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A B S T R A C T 

Analysing high-resolution solar atmospheric observations requires robust techniques to reco v er plasma flow features across 
different scales, especially in active regions. Current methodologies often fall short in capturing subgranular-scale flows, and 

there is limited research on the errors introduced by velocity estimation techniques and analysing the properties of reco v ered 

flows in the presence of kG magnetic flux density. This study concentrates on validating the effectiveness of the DeepVel neural 
network in reco v ering subgranular to mesogranular-scale topological plasma flow features throughout the total evolution of a 
simulated activ e re gion by tracking tracers, and reproducing coherent patterns. The neural netw ork w as trained on the R2D2 

radiative MHD simulation depicting the emergence and decay of a magnetic flux tube. DeepVel achieved strong correlations 
(exceeding 0.7) with flows from an unseen MURAM simulation, despite being trained on a model with a simpler radiative transfer 
and lacking thermal resistivity. DeepVel was able to capture the detailed topology well, e.g. the structure of vortical and diverging 

structures across all scales present in the flows. DeepVel performed slightly less well in the umbra, this is likely explained by 

magnetic field suppression and reduced contrast. Differences in velocities introduced by DeepVel did not affect Lagrangian 

analysis; consequently, we demonstrate for the first time that the DeepVel-reco v ered v elocities accurately reflected the flow’s 
transport barriers. These findings highlight the precision and reliability of the DeepVel and its ability to emulate plasma flows 
surrounding and within active regions. 

Key words: methods: data analysis – Sun: activity – Sun: granulation – Sun: magnetic fields – Sun: photosphere – sunspots. 
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 I N T RO D U C T I O N  

he appearance and development of lar ge-scale ener getic phenomena
n the solar atmosphere, such as active regions (ARs) and flaring
vents, are strongly dependent on the interplay of plasma and
agnetic fields. We adopt the definition of an AR as defined by

an Driel-Gesztelyi & Green ( 2015 ), namely, we will refer to
Rs as being pores in the photosphere created by the presence
f more than kG magnetic flux strength. These phenomena are
riven by changes in the magnetic field topology, i.e. twisting of the
agnetic field as well as compression of magnetic flux, which are

n part consequence of the influence of adv ectiv e motions of plasma
hroughout sub-photospheric layers. Photospheric flow topology is,
herefore, expected to manifest distinct changes due to the presence
nd restructuring of the magnetic field topology, when compared with
ows in regions with little or no magnetic flux present (see, e.g. Attie
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t al. 2018 ). Thus, analysis of photospheric surface plasma flows and
heir dynamics is an essential part in the way of understanding the
ormation and evolution of complex magnetic structures in the solar
tmosphere (see, e.g. Driel-Gesztelyi & Green 2015 ). 

Presently, direct observation of plasma motions is restricted
o line-of-sight component via the Doppler ef fect, ho we ver these
easurements are not precise due to measuring asymmetric spectral

ines that are a result of a range of phenomena which occur in the
ighly stratified atmosphere of the Sun (see, e.g. Mart ́ınez-Sykora
t al. 2011 ; L ̈ohner-B ̈ottcher et al. 2019 ). The identification of the
orizontal velocity components from observational data remains a
hallenging task (see Rempel et al. 2022 ) and several techniques
ave been proposed to deal with this problem (Tziotziou et al. 2023 ).
Optical flow tracking methods such as local correlation tracking

LCT) (see No v ember & Simon 1988 ) hav e been used for the
stimation of velocity fields. These methods assume that features
n images are advected by the flow, hence one can produce a
elocity field by cross-correlating features within time-consecutive
ub-images. LCT has been shown to provide velocities that are
© 2025 The Author(s). 
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onsistent with the proper motions of granules at length scales 
 2 . 5 Mm and for times � 30 min (see, e.g. Rieutord et al. 2001 ),

o we ver it produces velocities that are underestimated by a factor of
 / 3 (Verma, Steffen & Denker 2013 ). For optical tracking, images
ith distinct and highly contrasting features are required. Spatial 

moothing and time-averaging of images is used to reach the optimal 
patial and temporal scales, which also has the added benefit of
emoving small-scale perturbations from the images. Thus these are 
est suited for reco v ering the motions of photospheric granules. 
Other methods such as physical inversions like DAVE4VM 

Schuck 2008 ) have also been produced. This solves the ideal 
nduction equation 

 t B = ∇ × ( v × B ) , (1) 

or the horizontal part of the velocity vector using measurements 
rom vector magnetograms. Inversions such as these are computa- 
ionally e xpensiv e and sensitiv e to noise in magnetic field v ector

easurements, thus there are limited data sets that may be used with
his method. 

Artificial neural networks, often just referred to as neural networks 
NNs) present methods for learning patterns in data. NNs achieve 
his by attempting to mimic biological NNs, weighting connections 
etween layers of neurons in the network in order to produce a
odel relating some input data to an output. Therefore NNs can be

esigned to be highly ef fecti ve at performing a specified task. This
oes ho we ver introduce a limitation, it is a possibility that a NN will
nly learn the training data and not be able to generalize to new data.
his is called o v erfitting. 
Recently, the DeepVel network (DV; see Asensio Ramos, Re- 

uerey & Vitas 2017 ) has been developed for the use of recovering
wo- or three-dimensional velocity fields from intensity or mag- 
etogram data. Typically, simulations provide a ground truth for 
he training set of the network, which may be processed to match
elescope imagery for use with real world observations. In the current 
iterature, DV has been shown successful in reco v ering v elocities
rom synthetic images that mimic the Solar Dynamics Observa- 
ory/Helioseismic and Magnetic Imager (SDO/HMI) (Tremblay et al. 
018 ), and S UNRISE Imaging Magnetograph eXperiment (IMaX) 
Asensio Ramos et al. 2017 ), which have resolutions of 1 arcsec
or 368 km pix −1 ; e.g. see Tremblay et al. 2018 ) and 0 . 11 arcsec
or 39 . 9 km pix −1 ; Orozco Su ́arez et al. 2010 ; Asensio Ramos et al.
017 ). 
The study by Tremblay et al. ( 2018 ) compared the ef fecti veness

f DV with the optical flow methods LCT, Fourier-based LCT 

FLCT) and coherent structure tracking (CST). These methods were 
pplied to synthetic photospheric observations at a resolution of the 
DO/HMI instrument ( δx = 0 . 5 arcsec pix −1 ) averaged over 30 min.
V was able to reproduce velocities best at granular and subgranular 

cales in the quiet Sun (QS). Ho we ver, FLCT performed better at
he mesogranular scales. With this and the fact that DV is limited
o QS data, we are unable to see the full capabilities of DV and
he range of scenarios it may be applied. Later studies impro v ed
he studies by introducing a new architecture to DV (Tremblay & 

ttie 2020 ) and testing this and the original DV architecture on
eco v ering flows from a sunspot at the same resolution as HMI
Tremblay et al. 2021 ). In both instances, only the 30-min time-
v eraged v elocity fields are considered in the analysis, despite DV
eing trained on significantly higher cadences of ≈45 s. The sunspot
sed in the AR study is from a MURAM simulation (see Rempel
015 ), which presents the decay of an axis-symmetric cylinder of
agnetic flux embedded vertically in the box that co v ers 18 Mm

epth. After an initial relaxation period of around 5 . 5 h the flux tube
s left to decay under the influence of magnetoconvection, ho we ver
ue to the nature of the setup, only a partial decay takes place o v er
he 100 h runtime of the simulation. With this and the fact that the
V netw ork w as only tried and tested on the same simulation used

or training, there is still a gap in understanding the applicability of
V to new data at finer resolutions ( < 1 arcsec ) and in environments,
hich present a realistic evolution/decay of intense magnetic flux in 

he solar atmosphere. Furthermore, whilst the success of velocities 
as presented in terms of correlations and error, it remains to be see
ow useful these flows are, i.e. whether or not they still can be used
o identify coherent flow structures and their evolution. 

