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Abstract 

Shallow vortical flow can often occurs past (un)submerged topographies, prevailing in quasi-steady states with 

turbulence. Practically, vortical flow is represented by the two-dimensional (2D) Reynolds-Averaged Navier–

Stokes equations, including the two-equation k-ɛ turbulent model (RANS-k-ɛ), and are commonly resolved by 

finite difference/volumes second-order accurate solvers. Such RANS-k-ɛ solvers, in addition to needing a fine 

resolution, require adding artificial treatments–extrinsic (unlocalised) reconstructions of wet-dry fronts with 

slope-limiting–that can impact the vortical eddy predictions. The second-order discontinuous Galerkin (DG2) 

solver intrinsically integrates the wet-dry fronts and uses localised slope-limiting; resulting in an implicit large 

eddy simulator with the shallow water equations (DG2-SWE) that can only simulate uncompounded eddies. 

A novel DG2 solver of RANS-k-ɛ (DG2-RANS-k-ɛ) is devised for simulating a wider range of vortical eddies, 

by: first, transforming the 5×5 advective-diffusive RANS-k-ɛ system into a 13×13 advection-dominated 

system; second, extending the DG2 formulation to the 13×13 system, with adaptation of its robustness 

treatments for the mean-flow variables; and, last, adding a new combination of stability/positivity-preserving 

treatments for turbulent-flow quantities. The DG2-RANS-k-ε solver is evaluated for simulating five 

experimental benchmarks using coarse, medium and fine resolutions. Results show that DG2-RANS-k-ε can 

reproduce compound eddies from the medium resolution, and that DG2-RANS (without k-ɛ) can better 

reproduce laminar wakes. Using the medium resolution reduces runtimes by 7-fold and running on the GPU 

further reduce runtimes by 2-to-6-fold. The code, including simulation setup files, is open-source within a new 

release of the LISFLOOD-FP hydraulic modelling environment (https://doi.org/10.5281/zenodo.7628739), 

with documentation and demonstration videos (https://www.seamlesswave.com/DG2_RANS).     
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1. Introduction 

In open-channels, shallow vortical flow can occur past (un)submerged topographies (Neary and Odgaard 1993; 

Lloyd and Stansby 1997a; 1997b; Bazin et al. 2017; Mignot and Brevis 2020)–(un)submerged hereafter refers 

to both scenarios of submerged and unsubmerged (channel-bed) topographies emerging. Shallow vortical flow 

mostly prevails in quasi-steady states with high turbulence (Babarutsi et al. 1989; Ninto and Garcia 1966; 

Shucksmith et al. 2010; Begnudelli et al. 2010; Jha and Bombardelli 2011; Pandey and Mohapatra 2023). 

Practically, the mathematical modelling of shallow vortical flow has often been based on the depth-averaged 

two-dimensional (2D) Reynolds-Averaged Navier–Stokes (RANS) equations, as a trade-off between 

computational efficiency and modelling accuracy (Hinterberger et al. 2007; Rodi 2017; Zou et al. 2023).   

The RANS equations can be regarded as an extended form of the simpler 2D shallow water equations 

(SWE) that–in addition to the inviscid fluxes and the topography and friction source terms–further incorporates 

the viscous stresses and the turbulent stresses. These stresses include second-order derivative (diffusive) terms, 

adding kinematic viscosity effects and turbulent-flow velocity fluctuations onto the mean-flow (superimposing 

various eddy sizes). Following Boussinnesq’s assumption, depth-averaged integration of the turbulent stresses 

can be achieved using the eddy-viscosity concept (Rastogi and Rodi 1978); which, following Rodi (1993), 

results in the popular k-ε turbulence closure model (Haun et al. 2011; Gorji et al. 2014; Zou et al. 2020; Zou 

et al. 2023). In the k-ε model, k and ε denote the turbulence kinetic energy and the turbulence kinetic energy 

dissipation rate, respectively, which make up the turbulent-flow variables that must also be evolved in space 

and time. Therefore, two (turbulence) transport equations must be added to the three RANS equations, resulting 

in a 5×5 system (5 equations and 5 unknowns) that will be, hereafter, referred to as RANS-k-ε.  

Second-order finite volume/difference methods were used to develop numerical RANS-k-ε solvers for 

turbulent shallow flow simulations, with the most notable developments focused on robustness treatments due 

to wet-dry fronts occurring past the unsubmerged topographies (Wu 2004; Cea et al. 2007; Yu and Duan 2012; 

Ginting 2019; Ginting and Ginting 2019)–unlike in Abakouy et al. (2017) and Zhang et al. (2019) where the 

unsubmerged topographies (e.g., solid walls and blocks) are removed from the computational mesh. In Wu 

(2004), the wet-dry front treatments were corrected by a standard wall function (StWF) for simulating unsteady 

dam-break flow on initially-dry movable and erodible topographies. Cea et al. (2007) also appended their wet-

dry front treatments with a StWF to correct the turbulent-flow variables (Toro and García-Navarro 2007), but 

also needed to add (artificial) non-local limiters to velocity and turbulent-flow quantities. In their results, Cea 

https://ascelibrary.org/doi/abs/10.1061/%28ASCE%290733-9429%281993%29119%3A11%281223%29
https://ascelibrary.org/doi/10.1061/%28ASCE%290733-9429%281997%29123%3A12%281068%29
https://www.tandfonline.com/doi/abs/10.1080/00221686.2016.1217947?journalCode=tjhr20
https://ascelibrary.org/doi/full/10.1061/%28ASCE%29HY.1943-7900.0001698?casa_token=ISWOuDRQvHsAAAAA:gg8GqVhUPS06T2GV60FaGtow2mPq1g8XZPDm4j5FWkBLUp6Hm6lyQVwlbsYVFDfF6soVnOxt9QQ-
https://ascelibrary.org/doi/10.1061/%28ASCE%290733-9429%281989%29115%3A7%28906%29
https://www.cambridge.org/core/journals/journal-of-fluid-mechanics/article/abs/experiments-on-particleturbulence-interactions-in-the-nearwall-region-of-an-open-channel-flow-implications-for-sediment-transport/552C9F58D857D1038AA59AC44044D326
https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/2008WR007657
https://www.sciencedirect.com/science/article/abs/pii/S0309170809001560
https://www.sciencedirect.com/science/article/abs/pii/S0309170811000273
https://ascelibrary.org/doi/10.1061/JHEND8.HYENG-13424
https://ascelibrary.org/doi/abs/10.1061/%28ASCE%290733-9429%282007%29133%3A8%28857%29
https://ascelibrary.org/doi/abs/10.1061/(ASCE)HY.1943-7900.0001288
https://www.tandfonline.com/doi/full/10.1080/00221686.2023.2246925
https://ascelibrary.org/doi/abs/10.1061/JYCEAJ.0004962
https://scholar.google.com/scholar_lookup?title=Turbulence%20models%20and%20their%20application%20in%20hydraulics%3A%20a%20state-of-the%20art%20review&author=W.%20Rodi&publication_year=1993
https://scholar.google.com/scholar_lookup?title=Turbulence%20models%20and%20their%20application%20in%20hydraulics%3A%20a%20state-of-the%20art%20review&author=W.%20Rodi&publication_year=1993
https://www.tandfonline.com/doi/abs/10.1080/19942060.2011.11015381
https://www.sciencedirect.com/science/article/pii/S0029801820311458?via%3Dihub
https://www.tandfonline.com/doi/full/10.1080/00221686.2023.2246925
https://www.tandfonline.com/doi/full/10.1080/00221686.2023.2246925
https://www.tandfonline.com/doi/abs/10.1080/00221686.2007.9521812
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et al. (2007) identified that the turbulent-flow velocity fluctuations are mostly noticeable in the simulation of 

compound eddies of various sizes. Following Wu (2004), Yu and Duan (2012) also adapted wet-dry front 

treatments (Liang and Marche 2009) into a finite volume RANS-k-ε solver and compared it to the SWE solver 

counterpart for simulating various dam-break flows past (un)submerged topographies. Their findings suggest 

that the RANS-k-ε solver only significantly improved the predictions in the highly-turbulent localities past the 

(un)submerged topographies. However, most of the studies did not explore more challenging quasi-steady flow 

problems that are dominated by continuously and periodically moving eddies past unsubmerged topographies, 

hinting at outstanding issues; mostly, related to ensuring stability and positivity for the turbulent-flow variables 

and to avoiding too fine resolutions due to the StWF (sensitive to the size of near-dry-wall computational cells: 

the wet cells, with at least one wet-dry front, adjacent to any dry cell representing unsubmerged topographies).  

