear initial states is that the

maximum value of ζ for Res 2 ismuch larger than γ0, as high as >40Hz

as shown in Fig. 4h. This implies that the scavenged and lost energy of

Res 2 can significantly surpass its intrinsic energy dissipation. The

average damping rate of Res 2 in the deep nonlinear configurations is

higher than γ0 as shown in Fig. 4h, and the average of Res 1 is lower

than γ0 correspondingly. The coupling rate in the nonlinear regime

varies with time and finally converges to its intrinsic value defined by

the asymmetry δ if the resonators are initially vibrating nonlinearly, as

indicated by Supplementary Information Fig. S21b.

The ringdown responses of the asymmetrically (VTuning = −5.20 V)

coupled resonators with increasing drive AC are shown in Fig. 4e, f,
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Fig. 4 | Ringdown characterization of the coupled resonators under the influ-

enceof asymmetry andnonlinearity. a,bTransient evaluationof Res 1 (a) andRes

2 (b) demodulated by ω1 as a function of the tuning voltage from −4.5 V to −5.85V

with a step of 0.05 V. c Experimentally recorded and theoretically simulated energy

transfer rates of resonators at the asymmetric point (c) with a tuning voltage of

−5.2 V, and at the symmetric point (d) with a tuning voltageof–5.2V 5.85V.Detailed

calculation method of the energy transfer rate can be found in Supplementary

Information Note 5. The dashed curves in (c, d) are the simulation results without

random noise while the solid curves are simulated results with random noise.

e, f Transient responses of Res 1 and Res 2 demodulated by ω1 with different drive

AC levels from 1mV to 30mVwith a tuning voltage of −5.2 V. In the steady state, the

resonators are locked at the 1st mode in linear cases and mild nonlinear cases

without modal interaction and at the top bifurcation when the two modes are

interacted together. g, h Experimentally measured, and theoretically simulated

decay rates of Res 1 and Res 2 are based on the data with a drive level of 30mV in

(e, f). The method of calculating energy transfer rates can be found in Supple-

mentaryMaterial Note 4. i, kNormalized energy of the two resonators aswell as the

system total energy, with a drive level of 1mV (i) and 30mV (k), respectively. The

total energy decrease indicates a decay rate of γ0 = 1:51Hz which is the average

damping rates for both Res 1 and Res 2 in (i). The difference in the slope indicates

the transition of the resonator from the nonlinear to the linear operation regime.

j, l Power flow between resonators in the linear (j) and nonlinear (l) initial config-

urations, calculated using the corresponding navy and red data in (e, f) in con-

junction with the equations provided in Supplementary Information equation

(S41). Source data are provided as a Source Data file.
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while the corresponding simulations are provided in Supplementary

Information Fig. S12. A key observation is that the amplitudes of the

resonators have more visually apparent oscillatory behavior in the

nonlinear regime, indicating the enhancement of energy exchange.

This enhancement can be quantitatively assessed by examining the

power flow27, as illustrated in Fig. 4j, l. It is obvious that with linear

initial configuration, the highest power flow will significantly decrease

by a factor of 4, when the tuning voltage changes fromVTuning = −5.85 V

(the symmetric case) to VTuning = −5.20 V (the localized case). On the

contrary, if the initial configuration is nonlinear with a drive AC of

26mV, the highest power flow in the localized case increases by a

factor of 2. Themaximumpowerflowduring the ringdownprocess as a

function of Drive AC level and perturbation voltage is shown in Sup-

plementary Information Fig. S22, clearly demonstrating the compre-

hensive manipulation of nonlinearity and localization on energy

transfer.

With the impact of the apparent amplitude-dependent damping

induced by the asymmetry, the damping rates decrease to a specific

converged value for Res 1whereas thatof Res 2 increases from the start

of the ringdown, as shown in Fig. 4g, h. Apparent amplitude-dependent

damping is also observable in Fig. 4kwhere the initial decaying of Res 1

is slower while Res 2 is faster. The effective damping rates of the two

resonators depend on the amplitude ratios X1/X2 as well as the phase

difference, which will be modulated by structural asymmetry and

nonlinearity as explained in Supplementary Information Note 3.

Furthermore, if we continue increasing the actuation level to

> 100mV, 1:1 internal resonance with frequency locking is seen, as

shown in Supplementary Information Fig. S6. In this state, both fre-

quency and amplitude are locked27,28, as shown in Fig. S7. The ring-

down responses with such initial frequency locking are demonstrated

in Fig. S23. There is a period where the energy of the two resonators is

released at a constant rate of ~40Hz no matter the level of initial

asymmetry. This period is named as the internal resonance release

regime.

