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Abstract

The Iowa gambling task (IGT) is widely used to study risky decision-making and learning from rewards and punishments.
Although numerous cognitive models have been developed using reinforcement learning frameworks to investigate the pro-
cesses underlying the IGT, no single model has consistently been identified as superior, largely due to the overlooked
importance of model flexibility in capturing choice patterns. This study examines whether human reinforcement learning
models adequately capture key experimental choice patterns observed in IGT data. Using simulation and parameter space
partitioning (PSP) methods, we explored the parameter space of two recently introduced models—Outcome-Representation
Learning and Value plus Sequential Exploration—alongside four traditional models. PSP, a global analysis method, inves-
tigates what patterns are relevant to the parameters’ spaces of a model, thereby providing insights into model flexibility.
The PSP study revealed varying potentials among candidate models to generate relevant choice patterns in IGT, suggesting
that model selection may be dependent on the specific choice patterns present in a given dataset. We investigated central
choice patterns and fitted all models by analyzing a comprehensive data pool (N = 1428) comprising 45 behavioral datasets
from both healthy and clinical populations. Applying Akaike and Bayesian information criteria, we found that the Value plus
Sequential Exploration model outperformed others due to its balanced potential to generate all experimentally observed choice
patterns. These findings suggested that the search for a suitable IGT model may have reached its conclusion, emphasizing the
importance of aligning a model’s parameter space with experimentally observed choice patterns for achieving high accuracy
in cognitive modeling.

Keywords Choice patterns - Cognitive modeling - Iowa gambling task - Model comparison - Parameter space partitioning -
Reinforcement learning - Risky decisions

Introduction ing decision-making under uncertainty is the lowa gambling

task (Bechara et al., 1994; Brevers et al., 2013), which sim-
Decision-making is a complex cognitive process that inte-  yjates real-life decision-making by requiring participants to
grates learning, emotions, and choice behavior. Under-  choose from decks of cards with varying levels of reward
standing how humans make decisions, particularly under ;.4 punishment. Over time, optimal performance requires
uncertainty, has been a central focus in cognitive science. recognizing and avoiding decks that yield larger penalties
One of the most influential experimental paradigms forstudy- i fayor of those with smaller but more consistent rewards

(Beitz et al., 2014; Erev and Barron, 2005; Worthy et al.,
2013). This task has been widely used to explore the cogni-
tive and emotional mechanisms underlying decision-making
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function (Bechara et al., 1994, 1997, 2000; Brevers et al.,
2013).

In recent decades, the intersection of psychology and
computational modeling has given rise to the field of com-
putational psychology (Lewandowsky and Farrell, 2011;
Wilson and Ten Collins, 2019; Farrell and Lewandowsky,
2010; Johnson, 2006; Busemeyer and Stout, 2002). This
discipline uses mathematical models to rigorously analyze
and formalize cognitive processes, offering a quantitative
approach to hypothesis testing and theory comparison. Com-
putational models, particularly those based on reinforcement
learning (RL) (Frank and Claus, 2006; Fontanesi et al., 2019;
Kalidindi and Bowman, 2007; Agay et al., 2010; Eckstein et
al., 2021; Schwenck, 2017), have proven invaluable in decon-
structing the cognitive mechanisms involved in tasks such as
the IGT. These models allow researchers to link observed
behaviors, such as choices and response times, to underly-
ing cognitive processes such as reward sensitivity, learning
rates, and risk preferences, as they simulate how individu-
als adapt their choices based on past outcomes (Busemeyer
and Stout, 2002; Ahn et al., 2008, 2013; Steingroever et al.,
2013a; Haines et al., 2018; Ligneul, 2019; Hadian Rasanan
et al., 2024; Ghaderi et al., 2024a,b).

Over the years, many models have been developed to
explain IGT performance, each aiming to account for dif-
ferent aspects of human decision-making (Busemeyer and
Stout, 2002; Ahn et al., 2008, 2013; Steingroever et al.,
2013a; Haines et al., 2018; Ligneul, 2019). However, com-
parisons across models often lead to mixed results, with no
clear consensus on which model best captures the complex-
ity of IGT behavior (Steingroever et al., 2013b, a; Haines et
al., 2018; Ligneul, 2019). Furthermore, many studies focus
solely on fitting models to data without exploring the range
of behaviors each model can generate (Busemeyer and Stout,
2002; Yechiam and Busemeyer, 2005; Ahn et al., 2008; Frid-
berg etal., 2010; Haines et al., 2018; Ligneul, 2019; Yechiam
et al., 2008). This limitation calls for a more comprehensive
evaluation of models that considers both model fit and the
breadth of behavioral patterns they can explain.

In this paper, we aim to address this gap by comparing sev-
eral reinforcement learning models, including more recently
proposed models, to determine which best explains behavior
in the IGT. Specifically, we compare two key models: the
Outcome-Representation Learning (ORL) model, developed
by Haines et al. (2018), and the Value plus Sequential Explo-
ration (VSE) model, introduced by Ligneul (Ligneul, 2019).
These models provide unique insights into the decision-
making process by focusing on different mechanisms that
shape behavior in the IGT.

The ORL model captures four key mechanisms of decision-
making. First, it separates the evaluation of gains and losses,
allowing for distinct sensitivity to positive and negative
outcomes. Second, it explicitly accounts for the frequency

of wins, reflecting the preference for decks with frequent
wins despite lower overall expected value-a nuance often
missed by simpler models (Ahn et al., 2008). Third, it mod-
els choice perseverance, representing the trade-off between
sticking with a current choice and exploring new ones. Lastly,
the ORL model introduces a mechanism for reversal learn-
ing, where individuals switch preferences after encountering
significant losses, a common behavior observed in IGT par-
ticipants (Steingroever et al., 2014).

On the other hand, the VSE model delves into how indi-
viduals navigate the exploration-exploitation dilemma by
combining gain and loss magnitudes into a nonlinear util-
ity function. This model distinguishes between two types of
exploration: directed exploration, where individuals sequen-
tially sample different decks, and random exploration, where
choices appear more spontaneous (Ligneul, 2019; Wilson et
al., 2014). The VSE model also incorporates an exploration
bonus parameter, which adjusts the tendency to explore based
on past outcomes. Unlike the ORL model, the VSE model
emphasizes sequential exploration and the dynamic balanc-
ing of both exploration and exploitation strategies.

Our primary contribution lies in the comprehensive com-
parison of these models using data from 45 studies. By
evaluating how well these models capture various aspects
of decision-making in the IGT, we aim to shed light on their
relative strengths and weaknesses, offering a clearer under-
standing of which cognitive processes they best explain.
This comparison is crucial, not only for understanding
decision-making mechanisms but also for improving the
reproducibility and generalizability of findings across dif-
ferent studies and populations.

Moreover, the other key contribution of this work is the
use of parameter space partitioning (PSP; Pitt et al.,2006;Pitt
et al., 2008;Steegen et al., 2017) as a tool to evaluate mod-
els. PSP allows us to examine the range of behaviors that
each model can potentially generate across its parameter
space, offering insights beyond traditional goodness-of-fit
metrics such as the Bayesian information criterion (BIC)
(Neath and Cavanaugh, 2012) and Akaike information crite-
rion (AIC) (Bozdogan, 1987). This method provides a more
nuanced understanding of model performance by highlight-
ing the regions of parameter space where each model excels
or fails. This approach reveals whether a model’s success in
fitting observed behavior is due to a broad capacity to cap-
ture various strategies or limited to a narrow parameter range.
Our findings suggest that considering both model fit and the
diversity of behaviors a model can simulate is crucial for
evaluating the utility of computational models. Additionally,
the study considers multiple criteria for model evaluation,
including goodness-of-fit measures such as AIC, BIC, and
Watanabe-Akaike information criterion (WAIC) (Gelman et
al., 2014), to offer a comprehensive assessment of model
validity.
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We also provide a detailed analysis of the role of different
model parameters, particularly in the ORL and VSE models,
and how they relate to observable patterns in IGT data. This
analysis highlights which behavioral strategies are favored
by each model and how they align with empirical observa-
tions from previous IGT studies. Additionally, we explore
the implications of different parameter ranges, discussing
how these choices influence the models’ ability to generalize
to unseen data.

By integrating these approaches, the present study aims
to contribute to the ongoing debate about the best computa-
tional models for the IGT and, more broadly, to enhance
our understanding of the cognitive mechanisms underly-
ing decision-making processes. The insights gained from
this work could have significant implications for clini-
cal psychology, particularly in understanding and treating
decision-making deficits in various populations and the fac-
tors that drive individuals to make risky or cautious decisions
in uncertain environments.

The remainder of this paper is organized as follows:
We first review the most relevant models in the literature,
focusing on RL-based models that have been applied to the
IGT. Next, we describe the ORL and VSE models in detail,
followed by a discussion of the parameter space partition-
ing methodology and the criteria used to compare models.
Finally, we present the results of our model comparison and
discuss their implications for future research on decision-
making models in the IGT.

Background and Literature Review
lowa Gambling Task

The IGT (Bechara et al., 1994) involves four decks of cards
(A, B, C, D), and participants are asked to choose cards indi-
vidually. The task ends after the 100th card is chosen, but
participants are unaware of how many trials are left. Decks
A and B offer areward of +100 for each card chosen, but they
also come with potential losses totaling —1250 for every 10
cards. Deck A has frequent but smaller losses, while Deck B

has infrequent larger losses. Both decks result in a net loss
of —250 for every 10 cards. Decks C and D, however, pro-
vide a smaller reward of +50 for each card chosen. Deck D
has infrequent significant losses of —250 for every 10 cards,
while Deck C has frequent smaller losses of —50. Decks C
and D have a net profit of +250 for every 10 cards. Decks
A and B are considered disadvantageous or “bad” due to the
negative long-term expected value. In contrast, Decks C and
D are considered advantageous or “good” due to the positive
overall outcome. The goal of the task is to maximize the final
net profit, and participants can switch between decks based
on their preferences. Several modified versions of the IGT
have been proposed by different researchers, each with its
variations and enhancements (Proctor et al., 2014; Stocco et
al., 2009; Chiu and Lin, 2007; Lawrence et al., 2009). A sum-
mary of the IGT pay scheme for every 10 trials is provided
in Table 1.

The task’s simplicity and its ability to mimic real-world
decision-making have led to its widespread adoption across
various clinical populations. For instance, Cavedini et al.
(2002a,b) used IGT for patients with obsessive-compulsive
disorder, panic disorder, and pathological gambling clinical
groups. Similarly, multiple researchers have applied IGT to
schizophrenia patients (Shurman et al., 2005; Martino et al.,
2007; Premkumar et al., 2008; Brambillaetal.,2013), bipolar
disorders (Brambilla et al., 2013), and those with Parkin-
son’s disease (Kobayakawa et al., 2008; Poletti et al., 2011;
Evens et al., 2016). Additionally, groups of attention-deficit-
hyperactivity disorder in both adults (Toplak et al., 2005;
Agay et al., 2010) and children (Garon et al., 2006), as well
as psychopathy disorder (Blair et al., 2001), have been other
target groups that have been comprehensively evaluated for
risky decision-making and learning from experiences with
rewards/punishments using IGT. Also, many studies have
addressed IGT in substance use disorders, including cocaine
(Stout et al., 2004; Tucker et al., 2004; Dom et al., 2005;
Verdejo-Garciaetal.,2007; Kjome et al., 2010), heroin (Petry
et al., 1998), cannabis (Fridberg et al., 2010; Gonzalez et
al., 2012; Vaidya et al., 2012; Moreno et al., 2012), alcohol
(Tomassini et al., 2012; Brevers et al., 2014; Kovacs et al.,
2017; Mazas et al., 2000), and cigarette dependents (Balevich

Table 1 Summary of the payoff
scheme of the original version

of IGT, developed by Bechara et
al. (1994)

A B C D
Reward per trial 100 100 50 50
Loss per 10 cards —1250 —1250 —-250 —-250
Number of losses per 10 cards 5 1 5 1
Net outcome per 10 cards —250 —250 250 250

Decks A and B are considered disadvantageous because both yield a net outcome equal to —250 per 10 cards.
While Deck A has frequent losses, 5 x —250 losses per 10 cards, Deck B has infrequent losses, with one
loss equal to —1250. Decks C and D are considered advantageous, where the net outcome per 10 cards for
both these Decks equals 250. While Deck C has frequent losses ( 5x —50), Deck D has only one loss equal

to —250
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etal.,2013; Durazzo et al., 2018). Moreover, traffic offenders
(Lev et al., 2008; Farah et al., 2008), criminals, and inmates
were among the groups assessed for decision-making ability
by multiple studies (Yechiam et al., 2008; Flérez et al., 2017).
Furthermore, extensive and comprehensive studies have also
been conducted to assess healthy groups’ performance with
IGT, including the works of Steingroever et al. (2013, 2015)
and others (Overman et al., 2006; van den Bos et al., 2013;
Singh, 2016).

This task involves dealing with uncertainty and consider-
ing the consequences of choices, aiming to maximize long-
term rewards despite potentially greater short-term gains
from disadvantageous options (Brevers et al., 2013). The
behavior seen in the IGT reflects real-life decision-making,
making it a useful tool for assessing impairments (Schuer-
mann et al., 2011). However, understanding the cognitive
mechanisms behind it is challenging due to the complexity
of decision-making. The IGT captures the intricate interplay
between cognitive and motivational processes (Busemeyer et
al., 2003). Cognitive models, based on (neuro)psychological
theories, help identify and evaluate these mechanisms when
applied to tasks like the IGT, revealing the link between
parameters and psychological processes (Busemeyer and
Stout, 2002; Beitz et al., 2014; Guest and Martin, 2021; Ste-
ingroever et al., 2014; Ahn et al., 2016; Chan et al., 2014).
Furthermore, reinforcement learning models are effective for
understanding behavior in such complex environments (Erev
and Barron, 2005; Worthy et al., 2013).

Previous Models

Over the past few decades, various computational mod-
els have been developed to explain the behavior observed
in the IGT, particularly focusing on the underlying cogni-
tive processes such as reinforcement learning. These models
have been instrumental in deconstructing the psychological
mechanisms involved in decision-making during the task.
One of the earliest and most influential is the Expectancy
Valence (EV) model, which suggests that individuals form
expectancies about the value of each deck and update these
expectancies based on their experiences (Busemeyer and
Stout, 2002). This model also introduced the idea of a
“valence” parameter, which captures (subjects’ attention)
sensitivity to gains and losses, marking a foundational step
in IGT modeling (Busemeyer and Stout, 2002; Yechiam
and Busemeyer, 2005; Yechiam et al., 2005; Steingroever et
al., 2013a). A key component of this process is expectancy
learning, where individuals develop expectations about the
valences associated with each choice, governed by the utility
function (Busemeyer and Stout, 2002; Yechiam and Buse-
meyer, 2005; Yechiam et al., 2005; Steingroever et al.,
2013a). This utility function reflects the perceived value of

future outcomes, allowing for dynamic adjustment based on
reinforcement, further shaping decision-making behavior.