In addition to the simulated sunspot presented by Rempel ( 2015 ),
sing the MURAM code, there exists a wealth of simulated solar data
rom myriad codes. Examples of these numerical simulations are 
he MURAM (V ̈ogler et al. 2005 ), CO5BOLD (Freytag et al. 2012 ),
TAGGER (Stein & Nordlund 1998 ), BIFROST (Gudiksen et al. 2011 )
nd R2D2 (Hotta & Iijima 2020 ) codes. These codes present working
odels of magnetoconvection up to the photosphere and beyond. 
ome of these codes have been modified to simulate the evolution of
 strong magnetic flux of varying initial configurations. The MURAM 

imulation by Rempel & Cheung ( 2014 ) introduces an untwisted
emi-torus of magnetic flux, which is advected through a bottom 

oundary < 16 Mm below the photosphere. The paper by Bjørgen 
t al. ( 2018 ) highlights simulations of an AR using the BIFROST

ode, which imposes an pre-formed bipolar AR into the uppermost 
ayers of the conv ectiv e re gion. These simulations, and others in the
iterature, have opted to model magnetoconvective processes using a 
hallow box that only co v ers up to 16 Mm below the surface (see, e.g.
empel, Sch ̈ussler & Kn ̈olker 2009 ; Beeck et al. 2012 ; Rempel &
heung 2014 ; Chen et al. 2023 ). These setups give only a short

ime for the magnetic field to evolve naturally under the influence of
agnetoconvection leaving limited information on the effects of the 

nterplay between plasma and strong magnetic fluxes. 
A more recent model for flux emergence was presented by Hotta &

ijima ( 2020 ), in which the entire convection zone (200 Mm depth)
s simulated. This allows an initial force-free magnetic flux tube, 
ositioned at a depth of around 35 Mm below the surface, to evolve
nder a more realistic boundary condition than simulations with 
hallow boxes. The simulation places a twisted magnetic flux tube, 
here the force-free parameter α = 2 . 43 × 10 −7 m 

−1 , with > 10 kG
trength at a depth of ≈35 Mm depth below the photosphere. In this
imulation the α is determined as a ratio of the first root of the Bessel
unction J 0 and the characteristic length scale of the flux tube, chosen
o be the radius. This simulation excludes the effects of physical
esistivity, i.e. assumes the plasma to be physically ideal, ho we ver,
he minimum scale in our case is the pixel size, 96km. Khomenko
t al. ( 2014 ) highlights that the effects of physical dif fusi vity and
esistivity are negligible at the scales we are interested in, only having
 significant influence at scales around 100 m in both quiet and
ctive Sun conditions at photospheric heights. This setup also better 
imulates the evolution of the magnetic field under the influence of a
ealistic bottom boundary, since the depth of the box is much larger
han the length scale of the flux tube. 

Synthetic observations calculated from realistic simulation data 
rovide a sufficient testing ground for the success of flow reco v ery
ethods. In order to accurately reco v er the flows, one has to consider

wo major aspects: the magnitude of the speed at a given point and its
irection. Estimated flows will al w ays carry some error and therefore
he question remains of whether or not this error inhibits the ability
o study the flow dynamics of a system. In particular, whether we
an identify coherent flow features which go v ern the transport of
aterial via the flow field. 
MNRAS 539, 2498–2512 (2025) 
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The transport of material by fluids can be pinpointed by
istinguishing material surfaces within the plasma flow that act
s transport barriers. These transport barriers prevent the passing
f material, such as magnetic flux, through them. In the context
f solar plasma, the magnetic field is typically strongly linked to
he motions of the plasma in the photosphere where the magnetic
eynolds number is large (e.g. see Parker 1963 ). To this end, the

ransport of magnetic flux across the photosphere is dominated by
dvection through the plasma. 

Material surfaces that are identified by tracking the flow are called
agrangian coherent structures (LCSs) and they partition regions

hat exhibit similar dynamics, orchestrating the flow into discernible
oherent patterns. The transport barriers are determined by advecting
articles along a time series of the flow, which will compound
rrors produced when generating velocity fields. Thus, the LCS
heory facilitates a no v el and precise analysis of flow properties by
dentifying surfaces that locally maximize attraction, repulsion, and
hearing (Haller & Yuan 2000 ; Haller 2015 ). In other words, the LCS
rovides a skeleton for the plasma flow dynamics, decomposing
omplex flow behaviour into dynamic building blocks. Analyzing
he ability of a method to reco v er LCSs can give a significant insight
nto the ef fecti veness of a method to predict the precise flow topology
nd hence the evolving dynamics of photospheric flows. They also
ro vide a ke y insight into the transport of material by the flow, i.e.
he influence that plasma flows have on transporting magnetic flux. 

Here, we examine the ability of DeepVel NN to reco v er co-
erent plasma flow structures from synthetic continuum intensity
aps of the photosphere, corresponding to the Planck function at
= 1, generated by the MURAM ARs simulation (see Rempel &
heung 2014 ). The network was trained using continuum intensity
nd horizontal velocity fields from the R2D2 magnetoconvection
imulation (see Hotta & Iijima 2020 ). Both the MURAM and R2D2
imulations present the evolution of magnetic flux under the influence
f magnetoconvection in the upper layers of the solar interior up to
he photosphere and beyond. Both present similar models with the
istinguishing features being the initial topology of the magnetic
eld, the thermal evolution of the flow, with only MURAM accounting
or resistivity in the plasma in the form of a constant turbulent
iffusion, and R2D2 presenting a more realistic boundary condition.
hus together, both simulations present a large range of features
resent throughout the evolution and decay of an AR, presenting a
ood testing ground for how well DV can emulate the flow topologies
resent in and around ARs even when some features are missing from
he training simulation. Since we are only validating the applicability
f DV to new scenarios, we are not presently concerned with applying
o observations since there is no ground truth data for velocity on
he Sun. Thus we provide evidence of DVs adaptability to ARs
ith different setups and flow topologies when trained only on one

imulation. 
The paper is structured as follows: the numerical data, velocity

eco v ery methods, and analysis techniques are presented in Sec-
ion 2 . Section 3 describes the results including the success of
he reco v ered flows, methods as well as their ability to accurately
reserve Lagrangian features in the reconstructed flows. Finally, a
etailed discussion of the key results and conclusions of our analysis
s presented in Section 4 . 

 M E T H O D S  

.1 Velocity field reco v ery with DeepVel 

 V is a con volutional NN (CNN), which can be used to retrieve 3D
elocity fields from solar spectra, magnetograms or radiative inten-
NRAS 539, 2498–2512 (2025) 
ity maps (Asensio Ramos et al. 2017 ). CNNs apply convolutions
o inputs to reduce the number of parameters, e.g. convolutions may
e used to identify key features in images such as the granules,
ntergranular lanes and the edges of pores; this makes CNNs better
t generalizing spatially. We trained DV to reco v er the flows from
imulated ARs. The numerical data used for the training and analysis
re the 2D horizontal velocities, which we define as v h = ( v x , v y , 0),
nd continuum intensity of the τ = 1 surface (i.e. the photospheric
ayer). The horizontal velocities used for training and testing our
odel were extracted from the formation heights of the continuum

ntensities from the simulations. The heights of the surfaces vary by
100 km , o v er distances of ≈1 Mm in regions of QS granulation,

nd ≈500 km , o v er distances of ≈1 Mm o v er the boundary of the
ore. The continuum intensity data was chosen as they contain the
ost significant insight into motions at all scales without relying

n well-defined magnetic structures, i.e. sub v erting the problems
resented by Rempel et al. ( 2022 ) when using magnetogram data. 