Energy localization in coupled nonlinear resonators
Previous experiments in Fig. S12 have demonstrated that the energy

localization behaviours in the asymmetrically coupled nonlinear

resonators cannot be revealed clearly using the frequency-domain

analysis even though previous research has demonstrated mass sen-

sors operating in this regime44. The eigenstate, represented by the

amplitude ratio X1/X2, is the other intrinsic metric of the coupled

resonators14. Therefore, its transient dynamic processeswouldprovide

additional insight into systemdynamics and intrinsic nature. The time-

domain transient amplitude ratio measurements provide us with the

possibility of revealing further insights into thebehavior in this regime,

both qualitatively and quantitively.

It can be seen fromFig. 5a that the time evolution of the amplitude

ratio has similar oscillatory characters as that of the energy transfer

rates in Fig. 4a, b. We integrated all the amplitude ratio ringdown

responses of the coupled resonators with linear initial states and

positive and negative perturbations ranging from VTuning = −4.00V to

VTuning = −7.60V in Fig. 5b, c. This is another kind of portrait of the

energy localization phenomenon shown in Fig. 1d, e.

If the initial operation state is nonlinear, the heightened asym-

metry amplifies the oscillatory frequency as well as the energy transfer

as shown in Fig. 5e, f. At the same time, only one mode, here the 1st

mode can be identified as the device demonstrates considerable

stiffness hardening. Notably, the time-domain amplitude ratio evolu-

tionmethodcan still reveal the energy localization inDuffingnonlinear

or even 1:1 internal resonance regime as provided in Fig. S23, which is a

significant advantage over the swept frequency response method. For

both linear and nonlinear configurations, the coherence time decrea-

ses as structural asymmetry and noise increase. Introducing larger

perturbations in the coupled resonators results in shorter lifetimes and

noisier amplitude ratios during the ringdown process. The linear

configurations exhibit amorepronounced sensitivity to perturbations,

leading to accelerated decoherence, whereas the nonlinear config-

uration demonstrates greater robustness against such disturbances.

This is in good match with our previous prediction that the best

resolution using amplitude ratio as sensor outputmetric is around the

symmetric line37. As demonstrated previously, the apparent

amplitude-dependent damping emerges simultaneously with the

mode localization effect, as they both present only in cases when

resonators are asymmetrically coupled. Such coexistence results in

complicated quantitative determination through systematic analysis

of the coupling-governed phase term sinðΦÞ under parameter varia-

tions as indicated in Supplementary Information Note 3.

Discussion
The decay investigation of coupled nonlinear resonators holds sig-

nificant promise for advancing our understanding of two-level systems

and enabling the development of high-precision sensors. Distinguish-

ing from the observations of energy transfer using with the aid of

parametric pump23,24or internal resonance45, here in this paper, using a

mechanically coupled resonators system with an ultra-low coupling

rate ~9.6 Hz, we directly observed the amplitude decay process illus-

trating oscillatory energy exchange with the beating phenomenon, in

both linear and nonlinear configurations. The ringdown processes

initiated with nonlinear operation configurations can accurately

replicate the A-f effect10,46. However, the damping of the coupled

resonators is revealed to be modulated by the structural asymmetry

induced energy localization, demonstrating apparent amplitude-

dependent damping in the asymmetrically coupled resonators. This

leads to distinct internalmodal coupling as well as transient responses

in each resonator. Analysis in reference47 demonstrated that the

dynamics of a primary resonator, like Res 1 in our work, can be altered

in a significantmanner by the coupling to the secondary resonator, like

Res 2 in our work. Our results further demonstrate that the secondary

resonator can be more significantly influenced by the amplified

amplitude-dependent damping and energy localization effect, thereby

exhibiting a non-uniform average damping rate throughout the entire

ringdown process, and enhancement in power flow, in the deep non-

linear asymmetric initial conditions.

By applying the amplitude ratio to the established model of

coupled nonlinear systems, we successfully capture the modulated

nonlinearity and its associated dynamics, thereby gaining a compre-

hensive understanding of the mechanism. Moreover, the experimen-

tally measured amplitude ratios align with theoretical prediction and

serve as a powerful quantitative tool, enabling us to reveal the intrinsic

characteristics of the coupled resonators, including structural asym-

metry, which remains elusive when using conventional swept fre-

quency methods in nonlinear configurations. Our research has

demonstrated that pronounced asymmetry within the system leads to

a noticeable decrease in coherence time, impacting both linear and

nonlinear scenarios. Deep asymmetry induced amplitude-dependent

damping is believed as the cause, as it effectively traps energy within a

specific resonator, thereby limiting the energy available for transfer to

its counterpart and preventing energy exchange at a consistent rate.

These insights can be linked to studies of mode-localized sensors

working in the nonlinear regime and in relation to the optimal reso-

lution around the symmetric point36,37.