Subsequently, the Prospect Valence Learning (PVL) model
expanded on the EV model by incorporating elements from
prospect theory, including nonlinear probability weighting
and loss aversion (Ahn et al., 2008). The utility function of
PVL updates the expectations of all Decks (both selected
and not selected Decks) on each trial using a decay-RL rule.
This model provided a more nuanced understanding of how
people perceive and integrate gains and losses over time,
shedding light on the psychological processes driving risk-
taking behavior in the IGT (Ahn et al., 2008, 2013; Tversky
and Kahneman, 1992).

Building on these foundations, researchers have explored
various hybrid models that combine elements of EV and
PVL. Notable among these is the EV-PU model, which
integrates the utility function from the PVL model while
retaining other elements from the EV model (Ahn et al., 2008;
Steingroever et al., 2013a). The EV-PU model is character-
ized by four parameters: shape, loss aversion, recency, and
consistency, which are similar to those in the PVL model
(Ahn et al., 2008; Steingroever et al., 2013a). This hybrid
approach has garnered significant attention for its potential
to capture a broader range of decision-making behaviors in
the IGT.

Another important hybrid model is the PVL-Delta model,
which merges the utility, choice rule, and sensitivity functions
from the PVL model with the learning function from the EV
model (Fridberg et al., 2010). This model also introduces an
updating rate similar to that in the EV model, applying a
delta rule to update trial expectations (Fridberg et al., 2010;
Ahn et al., 2008; Steingroever et al., 2013b). Like the EV-PU
model, the PVL-Delta model is structured around four key
parameters: shape, loss aversion, consistency, and updating
rate, reflecting a synthesis of the strengths of both EV and
PVL models (Fridberg et al., 2010).

A significant advancement was the Value-Plus-Perseveration
(VPP) model, which introduced a perseverance component
to the valuation process (Worthy et al., 2013). This model
addresses a critical flaw in the decay rule of previously pro-
posed RL models-the confusion between the tendency to
persist with a choice and the tendency to select the option
with the highest expected value (Steingroever et al., 2013a).
The VPP model underscored the importance of accounting
for both reward-based learning and the tendency to stick with
previously made choices, offering a more comprehensive
view of the decision-making process (Worthy et al., 2013).

In recent years, more innovative models have been devel-
oped to capture deeper cognitive mechanisms. The Outcome-
Representation Learning model, proposed by Haines et al.
(2018), is particularly noteworthy. The ORL model intro-
duces four key mechanisms: separate evaluation of gains
versus losses, explicit consideration of win frequency, choice
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perseverance, and reversal of learning. These mechanisms
offer a more detailed exploration of the cognitive processes
involved in the IGT, particularly in how individuals respond
to the frequency of wins and losses and how they adjust their
strategies following significant losses (Haines et al., 2018).
The ORL model thus represents a significant advancement in
our understanding of the complex decision-making processes
that underlie performance in the IGT.

Among the latest developments is the Value Plus Sequen-
tial Exploration model, introduced by Romain Ligneul in
2019 (Ligneul, 2019). This model is distinctive in its use
of a nonlinear combination of reward and loss magni-
tudes during each trial, akin to the utility function in the
PVL2 model but without including loss aversion (Ligneul,
2019). The VSE model emphasizes two key strategies
to address the exploration-exploitation dilemma: directed
exploration, where individuals sequentially sample all decks
over consecutive trials, and random exploration. It also intro-
duces an exploration bonus parameter, ¢, which reflects
a subject’s preference for exploration versus exploitation
(Ligneul, 2019). The VSE model, with its sophisticated
approach to handling exploration and exploitation, provides
a more nuanced framework for understanding decision-
making behavior in the IGT.

While these models have advanced our understanding of
decision-making in the IGT, they are not without limita-
tions. For instance, comparisons between models have often
yielded mixed results, with no clear consensus on which
model best captures the complexity of behavior in the IGT
(Steingroever et al., 2013a,b; Haines et al., 2018). Also,
many models assume homogeneity in decision strategies
across individuals, potentially oversimplifying the variability
observed in human behavior (Steingroever et al., 2013a; Ahn
et al., 2008). Furthermore, some models focus primarily on
fitting empirical data without adequately exploring the range
of behaviors they can simulate, limiting their generalizabil-
ity and applicability across different populations and settings
(Yechiam and Busemeyer, 2005; Fridberg et al., 2010; Haines
et al., 2018; Ligneul, 2019).

Gap Identification

Despite the extensive body of literature on computational
models for the [owa gambling task, several gaps remain. One
significant gap is the need for a comprehensive analysis of
model flexibility across parameter spaces. Traditional model
comparisons often rely on metrics such as the AIC, BIC, or
WAIC, which primarily focus on goodness-of-fit. However,
these measures do not fully capture the range of behaviors
that a model can generate, limiting our understanding of a
model’s flexibility and generalizability across different con-
texts.

@ Springer

Another gap lies in the cross-validation of these models
across diverse populations and settings. While many studies
have focused on specific groups, such as healthy controls or
clinical populations, there has been insufficient exploration
of how well these models generalize to other contexts. This
limitation underscores the importance of conducting a global
analysis that not only evaluates model fit but also exam-
ines the robustness and flexibility of models across different
experimental conditions.

Furthermore, recent developments in computational mod-
eling, particularly those based on reinforcement learning,
have not been fully integrated into the analysis of IGT
performance. These newer models, such as the ORL and
VSE models, offer a more dynamic perspective on decision-
making by capturing how individuals adapt their strategies
over time based on their experiences. However, these mod-
els have not been widely compared with earlier models, and
their full potential in explaining IGT performance has yet to
be realized.

In earlier comparisons of cognitive models, researchers
employed several methods, such as post hoc fit criteria (Buse-
meyer and Stout, 2002; Yechiam and Busemeyer, 2005; Ahn
etal., 2008; Fridberg et al., 2010; Haines et al., 2018; Ligneul,
2019) to predict choices based on previous trials, generaliza-
tion criteria (Ahn et al., 2008; Yechiam and Busemeyer, 2005;
Yechiam et al., 2008; Haines et al., 2018) to assess model
predictions using parameters estimated from different tasks,
and simulation techniques (Ahn et al., 2008; Fridberg et al.,
2010; Steingroever et al., 2014; Haines et al., 2018; Ligneul,
2019) that generated choices using best-fitting parameters
rather than real choice information. However, these studies
have yielded inconsistent results, and no single model con-
sistently emerged as superior in all scenarios (for a detailed
understanding of these discrepancies in the drawn conclu-
sions, see Steingroever et al. (2013a,b)). For instance, Haines
et al. found that the ORL model, despite having fewer param-
eters, performed comparably to the VPP model in short-term
prediction and outperformed the PVL-Delta model in terms
of parameter recovery (Haines et al., 2018). However, they
could not determine which model was superior for long-
term prediction using choice simulation. In contrast, Romain
Ligneul’s study showed that the VSE model outperformed
ORL, EV, PVL, PVL-Delta, and VPP models using fitting
accuracy metrics such as BIC and AIC. Additionally, the VSE
model demonstrated superior parameter recovery (Ligneul,
2019).

While the VSE model has often demonstrated supe-
rior performance in fitting participant data across different
groups, it does not always outperform other models, par-
ticularly when results from various datasets are taken into
account. To understand why VSE falls short in these cases, it
is crucial to assess the additional capabilities and limitations
of other models.
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A significant factor in these inconsistencies is the diver-
sity of choice strategy patterns in the data. Participants in
the IGT exhibit different choice strategies, and each model
is designed to capture a subset of these, in the model’s
assumptions. In general, these strategies result in the fol-
lowing choice patterns (Steingroever et al., 2013a):

e Good-Over-Bad (GOB): Favoring cards from advanta-
geous Decks (C and D) over disadvantageous ones (A
and B).

e Bad-Over-Good (BOG): Favoring cards from disadvan-
tageous Decks over advantageous ones.

e Infrequent-Over-Frequent (IOF): Preferring Decks
with a lower frequency of losses (B and D) over those
with a higher frequency of losses (A and C).

e Frequent-Over-Infrequent (FOI): Preferring Decks
with higher loss frequency over those with lower loss
frequency.

Each model is equipped with multiple parameters and thus
has the potential to generate different choice patterns. How-
ever, some models may generate choice patterns that do not
align with experimental data for a significant portion of their
parameter space. This reduces the model’s ability to capture
the full spectrum of strategies exhibited by participants. A
model that consistently produces a specific choice pattern
across most of its parameter space may be well-suited for
datasets that exhibit that pattern but will struggle with oth-
ers. Therefore, it is essential for a model’s parameter space
to align well with experimentally observed patterns and be
balanced for the sake of generalizability (Steingroever et al.,
2013a).

To address these gaps, PSP has emerged as a powerful tool
for evaluating model flexibility. PSP generates all possible
choice patterns for a model and computes the proportions of
those patterns within the model’s parameter space, providing
amore robust understanding of how well a model captures the
range of observed behaviors (Pitt et al., 2006, 2008; Steegen
et al., 2017).

Steingroever and colleagues applied the PSP method to
assess the EV, PVL, EV-PU, and PVL-Delta models (Ste-
ingroever et al., 2013a,b). Their results revealed that these
models struggle to produce commonly observed choice
patterns. For instance, while the “good-over-bad” pattern
is central to all models, the EV model performed poorly
when capturing the “infrequent-over-frequent” pattern. Con-
versely, the PVL, EV-PU, and PVL-Delta models performed
poorly on the “bad-over-good” pattern. As a result, Stein-
groever and colleagues concluded that traditional RL models
were insufficient in explaining key psychological processes
underlying the IGT, advocating for the development of
improved models (Steingroever et al., 2013a,b).

The question remains: Is there an optimal model for the
IGT that effectively addresses the limitations of earlier RL
models? To answer this, it is necessary to conduct an in-
depth evaluation of the flexibility of newer models, such
as ORL and VSE, and compare them with older RL. mod-
els using the PSP method. By doing so, this study aims
to determine whether these novel models offer meaningful
improvements in capturing diverse choice patterns and gener-
alizing across different datasets, providing clearer guidance
for future research.

Computational Models of the lowa Gambling
Task

As previously discussed, several traditional RL models have
been developed to explain decision-making behavior in the
Iowa gambling task. These models, such as EV, PVL, and
their hybrid extensions, form the foundational basis of com-
putational modeling in this domain. We have already covered
the conceptual aspects of these models, including their the-
oretical mechanisms and relevance to decision-making in
the IGT. However, to streamline the main manuscript and
maintain a clear focus on our primary contributions, we have
moved any remaining technical details-such as model equa-
tions, parameter definitions, and extended discussions on
model behavior-to Appendix A for interested readers.

In this section, we focus on two recent and advanced mod-
els: the ORL and VSE models, which offer novel perspectives
on decision-making in the IGT.

Outcome-Representation Learning Model

Recentinnovations have introduced computational reinforce-
ment learning models for the lowa gambling task that explore
deeper cognitive mechanisms. The Outcome-Representation
Learning model, proposed by Haines et al. (2018), stands out
with its four basic design mechanisms:

e Separate Evaluation of Gains vs. Losses: The first
mechanism of ORL captures a separate evaluation of
gains versus losses, with potential implications in real-
world scenarios (Haines et al., 2018).

e Frequency of Wins: This mechanism explicitly consid-
ers the frequency of wins, addressing the preference for
Decks with higher win frequencies despite the long-term
expected value, as noted by Lin et al. (2007), a nuance
not captured by the delta learning rules for expected value
and loss aversion in the PVL model.

e Choice Perseverance: The third mechanism that ORL
aims to capture is the preserved tendency of subjects
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to either stick with one Deck or switch between Decks
(exploration and exploitation dilemma), which seems to
be stable over time among healthy participants (Stein-
groever et al., 2013).

e Reversal of Learning: The fourth mechanism is the
reversal of learning, where the preference for a Deck
reverses after a significant loss—precisely, the reversal
of preference for Deck B—which many participants ini-
tially prefer due to its high win and low loss frequencies
(Steingroever et al., 2014).

Table 2 summarizes the mathematical underpinnings of these
mechanisms. In this model, the expected value for a selected
Deck denoted as j is directly updated based on the objective
outcome:

e Gains: If the outcome results in a gain, then the differ-
ence between the outcome on trial ¢ and the expected
value of Deck j on trial ¢ is multiplied by a learning rate
0 < A,ew < 1, which signifies sensitivity to the received
reward.

e Losses: If the outcome is a loss, the parameter 0 <
Apun < 1 controls the sensitivity to that loss.

A more significant difference between these two parameters
suggests heightened sensitivity to either gain or loss.

The second mechanism here involves the win frequency
of both chosen and unchosen Decks, which are updated
using the same delta rule but with minor differences and
are controlled by the same parameters 0 < A,., < 1 and
0 < Apun < 1(see Table 2) the sgn(x(t)) yields —1,1,and 0
for negative, positive, and zero net outcomes, respectively. It

should be noted that a negative value of sgn(x(¢)) decreases
the win frequency of unchosen Decks, divided by the number
of unchosen Decks (three in the IGT context), and is added
to the last expected frequency of that Deck.

The third mechanism in this model measures choice per-
severance, regardless of the outcome. It is governed by a
single parameter: the decay parameter k. The decay parame-
ter measures how quickly participants forget past decisions.
According to Table 2, the choice perseverance for the chosen
deck—the same choice as the last trial—equals one divided
by the decay parameter + 1. For other decks, it is updated by
dividing the last value by the decay parameter + 1, indicating
a decay over time. Note that K = 0 implies that partici-
pants retain choices in memory for as long as possible, while
K = 242 suggests they quickly forget the last choice.

Finally, all previous equations are linearly integrated to
yield a value signal for each Deck (see the last row in
Table 2). The unbounded parameters Sr and Bp are two
weights that reflect how much the intended value of each
Deck is affected by outcome frequency and perseverance.
Specifically, Br < O indicates a preference for Decks with
low win frequency and vice versa, while Bp < Orepresents a
tendency to switch and Sp > 0 indicates a tendency to stick
with the previous choice. The only remaining aspect in this
model is the selection rule, which is derived using the choice
rule of Table 7, where 6 = 1.

Value plus Sequential Exploration Model

The most recent model proposed for the Iowa gambling
task is the Value plus Sequential Exploration, introduced by
Romain Ligneul in 2019 (Ligneul, 2019). This model is dis-
tinctive because it uses five parameters different from those

Table2 Equations utilized in the ORL model (Haines et al., 2018) and the corresponding parameters

Functions Equations Parameters Range
Arew : (0 1)
, _JEVi(t) + Arew.(x(t) — EV; (1)), ifx(#) >0 Reward/positive learning rate ’
Expected value EVIU+D =01 BV, (6) + Apunx(0) = EV; (1)), otherwise Apun : ©, 1)
Punishment /negative learning rate ’
Winfrequency EF(t+1) = EFj(t) 4+ Ayew.(sgn(x(t)) — EF;(t)), ifx(t) >0
(ChosenDeck) J T\ EFj(t) 4+ Apun-(sgn(x(t)) — EF;(t)), otherwise
Winfrequency EFj (1) + Apey.(Z2220O) _EF; (1)), if x(1) >0
EFpa+1) = ; —sgnx(t) .
(UnchosenDeck) EFj(t) + A,,lm.(‘gf — EFj(t)), otherwise
1 . .
. o DO =] / K’ €10,5]
Choice perseverance  PS;(r + 1) = { bt& ,where K =3K —1 K: Decay parameter ’
P i ) F;ifl((t), otherwise Y P K €[0,242]
BF : _
Single value signal Vik+1)=EV;t+ 1)+ EF;j(t+1).8r + PS;j(t +1).8p g;lt.come frequency weight (=00, 00)

Perseverance weight

Note that X (r) = W(¢) — L(t), is the net outcome, where W (¢) represents the money won and L(¢) represents the money lost at time 7. Also, ¢ is
the number of choices other than the chosen deck. In the original version of the IGT, where there are four decks to choose from, c is fixed at 3
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used in the ORL model. The VSE model assumes individuals
utilize a nonlinear combination of reward and loss magni-
tudes during each trial. This assumption is similar to the
utility function previously introduced in the prospect valence
learning 2 (PVL2) model (Dai et al., 2015), but it does not
include loss aversion. The parameter 6 in the VSE model
represents sensitivity and functions similarly to the shape
parameter (parameter A in Table 7) in the PVL, influenc-
ing choice sensitivity comparably. This model is built upon
two key strategies to address the exploration-exploitation
dilemma: directed and random exploration (Wilson et al.,
2014).