.1.1 Training set 

he numerical data used for training DV in the present study is from
he R2D2 simulation presented by Hotta & Iijima ( 2020 ). This run of
he R2D2 simulation models the evolution of a twisted force-free flux
ube placed, at a depth of 35 Mm below the photosphere, under the
nfluence of magnetoconvection. The simulation box has dimensions
8 × 98 Mm 

2 with a periodic boundary in the horizontal direction
nd uniform grid spacing of 96 km pix −1 . In the vertical direction,
he simulation co v ers a depth of 200 Mm spaced o v er a non-uniform
rid, and height up to 700 km in the lower photosphere. The depth
f this simulation allows the evolution of the flux tube to remain
inimally affected by the bottom boundary. The R2D2 code uses a

et of radiative MHD equations which, in this setup, assumes an ideal
lasma (no physical resistivity) and no background magnetic field, so
he flux tube evolves solely under the effects of magnetoconvection.
he temporal resolution of the data is 120 s o v er 180 h of real-time
imulation, this provides 37 h of time before the emergence of the
agnetic flux and o v er 100 h of the decay process from the peak

f the magnetic flux. Flow processes, therefore have a long time to
volve naturally with the rising magnetic flux prior to the emergence
f the AR. Hence, the R2D2 simulation provides a realistic model
f the interaction of conv ectiv e plasmas and the magnetic field. An
xample intensity map and magnetogram, obtained from the R2D2
imulation at a time of 60 h after the start of the simulation (i.e. the
ime of peak magnetic flux in the photosphere), are shown in Fig. 1 .

For the training process, 3000 pairs of 4 . 8 × 4 . 8 Mm 

2 (50 ×
0 pix 2 ) continuum intensity snapshots at the simulations cadence of
20s, along with their corresponding horizontal velocity fields. These
napshots were chosen at purely random times and positions across
he entirety of the τ = 1 surface of the simulation, and represent
 1 per cent of the total data available. We suggest that this 120s

adence is suitable for testing the identification and analysis of flows
t the (sub)granular scale since granules have a lifetime of ≈10 min
e.g. see Bahng & Schwarzschild 1961 ). Whilst this is a relatively
ow cadence in comparison to some of the state-of-the-art telescope
ata available, it is a highly composite number, so most telescope
magery can be used at this lower cadence by selecting frames at
his time apart. These pairs were filtered to ensure that there were no
 v erlaps in the training data to a v oid o v erfitting, i.e. to help ensure
hat DV is able to classify velocities well for new data just as well as
he training set. 

The training samples were split into sets of 2000, 500, and
00 labelled as training, validation, and testing. The training and
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Figure 1. An example of the fully developed AR at the time of peak magnetic flux (i.e. 60 h after the start of simulation), from the R2D2 magnetoconvection 
simulation. On the left-hand side, two isometric panels show the white light intensity (top panel) and the magnetogram (bottom panel). The right-hand side 
panels show a close-up view of the intensity (top panel) and magnetogram (bottom panel) of the region bounded by the square. The intensity was normalized 
by the maximum intensity of the entire region. 
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alidation set are used throughout training to impro v e the parameters
f the network. The network parameters are only updated if the 
redictive performance improves on the validation set, which is 
hecked at the end of each training epoch. Given the random nature
f the sample selection, the snapshots should be representative of the 
ows present in all scenarios in the simulation. 
It should be noted that, as with any supervised learning method, 

his process poses the risk of introducing o v erfitting. If the number
f samples from the training simulation is too large, the NN may
earn only the images and flows from the training data and therefore
e unable to measure the velocities accurately from new images. 
ecause of this, we kept the proportion of training samples small

o reduce this risk and reduce the computational cost of training 
he network. The additional 500 testing samples were used for 
ndependently testing DeepVel to ensure it is able to generalize to 
ew data. 
The network was trained for 100 epochs (i.e. the network weights 

ere adjusted o v er the entire set of training samples 100 times) using
he Adam optimizer and the mean-squared error (MSE) loss defined 
s 

SE = 

∑ n 

i= 0 | v R2D2 , i − v DV , i | 2 
n 

, (2) 

here i represents the observation (pixel) where the velocity is 
roduced and n is the total number of observations. The training 
i  
ook approximately 100 min using NVIDIA V100 GPU and 10 h on
n Apple M2 card with 10 GPU cores. 

The loss from the network throughout the training process is 
hown in Fig. 2 . This figure highlights that the network converges
uickly in the first few epochs of training, reaching close to its
inimum value after around just 20 epochs. The network was 

llowed to continue training in which the learning stabilised at 
round 50 epochs before the validation loss started to increase 
espite the training loss beginning to decrease more rapidly around 
0 epochs, suggesting that the network is now o v erfitting to
he training samples, ho we ver the network reached its optimum
erformance at the 67th epoch. In order to o v erfitting, DV does not
pdate the network parameters unless the validation loss decreases. 
hus the tradeoff between number of epochs and the performance 
f the network drop off after just a few iterations. 
After the completion of the training process, individual velocity 

elds for full 1 Mp images took under 1 s to reco v er on both devices.
hen compared to other methods, if we ignore the time taken for

raining, this is a 40 × speedup compared with FLCT; the benefit of
he speedup outweighs the time taken for training when considering 
arge time series. 

.1.2 Test data 

or testing whether DV has generalized well to predicting veloc- 
ties from continuum intensity images, we have opted to use the
MNRAS 539, 2498–2512 (2025) 
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M

Figure 2. Loss during the first 100 epochs of training from the DV during 
training. The smooth solid curve represents the loss value from the training 
data at each epoch and jagged curve represents the loss value for the validation 
set (calculated at the end of each epoch). The dashed curve shows the 
minimum validation loss for the network at each epoch and the green point 
shows the minimum validation loss o v er the whole training process. 
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URAM AR simulation presented in Rempel & Cheung ( 2014 ).
his simulation presents the realistic emergence of an untwisted
emi-torus of magnetic flux in a box that has a periodic horizontal
oundary with dimensions 147 . 5 × 73 . 7 Mm 

2 . The depth of this box
s 16 . 4 Mm . The simulation shares the same 96 km pix −1 horizontal
patial resolution as the R2D2 simulation. Along with the shallow
ox, relative to R2D2 , this simulation includes the effects of turbulent
iffusion, providing a more realistic thermal evolution of the plasma.
airs of the continuum intensity images at the τ = 1 surface, and
elocity fields from the corresponding heights of these surfaces,
ith cadence 120 s we selected from different times in order to

tudy the ability of DV and FLCT to reco v er v elocities. A crucial
reprocessing step for new inputs to DV is to ensure the continuum
ntensities are matched to the histograms of the continuum intensity
mages from R2D2 , since DV is a supervised learning method, it
s important to ensure that input images have properties similar to
he training set. DV was then applied to reco v er v elocities from the

URAM intensitygrams. An example frame of continuum intensity
nd magnetogram from the simulation are presented in Fig. 3 . 