To overcome resolution limitations, Ginting (2019) adapted a scalable wall function (ScWF) in their 

RANS-k-ε solver with wet-dry front treatments; and, Ginting and Ginting (2019) added further enhancements 

to ensure stable and positivity-preserving quasi-steady eddy predictions past unsubmerged topographies. Their 

enhancements consisted of adding (artificial) numerical viscosity into the advective fluxes and of using non-

local (artificial) reconstructions of second-order accurate wet-dry fronts. Arguably, on the one hand, adding 

numerical viscosity magnifies the growth of numerical error dissipation (Komen et al. 2017), impacting the 

physical k-ε model’s dissipation [e.g., manifesting in deviated predictions from the true eddy sizes (Ginting 

and Ginting 2019)]. This impact can be alleviated by using too fine resolutions, but this is usually avoided to 

keep realistic runtimes (Landman et al. 2008; Dairay et al. 2017). On the other hand, reconstructing second-

order accurate wet-dry fronts invoke non-local variables, outside the true wet-dry front localities [e.g., causing 

false noises (Hou et al. 2013)], and thereby can impact eddy predictions (Macías et al. 2020). This impact is 

usually damped by nonlinear limiters (Cea et al. 2007; Ginting and Ginting 2019), which, unless localised, 

affect the discretisation of diffusive terms (Navas-Montilla et al. 2019).   

In a second-order discontinuous Galerkin solver of the SWE (DG2-SWE): second-order accurate wet-

dry front representations is inherent in local (cellwise) piecewise-planar approximations of the flow variables 

and the topography; and, the approximated flow variables are evolved (cellwise) using a locally-conservative 

advective DG2 formulation, with localised limiters (Wei and Xia 2024) that do not interfere with the wet-dry 

front treatments (Kesserwani and Liang 2012; Kesserwani et al. 2018). Compared to equally-accurate finite 

volume/difference formulation, the DG2 formulation is immune to magnified growth of numerical error 

https://www.sciencedirect.com/science/article/abs/pii/S0045793007000266
https://www.sciencedirect.com/science/article/pii/S0021999117301298#br0070
https://www.sciencedirect.com/science/article/abs/pii/S0045793013001552
https://www.sciencedirect.com/science/article/pii/S037838391830351X?via%3Dihub
https://www.sciencedirect.com/science/article/pii/S0021999119304450?via%3Dihub
https://www.sciencedirect.com/science/article/pii/S0021999123007714
https://www.sciencedirect.com/science/article/pii/S004578251830389X
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dissipation and to loosing accuracy and stability, despite a localised integration of wet-dry fronts and of second-

order derivative terms (Landman et al. 2008; Sharifian et al. 2018; Ayog et al. 2021, Sec. 2.3). Because of 

these properties, the DG2-SWE solver can produce unrivalled simulations using unusually coarse resolutions 

[e.g., of velocity transients in unsteady flows (Kesserwani and Wang 2014; Ayog et al. 2021), and of spatial 

velocities in steady flows (past)over (un)submerged topographies (Kesserwani 2013)].  

In the simulation of quasi-steady shallow vortical flow, the DG2-SWE solver can be used as an implicit 

large eddy simulator (Moura et al. 2017; Plata et al. 2018; Bergmann et al. 2019) of laminar wakes and of 

uncompounded turbulent eddies (Kesserwani et al. 2023; Sun et al. 2023). However, its use for this purpose is 

limited to selecting an abnormally coarse resolution–far larger than the turbulence length scale yet finer than 

the Characteristic Length (CL)–and avoiding turbulent flow simulation problems dominated by compound 

eddies (Kesserwani et al. 2023). This limitation motivates for the development of a new DG2 solver of the 5×5 

RANS-k-ε system (DG2-RANS-k-ε) that can generally and reliably simulate a wider range of vortical eddies 

with turbulence, and despite the presence of (un)submerged topographies in the computational domain.  

Existing studies partly developed DG2-RANS-k-ε solvers, none yet focussed on quasi-steady shallow 

vortical flow simulations past (un)submerged topographies. Kärnä (2020) reported a stable and positivity-

preserving DG2 discretisation of two-equation turbulence closure models (including k-ε), but their solution 

was aimed to improve unsteady predictions for an ocean-scale DG2 simulator (Kärnä et al. 2018). Whereas, 

Lee (2021) addressed the DG2 discretisation of the second-order derivative terms (Miller et al. 2013) for a 

simple turbulence model in a 3×3 RANS system, reporting water depth results without wet-dry problems.  

A novel DG2-RANS-k-ε solver is developed (Sec. 2) by: first, transforming the 5×5 RANS-k-ε system 

into a 13×13 system that only involves advection-dominated derivative terms; second, extending the advective 

DG2-SWE formulation to solve the 13×13 system, while adapting its robustness treatments for the mean-flow 

variables; and, last, adding a new combination of stability/positivity-preserving treatments for the turbulent-

flow quantities to ensure reliable DG2-RANS-k-ε simulations. The evaluation approach (Sec. 3) of the DG2-

RANS-k-ε solver is reported for five experimental quasi-steady flow benchmarks, with runtime analyses for 

parallel simulations on a multi-core Central Processing Unit (CPU, 10 threads) and a Graphics Processing Unit 

(GPU, V100 card). The simulated DG2-RANS-k-ε and DG2-SWE velocity fields using coarse, medium and 

fine resolutions are qualitatively and quantitatively compared against measured velocity fields (Sec. 4), to then 

conclude on the practical usability of the DG2-RANS-k-ε solver (Sec. 5). 

https://www.sciencedirect.com/science/article/abs/pii/S0045793007000266
https://www.sciencedirect.com/science/article/pii/S146350031830101X
https://www.sciencedirect.com/science/article/abs/pii/S0022169420313858
https://agupubs.onlinelibrary.wiley.com/doi/full/10.1002/2013WR014906
https://www.sciencedirect.com/science/article/abs/pii/S0022169420313858
https://www.tandfonline.com/doi/full/10.1080/00221686.2013.796574
https://www.sciencedirect.com/science/article/pii/S1463500319302082
https://gmd.copernicus.org/articles/11/4359/2018/
https://link.springer.com/article/10.1007/s12206-021-0518-z
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2. Computational approach 

The mathematical 5×5 RANS-k-ɛ system is presented (Section 2.1), while contrasting the excessively reduced 

complexity in the simpler DG2-SWE solver (Section 2.2). This system is transformed into a 13×13 advection-

dominated system solved by the advective DG2 formulation with various robustness treatments (Section 2.3), 

leading to the “DG2-RANS-k-ɛ turbulent flow solver” or the “DG2-RANS laminar flow solver” (without k-ɛ).    

 

2.1. Governing equations: the 5×5 RANS-k-ɛ system 

The 5×5 RANS-k-ɛ system involves two coupled sets of equations (Cea et al. 2007; Vázquez-Cendón et al. 