Directed exploration refers to a tendency where all Decks
are sampled sequentially over four consecutive trials, a
choice pattern that seems to occur more frequently than by
mere chance (Ligneul, 2019).

Updating Weights

The model suggests that when the subject combines rewards
and losses, they update the exploration and exploitation
weights separately for chosen and unchosen Decks. For the
chosen Deck, the exploitation weight for the subsequent
trial is calculated as the sum of the net outcome (reward
minus loss, factoring in sensitivity) and the decayed value of
the previous exploitation value of that Deck. However, the
exploitation weights of the unchosen Decks do not include
the net outcome term. When a Deck’s choice outcome is pos-
itive, its exploitation weight increases in proportion to the
magnitude of the net outcome while it decays for the other
Decks. The exploration weight for the chosen Deck is set to
zero, but a delta rule is applied for the unchosen Decks.

Exploration Bonus

The exploration bonus (¢) reflects the subject’s preference
for exploration. A positive ¢ indicates a preference for explo-
ration, while a negative ¢ suggests a tendency to stick with
the previous Deck (i.e., exploit). This parameter serves as a
measure of sequential exploration.

Choice Probabilities and Consistency Parameter

A simple softmax equation is employed in all prior models
to compute the choice probabilities for all Decks. The con-
sistency parameter ¢ (calculated using ¢ = 3% — 1, where
0 < B < 5) determines the extent to which choices are
information-driven (for ¢ > 0) or random (for ¢ = 0). It is
worth noting that 8 = 0 results in ¢ = 0, leading to ran-
dom exploration, while 8 >> 0, 6 > 0, and ¢ = 0 yield
purely value-based exploitation, and 8 >> 0, 6 = 0, and
¢ > 0 lead to pure directed exploration. A combination of

these settings is also possible (Ligneul, 2019). All equations
of the VSE model are summarized in Table 3.

Methods
Simulation Perspective: PSP

The parameter space partitioning method is a global analy-
sis technique that offers a systematic way to evaluate model
flexibility and generalizability (Steegen et al., 2017; Pitt et
al., 2008). It was first introduced by Pitt et al. (2006, 2008)
to understand the range of behaviors a model can generate,
particularly in cognitive modeling. Unlike traditional local
analysis methods, such as the post hoc fit criterion or gener-
alization tests that assess a model’s performance at specific
parameter values, PSP analyzes the entire parameter space,
allowing researchers to understand the full range of pre-
dictions a model can make. This broader approach enables
researchers to assess not only how well a model fits observed
data but also its capacity to generate other plausible patterns
that may emerge in different contexts.

A key goal of model evaluation is to determine whether
a model can predict different types of observed behaviors.
PSP achieves this by dividing the model’s parameter space
into distinct regions, where each region corresponds to a
specific data pattern. This ability to capture diverse patterns
across various datasets is particularly relevant when consid-
ering cognitive models for decision-making like the Iowa
gambling task, where choice patterns can vary significantly
between healthy and clinical populations.

By evaluating the parameter space as a whole, PSP pro-
vides insights into the flexibility and generalizability of
models. Flexibility refers to the model’s ability to adapt to
different types of data and capture a wide range of choice
patterns. A model with low flexibility may only explain
a limited set of behaviors (choice patterns), which could
restrict its applicability across diverse datasets, as real indi-
viduals tend to follow strategies leading to at least three
distinct choice patterns. Conversely, a highly flexible model
is capable of generating a broad range of choice patterns,
including those not typically observed in real individuals.
From a PSP perspective, an ideal model strikes a fair balance
between flexibility and generalizability. A model that limits
its flexibility to experimentally observed patterns and fairly
distributes its parameter space to the patterns under study
is considered a better option. Therefore, a model should be
generalizable to unseen data too (Pitt et al., 2008). When
it comes to model comparison, it is essential that a candi-
date model be adequately able to capture all experimentally
observed choice patterns.
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Table 3 Equations used in the VSE (Ligneul, 2019) model and its related architecture. Note that d denotes the deck

Functions Equations Parameters Range
Utility v(t) = Gain? (1) — Loss® (1) 6 : Sensitivity [0, 1]
L ) Exploit?(t).A + v(r) Chosen Deck
d _ p .
Exploitation Exploit*(t+1) = { Exploizd(t)‘A, Unchosen Decks A : Decay [0, 1]
o : Learning rate
. 0 , Chosen Deck . [0, 1]
. d _ . ,
Exploration Exploret(t + 1) = { Explore® (t) + a.(¢p — Explore? (t)), Unchosen Decks gohlj:ploratlon (—00, 00)
o tored s Eantoisd < ¢ : Consistency
Choice rule P(Choice = d) = £ 200 E - ppre ¢ =38 — 1 B : Inverse [0, 242]
Zi:] e(Explore! +Exploit').c [0, 5]
temperature

Method Implementation

Applying PSP first requires defining the patterns that the
model can predict. It is up to the researcher to define those
patterns. In this study, we applied two distinct approaches to
define and analyze choice patterns in the IGT: the broad def-
inition and the restricted definition. These definitions serve
different purposes and offer unique insights into the decision-
making strategies of participants.

Broad Definition: The broad definition encompasses all
experimentally observed choice patterns, including both
common and rare behaviors. This approach allows for the
capture of the full spectrum of decision-making strate-
gies, without any a priori assumptions about which patterns
are most significant. It is particularly useful when the
research aims to explore individual differences and identify
a wide range of behaviors, including those that may occur
less frequently. Under this definition, we considered five
possible choice patterns: Good-Over-Bad, Bad-Over-Good,
Infrequent-Over-Frequent, Frequent-Over-Infrequent, and
Remaining. The “Remaining” category includes patterns that
do not fit into the other categories and are not empirically
observed (Steingroever et al., 2013a).

Restricted Definition: The restricted definition, based
on the criteria proposed by Steingroever et al. (2013a,b),
focuses on the most common and pronounced choice pat-
terns, excluding those that may result from random or less
stable behavior. This approach applies stricter criteria to the
selection of choice patterns, thereby enhancing the statisti-
cal robustness of the analysis. For example, the GOB pattern
under the restricted definition requires that the total num-
ber of selections from the advantageous decks (C and D)
exceeds 65 (i.e., C + D > 65). By applying these crite-
ria, the restricted definition aims to provide a clearer and
more interpretable measure of decision-making tendencies.
The simulation step yields a detailed representation of the
models’ parameter space, as depicted in Fig. 2.

We utilized the broad definition to conduct a comprehen-
sive analysis of the models’ flexibility and ability to generate
diverse choice patterns. However, we also incorporated the
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restricted definition to ensure that our findings are robust and
align with the most established patterns in the literature. The
dual application of these definitions allows for a thorough
comparison of model performance across different analyti-
cal perspectives. By considering both definitions, we ensure
that our analysis captures a wide range of behaviors while
also maintaining a focus on the most statistically significant
patterns. This approach allows for a more balanced and com-
prehensive evaluation of the models under investigation.

In the next step, the whole parameter space of the model
is searched to find out what patterns the model can pro-
duce. Originally, a Markov chain Monte Carlo-based method
is used to sample points from parameter regions. In a
repeated manner, the sampled point and the yielded pattern
are recorded. Through this process, if new points do not yield
new patterns, then exploring the region stops. However, in
this study, we have performed a grid search as suggested by
Steingroever et al. (2013a,b). The approach we used is as
follows:

For this study, we applied PSP to assess the flexibility
of both the ORL and VSE models. Each of these models
uses five parameters, and we defined the valid ranges for
each parameter based on prior literature. In order to explore
the parameter space comprehensively, we conducted a grid
search over the entire parameter space. Specifically, we sam-
pled 60 values for each parameter at equal intervals, resulting
in a total of 60° parameter sets per model.

Each parameter set corresponds to a simulation round in
which a simulated participant completes 100 trials of the
IGT. The outcome of each simulation is the camulative num-
ber of Decks selected by the participant, and we analyzed
the resulting patterns according to both broad and restricted
definitions of choice patterns.

Evaluating Model Success

A model’s success under PSP is determined by its ability to
generate observed choice patterns across a significant portion
of its parameter space. This avoids the potential pitfall where
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a model may appear successful based on a narrow, atypical
set of parameters, yet fail to capture most real-world behav-
iors. A balanced parameter space—where various behav-
ioral patterns are represented equally—indicates high model
flexibility and generalizability. Conversely, an unbalanced
parameter space that favors certain patterns disproportion-
ately suggests bias and limited generalizability, particularly
when applied to diverse datasets.

Through this approach, PSP allows us to systematically
evaluate whether a model can capture observed behaviors
across a wide range of experimental conditions, providing a
more comprehensive assessment than traditional fitting cri-
teria alone.

Fitting Perspective
Experimental Datasets and Participants

The diverse data pool (N = 1428) that we have designed
here to fit RL models is divided into four broad categories:

e The first category is a data subset, initially created by Ste-
ingroever et al. (2015a) through a multi-lab collaboration.
This category, now a subset of our comprehensive dataset,
comprises data from 10 studies that evaluated 504 healthy
participants, none of whom had a psychiatric diagnosis
based on DSM criteria. Detailed information about this
category, including the number of participants (indicated
by N), the study population (here, the healthy group), and
demographic data, can be found in entries one to ten of
Table 8. For a more comprehensive understanding and
additional details of this category, Steingroever et al.’s
work Steingroever et al. (2015a) serves as a valuable ref-
erence.

e The second category, which we were able to freely find
and add to our data pool, pertains to a significant clinical
study by Ahn et al. (2014) This study investigated stimu-
lant and opiate addicts in protracted abstinence, focusing
on three groups: heroin users, amphetamine users, and
healthy participants. Detailed insights about this cate-
gory can be found in rows 11 to 13 of Table 8. For an
in-depth exploration of this study, including the experi-
mental design and other details, the work of Ahn et al.
(2014) is a recommended read.

e The third category encompasses two simulated datasets,
denoted as 14 and 15 in Table 8, which were developed by
the authors of this study. These datasets were generated
through the simulation of the IGT using both ORL and
VSE models. Each model was used to mimic the behavior
of actual participants in the IGT, involving the sequential
selection of cards from the four IGT Decks across 100 tri-
als. From a multitude of simulation attempts, forty were
selected to form the GOB and BOG simulated datasets.

Each dataset contains twenty samples, with half originat-
ing from ORL simulations and the other half from VSE
simulations. The GOB simulated dataset was specifically
generated to exclude any instances of the Bad-Over-Good
pattern. As such, it only includes the Good-Over-Bad
and Infrequent-Over-Frequent patterns, in line with the
restricted definition and 65 criteria. Similarly, the BOG
simulated dataset was carefully curated to eliminate any
instances of the Good-Over-Bad pattern. Therefore, it
only includes the Bad-Over-Good and Infrequent-Over-
Frequent patterns, adhering to the restricted definition
and the 65 criteria. The rationale behind such a meticu-
lous construction was to establish a robust and clear test
case for assessing the performance of the models in sce-
narios where the similarity between the patterns in the
datasets and the models’ parameter space is amplified.
The fourth category comprises five distinct clinical stud-
ies, all of which have been spearheaded by our research
team. The majority of these studies are yet to be pub-
lished, with some currently in the preparation phase,
while drafts of others have already been submitted to
various journals for review and potential publication:

The study led by Yousefi and Rad (2024), one of five
distinct clinical studies in the fourth category, sought to
understand the influence of discrete emotions on the cog-
nitive mechanisms that drive risky decision-making. This
question was of paramount importance as prior studies
have demonstrated that affect biases can influence indi-
viduals’ overall performance in risky decision-making
tasks, including the adoption of selection strategies
among other key decision-making factors. However,
there was a knowledge gap regarding how effect influ-
ences the specific cognitive mechanisms that underlie
decision-making and the identification of the underly-
ing neurocognitive processes (such as hypersensitivity to
reward and/or loss, inability to learn from past profits
and losses, impulsive response style) that account for the
observed performance. Therefore, in the study designed
by Yousefi and Rad (2024), 78 healthy individuals (39
women; mean age = 22.46, SD = 3.89) participated in the
experiment and were randomly assigned to one of three
groups (positive, negative, or neutral mood induction),
with each group consisting of 26 individuals. Initially,
a Self-Assessment Manikin (SAM) questionnaire was
used to assess the mood of the subjects. Subsequently,
based on the assigned group, each participant was shown
a positive, negative, or neutral mood induction video
clip. After viewing the video clip, the SAM question-
naire was administered again to the participants. Finally,
to scrutinize the impact of the three emotions—positive,
negative, and neutral—on individuals’ decision-making
performance, the Balloon Analog Risk Task (BART) and
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IGT were administered in a counterbalanced manner. In
alignment with the objectives of our research, we uti-
lized data from all three mood induction groups in the
IGT (refer to lines 16 to 18 of Table 8).

The study proposed by Nejati et al. (2024), given the
difficulties individuals with General Anxiety Disorder
(GAD) have with reward processing, aimed to investi-
gate the dynamics of the ventromedial prefrontal cortex
(vimPFC) and dorsolateral prefrontal cortex (dIPFC)
activities during decision-making in GAD patients and
healthy controls, and the respective alterations induced
by transcranial alternating current stimulation (tACS) in
the theta frequency range. The study was conducted in
a randomized, single-blinded, and complete crossover
design. Specifically, seventeen healthy adults and twenty
adults with GAD received tACS (1.5 mA, 6 Hz) in 5 sep-
arate sessions with the following electrode stimulation
protocols: two channels with synchronized stimulation
over F3 and FP2, the same electrode placement with
desynchronized stimulation, stimulation over F3, or Fp2,
and sham stimulation. The return electrode was placed
over the contralateral shoulder in all conditions. Dur-
ing stimulation, participants performed the IGT in each
session to assess decision-making and learning. In the
GAD group, all participants were diagnosed with GAD
by a clinical psychologist according to the Diagnostic and
Statistical Manual of Mental Disorders 5th ed. (Ameri-
can Psychiatric Association, 2013). All participants had
normal or corrected to normal vision, and none of the par-
ticipants had a presence or history of psychiatric and/or
neurologic comorbidities based on a clinical interview
conducted by a clinical psychologist (refer to lines nine-
teen to twenty-eight of Table 8 for details, and for more
in-depth details of this study about the design of the
experiment, stimulation protocol, and data analysis meth-
ods, refer to Nejati et al. (2024)).