The radiative transfer schemes between R2D2 and MURAM differ,
or full details of the schemes, refer to the literature for R2D2 (Hotta &
ijima 2020 ) and MURAM (V ̈ogler et al. 2005 ). These differences in
umerical schemes may lead to differences in the intensities produced
n the synthetic images. Specifically, the contrast in the intensity
s greater in R2D2 data, ho we ver the normalized intensities reveal
 similar distribution to that of MURAM . Testing DV on different
imulations with variations in their numerical schemes, setups and
ncluded physics will provide insight into the limitations of DV when
nly trained on one simulation. 
The R2D2 and MURAM simulations offer valuable insight into

ifferent crucial aspects of the interactions of plasma flow and
agnetic flux throughout AR evolution. Thus these provide an

pportunity to properly test the ability of DV to accurately reproduce
ow features, from sub- to mesogranular scales, in the presence of

ntense magnetic flux. 

.2 Analysis of flow properties 

nce DV was trained and velocities were produced using our model,
e analysed the velocity fields by studying coherent flow structures
NRAS 539, 2498–2512 (2025) 
y identifying transport barriers in the flow. These transport barriers
ct as a skeleton for the flow, dictating the general flow topology
nd thus the mo v ement of material within the flow. These structures
re Lagrangian in their nature as they are derived from tracing the
otions of particles with the flow. Thus, these LCSs will allow us

o determine how much of the flow topology has been identified
orrectly by DV and hence help us to understand how error is
ropagated throughout a time series of reco v ered v elocity fields
hen taking deri v ati ves of the outputs. Therefore, analysing what
as been reco v ered by DV in this sense will allow us to examine how
ell DV is able to emulate photospheric flow physics from the R2D2

imulation and determine how well the model generalizes to more
ealistic and complex flows present in the MURAM simulation. 

One way to identify repelling/attracting material surfaces is by
eans of ridges of the finite-time Lyapunov exponent (FTLE),

alculated forward and backward in time (see, e.g. Haller 2015 ). The
TLE field can be calculated in any number of dimensions, yet it has
een shown that two-dimensional surfaces (from 2D velocity fields)
re enough to describe the critical influences on the distribution of
he magnetic field in the solar photosphere (see e.g. Yeates, Hornig &

elsch 2012 ; Chian et al. 2014 , 2019 ). Changes in the organization of
he FTLE field reflect a restructuring of the flow. In the photosphere,
uch changes can be due to a strong emerging magnetic field that may
orm ARs. In this respect, based on FTLE fields of the horizontal
elocity of a simulated solar surface, Silva et al. ( 2023 ) detected an
bjective signal of intense emerging magnetic fluxes, allowing for
redictions of the short-term (of the order of a few hours) evolution of
agnetic flux emergence prior to the detection of notable structures

n magnetograms and intensity images of the solar photosphere.
herefore we can use the structures provided by FTLE analysis to
ive insight to how the magnetic field is evolving as a consequence
f plasma flow. As such, comparing reco v ered flow FTLEs against
he true flow FTLEs will give a strong indication of how physically

eaningful the reco v ered topologies are and how well the physics of
he true flows are being emulated by the reco v ery method. 

In order to calculate the FTLEs, a uniform grid of particles is
dv ected o v er a time-dependent velocity field. Here, we present the
athematical description of the FTLE field. Consider v to be a

elocity field in a spatial domain and x ( t 0 ) = x 0 to be a fluid particle
t the initial position that follows a trajectory in space given by
olutions of the initial value problem. Then, 

d x 
d t 

= v ( x , t) . (3) 

he displacement of particles at time t = τ from its initial position
t time t = t 0 can be found as 

x τ − x 0 = 

∫ τ

t 0 

v ( x , t )d t . (4) 

hen, the flow map can be defined as 

x ( t 0 + τ ) = φt 0 + τ
t 0 

( x 0 ) , (5) 

here the operator φt 0 + τ
t 0 ( x 0 ) maps the initial position of a particle at

x ( t 0 ) to a final position x ( t + τ ). In the 2D case, particles are given
nitial positions x i,j ( t), where i and j are inde x es of the particle’s
nitial grid point. Distances between a particle and its nearest initial
eighbours, on a 5-point grid, are tracked as they are advected by the
ow. 
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Figure 3. An example slice of the AR at 83 h after the start of the simulation, from the MURAM simulation. The panels in the left-hand column show the 
continuum intensity (a) and the magnetogram (b). The right-hand side panels show a close-up view of the intensity (top panel) and magnetogram (bottom panel) 
of the region bounded by the square. The intensity was normalized between to be on a scale between 0 and 1. 
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The deformation gradient after the advection is given by the 
acobian matrix of partial deri v ati ves of the flow map 

φt 0 + τ
t 0 

( x i,j ) = 

⎛ 

⎝ 

x i+ 1 ,j ( t 0 + τ ) −x i−1 ,j ( t 0 + τ ) 
x i+ 1 ,j ( t 0 ) −x i−1 ,j ( t 0 ) 

x i,j+ 1 ( t 0 + τ ) −x i,j−1 ( t 0 + τ ) 
y i,j+ 1 ( t 0 ) −y i,j−1 ( t 0 ) 

y i+ 1 ,j ( t 0 + τ ) −y i−1 ,j ( t 0 + τ ) 
x i+ 1 ,j ( t 0 ) −x i−1 ,j ( t 0 ) 

y i,j+ 1 ( t 0 + τ ) −y i,j−1 ( t 0 + τ ) 
y i,j+ 1 ( t 0 ) −y i,j−1 ( t 0 ) 

⎞ 

⎠ . 

(6) 

his matrix is used to compute the Cauchy–Green deformation tensor 
efined as 

 = 

[
Dφt 0 + τ

t 0 
( x i,j ) 

]T 
Dφt 0 + τ

t 0 
( x i,j ) , 

here the superscript T denotes the matrix transpose. Finally, the 
TLE field is calculated by means of 

TLE 

t 0 + τ
i ( x ) = 

1 

| τ | ln 
√ 

max ( λi ) , i = 1 , 2 (7) 

ith λi being the eigenvalues of � . 
Given a time interval of length τ , particles are integrated forward 

n time o v er the interval [0 , τ ] and integrated backward in time o v er
he interval [ −τ, 0], to produce the forward-FTLE and backward- 
TLE fields. Ridges formed by the largest FTLEs describe the most
trongly repelling structures in the plasma flow in forward time, the 
ost strongly attracting structures in backward time. 
 RESULTS  

ere, we present the key results of our analysis for the success of DV
n reco v ering v elocities from the MURAM simulation when trained
n flows from R2D2 . In particular we present a number of metrics
hich show the success of DV in reco v ering flows at subgranular

cales ( � 100 km ) up to mesogranular scales ( ≈5 Mm ) o v er ARs and
S regions to determine how well DV can capture the influence of
 kG magnetic flux on plasma flows during the evolution of an AR. 