2009; Abakouy et al. 2017; Ginting 2019; Zhang et al. 2019; Ginting and Ginting 2019): the set of three mean-

flow equations, for which the mean-flow variables are indexed with the subscript “mean”; and, the set of two 

turbulence transport equations, for which the turbulent-flow variables are indexed with the subscript “turb”. In 

a vectorial (conservative) form, the 5×5 RANS-k-ɛ system can be expressed as follows: 𝜕𝐔𝜕𝑡 = − 𝜕𝐅𝜕𝑥 − 𝜕𝐆𝜕𝑦 + 𝜕𝐅𝐯𝜕𝑥 + 𝜕𝐆𝐯𝜕𝑦 + 𝑺  with 

𝐔 = [𝑼𝐦𝐞𝐚𝐧𝑼𝐭𝐮𝐫𝐛 ], 𝑭 = [𝑭𝐦𝐞𝐚𝐧𝑭𝐭𝐮𝐫𝐛 ], 𝐆 = [𝑮𝐦𝐞𝐚𝐧𝑮𝐭𝐮𝐫𝐛 ], 𝐅𝐯 = [𝑭𝒗𝐦𝐞𝐚𝐧𝑭𝒗𝐭𝐮𝐫𝐛 ], 𝐆𝐯 = [𝑮𝒗𝐦𝐞𝐚𝐧𝑮𝒗𝐭𝐮𝐫𝐛 ] and 𝐒 = [𝑺𝐦𝐞𝐚𝐧𝑺𝐭𝐮𝐫𝐛 ]   (1) 

In Eq. (1), 𝜕 is the partial derivative operator, 𝑡 the time and (x, y) the Cartesian coordinates of position; 𝐔 is the vector including the flow variables; 𝐅 and 𝐆 are vectors including the inviscid fluxes in the 𝑥- and 𝑦-

directions; 𝐅𝐯 and 𝐆𝐯 are vectors including the viscous fluxes in the 𝑥- and 𝑦-directions, respectively; and, 𝐒 

is the vector including the source terms. Each of vectors 𝐔, 𝐅, 𝐆, 𝐅𝐯, 𝐆𝐯  and 𝐒 have five scalar components, 

with the first three components packed in the sub-vectors with the bolded subscript “𝐦𝐞𝐚𝐧”, thus sub-indexed 

as “mean𝑖” (with 𝑖 = 1,2,3), as shown in Eq. (2) in which 𝑇 is the transpose operator: 𝑼𝐦𝐞𝐚𝐧 = (𝑈mean1 , 𝑈mean2 , 𝑈mean3)𝑇 = (ℎ, ℎ𝑢, ℎ𝑣)𝑇 𝑭𝐦𝐞𝐚𝐧 = (𝐹mean1 , 𝐹mean2 , 𝐹mean3)𝑇 = (ℎ𝑢, ℎ𝑢2 + 0.5𝑔ℎ2, ℎ𝑢𝑣)𝑇  𝑮𝐦𝐞𝐚𝐧 = (𝐺mean1 , 𝐺mean2 , 𝐺mean3)𝑇 = (ℎ𝑣, ℎ𝑢𝑣, ℎ𝑣2 + 0.5𝑔ℎ2)𝑇 𝑭𝒗𝐦𝐞𝐚𝐧 = (𝐹𝑣mean1 , 𝐹𝑣mean2 , 𝐹𝑣mean3)𝑇 = [0,2ℎ(𝐷𝑚 + 𝐷𝑡) 𝜕𝑢𝜕𝑥 − 23ℎ𝑘, ℎ(𝐷𝑚 + 𝐷𝑡) (𝜕𝑢𝜕𝑦 + 𝜕𝑣𝜕𝑥)]𝑇  𝑮𝒗𝐦𝐞𝐚𝐧 = (𝐺𝑣mean1 , 𝐺𝑣mean2 , 𝐺𝑣mean3)𝑇 = [0, ℎ(𝐷𝑚 + 𝐷𝑡) (𝜕𝑢𝜕𝑦 + 𝜕𝑣𝜕𝑥) , 2ℎ(𝐷𝑚 + 𝐷𝑡) 𝜕𝑣𝜕𝑦 − 23ℎ𝑘]𝑇  𝑺𝐦𝐞𝐚𝐧 = (𝑆mean1 , 𝑆mean2 , 𝑆mean3)𝑇 = (0,−𝑔ℎ 𝜕𝑧𝜕𝑥 + 𝑆𝑓𝑥 , −𝑔ℎ 𝜕𝑧𝜕𝑦 + 𝑆𝑓𝑦)𝑇  

(2) 

The two remaining scalar components are packed in the sub-vectors with the bolded subscript “𝐭𝐮𝐫𝐛”, 

thus sub-indexed as “turb𝑖” (with 𝑖 = 1,2), as shown in Eq. (3):  
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𝑼𝐭𝐮𝐫𝐛 = (𝑈turb1 , 𝑈turb2)𝑇 = (ℎ𝑘, ℎ𝜀)𝑇   𝑭𝐭𝐮𝐫𝐛 = (𝐹turb1 , 𝐹turb2)𝑇 = (ℎ𝑘𝑢, ℎ𝜀𝑢)𝑇  𝑮𝐭𝐮𝐫𝐛 = (𝐺turb1 , 𝐺turb2)𝑇 = (ℎ𝑘𝑣, ℎ𝜀𝑣)𝑇  𝑭𝒗𝐭𝐮𝐫𝐛 = (𝐹𝑣turb1 , 𝐹𝑣turb2)𝑇 = [ℎ (𝐷𝑚 + 𝐷𝑡𝜎𝑘) 𝜕𝑘𝜕𝑥 , ℎ (𝐷𝑚 + 𝐷𝑡𝜎𝜀) 𝜕𝜀𝜕𝑥]𝑇  𝑮𝒗𝐭𝐮𝐫𝐛 = (𝐺𝑣turb1 , 𝐺𝑣turb2)𝑇 = [ℎ (𝐷𝑚 + 𝐷𝑡𝜎𝑘) 𝜕𝑘𝜕𝑦 , ℎ (𝐷𝑚 + 𝐷𝑡𝜎𝜀) 𝜕𝜀𝜕𝑦]𝑇  𝑺𝐭𝐮𝐫𝐛 = (𝑆turb1 , 𝑆turb2)𝑇 = (𝑇𝑃𝑉1 , 𝑇𝑃𝑉2)𝑇 + (𝑇𝑃𝑏1 , 𝑇𝑃𝑏2)𝑇 + (𝑇𝑑1 , 𝑇𝑑2)𝑇 with  (𝑇𝑃𝑉1 , 𝑇𝑃𝑉2) = [min(2𝐷𝑡 Γ ℎ, 𝑐𝑙𝜀ℎ) ,min (2𝑐𝜀1𝐷𝑡 Γ ℎ 𝜀𝑘 , 𝑐𝜀1𝑐𝑙ℎ 𝜀2𝑘 )]  (𝑇𝑃𝑏1 , 𝑇𝑃𝑏2) = [min(𝑐𝑘𝑢𝑓3, 𝑐𝑙𝜀ℎ) , 𝑐𝜀 𝑢𝑓4ℎ ]  (𝑇𝑑1 , 𝑇𝑑2) = (−ℎ𝜀,−ℎ𝑐𝜀2 𝜀2𝑘  )  

(3) 

In Eq. (2), 𝑼𝐦𝐞𝐚𝐧 includes the three mean-flow variables, which are the water depth, ℎ [m], and unit-

width discharges, ℎ𝑢 and ℎ𝑣 [m2 s-1], involving the velocity components 𝑢 and 𝑣 [m s-1] in 𝑥- and 𝑦-directions, 

respectively; 𝑭𝐦𝐞𝐚𝐧 and 𝑮𝐦𝐞𝐚𝐧 are the mean-flow inviscid fluxes in which 𝑔 [m s-2] denotes the gravity 

constant; 𝑭𝒗𝐦𝐞𝐚𝐧 and 𝑮𝒗𝐦𝐞𝐚𝐧 are the mean-flow viscous fluxes in which 𝐷𝑚 [m2 s-1] is the kinematic viscosity, ℎ𝑘 [m3 s-2] is the turbulent-flow variable of the turbulent kinetic energy, 𝑘 [m2 s-2]; whereas, 𝐷𝑡 [m2 s-1] is the 

turbulent eddy-viscosity, incorporating turbulent-flow velocity fluctuations onto the mean-flow variables. As 

shown in Eqs. (4) and (5), 𝐷𝑡 further involves the turbulent kinetic energy dissipation rate, 𝜀 [m2 s-3], the 

multiplication of two strain-rate tensors Γ [s-1] and an empirical constant 𝑐𝜇= 0.09. Note that, all the empirical 

constants are selected to be the same as those used in other finite volume RANS-k-ɛ solvers (Cea 2005; Cea et 

al. 2006; Ginting 2019; Ginting and Ginting 2019). 