Recognizing the importance of examining the learning
and decision-making patterns of individuals with depres-
sion and anxiety, Nejati and Alavi (2024) conducted a
study using the IGT. In their study, they considered two
clinical groups of depression and anxiety along with
a group of healthy individuals. In lines 29 and 30 of
Table 8, we have grouped the combined data of anx-
ious and depressed individuals in one line and the data of
healthy individuals in another line.

In another clinical study, Nejati et al. (2022) assessed
the role of vmPFC and dIPFC in the outcome and
process of decision-making in individuals with and with-
out depression through IGT performance during brain
stimulation. Specifically, transcranial direct current stim-
ulation (tDCS) was conducted to alter the excitability of
the respective target regions. Twenty adults with MDD
(mean age 20.35+ 6.83, all female) and 18 healthy adults
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(mean age 28.28+10, 8 female) received tDCS in three
separate sessions at 72-h intervals during task perfor-
mance: anodal tDCS over the left dIPFC coupled with
cathodal tDCS over the right vmPFC, the reversed order
of polarities, and sham stimulation. It is noteworthy that
in this study, participants with MDD were diagnosed
by a psychiatrist based on the Diagnostic and Statisti-
cal Manual of Mental Disorders 5th ed., as is customary.
Also, all participants had severe depression based on the
Beck Depression Inventory (BDI), and none of the par-
ticipants had a history of head trauma, seizure, or other
neurological and psychiatric disorders. Another impor-
tant point included in this study is that the participants
were unaware of the stimulation protocols and the aims
of the study. Nejati et al. (2022) provide more detail
about the subjects of this study, such as that all subjects
were right-handed and had normal or corrected to normal
vision. Moreover, six participants were under medica-
tion during the study (Sertraline in 2, Fluoxetine in 2,
Citalopram in 1, and Bupropion in 1 participant). Fur-
thermore, the participants did not take their medication
at least 24+4h before the stimulation session. Numbers
thirty-one to thirty-six of Table 8 show the demographic
parameters of the participants.

The final clinical study considered for the data pool of this
article is the work of Nejati et al. (2024), which investi-
gated experience-based decision-making mechanisms in
individuals with and without depression, this time during
tACS. They hypothesized that the imbalanced activity of
the dIPFC and the vmPFC in depression patients results
in abnormal emotional information processing and that
modulating it via tACS reduces biased emotional pro-
cessing. Seventeen healthy adults and seventeen adults
with depression received tACS in 5 separate sessions
(see numbers 37 to 46 of Table 8 for details). In two
stimulation conditions, two channels were used for stim-
ulation with a relative 0° “synchronized” condition or
180 “desynchronized” condition phase difference.

The stimulation conditions were: (a) two channels with
synchronized/in-phase stimulation: a-1: F3-right shoul-
der and a-2: FP2-left shoulder, (b) two desynchronized/
anti-phase stimulation: b-1: F3-right shoulder and b-
2: FP2-left shoulder, (c) one-channel stimulation with
electrode placement over the F3 and right shoulder, (d)
one-channel stimulation with electrode placement over
the FP2 and left shoulder, and (e) sham condition in which
arandom combination of the above-mentioned electrode
positions was applied in different participants, and the
electrical current was ramped up for 155 to generate the
same sensation as the active conditions, and then turned
off without participants’ awareness. Five minutes after
the beginning of stimulation, participants performed the
IGT, which lasted for about 10 min.
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Based on these details mentioned above, our data pool in
Table 8 lists the datasets of many laboratories used in this
research.

Fitting Procedures

In our study, we adopted Variational Inference (VI) (Friston
et al., 2007; Daunizeau et al., 2009, 2014) using Cmd-
Stan (version 2.30.0) as a strategy for data fitting. CmdStan
implements Automatic Differentiation Variational Inference
(ADVI) proposed by Kucukelbir et al. (2017). Unlike the
Markov chain Monte Carlo (MCMC) method, which approx-
imates the target distribution through direct sampling, VI-
and therefore AVDI - simplifies the problem by utilizing
Kullback-Leibler (KL) divergence (Gunapati et al., 2022).
Specifically, VI minimizes the KL divergence from the vari-
ational distribution (commonly and, in our study, normal
distribution) to the target posterior distribution. However,
rather than minimizing the KL divergence, the evidence
lower bound (ELBO) is maximized to estimate the varia-
tional posterior (Gunapati et al., 2022). AVDI also integrates
the Monte Carlo method in the approximation of the ELBO.
Interested readers can find the technical details of the method
in the appendix.

We used the Stan programming language to develop mod-
els for ORL and VSE and implemented the VI method to
approximate the posterior distribution. It is important to high-
light that while Haines et al. (2018) utilized the Hamiltonian
Monte Carlo No-U-Turn sampler (HMC-NUTYS), a variant of
MCMC, for their fitting process, we found that the chains of
the HMC-NUTS sampler rarely converged for VSE model.
This could be due to the local minimum problems often
encountered in Bayesian inference, particularly when dealing
with large datasets and equation solving Blei et al. (2017). We
noticed that VSE model frequently faces this issue, leading to
a failure in the convergence of chains in Bayesian inference
algorithms such as HMC-NUTS.

This might explain why Ligneul (2019) chose VI using the
Variational Bayesian Analysis (VBA) Matlab toolbox (Dau-
nizeau et al., 2014) for their fitting procedure. We followed a
similar strategy to address this challenge, writing both ORL
and VSE models in Stan language and applying CmdStan
Variational approximation to both. It is important to note
that we also tested the HMC-NUTS approach for the ORL
model and confirmed that the VI approach yielded superior
results, thus justifying our choice of VI for both models.

We assumed that individual-level parameters were drawn
from group-level distributions across all datasets in our pool.
Furthermore, we assumed these group-level distributions to
be normally distributed. For the ORL model, we adhered
to the same means and standard deviations as in the origi-
nal paper (Haines et al., 2018). However, for VSE, we set
the standard deviations to 3.0, which led to improved scores

and reduced divergence. Therefore, according to Haines et
al. (2018), the approach for bounded parameters of ORL
remains the same; for instance, for A,.y, the distribution
is formed according to the following relations:

KA, ~ Normal(0, 1),
oa... ~ Normal(0, .2),

rew

A, ~ Normal (0, 1),

’
rew)’

Arew = Probit(ua,,, +04,,,A

’

K = Probit(uyg + ox A

rew)'

In line with the methodology proposed by Haines et al.
(2018), bounded parameters are sampled in an unconstrained
space and subsequently transformed to a constrained space
via a probit transformation, which is the inverse cumulative
distribution function. In this context, u represents the mean,
and o denotes the variance of the group-level distribution.
Furthermore, A; «w 18 @ vector that encompasses individual-
level parameters in the unconstrained space, and following
the probit transformation, A, comprises individual-level
parameters in the constrained space. Haines et al. employed
a half-Cauchy (0,1) distribution for unbounded parameters
for hyperstandard deviation. We adopted a similar strategy
for the bounded parameters of VSE, albeit with a minor mod-
ification; we set 4 = 0 and o = 3.0 and opted for a normal
distribution instead of a half-Cauchy for unbounded parame-
ters. Lastly, we selected the mean field algorithm and set the
maximum number of iterations for ADVI to 10000 for 1000
out of the posterior samples.

The log-likelihood of each subject’s actual choice, con-
ditioned on the parameter estimations and choices from
previous trials, enables the computation of the log pointwise
posterior predictive density (LPD) (Gelman et al., 2014) for
a given dataset. From the log-likelihood and LPD, one can
derive the AIC, BIC, and WAIC (Gelman et al., 2014), all of
which are extensions of AIC. Further details of these mea-
sures can be found in the appendix for those interested.

Figure 4 illustrates the graphical Bayesian model for the
hierarchical analysis of VSE and ORL, depicted in subplots
a and b, respectively (see the Appendix).

Results

Simulation Perspective and Parameter Spaces
of the Models

In evaluating the performance of the cognitive models, it is
crucial to consider expected outcomes based on prior empir-
ical data and existing literature. Specifically, models that
can explain a diverse range of behaviors—such as favoring
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advantageous decks over disadvantageous ones, as well as
varying preferences for loss frequency—are considered more
robust and generalizable.

Empirical findings suggest that a desirable distribution of
choice patterns should reflect the natural variability observed
in human decision-making. For instance, healthy individuals
often exhibit a “Good-Over-Bad” pattern, where advanta-
geous decks (C and D) are chosen more frequently than
disadvantageous decks (A and B). However, certain clinical
populations may demonstrate different strategies, such as a
“Bad-Over-Good” pattern, where disadvantageous decks are
favored (Steingroever et al., 2013a). A model that can accu-
rately reflect these patterns across its parameter space is better
suited for generalizing across different datasets.

By establishing these benchmarks, we can assess whether
the models under consideration—specifically the ORL and
VSE models—achieve the expected distribution of choice
patterns. As a general rule of thumb, if a model fails to gen-
erate a specific choice pattern or only does so with limited
parameter sets, it is unlikely to capture that choice pattern
during the fitting procedure. Conversely, datasets from real
participants, whether from clinical or healthy control groups,
inherently incorporate certain choice patterns. Therefore, the
model fitting success is evaluated based on the correspon-
dence between the model’s potential and the choice patterns
present in the dataset. In our analysis, we used these bench-
marks to evaluate the proportion of the parameter space that
each model dedicates to generating the key choice patterns
observed in empirical studies.

Considering that by evaluating the parameter space of the
ORL and VSE models, it becomes possible to judge and
predict the possibilities of related use cases, we assessed
the parameter space of ORL and VSE through simulation
for 777,600,000 parameter sets (derived from 60 samples
across five different parameters, yielding 60° parameter sets).
Indeed, we ran the models per parameter set through simula-
tion, with the outcome of 100 trials forming a complete IGT

a 46.94

3.06

ss P

44.49

Fig. 1 Parameter space proportions for ORL and VSE models. a The
pair of plots demonstrates parameter space proportions of ORL accord-
ing to the broad definition on the left and the restricted definition on
the right. ORL exhibits an unbalanced parameter space, heavily skewed
toward Good-over-Bad and Frequent-Over-Infrequent choice patterns.
It can even be said that the form on the right, the limited definition, high-
lights this fact even more. b The plot on the left depicts the parameter
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run for a participant. Just as a real subject behavior in the IGT
yields some choice patterns, a simulated participant also dis-
plays at least one detectable choice pattern. After simulating
all parameter sets, we obtained the proportions of choice pat-
terns generated by the models Fig. 1 illustrates the parameter
space of both ORL and VSE models, using both restricted
and broad definitions (refer to the method section for these
definitions).

Paying attention to this figure, it is evident that the param-
eter space of the ORL model is significantly unbalanced, as
a substantial 47% of the generated patterns fall under the
Good-Over-Bad category according to a broad definition. In
stark contrast, a mere 3% are classified as Bad-Over-Good,
and only 5% as Infrequent-Over-Frequent, while 45% are
categorized as Frequent-Over-Infrequent. This suggests that
the ORL model predominantly generates Good-Over-Bad
and Frequent-Over-Infrequent choice patterns across most
of its parameter sets. However, it only generates a small frac-
tion of the other choice patterns, namely Bad-Over-Good
and Infrequent-Over-Frequent, which are deemed experi-
mentally necessary based on observations from clinical and
control groups.

The VSE model exhibits different behavior, generating
relatively equal proportions of each choice pattern, thereby
demonstrating a more balanced parameter space. This is evi-
dent from the broad and restricted definition plots of this
model in Fig. 1. Specifically, from a broad definition perspec-
tive, it is observed that approximately 25% of the generated
patterns are Good-Over-Bad, nearly 25% are Bad-Over-
Good, 25% are Infrequent-Over-Frequent, and the remaining
25% are Frequent-Over-Infrequent.

The unbalanced parameter space of the ORL model indi-
cates a high propensity for capturing various Good-Over-Bad
patterns, i.e., patterns of Deck selections where the num-
ber of cards selected from good Decks (C + D) surpasses
that from bad Decks (A + B). Conversely, the Bad-Over-
Good choice pattern occupies a considerably small portion

30.59 === Good-Over-Bad
Bad-Over-Good
Infrequent-Over-Frequent
Frequent-Over-Infrequent

24.22

47.15

space proportions of the VSE according to the broad definition, whereas
the plot on the right concerns the restricted definition. VSE demon-
strates a balanced parameter space, regardless of the restricted/broad
definition used. While nearly a quarter of its parameter space generates
each choice pattern according to the broad definition, Frequent-Over-
Infrequent and Good-Over-Bad choice patterns dominate ORL’s major
parameter space
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of ORL’s parameter space, suggesting a low likelihood of
capturing this pattern when fitting a dataset. This could be
a significant omission, particularly if the dataset pertains
to clinical groups such as those with addictions, where the
Bad-Over-Good pattern is prevalent (Fridberg et al., 2010;
Ahn et al., 2014; Verdejo-Garcia et al., 2006). Similarly,
the Infrequent-Over-Frequent choice pattern is generated by
only a small portion of the ORL’s parameter space.
Returning to the latter portion of our findings, Fig.2 elu-
cidates the impact of each choice pattern on the pattern
proportions of datasets within our data pool, as well as within
the parameter spaces of both ORL and VSE. The relationship

between a distinct choice pattern’s proportion within a dataset
and its corresponding proportion within the parameter space
of either ORL or VSE is a point of significant interest.
As depicted in Fig.2, a significant correspondence exists
between the choice patterns present in each dataset and the
model’s flexibility to generate the relevant choice patterns. In
essence, the proportions of choice patterns, defined by both
restricted and broad criteria, provide insightful details that
further substantiate our results. For instance, nearly 10% of
the choice patterns in the Depression_sham_tDCS dataset
belong to the Good-Over-Bad category, while over 41%
are classified as Bad-Over-Good. When comparing these
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Fig.2 Thedistribution of choice patterns within our data pool, as per the
broad definition. The broad definition encompasses several categories:
GOB, BOG, IOF, FOI, and a category termed “Remaining” for all other
potential choice patterns. Given the negligible proportion of “Remain-
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ing” choice patterns in our data pool, this category was excluded from
consideration. In the upper section of the plot, the first two bars on the
left represent the parameters of ORL and VSE, while the subsequent
bars display the proportions of each dataset within our data pool
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patterns with those generated by the ORL and VSE models,
it is evident that ORL generates very few Bad-Over-Good
choices, with only 3% of its parameter space yielding such
patterns. In contrast, more than 24% of VSE’s parameter
space is dedicated to the Bad-Over-Good choice pattern,
indicating that VSE is more likely to fit this dataset. This con-
clusion is further supported by the final results, as the AIC,
BIC, and WAIC values are lower for VSE than for ORL for
this dataset.

Another critical aspect to contemplate is the comparison
of the proportions of chosen patterns in these two novel
models with prior RL models such as EV, PVL, EV-PU,
and PVL-Delta, as per the restricted and broad definitions.
Tables 4 and 5 juxtapose the parameter space of the ORL and
VSE models with those of previously suggested RL models
for IGT, according to the restricted and broad definitions,
respectively. The restricted definition confines itself to the
three most frequently observed choice patterns, particularly
among healthy control groups.