.1 Metrics 

n this section, we discuss the ef fecti v eness of DV at reco v ering AR
o ws both qualitati vely and back these quantitatively using a number
f statistical metrics. The following list of metrics have been used: 

(i) Pearson Correlation Coefficient (PC) 

C = 

∑ 

( v MURAM − v̄ MURAM )( v DV − v̄ DV ) √ ∑ 

( v MURAM − v̄ MURAM ) 2 
∑ 

( v DV − v̄ DV ) 2 
, (8) 

here the bar o v er a variable represents the mean value. This
orrelation coefficient provides a measurement of the strength of the 
inear relationship between two variables between −1 and 1, where 

1 describes a perfect ne gativ e correlation and positive 1 describes
 perfect positive correlation. For perfectly recovered velocities 
e expect PC = 1, a strong correlation is typically identified as
 . 5 < | PC | < 1. 
MNRAS 539, 2498–2512 (2025) 
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(ii) Kolmogoro v–Smirno v test (KS test) 

S = sup 
x 

| CDF MURAM ( x) − CDF DV ( x) | , (9) 

.e. the supremum of the distance between the empirical cumulative
istribution functions (CDFs) for the velocities from MURAM and
V, where sup defines the supremum function o v er the points x of

he CDF. The test-statistic is interpreted as the maximum per cent
ifference in vertical between values in the distribution (Hodges
958 ). 
(iii) Root-mean-squared Error (RMSE) 

MSE = 

√ ∑ n 

i= 0 ( v MURAM ,i − v DV ,i ) 2 

n 
, (10) 

here n represents the total number pixels in the image. The RMSE
rovides an average of distance of the predicted values from the true
alues 

(iv) Median Relative Error (MRE) 

RE = Median 

( | v MURAM − v DV | 
| v MURAM | 

)
. (11) 

he relative error shows the difference between the predicted and true
alues as a proportion of the true value, i.e. per cent error. Since the
elocities can be typically large, in any location where the velocity
ay be, in actuality, close to 0 and is predicted to be large will cause

he relative error to explode. For this reason, the median is chosen as
pposed to the mean as this will ignore the extreme values. 
(v) Normalized dot product 

ormalized dot product = 

v MURAM · v DV 

| v MURAM || v DV | . (12) 

he normalized dot product is the cosine of the angle between the
redicted and true v elocity v ectors. This shows the alignment of the
eco v ered v ectors as a value between −1 and 1 where 1 represents
 scenario where all the predicted vectors are parallel to the true
ectors, −1 are antiparallel and 0 represents a case where all the
ectors are at right angles to the true vectors. 

.2 Flo w reco v ery with DeepVel 

wo-dimensional velocity fields were reco v ered from the MURAM

imulation by applying DV to time-consecutive pairs of continuum
ntensity, separated by a cadence of 2 min. The x- and y-components
f the velocity fields were estimated for τ = 1 at various times
hroughout the evolution of the photosphere. At t ≈ 2 h the magnetic
ux in the photosphere has a mean value of < 1 G and a maximum
alue of 20 G. Therefore, this highlights an example of when the
imulation presents mostly QS dynamics in the photosphere. An
xample of a time when intense magnetic fluxes are present in an
R is presented at t ≈ 83 h. These particular times were chosen to
ighlight DV’s capability since they provide examples of the full
ange of flow dynamics in the presence of QS levels of magnetic
ux and AR levels of magnetic flux. Examples of the original and
eco v ered v elocity fields are shown in Figs 4 and 5 . The reco v ered
elocity fields were compared to the original simulated velocities. 

Fig. 4 (a) shows the divergence of the horizontal velocity field,
 · v h , from the MURAM simulation at t = 2 h, when the magnetic
ux rope is still being convected below the surface. Panel (b) presents

he divergence of the horizontal velocity field reco v ered by DV o v er
he same region as panel (a). Panels (c) and (d) show the line integral
onvolution (LIC; created by convolving a white noise filter with the
elocity field and integrating over the field lines) over a zoomed-in
NRAS 539, 2498–2512 (2025) 
egion, distinguished by the green square. LIC was first presented
y (Cabral & Leedom 1993, ) and it emphasizes the streamlines
f the horizontal velocity field using dark lines. The zoomed-in
egion highlights a region where complex magnetic structures later
ppear. The red and blue colouration represents regions of positive
nd ne gativ e horizontal div ergence, which we will refer to as the
ivergence. From panel (b), DV is able to reproduce the location of
ivergent features in the flow apparently well, with the magnitude
f the flow not being as high as those present in the simulation, e.g.
efer to the scatter plots shown in Fig. 6 . This discrepancy in speed is
ikely due to differences between speeds in the training set and test
ata. DV is able to reco v er topological flow features accurately from
URAM at length scales of intergranular lanes ( < 500 km ). 
Fig. 5 presents the same region as was shown in Fig. 4 , much

ater in the simulation ( t = 83 h) after the magnetic flux tube has
merged. Panels (a) and (c) once again show the divergence and
ows from simulation, which now highlight a region at the edge of a
ore where many intricate flow structures are present. In this case, we
ee that DV is able to distinguish flow behaviour between that o v er
he pore and that on the edge in panels (b) and (d). The distinguishing
ifference here is that DV is not able to identify the exact topology
f small-scale vortices ( < 100 km ) and saddle flows within the pore.
o we ver , D V is able to to identify some of the apparent swirling
otions, despite velocities having a magnitude of ≈1 / 10 that of the
ows surrounding the AR. 
Figs 6 and 7 give further insight into the results discussed above;

hey present the distributions of different velocity field components
rom simulation and DV and the scattering of these quantities,
espectively as a means of analysing the correlation of the reco v ered
elocity fields. 

The histograms in Fig. 7 reveal that in both active and quiet
egions DV, trained on R2D2 , is able to match the horizontal velocity
istributions from MURAM well. It appears that DV typically under-
stimates the velocities present in QS regions, but the distributions
till match the shapes and general properties of the flows well. This
s backed by a KS-test which highlights that the components of
he horizontal v elocity v ector are chosen from a distribution which
iffers by a maximum of ≈10 per cent from the true distribution
see Table 1 ). This deviation is due to the tendency of DV to
nderestimate the velocities shown in panels (a) and (b), respectively.
he distribution of speeds shown in panel (c) and better highlights

he underestimation in velocity components, combining to show an
 v erall reduced speed, implying that the velocity vector is recovered
ith a lesser magnitude and hence errors are not simply caused by
 rotation, but a shift in the component distributions. The speeds are
till within the same order of magnitude despite this, highlighted
y Table 1 . The divergence distribution of the DV velocity field
lso shares similar properties to the simulated velocity distribution,
apturing the bimodal nature of the distribution, which is result of
he mostly non-diverging nature of the flow within the AR and the
ositi vely di vergent granules that dominate the QS-like regions. The
ey properties of the divergence match well despite the differences
n the variance and errors introduced by taking derivatives of data. 

The scatter plots in Fig. 6 highlight the strong correlation of
he v elocities o v er all re gions, and that flow speeds are typically
nderestimated. The divergence is more weakly correlated over the
R, and carries more error than individual components of velocity (as

o be expected from taking deri v ati ves) ho we ver the QS and overall
ivergence of the recovered velocity fields are highly correlated. In
act, we see that DV performs particularly well at reproducing the
istributions of AR flows, only struggling to capture the exact values
f divergence in the AR, shown in panel (d) and Fig. 7 . 
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Figure 4. A close view of the divergence of the horizontal components of velocity, 2 h into the MURAM simulation. This figure highlights a region where > kG 

magnetic flux emerges later in the simulation. Panel (a) shows the divergence field from simulation over a zoomed-in section of the region highlighted in Fig. 3 . 
Panel (c) shows a closeup of the LIC with the velocity field superimposed on the divergence field of the highlighted region from panel (a). Panels (b) and (d) 
show the same regions as panels (a) and (c), instead using velocities recovered by DV. 
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Table 1 shows that DV is able to replicate the properties of
he velocity fields well about the means of the distributions, seen 
y the means and interquartile range (IQR) matching well for all 
resented values. Only the divergence and curl, where the error 
s expected to be increased from taking deri v ati ves of estimated
ata, present issues. Despite this, the div ergences of reco v ered flows
orrelate strongly in QS regions. Flows still correlate well, but 
ot as strongly, within ARs where the contrast in images becomes 
uch weaker and the dynamics differ largely due to the suppression