A deep understanding of phase locking and energy exchange

depending on the specifics of each mode’s frequency-energy rela-

tionship under internal resonance has been reported27 recently. That

reported general model for exploring the energy exchange between

modes of a single resonator near internal resonance shows that the

coherent energy transfer is only in appearance within the phase-

locking period. Either entering or bypassing the phase-locking period

is highly dependent on the initial conditions even with internal
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resonance. Other internal resonance induced energy transfer45

bypassing phase locking has been observed with a distinctive dis-

sipation pathway41. Our paper focuses on observing the persistent

beating phenomenon and coherent energy transfer throughout the

whole ringdown process until it was obscured by noise.

Using a similarmulti-mode resonator as that in ref. 27, thebeating-

like phenomenonmight be observed in the near-degenerate modes of

a membrane resonator29, where the near-degenerate modes exhibit

different decay rates, or in a non-Hermitian system24 which has two

disparate modes coupled by a parametric pump. However, a crucial

limitation of such systemusing twomodeswithin a single resonator27,29

is the difficulty in independently perturbing each mode, so that the

complex influence of the structural asymmetry induced energy loca-

lization nonlinearity can be simultaneously studied.

The proposed research methodology for tracking the ringdown

responses of the coupled resonators can be engineered to wide

applications including sensors30,44, and communication systems48.

While these findings stem from a coupled micro resonator system,

they can seamlessly extend to other systems such as NEMS and even

more diminutive coupled systems, for observing slight frequency

modulations due to nonlinearities which cannot be easily obtained

using other methods. Further studies in this area are expected to be

explored. For example, the phase and frequency transitions between

modes, and the time-resolved modal energy of the coupled under

specific nonlinearity and additional asymmetryhas not beenpresented

in this paper. Incorporating electrostatic coupling49 and alternative

transduction methodologies such as optical detection can provide an

approach to achieve flexibly controllable coupling rates and further

detailed visualization of how the coupling rate influences energy

transfer between modes of the coupled resonators. Uncovering these

insights into the energy transfer process in resonant systems would

pave the way for further understanding the dynamics of coupled

nonlinear resonant systems.

Methods
Measurement setup
The motional current of the resonators is measured by purpose-

designed transimpedance amplifiers. A variable voltage is applied to
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a Ringdown responses of the amplitude ratio with a tuning voltage of −5.85V and

−5.20V and a drive AC level of 1mV. b, c Experimentally measured and simulated

amplitude ratio ringdown responses with different tuning voltages when the drive

level is 1mV. d Ringdown responses of the amplitude ratio with a tuning voltage of

−5.85V and −6.60 V and adriveAC level of 30mV.e, f Experimentallymeasured and

simulated amplitude ratio ringdown responseswith different tuning voltages when

the drive level is 30mV. The normalized amplitude ratio equals to 1 means that

there is no transfer between resonators. Source data are provided as a Source

Data file.
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the tuning electrode integrated with resonator 2 (Res 2) to provide

electrostatic stiffness perturbations so that the structural asymmetry

between resonators can bemanually controlled. The device under test

consists of two micromechanical structurally symmetric DETF reso-

natorsfixed to the samecenter anchor as shown in Fig. 1a. Such aquasi-

rigid physical connection generates a direct mechanical coupling

between resonators. Energy transfer between Res 1 and Res 2 is con-

ducted through the coupler. The resonators are capacitively actuated

and sensed through the electrodes on either side of the DETF tines. A

constant 10 V DC voltage is applied to the central anchor as bias vol-

tage for the two resonators. Thermal noise of the two resonators

includes the thermomechanical noise associated with the Brownian

motion and the electronic noise attributed to the power sources

for bias.

Real-time transient recording using closed-loop frequency
tracking
To track the transient ringdownprocesses of the two resonators in real

time, a frequency-tracking loop including a phase-locked-loop (PLL)

module from the Zurich lock-in amplifier is implemented around Res 1

to generate self-sustained oscillation before ringdown. Transient

characteristics or ringdown responses of the two resonators can be

obtained when turning off the feedback control switch after running a

certain time in the self-sustained closed-loop steady state. After the

excitation is turned off, the amplitudes start to decay towards zero,

and the frequency decays toward the intrinsic natural frequency.

Fortunately, the PLL module will not immediately lose the tracking

function until the amplitude of Res 1 decays to a value lower than a

specific threshold ~20 µV. Therefore, we can track the frequencies and

demodulate the amplitudes of the two resonators using the time-

varying tracked frequency during the ringdownprocess. This provides

a much easier and more precise transient tracking solution compared

to the conventional method of recording the ringdown sinusoidal

waves and performing Fast Fourier transform.

Data availability
The source data generated in this study have been deposited in the

Figshare database under https://doi.org/10.6084/m9.figshare.28714

484. Source data are provided with this paper.

Code availability
The related code is provided at: https://zenodo.org/records/15162385.
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