Γ = (𝜕𝑢𝜕𝑥)2 + (𝜕𝑣𝜕𝑦)2 + 12 (𝜕𝑢𝜕𝑦 + 𝜕𝑣𝜕𝑥)2  (4) 

𝐷𝑡 = min(𝑐𝜇 𝑘2𝜀  , 𝑘3√2Γ)  (5) 

𝑺𝐦𝐞𝐚𝐧 includes the mean-flow source terms integrating channel-bed topographical slopes, 𝜕𝑧/𝜕𝑥 and 𝜕𝑧/𝜕𝑦, where 𝑧 [m] is the ground elevation at position (𝑥,𝑦); and the friction slopes, 𝑆𝑓𝑥 = −𝑐𝑓𝑢√𝑢2 + 𝑣2 

and 𝑆𝑓𝑦 = −𝑐𝑓𝑣√𝑢2 + 𝑣2 , where 𝑐𝑓 = 𝑔𝑛𝑀2 ℎ−1/3 is a flow resistance term derived from the Manning friction 

formula, thereby approximating the vertical turbulent stresses (Gioia and Bombardelli 2001), and 𝑛𝑀 is the 

Manning’s coefficient of channel-bed roughness.  

https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.88.014501
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 In Eq. (3), 𝑼𝐭𝐮𝐫𝐛 includes the two turbulent-flow variables, consisting of ℎ𝑘 and ℎ𝜀 [m3 s-3]; 𝑭𝐭𝐮𝐫𝐛 and 𝑮𝐭𝐮𝐫𝐛 are the turbulent-flow inviscid fluxes; 𝑭𝒗𝐭𝐮𝐫𝐛 and 𝑮𝒗𝐭𝐮𝐫𝐛 are the turbulent-flow viscous fluxes in which 𝜎𝑘 = 1 and 𝜎𝜀 = 1.31 are empirical constants; 𝑺𝐭𝐮𝐫𝐛 includes the turbulent-flow source terms that is made of 

the components: (𝑇𝑃𝑉𝑖)𝑖=1,2 of the production of turbulent kinetic energy involving the empirical constants 𝑐𝑙 
= 10 and 𝑐𝜀1 = 1.44; (𝑇𝑃𝑏𝑖)𝑖=1,2 of the turbulent production from the friction effects, involving the friction 

velocity 𝑢𝑓 = [𝑐𝑓(𝑢2 + 𝑣2)]0.5, 𝑐𝑘 = 𝑐𝑓−0.5 and 𝑐𝜀 = 3.6 𝑐𝜀2 𝑐𝜇0.5𝑐𝑓−0.75 with 𝑐𝜇= 0.09 and 𝑐𝜀2 = 1.92 being 

two empirical constants; and, (𝑇𝑑𝑖)𝑖=1,2 of the production of turbulent kinetic energy dissipation rate.  

 

2.2. DG2-SWE solver 

The DG2-SWE solver uses the “slope-decoupled” advective DG2 formulation to solve the SWE (Kesserwani 

et al. 2018), which already includes accurate integration of wet-dry fronts, as they occur along steep bed-slopes 

of unsubmerged topographies, with stability-preserving integration of friction slopes (Ayog et al. 2021; Shaw 

et al. 2021). It is based on the formulation in Cockburn and Shu (2001), suited for solving advection-dominated 

partial differential equations (PDEs), to solve Eq. (2) with 𝐷𝑚 = 𝐷𝑡= 0: by local (cellwise) DG2 approximations 

to each mean-flow variable (in 𝑼𝐦𝐞𝐚𝐧) that are locally evolved by the associated component-wise spatial DG2 

operator–including the discretisations of the gradients of the associated mean-flow invicid flux component (in 𝑭𝐦𝐞𝐚𝐧 and 𝑮𝐦𝐞𝐚𝐧) and of the associated mean-flow source term component (in 𝑺𝐦𝐞𝐚𝐧). By further adopting 

the slope-decoupled DG2 formulation to span the local DG2 approximations of the mean-flow variables and 

the ground elevation too, a robust well-balanced integrations of (un)submerged topographies becomes inherent 

in the local discrete spatial DG2 operators (Kesserwani et al. 2018; Kesserwani and Sharifian 2020). 

 Compared to the standard advective DG2 formulation, the slope-decoupled formulation is 2.6 time 

less costly, to evolve one mean-flow variable [defined cellwise by 3 degrees of freedom (Eq. 11)]. Hence, 

computationally, 9 cellwise degrees of freedom are required in the DG2-SWE solver to store/evolve the three 

components of the mean-flow variables, with a time-step, ∆𝑡, restricted by a Courant number (𝐶𝑟) of 0.3.  

The DG2-SWE solver can be used as an implicit large eddy simulator (Moura et al. 2017; Kesserwani et 

al. 2023; Sun et al. 2023), by selecting an abnormally coarse resolution that is finer than the Characteristic 

Length (CL) but far larger than the turbulence length scale–quantified hereafter as 50 𝐷𝑚𝑐𝜇−1/4𝑘−1/2 (Sec. 4).  
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2.3. DG2-RANS-k-ɛ solver 

With the DG2-RANS laminar flow solver, because Eq. (2) needs to be solved with 𝐷𝑚 ≠ 0, the components of 

the mean-flow viscous fluxes (in 𝑭𝒗𝐦𝐞𝐚𝐧 and 𝑮𝒗𝐦𝐞𝐚𝐧) are included, to involve second-order derivative terms, 

which must be integrated using a different local DG2 formulation that is suited for advective-diffusive PDEs.  

With the DG2-RANS-k-ɛ turbulent flow solver, because Eq. (3) needs to be solved alongside Eq. (2) 

with 𝑘 ≠ 0, 𝜀 ≠ 0 and 𝐷𝑡 ≠ 0, there are also: the other second-order derivative terms involved in the components 

of the turbulent-flow viscous fluxes (in 𝑭𝒗𝐭𝐮𝐫𝐛 and 𝑮𝒗𝐭𝐮𝐫𝐛); and, the two turbulent-flow variables (in 𝑼𝐭𝐮𝐫𝐛) 

that must be stored/evolved using associated component-wise local spatial operators–including discretisations 

of the gradients of the turbuent-flow invicid and viscous flux components (in 𝑭𝐭𝐮𝐫𝐛, 𝑮𝐭𝐮𝐫𝐛, 𝑭𝒗𝐭𝐮𝐫𝐛 and 𝑮𝒗𝐭𝐮𝐫𝐛) 

and of the turbuent-flow source term components (in 𝑺𝐭𝐮𝐫𝐛).  

Therefore, the local DG2 formulation for advective-diffusive PDEs (Cockburn and Shu 1998) is used to 

devise the DG2-RANS-k-ɛ turbulent solver, to also include the DG2-RANS laminar flow solver. This DG2 

formulation, is more complex, mathematically and numerically, than that of used in the DG2-SWE solver.  