f plasma motions by the magnetic field. In comparison with the 
istributions of properties o v er AR, the Table 2 suggests some
ontradicting results, ho we ver the table presents v alues that are
patially dependent whereas the distributions in Table 1 are not; i.e. 
eco v ered flows in ARs are not reco v ered spatially as well as flows
n QS regions, but the properties of the flows in these regions align
etter. 
In order to quantify the success of the recreated flows, Table 2

isplays metrics describing the accuracy of flows from DV, including 
heir alignment and associated errors when compared against the sim- 
lation flows. The PC describes the strength of the linear relationship 
etween the reco v ered v elocities and the simulated v elocities. The
quare of this coefficient describes the explained variance captured 
y the method. The reco v ered flows, as mentioned abo v e, are highly
orrelated with the simulated flows. This high correlation shows 
hat a significant amount of information in the flow is reco v ered.
he correlation of the divergence is only slightly impacted o v er QS

egions despite taking deri v ati ves of velocities, which will invariably
nclude some error. The correlation of the divergence within the pore
ecomes more moderate compared to the surrounding flows but still 
hows a statistically significant correlation to the original flows. We 
lso observe the same trend in the alignment of the flows, measured
y the normalized dot product, i.e. the cosine of the angle between the
eco v ered flows and the simulation flows. A normalized dot product
lose to 1 would imply the flow is well aligned, and a value close
o zero represents a flow with no alignment with the target. The
V reco v ered flows hav e a mean alignment of around 0.674 o v er
uiet regions, and a lesser alignment over the AR of around 0.501.
he inverse cosine of these values corresponds to mean differences 

n angles of ≈47 ◦ o v er the QS-like regions and ≈60 ◦ o v er ARs.
o we ver the median normalized dot product sits at 0.871 and 0.774

or both regions, thus half of the velocity vectors are within 30 ◦ and
0 ◦ of their true direction. Furthermore, the RMSE and the MRE are
hown. The RMSE provides an average distance of the NN velocities
rom the true velocities, ho we ver this can be easily skewed where
arge velocities are involved. The MRE is more representative of 
he performance of the network, as it is less skewed by outliers in
he reco v ered flows. Since the v elocities and div ergences from DV
orrelate well with the simulation and the flows are aligned well o v er
he majority of the simulated surface, the apparently high relative 
rror should be taken in context. Velocities produced by DV have
ess variance than the velocities in MURAM , but correlate strongly.
herefore the topology and features of the flow field may remain
onsistent with the simulation but show a different magnitude which 
roduces a consistently large relative error with the speed of the flows. 
MNRAS 539, 2498–2512 (2025) 
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M

Figure 5. The same visualization as Fig. 4 is shown, at a time after the AR has emerged (83 h). The zoomed-in regions highlight the boundary of a pore, 
containing complex flow structures such as saddles and vortices. 

Figure 6. Scatter plots of components of velocities (a) and (b) and their divergence (c) reco v ered from by DV and their corresponding lines of best fit, plotted 
against the simulated values from MURAM , shown in cgs units. Scatter values o v er ARs are superposed on top and values o v er the QS are shown underneath. An 
additional line of best fit, described by the third equation in the legend, shows the o v erall line of best fit o v er all types of regions and the dark line along the 
diagonal shows the target line of best fit ( y = x). Points have had their opacity lowered to remo v e outliers and highlight where the strongest spread of velocities 
lie. 
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his difference in magnitude is highlighted by Fig. 7 (c), where there
s an underestimation in the speed of flows, particularly o v er the
S regions. These values are consistent with the mean relative error

hown by Tremblay et al. ( 2018 ), which still pro v e stronger than
ther flow reco v ery methods. 

.3 Finite-time lyapunov exponents 

 further step to test the results from DV is to assess the capability
f the reco v ered v elocities to reproduce the natural transport barriers
NRAS 539, 2498–2512 (2025) 
reated by the flow interaction. To identify the flow’s barriers, the
TLE field was computed by integrating over short (20 min) times
nd long (100 min) times, reco v ering granular and mesogranular
cales, respectively. The 20-min FTLE fields are shown in Fig. 8 and
he 100-min fields are presented in Fig. 9 . Ridges in the forward-
TLE and backward-FTLE fields represent locally repelling and
ttracting regions in the flow, in areas where these ridges o v erlap,
here may be complex flow behaviours present such as saddles and
ortices. Regions with small FTLE values (i.e. that contain no ridges)
ighlight regions with simple flows. 
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Figure 7. Histograms showing the distribution of different components of the velocity field at a time of 83 h, for the original simulation (solid coloured 
backgrounds) and the reco v ered flows (the outlined curves) over regions of > kG magnetic flux (top-most distribution), < kG flux (middle-layer distribution), 
and o v er the entire field of view (bottom-most distribution). Panels (a) and (b) show the distributions for the x and y components of v elocity. P anel (c) shows 
the distribution of speed and (d) shows the distribution of divergence. All are shown in CGS units. 

Table 1. Properties of the horizontal velocity field ( v h ) distributions from the MURAM simulation and those recovered from DV, shown in cgs units. 

Minimum Maximum Mean IQR 

v x ( km s −1 ) MURAM −11.1 12.4 −62 . 1 × 10 −3 3.11 
DV −10.2 12.5 −175 × 10 −3 2.83 

v y ( km s −1 ) MURAM −13.5 12.5 −88 . 3 × 10 −3 3.13 
DV −12.2 11.0 119 × 10 −3 2.65 

∇ · v h (s −1 ) MURAM −0.0815 −0.0728 5 . 52 × 10 −7 0.0238 
DV −0.0521 0.0355 8 . 22 × 10 −6 0.0197 

( ∇ × v h ) z (s 
−1 ) MURAM −0.0958 0.114 −5 . 61 × 10 −7 8 . 63 × 10 −3 

DV −0.0614 0.0662 −3 . 61 × 10 −5 6 . 55 × 10 −3 
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Panels (b) and (c) of Fig. 8 depict a notable reduction in the
trength of the ridges and hence a reduction in the complexity of the
able 2. Metrics comparing the DV-reco v ered v elocity components to the origin
 v er the entire τ = 1 surface at a time where an AR was present in the photosphe
onditions ( > kG). 

PC KS test statistic RMSE (

QS AR QS AR QS 

 – – – – –
 x 0.750 0.712 0.0722 0.0538 1.69 
 y 0.752 0.717 0.0963 0.0391 1.68 
 · v h 0.723 0.549 0.112 0.0516 0.0116 
ow in the presence of high levels of magnetic flux, in contrast to
he quiet regions. This behaviour is typical of the magnetic field
MNRAS 539, 2498–2512 (2025) 

al v elocities from the MURAM simulation. Horizontal v elocities were taken 
re ( t ≈ 83 h). Compared values are split o v er QS conditions ( < kG) and AR 

 kms −1 ) Median relative err. Normalized dot product 

AR QS AR QS AR 

– – – 0.674 0.501 
1.47 0.710 0.886 – –
1.49 0.745 0.950 – –

8 . 43 × 10 −3 0.642 0.903 – –

on 13 M
ay 2025
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Figure 8. The normalized forward- and backward-FTLE field superimposed on the magnetic field, corresponds to the highlighted region in Fig. 3 . Panels (a) 
and (e) show the magnetic field averaged over the time of integration. (b) and (f) show the backward-FTLE ridges resulting from a 20-min integration of the 
simulated and reco v ered v elocity fields, respectiv ely. P anels (c) and (g) show the resulting forward integrated FTLE fields. In panels (d) and (h) both the forward 
and backward integrated FTLE fields are superimposed on the magnetic field. The ridges resulting from the 20-min integration correspond to features on the 
length scales of granules. 