As shown, the VSE model exhibits the most balanced dis-
tribution of choice patterns across its parameter space among
all RL models. This balance suggests that the VSE model is
less biased towards generating specific patterns, making it
more versatile in capturing the range of behaviors observed
in various experimental conditions.

We interpret the VSE model’s ability to generate a wider
variety of choice patterns—without favoring any particular
strategy excessively—as a key advantage. This reduced bias
implies that the VSE model is likely to generalize better
across different datasets, including those with diverse popu-
lation groups and varying experimental settings. In contrast,
the ORL model, while effective in certain scenarios, shows
a stronger bias towards particular patterns, which may limit
its applicability in more diverse contexts.

This explicit interpretation of the VSE model’s reduced
bias and its implications for generalizability underscores the
importance of considering model flexibility when evaluat-
ing cognitive models. Therefore, the VSE model’s balanced
approach to generating choice patterns makes it a more robust
tool for understanding decision-making processes in the IGT.
However, nearly 30% of its parameter space is allocated to

the Good-Over-Bad pattern, while almost 22% is dedicated
to the Bad-Over-Good choice pattern. This 22% is signif-
icant compared to other models, making the VSE model a
suitable choice for clinical groups where learning deficits
are common. Conversely, nearly 47% of the parameter space
is attributed to the Infrequent-Over-Frequent pattern, which
is observed regardless of whether the groups are healthy or
clinical. For instance, in our data pool, the proportion of the
Infrequent-Over-Frequent pattern, as illustrated in Fig. 2, was
seldom less than 20%. We believe it is crucial for a model
to have a reasonable likelihood of capturing this pattern; in
other words, a substantial portion of a model’s parameter
space should generate the Infrequent-Over-Frequent pattern.

To satisfy our curiosity and clarify even more, we can
examine the patterns that occur in our data pool, which
includes healthy groups and various clinical groups (to see
this data pool, you can refer to the “Experimental Datasets
and Participants” section and Table 8). Figure 2 elaborates on
these results with a broad definition of choice patterns. The
first two bars represent the ORL and VSE models, while the
subsequent bars correspond to the parameter space of dis-
tinct datasets from our data pool. For instance, the third and
fourth bars correspond to the Premkumar (Premkumar et al.,
2008) and GOB_Simulated datasets, respectively. These are
two datasets where superior performance is expected from
the ORL model, as suggested by the AIC, BIC, and WAIC
scores, which we will explore in greater depth in the subse-
quent tables.

The Premkumar dataset is characterized by a higher
prevalence of Good-Over-Bad patterns than Bad-Over-Good,
and the GOB_simulated dataset completely lacks Bad-
Over-Good patterns. These attributes make the ORL model
particularly well-suited for these two datasets. The remaining
bars depict the choice pattern proportions of datasets where
either the VSE or ORL model is predicted to yield more accu-
rate fitting results. A concise summary of the fitting results
for each dataset can be found in Table 6, with a comprehen-
sive explanation for each dataset available in the appendix.

In addition to the broad and restricted definitions, Romain
Ligneul (Ligneul, 2019) proposed the concept of directed
exploration choice strategy, also known as the Sequential

Table4 A comparative analysis

Choice patterns
of the parameter spaces for P

Proportions of all choice patterns

ORL. VSE and all bt RL EV PVL  EV.PU PVLDela ORL  VSE
1‘2%‘1“"5 previously proposed for G4 5 Bad (CD}>{AB} 058 0427  0.661 059 0866 0305
Bad > Good (AB}>{CD} 0153 0005  0.005 0006 0051 0222
Infrequent > Frequent ~ {B,D} > {A,C} 0.075  0.363 0.181 0.118  0.082 0471

The restricted definition only includes three choice patterns experimentally observed in healthy participants.
Notably, among these models, VSE exhibits the most balanced parameter space. The proportions of choice
patterns for EV, PVL, EV-PU, and PVL-Delta, as derived here, align perfectly with the patterns reported in
the study by Steingroever et al. (2013a,b)
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ngli;eggfr22§1§2 E itttiigns Choice patterns Proportions of all choice patterns

[g)arameter space by each model, EV PVL EV-PU PVL-Delta ORL VSE

as per the broad definition Good > Bad (C.D}>{AB] 0585 0472 0.6l 0.596  0.469  0.249
Bad > Good {AB} > {C,D} 0.153 0.005 0.005 0.006 0.030 0.247
Infrequent > Frequent {B,D} > {A,C} 0.075 0.363 0.181 0.118 0.055 0.257
Frequent > Infrequent {A,C} > {B,D} 0.099 0.003 0.003 0.005 0.444 0.242
Remaining 0.089 0.202 0.151 0.274 0.000 0.003

The proportions of choice patterns for EV, PVL, EV-PU, and PVL-Delta, as derived in this study, are entirely
consistent with the patterns outlined in the research by Steingroever et al. (2013a, b). Importantly, VSE exhibits
the most balanced parameter space among these models

Exploration SeqE Index. This strategy reflects a participant’s
propensity to select three or four different Decks in three or
four consecutive trials (Ligneul, 2019). The VSE model is
specifically designed to encapsulate this strategy and relevant
choice pattern, implying that the presence of directed explo-
ration in datasets could influence model fitting accuracy. It
is worth mentioning that the ORL model is also designed
to capture various strategies, as previously explained. The
fundamental characteristics of these models in accounting
for choice strategies—independently or alongside choice
patterns—represent a separate area of study beyond our cur-
rent focus. To provide a clearer justification for the VSE
results, particularly for Group B in Table 6, we have incor-
porated the directed exploration strategy.

Table 6, specifically the last three columns under the SeqE
index label, represents the average count of detected sequen-
tial exploration choice patterns across all subjects for each
dataset. The terms DE3 and DE4 represent the mean values of
three and four different Deck selections chosen during three
and four consecutive trials, respectively. These values are
computed using a sliding window method. For instance, in the
case of DE3, a sliding window of size three, encompassing
three successive choices, is considered and moved one choice
ahead. Consequently, every set of three consecutive choices is
scrutinized for sequential exploration. DE4 employs a similar
approach but with a window size of four. DE4F, on the other
hand, signifies directed exploration involving four fixed-size
consecutive choices.

In contrast, DE4F signifies directed exploration involv-
ing four fixed-size consecutive choices. Unlike the previous
measures, DE4F does not use a sliding window; instead, it
partitions choices into chunks of size four. For a subject with
100 trials, this results in 25 non-overlapping chunks. The DE
choice pattern is then examined without overlap, highlighting
a subject’s strong inclination toward sequential exploration.
These characteristics of the dataset increase the likelihood of
the VSE model achieving higher fitting accuracy compared
to the ORL model.

Fitting Perspective

In addition to the PSP as the most crucial model selection
criterion, we utilized three additional metrics—AIC, BIC,
and WAIC—to assess model performance in terms of fitting.
These metrics are the primary measures many researchers
depend on to compare the performance of different models
(Ahn et al., 2008; Ligneul, 2019). These methods use the
accuracy of models’ predictions for comparison to select the
“most accurate model.” This is attainable through log predic-
tive density or log-likelihood, as the highest log-likelihood
has the highest posterior probability. Furthermore, these mea-
sures include the number of models’ parameters to compute
the complexity score. A model that scores lower on these
measures is deemed superior, as it indicates higher fitting
accuracy while maintaining a lower level of complexity. To
ensure the robustness and comprehensiveness of our results,
we employed all the datasets in our data pool to fit the ORL
and VSE models. This approach allows us to achieve a reli-
able and comprehensive result.

Figure 3 provides a comprehensive summary of the AIC,
BIC, and WAIC metrics comparing the fit of the ORL and
VSE models across our data pool. The results are grouped
into three categories. In Fig. 3a, datasets are shown where
ORL performed better, as indicated by lower AIC, BIC, and
WAIC scores compared to VSE. Each dataset includes three
bar plots, representing the differences between ORL and VSE
for each metric. A positive value indicates that ORL had a
higher score, while a negative value indicates a better fit for
ORL. For example, in the GOB_simulated dataset, the large
WAIC difference of —2547 strongly favors ORL, whereas
in the Anxiety_Sham_tACS dataset, the WAIC difference is
—103, indicating a closer fit but still sufficient for ORL to be
considered the better model for this group.

On the other hand, Fig. 3b displays the datasets where the
results were inconclusive. Here, the differences in AIC, BIC,
and WAIC scores, while sometimes negative or positive, fall
within the standard error range of the WAIC estimates for
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Table 6 A comprehensive summary of the fitting results derived from the ORL and VSE models

ORL VSE SeqE index

Dataset Group AIC BIC WAIC SE AIC BIC WAIC SE DE3 DE4 DE4F
Premkumar A 5150 5163 5320 79 6872 6885 6862 13 20.8 6.4 1.56
GOB_Simulated A 2834 2847 2942 68 5498 5511 5489 12 172 4.1 1.1
Ahn_HC A 11,494 11,507 11,873 75 11,818 11,831 11,976 o6l 358 135 35
Anxiety_Sham_tACS A 4230 4243 4371 62 4550 4563 4628 59 303 109 27
HealthyB_Sham_tDCS A 3900 3913 3998 59 4950 4963 4940 11 237 8.8 2.8
Maia and McClelland B 7462 7475 7698 101 7382 7395 7638 100 169 6.3 2.0
Fridberg B 3280 3292 3333 49 3258 3270 3312 50 164 3.6 1.13
Yousefi_Neutral B 5958 5971 6140 66 5944 5957 6105 60 405 167 5.0
Anxiety_Inphase_tACS B 4596 4609 4725 58 4548 4561 4667 55 37.1 137 32
Anxiety_Antiphase_tACS B 4588 4601 4693 57 4520 4533 4658 64 314 131 34
HealthyA_Antiphase_tACS B 3738 3751 3825 56 3666 3679 3771 60 345 162 4.1
HealthyA_FP2_tACS B 3706 3719 3800 58 3654 3667 3744 58 302 95 2.4
HealthyA_Sham_tACS B 3452 3465 3542 63 3422 3435 3497 60 341 132 38
Depression_FP2_tACS B 4100 4113 4187 46 4062 4075 4172 48 345 123 32
Depression_Sham_tACS B 3928 3941 4049 52 3912 3925 3997 48 356 11 2.8
HealthyC_Inphase_tACS B 3700 3711 3772 58 3654 3667 3731 52 34.1 144 38
HealthyC_ Antiphase_tACS B 3732 3745 3828 60 3716 3729 3793 54 345 162 4.1
HealthyC_FP2_tACS B 3712 3725 3804 55 3692 3705 3769 58 302 95 2.4
HealthyC_Sham_tACS B 3452 3465 3538 63 3430 3443 3492 56 34.1 132 38
HealthyA_F3_tACS C 3690 3703 3822 54 3746 3759 3840 58 317 135 3.6
HealthyC_F3_tACS C 3706 3719 3823 61 3740 3753 3820 53 317 135 36
Depression_Inphase_tACS C 4008 4021 4086 47 3938 3951 4045 51 37.8 131 3.0
Wetzels B 12,018 12,033 12,325 120 12,120 12,135 12,342 118 31.0 11.5 3.0
BOG_Simulated C 3064 3077 3146 67 2996 3009 3064 65 162 3.6 0.95
Ahn_Amph C 8596 8609 8841 67 8518 8531 8739 69 394 169 46
Ahn_Hero C 10,078 10,091 10,439 79 9966 9979 10,192 80 355 166 3.8
Horstman C 33,120 33,133 34,095 190 32,566 32,579 33,638 198 233 8.6 2.3
Wood C 33,842 33,855 34,899 163 33,150 33,163 34,035 180 31.8 136 35
Steingroever2011 C 14254 14269 14,660 152 14,094 14,109 14462 168 262 115 238
Steingroever2015 C 13,140 13,153 13,502 132 12,804 12,817 3154 131 177 6.7 1.9
Worthy C 7158 7171 7461 88 7028 7041 7324 89 386 194 49
Kjome C 4206 4219 4330 62 4066 4079 4206 60 282 9 24
Yousefi_Positive C 5920 5933 6069 63 5748 5761 5921 72 426 181 48
Yousefi_Negative C 5540 5553 5730 73 5436 5449 5568 70 362 160 3.8
Anxiety_F3_tACS C 4328 4341 4483 66 4282 4295 4360 57 285 12 33
Anxiety_FP2_tACS C 4732 4745 4852 57 4636 4649 4747 56 324 115 3.0
HealthyA_Inphase_tACS C 3698 3711 3774 57 3594 3607 3704 60 341 144 38
Depression_F3_tDCS C 5126 5139 5199 35 5040 5053 5121 42 264 8.2 2.1
Depression_FP2_tDCS C 4932 4945 5023 44 4810 4823 4895 45 353 133 36
Depression_Sham_tDCS C 5126 5139 5199 35 5040 5053 5121 42 264 8.2 2.1
HealthyB_F3_tDCS C 3778 3791 3853 56 3694 3707 3773 58 29.7 11 32
HealthyB_FP2_tDCS C 4102 4115 4195 50 4030 4043 4125 56 245 8.6 2.5
Depression_Antiphase_tACS C 3888 3901 3992 55 3792 3805 3893 53 332 12.8 3.8
Depression_F3_tACS C 4012 4025 4108 48 3908 3921 4006 55 345 126 32
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Table 6 continued

ORL VSE SeqE index
Dataset Group AIC BIC WAIC SE AIC BIC WAIC SE DE3 DE4 DE4F
Alavi_Conditioned C 14,811 14,824 15,131 115 14,053 14,066 14,372 102 47.8 25.2 6.2
Alavi_Healthy C 6036 6049 6173 67 5729 5742 5898 75 44.3 22.4 55

. The datasets are categorized into three groups based on the final outcomes. Group A comprises datasets where the ORL model demonstrated a
definitively superior result. Group B contains datasets where a decisive result could not be determined in favor of either the ORL or VSE models.
Group C includes those datasets where the VSE model produced better AIC, BIC, and WAIC scores. The ORL column provides the AIC, BIC,
WAIC scores, and WAIC SE (standard error) associated with the ORL model. The columns under VSE display the fitting results for each dataset
using the VSE model. The SeqE index column pertains to the directed exploration choice pattern, as introduced by Romain Ligneul (Ligneul, 2019).
The DE3 column represents the average number of instances where three different Deck choices were made consecutively in the relevant dataset,
while DE4 indicates the average number of instances where four different Decks were chosen consecutively. Both DE3 and DE4 are calculated
using a sliding window technique. Lastly, DE4F is the fixed version of DE4, implying that a subject’s choices are segmented into fixed-size chunks
of 4, and the DE choice pattern is identified within these chunks. DEA4F signifies a strict presence of directed exploration. To enhance readability
and facilitate comparisons within the table, a color-coding system has been implemented. Light green indicates lower values, light red signifies

higher values, and yellow denotes inconsistent results

both ORL and VSE, preventing any confident determination
of a superior model. Detailed information on our results is
provided in Table 6.

Figure 3c contains the datasets VSE emerged as the
superior model. In these datasets, all three bar plots show
positive values, indicating that VSE achieved lower AIC,
BIC, and WAIC scores compared to ORL. For example, the
Alavi_Conditioned dataset shows a substantial difference in
favor of VSE, while in the Depression_F3_tDCS dataset,
the differences are smaller but still sufficient to confidently
classify VSE as the better-fitting model in this group.