The added mathematical complexity stems from the need to reduce second-order derivative terms into 

first-order derivative terms (Miller et al. 2013). In doing so, the advective-diffusive 5×5 RANS-k-ɛ system is, 

first, transformed into a 13×13 system of advection-dominated PDEs (Sec. 2.3.1); and then solved by extending 

the advective DG2 formulation in Kesserwani et al. (2018), while adapting its existing wet-dry front treatments 

to preserve the positivity/stability for the mean-flow variables (Sec. 2.3.2). Numerically, the complexity arises 

from the further need to ensure positivity/stability-preserving turbulent-flow variables, which required adding 

a new combination of treatments for the turbulent-flow quantities (Sec. 2.3.3).     

 Computationally, the DG2-RANS-k-ɛ turbulent flow solver demands 39 cellwise degrees of freedom to 

store/evolve the local DG2 flow variable approximations (Sec. 2.3.2), and the DG2-RANS laminar flow solver 

needs 21 cellwise degrees of freedom, with both solvers needing a stricter ∆𝑡, than the DG2-SWE solver (Sec. 

2.2), based on a 𝐶𝑟 = 0.05.  

In what follow, only the implementation of the DG2-RANS-k-ɛ turbulent flow solver is described as that 

of the DG2-RANS laminar flow solver is embedded within.  

 

2.3.1. Transformed 13×13 system   

https://www.sciencedirect.com/science/article/pii/S0309170812001431
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The second-order derivatives in the gradients of the mean-flow viscous flux components [(𝜕𝐹𝑣mean𝑖/𝜕𝑥)𝑖=1,2,3 

and (𝜕𝐺𝑣mean𝑖/𝜕𝑦)𝑖=1,2,3, in Eq. (2)] and of the turbulent-flow viscous flux components [(𝜕𝐹𝑣turb𝑖/𝜕𝑥)𝑖=1,2 

and (𝜕𝐺𝑣turb𝑖/𝜕𝑦)𝑖=1,2, in Eq. (3)] can be removed, by incorporating auxiliary variables to designate the first-

order derivatives involved in Eqs. (2) and (3) (Hesthaven and Warburton 2007). Hence, the auxiliary variables: 𝐴𝑢𝑥, 𝐴𝑢𝑦, 𝐴𝑣𝑥, 𝐴𝑣𝑦, 𝐴𝑘𝑥, 𝐴𝑘𝑦, 𝐴𝜀𝑥 and 𝐴𝜀𝑦 are introduced based on the following identifies: 

𝐴𝑢𝑥 = 𝜕𝑢𝜕𝑥 and 𝐴𝑢𝑦 = 𝜕𝑢𝜕𝑦 𝐴𝑣𝑥 = 𝜕𝑣𝜕𝑥  and 𝐴𝑣𝑦 = 𝜕𝑣𝜕𝑦 𝐴𝑘𝑥 = 𝜕𝑘𝜕𝑥  and 𝐴𝑘𝑦 = 𝜕𝑘𝜕𝑦 𝐴𝜀𝑥 = 𝜕𝜀𝜕𝑥 and  𝐴𝜀𝑦 = 𝜕𝜀𝜕𝑦 

(6) 

 

Using Eq. (6) leads to new expressions for the mean-flow and turbulent-flow viscous flux components, 

further expressed in terms of the eight auxiliary variables, as shown in Eq. (7):  

𝑭𝒗𝐦𝐞𝐚𝐧 = (𝐹𝑣mean𝑖)𝑇𝑖=1,2,3 = [0,2ℎ(𝐷𝑚 + 𝐷𝑡)𝐴𝑢𝑥 − 23 ℎ𝑘, ℎ(𝐷𝑚 + 𝐷𝑡) (𝐴𝑢𝑦 + 𝐴𝑣𝑥) ]𝑇  𝑮𝒗𝐦𝐞𝐚𝐧 = (𝐺𝑣mean𝑖)𝑇𝑖=1,2 = [0, ℎ(𝐷𝑚 + 𝐷𝑡) (𝐴𝑢𝑦 + 𝐴𝑣𝑥) , 2ℎ(𝐷𝑚 +𝐷𝑡)𝐴𝑣𝑦 − 23ℎ𝑘]𝑇   𝑭𝒗𝐭𝐮𝐫𝐛 = (𝐹𝑣turb𝑖)𝑇𝑖=1,2 = [ℎ (𝐷𝑚 + 𝐷𝑡𝜎𝑘)𝐴𝑘𝑥 , ℎ (𝐷𝑚 + 𝐷𝑡𝜎𝜀)𝐴𝜀𝑥]𝑇  𝑮𝒗𝐭𝐮𝐫𝐛 = (𝐺𝑣turb𝑖)𝑇𝑖=1,2 = [ℎ (𝐷𝑚 + 𝐷𝑡𝜎𝑘)𝐴𝑘𝑦 , ℎ (𝐷𝑚 + 𝐷𝑡𝜎𝜀)𝐴𝜀𝑦]𝑇  

(7) 

 

However, these eight auxiliary variables enlarge the 5×5 advective-diffusive RANS-k-ɛ system into a 13×13 

system of advection-dominated PDEs that has: thirteen unknowns for the flow variable components, denoted 

by (𝑊𝑗)𝑗=1,2,…,13; and, thirteen equations, or spatial operators, denoted by (𝑅𝑗)𝑗=1,2,…,13, as shown in Eq. (8):   

𝜕𝐖𝜕𝑡 = 𝑹  𝐖 = [(𝑊𝑗)𝑗=1,2,…,13]𝑇  = [(𝑈mean𝑖)𝑖=1,2,3, (𝑈turb𝑖)𝑖=1,2, 𝐴𝑢𝑥 , 𝐴𝑢𝑦 , 𝐴𝑣𝑥 , 𝐴𝑣𝑦 , 𝐴𝑘𝑥 , 𝐴𝑘𝑦 , 𝐴𝜀𝑥 , 𝐴𝜀𝑦]𝑇  𝐑 = [(𝑅𝑗)𝑗=1,2,…,13]𝑇 = [(𝑅mean𝑖)𝑖=1,2,3, (𝑅turb𝑖)𝑖=1,2, (𝑅aux𝑖)𝑖=1,…,8]𝑇   

 𝑅mean𝒊 = − 𝜕𝐹mean𝑖𝜕𝑥 − 𝜕𝐺mean𝑖𝜕𝑦 + 𝜕𝐹mean𝑣𝑖𝜕𝑥 + 𝜕𝐺mean𝑣𝑖𝜕𝑦 + 𝑆mean𝑖    𝑅turb𝑖 = − 𝜕𝐹turb𝑖𝜕𝑥 − 𝜕𝐺turb𝑖𝜕𝑦 + 𝜕𝐹turb𝑣𝑖𝜕𝑥 + 𝜕𝐺turb𝑣𝑖𝜕𝑦 + 𝑆turb𝑖  (𝑅aux𝑖)𝑖=1,…,8 = (𝜕𝑢𝜕𝑥 , 𝜕𝑢𝜕𝑦 , 𝜕𝑣𝜕𝑥 , 𝜕𝑣𝜕𝑦 , 𝜕𝑘𝜕𝑥 , 𝜕𝑘𝜕𝑦 , 𝜕𝜀𝜕𝑥 , 𝜕𝜀𝜕𝑦)  

(8) 

 