Figure 9. The same as Fig. 8 ho we ver the FTLE ridges here result from a 100-min integration corresponding to mesogranular features. 
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uppressing the plasma motions. Furthermore, attracting barriers
elimit the entire pore indicating the presence of do wnflo ws at the
mbral boundary. The red, repelling, barriers are slightly weaker
 v er the pore but still dominate much of the region, indicating the
utward transport of material by the flow, i.e. the dissipation of
NRAS 539, 2498–2512 (2025) 
he magnetic field o v er re gion. suggesting that the plasma is being
ransported out of this region. At the time shown in the figure,
he simulated AR is decaying and being is becoming more spread
ut. DV is able to reconstruct the repelling structures very well,
aintaining most of the fine structure at granular scales. DV is also
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ble to reconstruct the strongest attracting features, ho we ver largely 
 v erestimates much of the weaker ridges o v er the pore. Thus DV is
ble to capture short-lived and sub-granular diverging flow features 
ell, but less so the converging flow features on these scales. In the
00-min integrated field, presented in Fig. 9 , DV is able to recon-
truct both attracting and repelling barriers on mesogranular scales 
ell. 
It should be noted here that the same analysis was performed on

he R2D2 simulation used to train DV. The left column of Fig. 10
hows that in the R2D2 simulation, there is the presence coherent 
tructures indicative of the flow dynamics surrounding the AR. One 
uch example is represented by the strong attracting ridge, which 
elimits the pore and is further delimited by a strong repelling ridge
n both the short and long-term integrated fields. This describes a 
trong horizontal flow into the pore, like an Evershed flow, which is
ypically present around strong pores and sunspots. The NN correctly 
dentifies the strong repelling flows structures delimiting the AR 

nd some of the attracting structures within at the granular scale, 
uggesting that the NN is able to emulate the flow physics within and
round the AR well. 

These Evershed-like flow structures are not present in the MURAM 

imulation, shown in Figs 8 and 9 . DV also identifies that these
tructures are not present surrounding the AR and produces flows 
hat are more consistent with the MURAM flows. Thus we can discern
hat DV has been able to generalize well to the MURAM simulation
ows, since the NN does not simply mimic the flow features present

n training set. Therefore we determine DV is able to consistently 
roduce flow structures equally well across simulations. In particular 
he forward-FTLE fields correlate well with the original at granular 
cales and up, whereas the backward-FTLE field is underestimated 
t (sub)granular scales. 

In Fig. 11 , the distribution of the 20-min forward-FTLE field is
hown for two different regions in the flow, o v er times when there
s little magnetic flux present in the photosphere and when the AR
s fully emerged (2 and 83 h, respectiv ely). P anels in the left column
f the figure present the forward-FTLE distribution o v er a section of
he photosphere where < kG magnetic flux is present throughout the 
imulation. On the other hand, the right column shows the distribution 
 v er the re gion where > kG magnetic flux has emerged in the later
ime. The distributions are shown in blue and red for early and late
imes, respectiv ely. P anel (a) of the aforementioned figure shows that
he distribution in quiet regions at both early and late times remains
lmost constant, and panel (b) reveals that there is a difference when
agnetic flux emerges into the photosphere. We can see this more 

learly as the mean o v er the AR changes significantly, relative to the
ize of the FTLEs ( ≈10 per cent difference). DV is able to reproduce
his change in the shape of the distribution, ho we ver not as accurately,
ue to the errors in the predicted velocities. This indicates that DV
s reco v ering ke y physical aspects of the flow, at the granular scale,
hich determine the its behaviour in the presence of > kG magnetic 
ux. 

 C O N C L U S I O N S  

or the first time, DV was tested on the recovery plasma flow
eatures on scales from the mesogranular (several Mm) to subgran- 
lar ( ≥0 . 096 Mm ) scales in simulated AR flows. We assessed the
erformance of DeepVel using a different simulation data set from 

he training set in order to remo v e an y bias that may hav e come
rom DV o v erfitting to the training set. This helped us figure out how
f fecti ve DV was, especially in QS regions and ARs where more
ntense magnetic flux is present. One of the main things we found
s that DV can reco v er topological flow features pretty accurately,
specially when it comes to things like divergence and swirling 
otions at granular scales. Because of this, DV can be used to

nco v er information about horizontal inflow and outflow in ARs
t scales that have not been studied much before. Considering the
erformance of DV on different simulations, it is expected that proper
raining DV will also perform well on observational data. 

In this w ork, DV w as not trained to work with observations. In
rder to do so, a number of features need to be considered. The
rst of a long list includes atmospheric turbulence can cause the
lurring of images and thus data sets from ground-based telescopes 
ould need cleaning or deconvolving for use. Further, optics of 

elescopes can cause aberrations in images due the diffraction of 
ight as it passes through a lens. The appearance of this distortion is
n airy disc in the images which alters contrast. This effect can be
pproximated using a point spread function (PSF) if the parameters 
re known (see, for example, the discussion by Wedemeyer-B ̈ohm 

008 ). In order to apply DV to telescope imagery, the training
et would have to be convolved with the PSF or the observations
ould need to be deconvolved to match the training set as closely

s possible. Additionally, observations usually contain the 5-min 
scillations caused by p modes, which cause the brightening and 
imming of images, work toward mitigating this is highlighted by 
remblay et al. ( 2018 ) by filtering high-frequencies from images.
here resolutions of images differ significantly from the training set, 

t is expected that DV performance may suffer, higher resolution data
an be degraded and the training images can be degraded to match
o wer resolution observ ations in order to optimise performance of
V. We argue that thanks to the existence of high resolution space-
ased telescopes, some data sets may readily be applied with little
f these modifications. For example, the balloon-borne instrument 
unrise/IMAX (see Mart ́ınez Pillet et al. 2011 ) and its more modern
qui v alent TuMag (see del Toro Iniesta et al. 2025 ) have wide
pertures which lessens the distortion due to the lens and also sit
igh in the Earth’s atmosphere so that atmospheric effects are of
ittle concern. 

Overall, our work shows that DV performed well, though it 
truggled when reco v ering smaller scale features like the apparent
ortices in umbral regions. This is likely because strong magnetic 
elds in those areas suppress plasma motions and DV has trouble
eplicating these flows due to their low-speeds, which is accounted 
or by only a small amount of the data in the training set. Still, DV
as able to differentiate between various flow behaviours, showing 

t could adapt to different scenarios within the photosphere. DV 

f fecti vely reproduced the velocity field distributions, though there 
ere some small inaccuracies in the tails of the velocity distributions;

naccuracies such as these are somewhat expected, as supervised 
earning methods with continuous outputs will tend to produce values 
hat are smooth. We measured DV’s accuracy using PC, RMSE, and
lignment (dot product) to ef fecti vely measure DV performance on
ingular outputs. In QS regions, the results were good, but in ARs,
he performance was a bit lower. For example, the mean alignment in
S regions was 0.674, but it dropped to 0.501 in ARs. In other words