Table 6 provides a detailed breakdown of the AIC,
BIC, and WAIC metrics for all datasets and both mod-
els, along with the SeqE index for each dataset. Consistent
with Fig.3, the final fitting results categorize the datasets
into three groups: A, B, and C. The datasets in Group A
indicate a preference for the ORL model based on their

a) Group A b) Group B

Premkumar

HealthyB_Sham_tDCS

Anxiety_Sham_tACS

Fig.3 The comparison of our data pool is categorized into three groups.
a Datasets where ORL outperformed VSE. Each bar plot displays the
difference between ORL’s AIC, BIC, and WAIC values and those of
VSE. A negative bar indicates that ORL’s value is smaller than VSE’s,
suggesting ORL performed better. b Datasets for which no definitive

fitting results. Specifically, for these datasets, the AIC,
BIC, and WAIC scores for the ORL model are consis-
tently lower than those for the VSE model. To validate the
WAIC results, it is evident that the discrepancy between
the WAIC scores of ORL and VSE is more significant
than the standard error (i.e., [WAICorr — WAICysg| >
max(WAIC_SEogrr, WAIC_SEvysE)).

Figure?2 illustrates that the choice patterns in Group
A are predominantly characterized by Good-over-Bad and
Frequent-over-Infrequent patterns, which aligns with the
parameter space of the ORL model as supported by Fig. 1.
This observation is further corroborated by the SeqE index
(refer to the corresponding column in Table 6). A closer
examination of these results reveals that the majority of
datasets in Group A exhibit a lower SeqE index (associated
with the DE choice pattern) compared to those in Group C.
For instance, in Premkumar’s dataset, 40.8% of the pattern

- AIC_diff
= BIC_diff
— WAIC_diff
) Group C

conclusion could be reached. Here, the difference between ORL and
VSE across AIC, BIC, and WAIC was smaller than the standard error,
making it inconclusive. ¢ Datasets where VSE outperformed ORL. In
this case, a positive bar indicates that VSE’s AIC, BIC, and WAIC values
are smaller, showing superior performance by VSE
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proportions are Good-Over-Bad, while only 10.2% are Bad-
Over-Good. Given that the SeqE index (DE4F = 1.56) in this
dataset is not statistically significant, it suggests that the ORL
model is more likely to provide a better fit for the data.

However, the fitting results using ORL and VSE mod-
els on the datasets in Group B did not provide definitive
results to ascertain the most suitable model (refer to the mid-
dle of Table 6). For instance, the relevant scores of Werzels,
HealthyA_F3_tACS, and HealthyC_F3_tACS suggest ORL’s
superiority. However, the WAIC validation check rejects this
conclusion. The difference between WAIC scores for the
mentioned datasets falls within the standard error range;
in other words, the relevant value is less than the standard
error. Consequently, it is not possible to confidently assert
the superiority of a model. This situation applies to several
other datasets as well. Furthermore, there is no significant
difference in their choice pattern proportions favoring ORL
or VSE. For example, Wetzels choice proportions consist
of 33.3% Good-Over-bad, and 16% belongs to the Bad-
over-Good choice pattern. However, it appears to favor the
ORL model, which it indeed does. However, because 34.6%
of its choice pattern proportions belong to the Infrequent-
Over-Frequent pattern, the choice pattern that comprises only
5.47% of ORL’s parameter space acts as a hindrance for ORL
to confidently assert its supremacy over VSE for this dataset.
Due to the diversity of characteristics of datasets in Group B,
a more detailed elaboration on each result is required. The
appendix provides an in-depth explanation of every dataset’s
specifications and corresponding results.

On the other hand, a detailed examination of the lower half
of Table 6 reveals that Group C includes datasets for which
the fitting results conclusively favor the VSE model based
on all three BIC, AIC, and WAIC criteria. The Hortsmann
dataset, one of the datasets in Group C, has equal proportions
(24.8%) of Good-Over-Bad and Bad-Over-Good patterns.
However, the Infrequent-Over-Frequent pattern makes up
44.3% of its proportion, while ORL can scarcely capture this
choice pattern (only 5.47% based on Fig. 1). Therefore, VSE
is more likely to fit this dataset and capture this choice pat-
tern (25.7% based on Fig. 1). The choice pattern proportions
for all datasets are summarized in Fig.2. A more detailed
discussion of the results for each dataset is provided in the
appendix.

Discussion

Comparisons of various reinforcement learning models intro-
duced over the past two decades to investigate the cognitive
mechanisms underlying the Jowa gambling task have yielded
diverse outcomes. These differences are particularly notice-
able across the various datasets used for model fitting.
We propose that to systematically and fairly compare the
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flexibility of these models, a global analysis technique is
required. This approach should supersede conclusions drawn
solely from local techniques, allowing us to pre-emptively
understand the specific scenarios where a certain cognitive
model excels, derived directly from the observed choice pat-
terns. Here, we addressed this critical issue, utilizing PSP for
a comprehensive examination of two recent RL models—
the ORL and VSE models. These models were introduced
to describe the underlying cognitive mechanisms in the IGT
alongside older theory-driven computational models.

The latest models, ORL and VSE, each with distinct
assumptions and accounting for other neurocognitive evi-
dence, exhibit a significant degree of maturity within the
RL framework. Both models demonstrate reasonable param-
eter recovery, simulations, and generalization test results.
While the comparison approach conducted in Ligneul (2019)
(Ligneul, 2019) supports the conclusion that VSE outper-
forms all previously proposed RL models for IGT, we
contend that it is premature for a clinical experimenter to
decide which model to employ for studying real-world clin-
ical datasets. This is because a crucial aspect of the rationale
for this conclusion remains unclear—the data pattern has not
been considered in this conclusion. Therefore, examining this
issue through both local and global lenses is necessary for a
comprehensive and accurate result.

Employing the PSP method to study a model reveals its
potential to generate different choice patterns. As observed
in Fig. 2 in the results section, it effectively demonstrated the
proportions of the choice pattern in the parameter space of
ORL and VSE, as well as the dataset used in this study, using
both broad and restricted definitions. The balanced parameter
space of VSE enables it to capture different choice pat-
terns of any given dataset—different sets of parameters from
a model perspective—with equal probability. In contrast,
ORL’s parameter space is highly unbalanced and biased. It
is primarily devoted to the Good-Over-Bad and Frequent-
Over-Infrequent choice patterns (with 46.94% and 44.49% in
broad definition, respectively), with only a small portion gen-
erating other choice patterns (3.06% for Bad-Over-Good and
5.5% for Infrequent-Over-Frequent), which are experimen-
tally deemed critical for a model to generate. Consequently,
ORL demonstrates strong potential to capture the Good-
Over-Bad and Frequent-Over-Infrequent patterns of a given
dataset, while its potential to capture other choice patterns
is considerably low. All in all, VSE shows higher generaliz-
ability to fit datasets with possible various choice patterns.

To be precise, the ORL model better fits datasets involving
subjects with choice strategies that yield a Good-Over-Bad
choice pattern (considering the restricted definition). The
ORL model seems biased toward the Good-Over-Bad choice
pattern, as a significant portion of its parameter space can cap-
ture various sets of parameters leading to this pattern. This
flexibility makes it particularly well-suited for this type of
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choice behavior. However, for datasets with a high prevalence
of subjects choosing Bad-Over-Good and Frequent-Over-
Infrequent choice patterns, the ORL model struggles due to
the restricted combinations of its parameters to generate those
choice patterns. As a result, ORL has a low probability of
accurately capturing the behavior of subjects producing those
patterns. In contrast, the balanced parameter space of the
VSE model increases the likelihood of identifying a param-
eter combination that effectively reproduces these patterns.
The VSE model, with higher generalizability, provides equal
opportunity to fit various choice patterns.

Findings suggest that different choice patterns, resulting
from different strategies, may be more suited to specific com-
ponents of a model than others (Steingroever et al., 2013a),
and the performance of a model is dependent on the dataset
(Steingroever et al., 2013a,b)Also, models’ assumptions in
capturing different choice strategies play a crucial role in fit-
ting potential. Our results showed that, even before trying to
fit a model on a dataset, one can distinguish which model to
choose for fitting simply by knowing the choice patterns of
that dataset. However, one should not neglect the importance
of models’ assumptions.

Additionally, our tests indicate that the SeqE index, a
weighted indicator of the presence of a directed exploration
choice pattern, slightly influences the final results. However,
since the purpose of VSE is to capture this choice pattern,
the SeqE index will determine VSE’s relative potential.

We present a summary of the relevant fitting results of
datasets using the ORL and VSE models in Table 6. As
seen there, the AIC, BIC, and WAIC measures were pro-
vided as comparative metrics for these two models, aiming
to determine the most accurate fit for each dataset. The results
suggest that the alignment between the available choice pat-
terns in a dataset and the proportions of these patterns in a
model’s parameter space influences which model provides a
superior fit.

For datasets with a high prevalence of subjects choos-
ing Bad-Over-Good and Frequent-Over-Infrequent choice
patterns, the ORL model struggles to account for the cor-
responding parameter sets due to the restricted combinations
of its parameters, resulting in a low probability of accurately
capturing the behavior of subjects producing those patterns.
In contrast, the balanced parameter space of the VSE model
increases the likelihood of identifying a parameter combina-
tion that effectively reproduces these patterns.

We categorized our data pool into three groups based on
these results: Group A, where ORL is the superior model
with high confidence; Group B, where both models are almost
equal, and it is uncertain which model is superior; and finally,
Group C, which includes datasets where VSE provides a bet-
ter fit. The correspondence between the pattern proportions

of each dataset and the final fitting result using ORL and
VSE for Groups A, B, and C can be inferred from Fig.2 and
Table 6.

In Group A, the pattern proportions align more closely
with ORL’s parameter space than with VSE’s, suggesting
that ORL should provide a better fit-a hypothesis confirmed
by our test results (see Table 6). Conversely, in Group C,
the pattern proportions of the datasets are heavily skewed
toward patterns that VSE is more adept at fitting, leading us
to conclude that VSE is the optimal method for these types
of datasets, a conclusion supported by our test results.

Group B consists of datasets with existing patterns that
do not distinctly match either model. For instance, the
Good-Over-Bad choice pattern accounts for nearly 57%
of Maia and McClelland’s pattern proportion, while the
Bad-Over-Good pattern accounts for only 3.5%. Despite
the inclination to consider ORL as a candidate model, the
39.2% Infrequent-Over-Frequent pattern presents a signifi-
cant obstacle. Furthermore, the SeqE indexes of Maia and
McClelland in Table 6 are relatively low compared to other
datasets. Consequently, neither model can be definitively
deemed superior in fitting these datasets. A detailed expla-
nation and justification of the results for each group can be
found in the appendix.

In Tables 4 and 5, we compared the parameter space pro-
portions of the ORL, VSE, and former models. The VSE
model emerged with the most balanced parameter space.
Through the PSP analysis of ORL and VSE, we discerned
why VSE outperformed in fitting most datasets. While the
sequential exploration in a dataset, viewed as a choice strat-
egy (Ligneul, 2019), does influence the fitting result, our
findings indicate that the model’s parameter space and its
alignment with the dataset used for fitting carry significantly
more importance.

Consequently, VSE could potentially serve as an appropri-
ate model for any dataset that exhibits diverse and reasonably
balanced portions of choice patterns. However, it is important
to note that no single model can be deemed as the univer-
sally optimal choice for all datasets, particularly for those
with a substantial proportion of Infrequent-Over-Frequent or
Bad-Over-Good choice patterns. The suitability of a model is
heavily contingent on the choice patterns inherent in a dataset
and the parameter spaces of the proposed models.

Therefore, we posit that it is of paramount importance for
clinical experimenter to first conduct a thorough analysis of
a dataset to identify its choice patterns. Subsequently, the
model that exhibits the highest correspondence with these
patterns could be selected from the available options. We
believe this approach could potentially lead to more accurate
and reliable results. However, further research and validation
are needed to confirm this hypothesis.
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Conclusion and Future Works

Our analysis in this paper determined that the correspon-
dence between a dataset’s choice pattern proportions and its
parameter space heavily impacts the models’ fitting ability.
For the RL models of the Iowa gambling task, the range of
choice patterns a model can generate determines its ability
to successfully capture similar choice patterns in a dataset.
Despite the anticipated importance of the restricted defini-
tion for a model to capture (Steingroever et al., 2013a), our
data pool analysis reveals that the Frequent-Over-Infrequent
choice pattern is also empirical and influences the final fitting
accuracy. These insights can benefit a clinical experimenter
seeking to select the most suitable model for their dataset.
To truly comprehend an IGT dataset, a clinical user should
first understand its choice patterns. More specifically, they
can choose a model by comparing the proportion of choice
patterns in a dataset with the parameter space of various mod-
els, enabling them to achieve the most suitable fit result. It
is crucial to note that this assessment’s knowledge aids in
elucidating certain aspects of model comparisons. However,
there is still potential for further exploration in Group B of
our data pool. Future investigations should focus on the influ-
ence of each choice pattern (broad definition and SeqE index)

on the final result. The weights or impacts of pattern propor-
tions can be examined concerning each other and per model.
This research line may help clarify the differences between
models, particularly for Group B-type datasets in our data
pool.

Appendix A: Additional Model Details

Numerous RL models have been developed to identify and
quantify the cognitive mechanisms underpinning the intricate
behavior of the Iowa gambling task, as outlined in Table 7.

A.1 Expectancy Valence Model

The EV model utilizes three distinct parameters: (Busemeyer
and Stout, 2002; Yechiam and Busemeyer, 2005; Yechiam et
al., 2005; Steingroever et al., 2013a)

e An attention weight parameter (w) to quantify the sub-
jects’ attention to gains or losses (0 < w < 1),

e An updating rate parameter (a) reflecting how memory is
considered in learning (0 < a < 1), with a larger value

Table 7 A summary of previously proposed RL models, i.e. EV (Busemeyer and Stout, 2002), PVL (Ahn et al., 2008, 2013), PVL-Delta (Ahn et
al., 2008; Fridberg et al., 2010; Steingroever et al., 2013b), EV-PU (Ahn et al., 2008; Steingroever et al., 2013a), and VPP (Worthy et al., 2013)

Functions Models Equations Parameters Range
Utility EV ur(t) = (1 —w). W)+ w.L(t) w: Attention weight 0,1)
PVL
PVL-Delta ") = XA if X)) >0 A : Shape 0, 1)
EV-PU Ut = XA if X@) <0 A : Loss aversion 0,5)
VPP
EV
. EV-PU . .
Learning rule PVL-Delta Ey@)=Ey(t—1)+a(u®)—Ey¢—1)) a: Updating rate [0, 1]
VPP
PVL Ey () =a.Ey(t—1) 4 8c(t).ur(t) a: Recency ©, 1)
Pty = [P =D 480 epon i X 20 ¢ Decay E(fll]l)
Perseveration VPP Y=V a.Pt— 1 + 6 (1).€neg if X(t) <0 E””S ( 1’ 1
— neg -1,
Ey (1) = wg, - Ey (1) + (1 = wg,). Pr (1) wg, : Expectancy weight [0, 1]
- EV _ ¢ ) .
Sensitivity EV-PU () = (¢t/10) ¢ : Consistency [—5,5]
PVL
PVL-Delta 0(t) =3—1 ¢ : Consistency [0, 5]
VPP
. HOEy (0
Choice rule All P[Syt+1)]= W
j=1¢

Note that X (1) = W(z) — |L(¢)|, is the net outcome, where W (¢) represents the money won and L(t) represents the money lost at time 7. The
variable k denotes the deck, which can take on values of 1, 2, 3, or 4 in the original version of IGT. The variable ; is a dummy variable that equals
1 if deck k is chosen; otherwise, 0. In the column Range, open intervals are denoted by parentheses, indicating that the endpoints are not included.
In contrast, closed intervals are denoted by brackets, indicating that the endpoints are included
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indicating rapid forgetting and a smaller value indicat-
ing a weaker recency effect or slow forgetting. In this
context, “forgetting” refers to the process by which past
experiences are gradually discounted in favor of more
recent ones. This terminology is consistent with the orig-
inal Expectancy Valence model proposed by Busemeyer
and Stout (Busemeyer and Stout, 2002). It is important to
note that in this context, “forgetting” does not imply the
updating of unchosen options, but rather the discounting
of past experiences within the decision-making process.

e Aresponse consistency parameter (¢) regulating sensitiv-
ity over training or the exploration-exploitation dilemma
(=5 <c<)).