In Eq.(8), 𝐖 = [(𝑊𝑗)𝑗=1,2,…,13]𝑇 is the vector packing the involved field variables, in the following 

order: the three components of the mean-flow variables (𝑈mean𝑖)𝑖=1,2,3, the two components of the turbulent-

flow variables (𝑈turb𝑖)𝑖=1,2 and the added auxiliary variables (𝐴𝑢𝑥, 𝐴𝑢𝑦, 𝐴𝑣𝑥, 𝐴𝑣𝑦, 𝐴𝑘𝑥, 𝐴𝑘𝑦, 𝐴𝜀𝑥, 𝐴𝜀𝑦). On the 

right-hand side, vector 𝐑 = [(𝑅𝑗)𝑗=1,2,…,13]𝑇 includes the associated component-wise spatial operators, in the 
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following order: (𝑅mean𝑖)𝑖=1,2,3 adding the advective gradients, 𝜕𝑄/𝜕𝑥 and 𝜕𝑄/𝜕𝑦, of the mean-flow inviscid 

flux components and of the mean-flow viscous flux components, and the mean-flow source term components, (𝑆mean𝑖)𝑖=1,2,3, where 𝑄 = {(𝐹mean𝑖)𝑖=1,2,3, (𝐺mean𝑖)𝑖=1,2,3,(𝐹𝑣mean 𝑖)𝑖=1,2,3 , (𝐺𝑣mean 𝑖)𝑖=1,2,3}; (𝑅turb𝑖)𝑖=1,2 

adding the advective gradients, 𝜕𝑄/𝜕𝑥 and 𝜕𝑄/𝜕𝑦, of the turbulent-flow inviscid flux components and of the 

turbulent-flow viscous flux components, with 𝑄 = {(𝐹turb𝑖)𝑖=1,2, (𝐺turb𝑖)𝑖=1,2,(𝐹𝑣turb 𝑖)𝑖=1,2 , (𝐺𝑣turb𝑖)𝑖=1,2 }; 

and (𝑅aux𝑖)𝑖=1,…,8 including the advective gradients, 𝜕𝑄/𝜕𝑥 and 𝜕𝑄/𝜕𝑦, of any of the auxiliary variables, with 𝑄 ={𝑢, 𝑣, 𝑘, 𝜀}.  

Using the notations in Eq. (8), an extended advective DG2 formulation to that of Kesserwani et al. 

(2018) is presented (Sec. 2.3.2), with a new combination of stability/positivity-preserving treatments for the 

turbulent-flow quantities (Sec. 2.3.3). The present DG2 formulation uses a computational grid made of squared 

cells (i.e., a raster-formatted grid) and was coded in the LISFLOOD-FP hydraulic modelling environment for 

setting-up and running DG2-RANS-k-ɛ turbulent flow simulations, or DG2-RANS laminar flow simulations 

using either the CPU or the GPU (Sec. 2.3.4). 

 
Figure 1. Stencil of a sample (local) cell used in the advective, slope-decoupled, DG2 formulation (Kesserwani et al. 

2018). The sample cell is centred at point C, of squared dimensions (∆x = ∆y). Points N, E, S and W mark the northern, 

eastern, southern and western face centres that are shared with the four neighbouring cells – only eastern neighbouring 

cell is shown (in line with description provided in Appendix A); across these inter-cell points, numerical fluxes are 

evaluated based on linking the inner-limits (from the side of the sample cell) to the outer-limits (e.g., from the side of 

the neighbouring cell)–appended the “+” sign. Points Gx1, Gx2, Gy1 and Gy2 are inner-cell points for evaluating the 

source terms and physical fluxes (see also Appendix A). 

 

2.3.2. Local DG2 approximation 

Each component (𝑊𝑗)𝑗=1,2,…,13 is locally represented (cellwise) by a DG2 piecewise-planar approximation. 

For simplicity, this approximation is, hereafter, designated by 𝑊𝑗(𝑥, 𝑦, 𝑡) for the sample cell shown in Fig. 1– 

centred at (𝑥𝐶 , 𝑦𝐶) and with equal cell dimensions (Δ𝑥 = Δ𝑦). The local DG2 piecewise-planar approximation 
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𝑊𝑗(𝑥, 𝑦, 𝑡) is spanned by three degrees of freedom {𝑊𝑗𝐾(𝑡)}𝐾= 0,1𝑥,1𝑦: where 𝑊𝑗0(𝑡) is an average coefficient, 

and 𝑊𝑗1𝑥(𝑡) and 𝑊𝑗1𝑦(𝑡) are 𝑥- and 𝑦-directional slope coefficients, to write as: 

𝑊𝑗(𝑥, 𝑦, 𝑡) = {𝑊𝑗𝐾(𝑡)}𝐾= 0,1𝑥,1𝑦 = 𝑊𝑗0(𝑡) + 2√3 𝑊𝑗1𝑥(𝑡) (𝑥 − 𝑥𝐶Δ𝑥 ) + 2√3 𝑊𝑗1𝑦(𝑡) (𝑦 − 𝑦𝐶Δ𝑦 ) (9) 

The average and slope coefficients, 𝑊𝑗𝐾(𝑡) in (Eq. 9) at any time 𝑡, need to be updated (for all the components, 𝑗 = 1,2,… ,13), by one time-step ∆𝑡, to time 𝑡 + ∆𝑡, using a two-stage Runge-Kutta explicit time integrator: 

      𝑊𝑗𝐾(𝑡 + ∆𝑡/2)  = 𝑊𝑗𝐾(𝑡) + ∆𝑡 𝑅𝑗𝐾  

                                  𝑊𝑗𝐾(𝑡 + ∆𝑡)  = 12 [𝑊𝑗𝐾(𝑡) +𝑊𝑗𝐾(𝑡 + ∆𝑡/2) + ∆𝑡 𝑅𝑗𝐾] (10) 

In Eq. (10), 𝑅𝑗𝐾 refers to any component-wise local spatial DG2 operator that needs to be evaluated 

from the coefficients 𝑊𝑗𝐾(𝑡) during the first time-stage and, then similarly from coefficients 𝑊𝑗𝐾(𝑡 + ∆𝑡/2) 
to complete the second time-stage. It suffices, therefore, to describe the evaluation of 𝑅𝑗𝐾 for the first time-

stage. In doing so, evaluations for 𝑊𝑗(𝑥, 𝑦, 𝑡) are required at the inner-cell points 𝑃 = {𝐶, 𝐸, 𝑊, 𝑁, 𝑆, 𝐺𝑥1, 𝐺𝑥2, 𝐺𝑦1, 𝐺𝑦2}, shown in Fig. 1, at which 𝑊𝑗(𝑃, 𝑡) takes the following values, via Eq. (9): 𝑊𝑗(𝐸, 𝑡) = 𝑊𝑗0(𝑡) + √3𝑊𝑗1𝑥(𝑡) 𝑊𝑗(𝑊, 𝑡) = 𝑊𝑗0(𝑡) − √3𝑊𝑗1𝑥(𝑡) 
(11) 

𝑊𝑗(𝑁, 𝑡) = 𝑊𝑗0(𝑡) + √3𝑊𝑗1𝑦(𝑡) 𝑊𝑗(𝑆, 𝑡) = 𝑊𝑗0(𝑡) − √3𝑊𝑗1𝑦(𝑡) 𝑊𝑗(𝐺𝑥2, 𝑡) = 𝑊𝑗0(𝑡) +𝑊𝑗1𝑥(𝑡) 𝑊𝑗(𝐺𝑥1, 𝑡) = 𝑊𝑗0(𝑡) −𝑊𝑗1𝑥(𝑡) 𝑊𝑗(𝐺𝑦2, 𝑡) = 𝑊𝑗0(𝑡) +𝑊𝑗1𝑦(𝑡) 𝑊𝑗(𝐺𝑦1, 𝑡) = 𝑊𝑗0(𝑡) −𝑊𝑗1𝑦(𝑡) 𝑊𝑗(𝐶, 𝑡) = 𝑊𝑗0(𝑡)   