racking flows becomes more difficult in umbral regions, limiting 
he quality and therefore conclusions that may be drawn from flows
dentified by DV within the pore of an AR. This is probably because
f the impact that magnetic flux has on plasma motion as well as
he inputs having a lower contrast in umbral regions as opposed
o the typical contrasts present in QS regions. Additionally, the 
ower correlation for divergence and curl in ARs suggests that DV
as a harder time reco v ering more comple x flow structures when
ntense magnetic fields are involved. These issues likely arise as 
MNRAS 539, 2498–2512 (2025) 
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Figure 10. The normalized forward- and backward-FTLE fields superimposed on the magnetic field from the R2D2 simulation. The region shown corresponds 
to the highlighted region in Fig. 1 . Panels (a) and (b) show the FTLE fields resulting from integrating over 20-min and (c) and (d) over 100-min. Panels (a) and 
(c) show the FTLE fields calculated using velocities from the R2D2 simulation and (b) and (d) the velocities recovered by DV. The 20-min fields show structures 
in the FTLE fields on the scale of granules and the 100-min fields show mesogranular structures. 
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he horizontal velocities become relatively small within the AR,
nd the intensities exhibit less contrast within these regions, thus
mall differences in how intensity maps are constructed may become
ignificant in the production accurate velocities. Our results highlight
hat despite differences in boundary conditions in synthetic data and
he numerical scheme for RT, DV is able to produce consistent results
hat provide insight into the types of features present over ARs, even
f their exact topology is not captured fully. 

This study is the first to present an analysis on how reco v ered
ows are able to reproduce the transport barriers present in the
riginal flow. DV presents a great performance in replicating the
 v erall magnetic field transport dynamics in the simulation. The
econstruction of attracting and repelling barriers matched well with
he simulation, especially at granular and mesogranular scales. This
onfirms that despite the inevitable errors in the reco v ered v elocities,
V was able to reconstruct enough information such that these did
ot majorly impact how particles motion and trajectories in the flow,
NRAS 539, 2498–2512 (2025) 
hich shows that DV is a solid tool for studying the mo v ement of
mall-scale magnetic fields. On top of that, DV successfully captured
he major changes in flow behaviour during the formation of ARs, like
hen magnetic flux suppresses plasma motion and pushes magnetic
elds outward. Moreo v er , D V did not introduce the topological
eatures, observed in the FTLE fields, present in the training data
n the analysed data from MURAM . This is a strong indicator that the
odel constructed by DV from R2D2 is good for generalizing to new

ata containing similar features and that DV is able to emulate the
roperties of AR flows well from the training set. 
The ability of DV to emulate flow properties from the provided

raining set means that DV will reco v er better the characteristics
f the flow, so long as they are in line with flow features present
n the training simulation. Typically, NNs may suffer from o v er-
tting and create features that are not present or fail to reproduce
nything coherent in the worst case, when passing new data through
he network. Therefore, results from NNs should be considered
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Figure 11. Distribution of the 20-min forward-FTLE field, at an early ( t = 2 h) and a late ( t = 83 h) time in the simulation, o v er a region where the AR emerges 
and > kG magnetic flux is present at the later time. Panels (a) and (b) show the forward-FTLE distributions from MURAM o v er the QS re gion and AR, respectiv ely. 
Panels (c) and (d) show the forward-FTLE distribution from DV o v er the QS region and AR. The vertical lines show the means for each distribution. There are 
tw o k ey things to note. First, at late times when the AR becomes present, there is a spiking in the frequency of the smaller FTLE values, i.e. a reduction in 
the complexity of flow topology, compared to earlier times when the photosphere is mostly quiet and there is little difference in the distributions. This spiking 
causes a reduction in the mean forward-FTLE o v er the AR, which is captured by both reco v ery methods. Secondly, DV produces results which are consistent 
with the simulation at both times. 
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arefully. In the case of supervised learning, it is expected that NNs
ill perform well at reproducing information from data similar to 
hat the NN has already seen during training. In other words, if

he input data provided to the NN has similar properties to that of
he training set, then the outputs produced will be consistent with 
he training set and hence consistent with the input data if it shares
he same flow properties/physics of the training set. If the inputs
ave different properties to that of the training inputs, the outputted 
ows will be inconsistent with the training set flows, and most likely

nconsistent with the test set flows as the NN has not learned to
mulate the test simulation. In the case of providing new input data,
he NN expects that most, if not all, of the properties of the input
ata will remain within the limits of the training set. Thus, if we test
ur model with images from a new simulation, which shares similar
hysics and properties of the training set, the outputs are expected 
o be reasonably good and will typically produce results that are in
ccordance with properties from the training set with some expected 
rror. In our case, the physics and properties of the MURAM and R2D2
imulations (e.g. cadence, resolution) are in agreement with each 
ther. Other aspects of the simulation differ, the physical influence 
f a shallow bottom boundary, turbulent diffusion and an untwisted 
ux tube with a different initial shape present a somewhat different 
cenario to the R2D2 simulations. Synthetic images from MURAM also 
iffer slightly to R2D2 due to differences in the numerical schemes for
ow the optical surfaces are calculated (for the full descriptions of the
chemes, see Rempel & Cheung 2014 ; Hotta & Iijima 2020 ). Despite
hese differences, once the histograms of continuum intensities were 
atched, the results of applying DV to MURAM synthetic images are

xpected to be at least consistent with the flows in R2D2 . This is
onfirmed by the high correlation between DV and original velocity 
elds and by the successful identification of the material transport 
arriers of MURAM by DV. 
A number of changes can be made to the NN itself as well as

he training process in order to impro v e DV predictions. Since new
hanges to DV should be validated carefully for wider applications 
hey are out of the scope of this work. For example, the NN
an be redesigned to consider features on multiple scales such as
he multiscale NN from Ishikawa et al. ( 2022 ), properties from
he training set can be considered sample by sample rather than
onsidering one set of properties for describing the whole set, and
ifferent training processes could be applied (i.e. altering the network 
rchitecture throughout the training or applying different activation 
unctions/loss functions). In addition to this, in the current testing, 
ur w ork w as limited by the cadence of the simulations available,
he sound speed of the simulation near the surface reaches around
0 kms −1 , this means that features may mo v e up to around 1 Mm
MNRAS 539, 2498–2512 (2025) 
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etween frames, close to the training patch size. Thus it may well
e the case that features often disappear and appear o v er each patch
hen they are close to the edges causing there to be no discernible
attern between some of the flows and features from one frame
o the next, thus training with larger patches and higher cadences
ould further highlight the capabilities of DV for flow reco v ery in

he photosphere. Furthermore, DV could be trained on a wide range
f simulations co v ering most of the phenomena present on the solar
urface such as penumbral flows, the aftermath of reconnection and
ore, and images could even be projected onto a sphere to allow

redictions of flows on the full disc. This would potentially provide
n ensemble solution, useful for forecasting the true velocity within
ome range, ho we ver, the storage and time taken for training such a
etw ork w ould be v ery computationally and financially e xpensiv e. 
DV, as we have presented, is a robust tool, which can be trained

o handle complex dynamical scenarios in a solar context. The
alidation that we have performed shows that DV has the capability
o reco v er the smallest scale flows present in synthesized images
rom simulations, instantaneously with a good level of accuracy. In
onclusion, our study shows that DeepVel has a lot of potential for
eco v ering v elocity fields from continuum intensity data in ARs.

hile it does have some limitations within the umbra of ARs, DV is
 promising tool for studying solar photospheric flows and provides
 solid foundation for future impro v ements. Future work could
ocus on reducing the discrepancies in AR regions, particularly in
eco v ering smaller scale features and better capturing how magnetic
ux affects plasma flows. 
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