A.2 Prospect Valance Learning Model
This model consists of four parameters:

e A shape parameter A(0 < A < 1) determines the shape
of the utility function. As A approaches zero, the utility
function takes the form of a step function, whereas as
A approaches 1, the utility gets close to the objective
outcome amount.

e The loss aversion parameter, A(0 < A < 5). A subject
with a greater loss aversion than 1 is more sensitive to
losses.

e The recency parameter, a(0 < a < 1), quantifies the
influence of Deck expectations on each trial.

e The consistency parameter, c(0 < ¢ < 5), affects
decision-making behavior. When ¢ = 0, random behavior

occurs (exploration), while ¢ = 5 results in deterministic
decision-making (exploitation)(Ahn et al., 2008; Stein-
groever et al., 2013a).

A.3 Hybrid Models: VPP Model

The Value-Plus-Perseveration model, developed by Worthy
and colleagues (Worthy et al., 2013), addresses a critical
flaw in the decay rule of previous RL models. The con-
fusion between the tendency to persist with a choice and
the tendency to select the option with the highest expected
value is resolved with separate terms for perseveration and
expected value (Worthy et al., 2013) while maintaining other
functions in common with PVL. This model is defined by
eight parameters, including loss aversion, shape, and con-
sistency parameters similar to PVL. And a decay parameter
specific to the perseverance term, parameters —1 < €05 < 1
and —1 < €0, < 1 that represents the tendency to stay or
switch on each trial (with positive values indicating a pref-
erence to continue selecting the same option, and negative
values indicating a likelihood to switch), and the expectancy
weight 0 < wg, < 1 determines the influence of expected
value on decision-making, with values above 0.5 indicating
a dominant expected value, and values below 0.5 indicating
a stronger preservative influence.

Appendix B: List of Datasets from Many Labs
Collaborations Used in this Research

Table 8 List of datasets from many labs collaborations used in this research

No. Dataset N Population Study Demographics
1 Kjome 19 Healthy Kjome et al. (2010) Mean (£SD) age: 33.9£11.2 years,
6 female
2 Fridberg 15 Healthy Fridberg et al. (2010) Mean (£SD) age: 29.6+7.6 years,
0 female
3 Wetzels 41 Healthy Wetzels et al. (2010) Students
Premkumar 25 Healthy Premkumar et al. (2008) Mean (£SD) age: 35.4+11.9 years,
9 female
5 Wood 153 Healthy Wood et al. (2005) Mean (£SD) age: 45.25427.21
years
Worthy 35 Healthy Wood et al. (2005) Undergraduate students, 22 female
Maia and McClelland 40 Healthy Maia and McClelland (2004) Undergraduate students
Horstmann 162 Healthy Steingroever et al. (2013) Mean (£SD) age: 25.6+4.9 years,
82 female
9 Steingroever 70 Healthy Steingroever et al. (2018) Mean (£SD) age: 24.945.8 years,
49 female
10 Steingroever 57 Healthy Steingroever et al. (2013) Mean (£SD) age: 19.9+£2.7 years,
42 female
11 Ahn_HC 48 Healthy Ahn et al. (2014) Mean (£SD) age: 24.74+4.9 years,

10 female
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Table 8 continued

No. Dataset N Population Study Demographics

12 Ahn_Amph 38 Amphetamine Ahn et al. (2014) Mean (£SD) age: 22.7+£3.7 years,
9 female

13 Ahn_Hero 43 Heroin Ahn et al. (2014) Mean (£SD) age: 29.745.0 years,
8 female

14 GOB_Simulated 20 — — —

15 BOG_Simulated 20 — — —

16 Yousefi_Negative 26 Negative mood induction Yousefi and Rad (2024) Mean (£SD) age: 2243.83 years,
16 female

17 Yousefi_Positive 26 Positive mood induction Yousefi and Rad (2024) Mean (£SD) age: 22.274+2.86
years, 10 female

18 Yousefi_Neutral 26 Neutral mood induction Yousefi and Rad (2024) Mean (£SD) age: 23+2.9 years, 13
female

19 Anxiety_Inphase_tACS 20 Anxiety: in-phase tACS Nejati et al. (2024) Mean (£SD) age: 30.75+4.82
years, 16 female

20 Anxiety_Antiphase_tACS 20 Anxiety: anti-phase tACS Nejati et al. (2024) Mean (£SD) age: 30.751+4.82
years, 16 female

21 Anxiety_F3_tACS 20  Anxiety: F3 tACS Nejati et al. (2024) Mean (£SD) age: 30.751+4.82
years, 16 female

22 Anxiety_FP2_tACS 20 Anxiety: FP2 tACS Nejati et al. (2024) Mean (£SD) age: 30.751+4.82
years, 16 female

23 Anxiety_Sham_tACS 20 Anxiety: Sham tACS Nejati et al. (2024) Mean (£SD) age: 30.75+4.82
years, 16 female

24 HealthyA_Inphase_tACS 17 Healthy: in-phase tACS Nejati et al. (2024) Mean (£SD) age: 30£6.29 years,
10 female

25 HealthyA_Antiphase_tACS 17 Healthy: anti-phase tACS Nejati et al. (2024) Mean (£SD) age: 30+6.29 years,
10 female

26 HealthyA_F3_tACS 17 Healthy: F3 tACS Nejati et al. (2024) Mean (£SD) age: 30+6.29 years,
10 female

27 HealthyA_FP2_tACS 17 Healthy: FP2 tACS Nejati et al. (2024) Mean (£SD) age: 30+6.29 years,
10 female

28 HealthyA_Sham_tACS 17 Healthy: Sham tACS Nejati et al. (2024) Mean (£SD) age: 30£6.29 years,
10 female

29 Alavi_Conditioned 67 Conditioned Nejati and Alavi (2024) Mean (£SD) age: 1542 years, 30
female

30 Alavi_Healthy 28 Healthy Nejati and Alavi (2024)  Mean (£SD) age: 15+£2 years, 13
female

31 Depression_F3_tDCS 20 Depression: F3 tDCS Nejati et al. (2022) Mean (£SD) age: 30.35+6.83
years, all female

32 Depression_FP2_tDCS 20  Depression: FP2 tDCS Nejati et al. (2022) Mean (£SD) age: 30.35+6.83
years, all female

33 Depression_Sham_tDCS 20 Depression: Sham tDCS Nejati et al. (2022) Mean (£SD) age: 30.35+6.83
years, all female

34 HealthyB_F3_tDCS 18 Healthy: F3 tDCS Nejati et al. (2022) Mean (£SD) age: 28.28+10 years,
8 female

35 HealthyB_FP2_tDCS 18 Healthy: FP2 tDCS Nejati et al. (2022) Mean (£SD) age: 28.28+10 years,
8 female

36 HealthyB_Sham_tDCS 18 Healthy: Sham tDCS Nejati et al. (2022) Mean (£SD) age: 28.28+10 years,
8 female

37 Depression_Inphase_tACS 17 Depression: in-phase tACS Nejati et al. (2024) Mean (£SD) age: 30.84+7.4 years,
15 female

38 Depression_Antiphase_tACS 17 Depression: anti-phase tACS Nejati et al. (2024) Mean (£SD) age: 30.8£7.4 years,

15 female
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Table 8 continued

No. Dataset N Population Study Demographics

39 Depression_F3_tACS 17 Depression: F3 tACS Nejati et al. (2024) Mean (£SD) age: 30.84+7.4 years,
15 female

40 Depression_FP2_tACS 17 Depression: FP2 tACS Nejati et al. (2024) Mean (£SD) age: 30.8+7.4 years,
15 female

41 Depression_Sham_tACS 17 Depression: Sham tACS Nejati et al. (2024) Mean (£SD) age: 30.84+7.4 years,
15 female

42 HealthyC_Inphase_tACS 17 Healthy: in-phase tACS Nejati et al. (2024) Mean (£SD) age: 30+4.33 years,
10 female

43 HealthyC_Antiphase_tACS 17 Healthy: anti-phase tACS Nejati et al. (2024) Mean (£SD) age: 304+4.33 years,
10 female

44 HealthyC_F3_tACS 17 Healthy: F3 tACS Nejati et al. (2024) Mean (£SD) age: 30+4.33 years,
10 female

45 HealthyC_FP2_tACS 17 Healthy: FP2 tACS Nejati et al. (2024) Mean (£SD) age: 304+4.33 years,
10 female

46 HealthyC_Sham_tACS 17 Healthy: Sham tACS Nejati et al. (2024) Mean (£SD) age: 30+4.33 years,
10 female

Appendix C: Variational Inference
Methodology

VI (Friston et al., 2007; Daunizeau et al., 2009, 2014) is a
technique used to approximate complex posterior distribu-
tions in Bayesian models, particularly when direct sampling
methods like MCMC are computationally prohibitive. VI
converts the problem of posterior inference into an optimiza-
tion problem by finding a simpler distribution that closely
approximates the true posterior distribution.

In our study, VI was employed to estimate the posterior
distributions of parameters in the RL models analyzed. The
procedure was implemented using CmdStan (version 2.30.0),
which leverages ADVI (Kucukelbir et al., 2017).

C.1 Minimization of KL Divergence

The core principle of Variational Inference is the minimiza-
tion of the KL (Gunapati et al., 2022) divergence between
two distributions: the variational distribution ¢ (@) and the
true posterior distribution p(6 | data). The KL divergence is
a measure of how one probability distribution diverges from
a second, expected probability distribution. Mathematically,
the KL divergence from ¢(0) to p(6 | data) is defined as
Friston et al. (2007); Daunizeau et al. (2009, 2014):

q(0)
p(6 | data) ’
(C.1)

KL(g(@) || p(6 | data)) = /61(9)10g<

where ¢ (0) is a chosen family of distributions that approx-
imates the true posterior distribution p(6 | data). The

objective of VI is to find the parameters of g(8) that min-
imize this divergence.

Minimizing the KL divergence effectively means making
the variational distribution g (9) as close as possible to the true
posterior distribution p(@ | data). By doing so, we obtain a
distribution that can serve as an efficient and tractable approx-
imation of the true posterior, enabling us to make inferences
about the model parameters without having to directly sam-
ple from the often intractable true posterior distribution.

C.2 ELBO and Its Role

Instead of directly minimizing the KL divergence, VI maxi-
mizes the ELBO, which is equivalent to minimizing the KL
divergence in practice (Friston et al., 2007; Daunizeau et al.,
2009, 2014) . The ELBO is defined as (Friston et al., 2007,
Daunizeau et al., 2009, 2014):

ELBO = Eg4)[log p(data | )] — KL(g(6) || p(9)), (C.2)

where K, @g)[log p(data | 6)] represents the expected log-
likelihood under the variational distribution, and KL(g(0) ||
p(0)) is the KL divergence between the variational distribu-
tion and the prior distribution over 6.

By maximizing the ELBO, we effectively ensure that the
variational distribution g (6) provides a good approximation
of the posterior distribution p(6 | data), while also incorpo-
rating the prior information.

C.3ADVI

In this paper, we used ADVI as implemented in CmdStan.
ADVlI is a specific form of VI that automates the variational
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inference process using gradient-based optimization tech-
niques (Kucukelbir et al., 2017). ADVI assumes that the
variational distribution g (9) belongs to the family of normal
distributions, parameterized by a mean vector x and a stan-
dard deviation vector o. The ELBO is then optimized with
respect to these parameters using gradient ascent, where the
gradients are computed via automatic differentiation. This
approach allows ADVI to efficiently scale to large and com-
plex models.

The use of ADVIintegrates Monte Carlo sampling into the
approximation of the ELBO, ensuring that the optimization
process is both accurate and computationally feasible.

For our analysis, VI was applied to both the ORL and VSE
models. The variational distributions ¢(6) were optimized
using ADVI to approximate the true posterior distributions
of the model parameters.

Once the variational distributions were obtained, we used
them for posterior inference, generating estimates for the
parameters that describe the cognitive processes modeled in
the IGT.

Appendix D: Supplementary Model
Comparison Metrics

AIC, BIC, and WAIC serve as mathematical methodologies
for evaluating the fitting results of two distinct models. AIC
and BIC incorporate the number of independent variables or
parameters and the maximum likelihood estimate to compute
model complexity. On the other hand, WAIC employs log-
likelihood and LPD to generate the pointwise WAIC and the
standard error. AIC is a comprehensive method grounded
in the Kullback-Leibler (KL) information loss or likelihood
framework (Burnham and Anderson, 2004). As per Akaike
(Akaike, 1998), the AIC can be calculated using the following
equation:

n
AIC = -2 Z 1og p(yi16mie) + 2k,
i—1

D.1)

where émlg represents the maximum likelihood estimate and
k denotes the number of estimated parameters. p(y; |ém1e) is
the pointwise predictive density for the i-th observation given
the estimated parameters émle. k is the number of parameters
in the model. n is the numebr of observation, y; is the i-th
observation. Schwarz (1978) introduced the BIC, which is
motivated by the Bayes factor, and can be calculated using
the following equation:

n
BIC = =2 "log p(3il6mic) + k log(n)

i=1

D.2)
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Contrary to AIC, the correction term in BIC is changed
to log(n), where n is the sample size of the training set or
the number of observations, resulting in a larger penalty per
parameter for large datasets. Note that in our study, the cal-
culation of the AIC and BIC was based on the MLE obtained
through our implementation of ADVI. To ensure the accuracy
of these calculations, we removed prior distributions during
the likelihood estimation process. This approach allowed us
to obtain point estimates for the parameters independently
of any prior assumptions, ensuring that the AIC and BIC
values reflect the data-driven goodness-of-fit of the models.
Specifically, the mean or mode of the approximate posterior
distributions obtained through Mean-Field VI was used as a
point estimate for these calculations.