These values are needed to, in turn, locally discretise the gradients of the advective flux components, (𝜕𝑄/𝜕𝑥)𝑗𝐾 and (𝜕𝑄/𝜕𝑦)𝑗𝐾, and the source term components involved in the evaluation of the component-wise 

spatial DG2 operator 𝑅𝑗𝐾. In doing so, the evaluation of (𝜕𝑄/𝜕𝑥)𝑗𝐾 and (𝜕𝑄/𝜕𝑦)𝑗𝐾 is performed differently 

depending on whether 𝑄 ∈ 𝐼inviscid or 𝑄 ∈ 𝐼viscous (see Sec. A.1); where, 𝐼inviscid includes all the inviscid flux 

components and 𝐼viscous includes all the viscous flux the components (recall Sec. 2.3.1):    𝐼inviscid = {𝐹mean1, 𝐹mean2, 𝐹mean3,𝐺mean1, 𝐺mean2, 𝐺mean3, 𝐹turb1, 𝐹turb2,𝐺turb1, 𝐺turb2}  𝐼viscous = {𝐹𝑣mean1, 𝐹𝑣mean2, 𝐹𝑣mean3,𝐺𝑣mean1, 𝐺𝑣mean2, 𝐺𝑣mean3,𝐹𝑣turb1, 𝐹𝑣turb2,𝐺𝑣turb2,𝐺𝑣turb2, 𝑢, 𝑣, 𝑘, 𝜀}  (12) 

In Appendix A, the evaluation of (𝜕𝑄/𝜕𝑥)𝑗𝐾 and (𝜕𝑄/𝜕𝑦)𝑗𝐾 is described (see Sec. A.1), building on the 

“slope-decoupled” advective DG2 formulation (Kesserwani et al. 2018), while including:  

• External boundary conditions (subcritical) based on three user-specified choices: “Inflow”, “Outflow” and 

“Closed” (as reported in Sec. A.1). These conditions are only activated at the wet cells located along any (of 

the four) boundary lines enclosing the (rectangular) computational domain.  
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• The ScWF, applied at near-dry-wall cells–the wet cells including at least one wet-dry front, or adjacent to 

dry cells (as reported in Sec. A.2). On the computational grid, the dry cells represent initial dry-wall areas 

and/or emerging areas of unsubmerged topographies. Therefore, such dry cells are identified, in the DG2-

RANS-k-ɛ solver, every time-step; thereby, the near-dry-wall cells for applying the ScWF.   

• The local (cellwise) DG2 evaluation of the mean-flow source term components, (𝑆mean𝑖𝐾 )𝑖=1,2,3, and of the 

turbulent-flow source term components (𝑆turb𝑖𝐾 )𝑖=1,2 (as reported in Sec. A.3).  

 

2.3.3. Stability/positivity-preserving treatments for the turbulent-flow quantities 

In the local DG2 approximation of the turbulent-flow variables [i.e., (𝑈turb𝑖𝐾 )𝑖=1,2 with 𝐾 = 0,1𝑥, 1𝑦], 𝑘 and 𝜀 are expected to take small positive values, usually at a scale less than 10−2, at all the wet cells throughout a 

simulation. However, spurious noises may still develop causing negative 𝑘 or 𝜀 values that lead to instabilities. 

Such noises could arise from the combined effect of roundoff errors, the wet-dry front treatments, and the local 

limiting of slope coefficients (involved in the local DG2 approximations). Therefore, the following additional 

numerical treatments for the turbulent-flow quantities were found necessary to ensure overall reliability: 

• Elimination of roundoff errors. Double-precision computations are utilised to minimise roundoff errors, 

thus assuming a roundoff error around ±10−14. Because of this, zero values for 𝑘 and 𝜀 should not be allowed 

in the local DG2 approximation of (𝑈turb𝑖)𝑖=1,2 to avoid them taking smaller magnitudes than roundoff error. 

Therefore, the smallest value that either of 𝑘 and 𝜀 could take in (𝑈turb𝑖𝐾 )𝑖=1,2 was set to the tolerance, 𝑘𝑡𝑜𝑙 =𝜀𝑡𝑜𝑙 = 10−12, starting from the initial conditions of the average coefficients, 𝑘0 = 𝑘𝑡𝑜𝑙 and 𝜀0 = 𝜀𝑡𝑜𝑙, with 

zero slope coefficients (𝑘1𝑥=𝑘1𝑦=0 and 𝜀1𝑥=𝜀1𝑦=0). This tolerance, although larger than the magnitude of 

the roundoff error, is still small enough to ensure overall reliable predictions – also because using it leads to 

local DG2 evaluation of 𝐷𝑡 that is below 10−12 (i.e., remaining significantly lower than 𝐷𝑚 = 10−6).  

• Adaptation of the wet-dry front treatments. The wet-dry front treatments (Kesserwani et al., 2018; Shaw 

et al., 2021)–incorporated in the local DG2 approximation of (𝑈mean𝑖)𝑖=1,2,3–must also be adapted to the 

velocities involved in the local DG2 approximation of (𝑈turb𝑖)𝑖=1,2. Moreover, following Cea et al. (2007), 

the adaptation considers avoiding zero values for the average coefficients 𝑘0 and 𝜀0 at the dry cells, assigning 

them as 𝑘0 = 𝑘𝑡𝑜𝑙 and 𝜀0 = 𝜀𝑡𝑜𝑙, with zero slope coefficients (𝑘1𝑥=𝑘1𝑦=0 and 𝜀1𝑥=𝜀1𝑦=0). 
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• Positivity-preserving local slope limiting. The localisation procedure (Krivodonova et al. 2004) including 

the generalised minmod limiter (Cockburn and Shu 2001) is applied to locally limit the variation of the slope 

coefficents (𝑈turb𝑖1𝑥 )𝑖=1,2 and (𝑈turb𝑖1𝑦 )𝑖=1,2–as with (𝑈mean𝑖1𝑥 )𝑖=1,2,3 and (𝑈mean𝑖1𝑦 )𝑖=1,2,3 (Ayog et al. 2021). 

This localisation procedure restricts the activation of the generalised minmod limiter to only the wet cells 

where potentially strong discontinuities could develop, thereby damping spurious oscillations from arising 

in (𝑈mean𝑖1𝑥,1𝑦 )𝑖=1,2,3. However, it can still overlook smaller-scale oscillations that could still impact the 𝑘 or 𝜀 

variables [in (𝑈turb𝑖1𝑥,1𝑦)𝑖=1,2]. To remove potentially remaining smaller-scale oscillations, the positivity 

reconstruction technique of Bonev et al. (2018) was incorporated to further refine local slope-limiting for the 𝑘 or 𝜀 variables before evaluating the discrete DG2 spatial operators. For the variable 𝑘, for example, the 

positivity reconstruction initially imposes 𝑘0 = 𝑘𝑡𝑜𝑙 if 𝑘0 ≤ 𝑘𝑡𝑜𝑙 with 𝑘1𝑥 = 𝑘1𝑦 = 0, or otherwise (𝑘0 >𝑘𝑡𝑜𝑙), retains the 𝑘0 value, but potentially rescales slope coefficients 𝑘1𝑥 and 𝑘1𝑦 via the following indicators:  

𝜃𝑥 = min(1, 𝑘0𝑘0 −min(𝑘𝐸 , 𝑘𝑊)) 

𝜃𝑦 = min(1, 𝑘0𝑘0 −min(𝑘𝑁 , 𝑘𝑆)) 

(13) 

In Eq. (13), both indicators 𝜃𝑥 and 𝜃𝑦 take the value of 1 when the evaluated local DG2 approximation 

of 𝑘 takes positive values at all points 𝑃 inside the sample cell (Fig. 1). Otherwise, if one of the indicators 𝜃𝑥 

or 𝜃𝑦 is below 1, the following rescaling must be applied for the slope coefficients, 𝑘1𝑥 and 𝑘1𝑦, for stability: 

𝑘1𝑥 = {  
  −(𝑘0 − 𝑘𝑡𝑜𝑙√3 )                   if 𝜃𝑥 < 1 and  𝑘𝑊 > 𝑘𝐸(𝑘0 − 𝑘𝑡𝑜𝑙√3 )                      if 𝜃𝑥 < 1 and 𝑘𝐸 > 𝑘𝑊  