Another fully Bayesian approach, WAIC, introduced by
Watanabe and Opper (2010), employs log point-wise pos-
terior density and includes a correction for the number of
parameters to avoid model overfitting (Gelman et al., 2014).
The WAIC score for each model is calculated using the fol-
lowing equation:

n
WAIC =2 Z(lOg(Epv:reriurp(Yi 18)) — Eposterior (log p(yil6)).
i=1

(D.3)

Appendix E: Graphical Bayesian Model
for the Hierarchical Analysis of VSE and ORL

Figure 4 illustrates the graphical Bayesian model for the hier-
archical analysis of VSE and ORL, depicted in subplots a
and b, respectively. Each subplot contains two plates repre-
senting subjects and trials. The outer plate encompasses the
variables and sampling processes for each subject in the IGT,
while the inner plate encapsulates per-trial calculations for a
specific subject. As demonstrated in Fig. 4a, individual-level
parameters for subject i are denoted as z;, where z; comprises
{6;, A;, ai, ¢;, B;} for the VSE model. Similarly, in Fig.4b,
the parameters for the ORL model are represented by z; =
{Arewi, Apuni» Ki, Bri, Bpi}. These parameters undergo a
probit transformation to obtain z; = {6/, A}, a], ¢!, B!} for
the VSE and z; = {A] ., A’Imm., K[, B Bp;} for the
ORL. The group-level normal distribution with mean g
and standard deviation o is used to sample the parame-
ters z;. Notably, in the ORL model, the standard deviation
for individual-level parameters Sr and Bp is sampled from
a half-Cauchy distribution, while the standard deviation of
other parameters follows a normal distribution. Both mod-
els incorporate the cumulative standard normal distribution
function, denoted as ®, which serves as the inverse of the
probit transformation. The sampled parameters are subse-
quently utilized in the equations described in Tables 3 and 2
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Fig. 4 The graphical Bayesian model of ORL and VSE, designed
for a hierarchical analysis. Both models are constructed following the
convention established by Lee and Wagenmakers (Lee and Wagen-
makers, 2014). The circular nodes symbolize the unobserved variables
that are sampled within the model. The observed variables, which are
available in the dataset, are represented by grey-shaded squares. The

for each trial (inner plate) to generate the next trial choice
Chi ;+1. Additionally, W; ; and L; ; represent the reward and
loss amounts received by subject i in trial ¢. In Fig.4a, V; ;,
Eti s, Er;; and P[S;41] represent the utility, exploitation,
exploration, and choice rule functions of the VSE model,
respectively. On the other hand, the inner plate of the ORL
model includes variables such as X; ; (utility function), E F; ;
(expected frequency of each Deck), E'V; ; (expected value of
each Deck), PS;  (perseverance tendency of each Deck),
Vi+ (single value signal), and P[S;+1] (choice rule of the
ORL). All these functions are deterministic and are com-
puted accordingly.

Appendix F: Datasets Choice Pattern
Proportions

A comprehensive analysis of 45 datasets from our data pool
provides valuable insights into the fitting outcomes of ORL
and VSE models. We meticulously evaluated the choice pat-
terns in each dataset, applying both broad and restricted
definitions, incorporating 65 distinct criteria. As detailed in
the results section of the paper, Table 6 categorizes the find-
ings into three groups. Group A includes results that affirm
the ORL model, while Group B contains those where it is
unclear which model is superior. On the other hand, Group
C consists of datasets where the fitting outcomes indicate a
clear advantage of VSE over ORL. Figures5 to 12 provide
a detailed visual representation of the choice pattern propor-
tions across these groups.

b
w, ~N(©0,1)
COOH EEOHED
) e~ N(O,1)
@ @ e @ @ oy~ C(0,1)
Z' ~ N(u.0,)
{ \ A= DAL
K, =5.D(K)

L i=l.., )

nodes depicted by double circles are deterministic variables, determined
through calculation. a The Bayesian model for VSE, capturing the inter-
play of variables leading to the final choice probability. b The ORL
model, highlighting all variables and their pertinent relationships that
yield the final choice

Figure 5 provides a visual representation of the choice pro-
portions made by Group A, with a particular focus on the
data sets where the ORL model demonstrated superior fitting.
Specifically, Fig. 5a displays the proportions of choice pat-
terns for Premkumar, delineated by both restricted and broad
definitions (displayed on the right and left, respectively). It is
evident that the Good-Over-Bad pattern proportion is nearly
quadruple that of the Bad-Over-Good patterns. This dispar-
ity is further highlighted when random behavior is excluded
from the definition. A closer look at Fig. 1 reveals that the
ORL model is more proficient in capturing the Good-Over-
Bad pattern. Given that the Bad-Over-Good patterns are less
prevalent in this data set, the corresponding AIC, BIC, and
WAIC values of the ORL and VSE models for the Premku-
mar data set, as listed in Table 6, seem reasonable. Moreover,
the incidence of the directed exploration (also referred to as
sequential exploration) choice pattern is significantly lower
compared to the other data sets in our data pool, which further
validates the final results derived from the ORL model.

Figure 5b shows the proportions of choice patterns for
GOB_Simulated, a data set we specifically generated to
examine the sensitivity of both ORL and VSE models
towards Good-Over-Bad and Bad-Over-Good patterns. As
expected, the ORL model outperformed the VSE model in
terms of relevant scores, as detailed in Table 6. Interestingly,
this figure reveals the absence of Good-Over-Bad choice
patterns, under both broad and restricted definitions. Further-
more, the AIC, BIC, and WAIC scores for the ORL model
are nearly half of those for the VSE model in the context of
the GOB_Simulated data set. These findings align with the
corresponding results in terms of SE indices.
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Fig. 5 The proportions of datasets for which the ORL model yields
superior fitting results. a, b, ¢, d, and e The respective proportions for
the Premkumar, GOB_simulated, Ahn_HC (Healthy Control), Anx-
iety_Sham_tACS, and HealthyB_Sham_tDCS datasets. Each pair of

On the other hand, looking at the third plot in Fig.5,
it can also be seen that the choice pattern proportions of
Ahn_HC closely mirror those of Premkumar. Once again, the
Bad-Over-Good portion is significantly smaller compared to
Good-Over-Bad, particularly under the restricted definition.
Despite the SeqE index in Ahn_HC being nearly twice as
large as that for Premkumar, the ORL model still produced a
superior fit (refer to Table 6 for details). These findings imply
that the proportions of Bad-Over-Good and Good-Over-Bad
may have a greater impact on the outcome than the SE choice
patterns.

In addition, it is worth noting explicitly that the choice pat-
tern propositions for the Anxiety_Sham_tACS, depicted in
subplot d, demonstrate a clear dominance of the Good-Over-
Bad choice pattern. This dominance is even more pronounced
in the restricted definition (plot on the right). The SeqE index
of this dataset is also low, further supporting the final result
of ORL supremacy.

Moreover, Group A includes the HealthyB_Sham_tDCS
dataset, which exhibits a choice proportion strikingly similar
to Anxiety_Sham_tACS as per the broad definition (left-
hand plots of subplots d and e). Upon excluding random
behavior from the dataset, all BOG patterns are consequently
eliminated, indicating the absence of a stringent Bad-Over-
Good preference for this dataset. As per the SeqE indexes in

Fig.6 The choice pattern
proportions for the first part of
Group B. Preliminary fitting
results in this dataset group
suggest a marginal dominance nas " 7
of one model; however, the

initial interpretation is refuted 533
by WAIC validation checks. 1795
Consequently, a definitive
conclusion remains elusive

36.25

55.56.

.51

u 59
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plots provides a comparative analysis: the left plot delineates the choice
patterns as per the broad definition, while the right plot presents the
choice proportions according to the more restricted definition, encom-
passing 65 criteria

Table 6, the lower AIC, BIC, and WAIC scores of ORL are
apparent.

Figure 6 illustrates a graphical representation of the first
part of Group B from our data pool. This group contains
datasets for which the WAIC validation test did not cor-
roborate the preliminary conclusions drawn from the fitting
process. Consequently, even though one model appeared to
have aslightedge, its presumed dominance was not validated.
Figure 6a depicts the distribution of choice patterns for the
Maia and McClelland dataset, as per both the broad (left)
and the restricted definition 65 criteria (right). Despite the
lower AIC, BIC, and WAIC scores of the VSE model for this
dataset, suggesting its superiority over the ORL model (refer
to Table 6), the discrepancy in the WAIC scores of the two
models significantly exceeds the WAIC SE of either model.
This is justified by the alignment between the choice patterns
in the Maia and McClelland dataset and the parameter spaces
of the ORL and VSE models (see Fig. 1). It is worth noting
that the dominant choice patterns in the ORL parameter space
are Good-Over-Bad and Frequent-Over-Infrequent, while the
Maia and McClelland dataset primarily exhibits Good-Over-
Bad and Infrequent-Over-Frequent patterns. Furthermore,
the SeqE index for this dataset is relatively low, aligning
with the choice pattern that the VSE model aims to capture
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Fig.7 The choice pattern o
proportions for the second part
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fitting results
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(see Table 6). Therefore, it can be concluded that both models
demonstrate comparable potential in terms of performance.

Given the similarity of other data patterns in this group
to the aforementioned items, we will forego a detailed
explanation of all of them and focus on a select few. For
instance, Fig. 6b represents the choice pattern proportion of
the Fridberg dataset. Both the broad and restricted plots
reveal that the Bad-Over-Good pattern is not a major choice
pattern, while Infrequent-Over-Frequent constitutes nearly
80% of the patterns. Additionally, the SeqE index for this
dataset is quite low (see Table 6), leading to an incon-
clusive fitting result for VSE. As another example in this
group, Fig. 6e displays the proportions of choice patterns in
the Anxiety_Antiphase_tACS dataset. Similarly, the pattern
proportions for ORL and VSE are almost identical, indicat-
ing similar odds. Lastly, in the HealthyA_Antiphase_tACS
dataset, VSE appears to yield a better-fitting score initially,
but not by a conclusive margin over ORL. The key lies in the
pattern proportions, where both models are almost equally
favored.
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Figure 7 provides a comprehensive summary of the choice
pattern proportions for the second part of the Group B
dataset. A closer examination of Fig.7a, which depicts the
pattern proportions of HealthyA_FP2tACS, reveals that the
VSE index seems to be more effective in encapsulating the
available patterns. This is particularly evident when consider-
ing the restricted definition that underscores the prevalence
of Bad-Over-Good and Infrequent-Over-Frequent patterns.
However, itis worth noting that the SeqE index for this dataset
is relatively small.

On the other hand, Fig. 7b pertains to the choice patterns of
the HealthyA_Sham_tACS dataset. Our observations reveal
that approximately 50% of the data is allocated to Good-
Over-Bad, while the remaining 50% is distributed between
Infrequent-Over-Frequent and Bad-Over-Good, as per the
restricted definition that underscores this correlation. Con-
sequently, it is reasonable to assume that both models have
comparable probabilities of achieving a good fit.

As the final look at Fig.7, we observe a comparable
distribution of choice pattern proportions across the Depres-

HealthyC_Sham_tACS

\;

11.11

mmm Frequent-Over-Infrequent

Fig.8 The choice pattern proportions for the third part of Group B with no conclusive fitting results
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Fig.9 The choice pattern proportions for the first part of Group C, indicating a significantly superior fit with the VSE

sion_Inpahse_tACS, Depression_FP2_tACS and Depres-
sion_Sham_tACS datasets. The broad plots demonstrate
that the fitting results for these datasets were inconclusive,
as the choice patterns were almost evenly split between
both models. According to the restricted definition, all of
these datasets feature Bad-Over-Good patterns. However,
the proportion of Infrequent-Over-Infrequent patterns is
notably high in all of them, contributing a negligible por-
tion to ORL’s pattern proportion. Interestingly, Fig. 7f reveals
that the HealthyC_Inphase_tACS dataset contains precisely
equal proportions of Good-Over-Bad, Bad-Over-Good, and
Infrequent-Over-Frequent, suggesting a nearly equal likeli-
hood for both models.

The pattern proportions of three additional datasets from
Group B, namely HealthyC_Antiphase_tACS, HealthyC_FP2
_tACS, and HealthyC_Sham_tACS, as depicted in Fig.8 a,
b, and c, can be interpreted similarly. The major patterns
in the ORL parameter space, which favor the ORL model
(Good-Over-Bad), are nearly equivalent to Bad-Over-Good
and Infrequent-Over-Infrequent. This equivalence explains
the inconclusive fitting result, as shown by the restricted def-
inition plot, with the exception of b. However, the pattern
proportions for HealthyC_FP2_tACS appear to be primar-
ily Bad-Over-Good and Infrequent-Over-Infrequent. Despite
this, its relatively low SeqE index renders it unsuitable for
the VSE.
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Fig. 10 The choice pattern proportions for the second part of Group C,
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Fig. 11 The choice pattern proportions for the third part of Group C, indicating a significantly superior fit with the VSE
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Fig. 12 The choice pattern proportions for the fourth part of Group C, indicating a significantly superior fit with the VSE
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In comparison to the ORL model, the data sets in Group C
demonstrate a superior fit for the VSE model, as evidenced by
the AIC, BIC, and WAIC measures. The pattern proportions
across all datasets in this group align with the dominance of
the VSE model. Figure9 reveals that the Infrequent-Over-
Frequent and Bad-Over-Good patterns are prevalent, which
accounts for the lower AIC, BIC, and WAIC scores of VSE.
Despite the pattern proportions in Fig. 9(b) for the Ahn_Hero
data set being akin to those of HealthyC_FP2_tACS (refer to
Fig. 8b), the elevated SeqE index of Ahn_Hero, particularly
the DE3 score, leads to the VSE model outperforming the
ORL model. It is important to note that the VSE model is
specifically designed to capture the sequential exploration
choice pattern.

Figure 10 illustrates the second part of Group C. The
pattern proportions in subplots a—f underscore the domi-
nance of patterns that lend the VSE model a decisive edge
over the ORL model. While the ORL model struggles to
capture the Bad-Over-Good and Infrequent-Over-Frequent
patterns, these patterns are predominant across all data sets
in Group C. It is worth noting that significant disparities exist
between pattern proportions in some of these data sets, such
as Yousefi_Positive. Consequently, the VSE model yields
lower AIC, BIC, and WIAC scores compared to the ORL
model.

Figure 11 provides a summary of the pattern propor-
tions for the third part of Group C. Take, for instance,
Fig. 11a, which illustrates the pattern proportions for Anx-
iety_F3_tACS. The majority of the patterns are Bad-Over-
Good and Infrequent-Over-Frequent, accounting for 71.06%
in the broad definition and 63.63% in the restricted defini-
tion. As a result, the AIC, BIC, and WAIC scores for the
VSE model are lower than those for the ORL model (please
see Table 6 for a detailed explanation that follows the same
rationale).

Figure 12 provides a summary of the pattern proportions
for the remaining data sets in Group C. In this context, the
proportions of choice patterns are significantly influenced by
the Bad-Over-Good and Infrequent-Over-Frequent choices,
which pose a challenge for the ORL model to capture (please
refer to the ORL parameter space in Fig. 1 for more details).
As depicted in Fig. 12 d and e, the plots for the restricted
definition (the doughnut plots positioned to the right of each
subplot) suggest that random behavior is excluded. Conse-
quently, while the plot does not display a Bad-Over-Good
pattern, a substantial part of the plot is still dedicated to the
Infrequent-Over-Frequent pattern.
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