𝑘1𝑦 = {  
  −(𝑘0 − 𝑘𝑡𝑜𝑙√3 )                   if 𝜃𝑦 < 1 and  𝑘𝑆 > 𝑘𝑁(𝑘0 − 𝑘𝑡𝑜𝑙√3 )                      if 𝜃𝑦 < 1 and 𝑘𝑁 > 𝑘𝑆  

(14) 

• Time-stepping criterion. The time-step ∆𝑡 is the minimum allowable one across all the computational cells 

to ensure stability. It is calculated based on the Courant–Friedrichs–Lewy condition, with a Courant number 𝐶𝑟 of 0.05 to ensure stability for the invicid, viscous and turbulent-eddy terms. After each update, Eq. (10), 

the time-step ∆𝑡 is calculated as follows:  
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∆𝑡 = 𝐶𝑟 × min [  Δ𝑥|𝑢𝐶| + √𝑔ℎ𝐶  ,  Δ𝑦|𝑣𝐶| + √𝑔ℎ𝐶  ,  Δ𝑥Δ𝑥𝐷𝑚 + (𝐷𝑡)𝐶   ,  𝛥𝑦𝛥𝑦𝐷𝑚 + (𝐷𝑡)𝐶  ] (15) 

 

2.3.4. Open-source integration, parallelisation and reproducibility  

The code, of the DG2-RANS-k-ε turbulent flow solver, was programmed and integrated into the LISFLOOD-

FP modelling environment (Shaw et al. 2021), building upon the two existing DG2-SWE solver’s codebases 

(Shaw et al. 2021): the OpenMP version, for making DG2-RANS-k-ε simulations on a multi-core CPU; and 

the CUDA version for faster DG2-RANS-k-ε simulations on the GPU. The code of DG2-RANS-k-ε turbulent 

flow solver is open source on Zenodo under a GPLv3.0 (Hajihassanpour et al. 2024).  

In the Zenodo repository (Hajihassanpour et al. 2024), the (test-specific, Sec. 4) setup initial condition files 

(to start simulations)–DG2 approximation (raster) data of both the initial flow variables and ground elevations 

(Sec. 3.1)–are also included to reproduce the simulated test cases (Sec. 4). In addition to the initial  conditions, 

the LISFLOOD-FP code needs initial parametrisations (e.g., to select among the DG2-RANS-k-ε turbulent 

flow solver and the DG2-RANS laminar flow solver, or whether to run on the CPU or the GPU), which are 

documented in a dedicated webpage at https://www.seamlesswave.com/DG2_RANS.   

 
Table 1. Test cases (subcritical flow, developing vortical structures past topographies) used to evaluate the DG2-RANS-

k-ɛ turbulent flow solver (Sec. 4.1) and DG2-RANS laminar flow solver (Sec. 4.2), contrasted against DG2-SWE solver; 

the test-specific Reynolds number (Re), Characteristic Length (CL) and Aspect Ratio (AR).       

Evaluation test cases (Sec. No.) Re  CL (m)  AR* 
 

Turbulent flows (4.1) 

Vortex shedding past a conical island (4.1.1)–submerged 

Vortex shedding past a conical island (4.1.1)–surface-piercing  

6k 

5k  

0.054 (surface-water level) 

0.045 (surface-water level)    
 

28.1  

Recirculation flow in sharp building cavities (4.1.2)  112k 0.35 (width of building cavities) 51.1 

Flow past a square block in a diverting T-junction  (4.1.3)  7.4k 0.05 (square block dimension) 6.52 
 

Laminar flows (4.2) 

Wake past a cylinder (4.2.1) 0.2k 0.004 (diameter of cylinder)  0.85 

Wake interactions past many cylinders (4.2.2) 0.22k 2.0 

* The AR of a channel’s width to the flow depth (Shinneeb et al. 2021) can be used to measure the validity of the inviscid 

SWE assumption: the bigger the AR, the more significant the influence of the size and strength of vortical flow structures; 

thus, the less competitive would the DG2-SWE solver be usable as an alternative to the DG2-RANS-k-ɛ solver. 

 

3. Evaluation approach and runtimes 

DG2-RANS/DG2-RANS-k-ε and DG2-SWE simulations were run to reproduce five test cases (summarised in 

Table 1), all developing quasi-steady vortical flow structures that occur past (un)submerged topographies. The 

first three turbulent flow test cases involve compound eddies of different sizes, that could only be reproduced 

by the DG2-RANS-k-ε solver from the medium resolution (Table 2, Sec. 4.1). The last two laminar flow test 

cases involve wakes that are more reliably reproduced by the DG2-RANS solver from the medium resolution 

https://www.seamlesswave.com/DG2_RANS
https://doi.org/10.1063/5.0057343
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(Table 2, Sec. 4.2). In contrast, the DG2-SWE simulations provide the most reliable predictions for the coarse 

resolution, at which it tends to become usable as an implicit large eddy simulator (Table 2, Sec. 4).  

     
3.1. Integration of the topographies and robustness 

DG2 approximation data of ground elevations [i.e., three raster data files, defining the degrees of freedoms for 

spanning the (time-invariant) ground elevation 𝑧–described in Shaw et al. (2021)’s Sec. 2.1.1], were generated 

from a (test-specific) raster-formatted Digital Elevation Model (DEM). The DEMs were created such that dry-

wall areas, located inside the computational domain, are given an unrealistically high ground elevation value 

[e.g., areas spanning: the rectangular blocks in-between cavities (Sec. 4.1.2), the main-branch’s square block 

and the rectangular walls in the side-branch (Sec. 4.1.3)]. Therefore, based on the setup initial condition files–

DG2 approximation data of initial flow variables and ground elevations– the in-domain areas of unsubmerged 

topographies will be identified as dry cells at the start of any simulation. However, the identification of dry 

cells is performed every time-step during simulations.  

 Videos to watch the performance of the DG2-RANS-k-ε turbulent flow solver for most of the simulated 

test cases are available on: https://www.seamlesswave.com/DG2_RANS (videos linked to test-case images). 

The animated simulation of “Vortex shedding past a conical island (4.1.1)–surface-piercing” demonstrates the 

solver’s ability to deal with moving dry-wall boundaries arising from continuously-and-periodically-moving 

wet-dry fronts. Whereas the animated  simulation of the “Flow past a square block in a diverting T-junction  

(4.1.3)” demonstrates robustness: the DG2-RANS-k-ε turbulent flow solver successfully converged despite 

starting the simulation from zero initial flow variables.   

 

3.2. Simulation set-up and resolutions  

The DG2-RANS/DG2-RANS-k-ε simulations used the “Inflow” and “Outflow” boundary conditions along the 

computational domain’s inflow and outflow, respectively, or otherwise the “Closed” boundary conditions were 

used. Similar boundary conditions were used with the DG2-SWE simulations. The simulations are explored 

for three resolutions coarse, medium and fine–the coarse being strictly smaller than the CL and the fine being 

as close as possible to the turbulence length scale (depending on the specifics of each test case, Sec. 4).  

The selected resolutions led to small-sized computational grids (20k-to-250k cells, Table 2), on which 

DG2-SWE simulations yield similar CPU (10 threads) and GPU runtimes (V100 card)–demonstrated in Shaw 

et al. (2021). Therefore, only the GPU runtimes are reported for the DG2-SWE simulations (Table 2). Whereas 

https://www.seamlesswave.com/DG2_RANS
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the DG2-RANS/DG2-RANS-k-ɛ simulation runtimes are reported for both the CPU and the GPU runs (Table 

2), with analysis of GPU-to-CPU speedups and of GPU speedups with respect to the DG2-SWE simulations.  

Table 2. CPU and GPU runtimes for the DG2-RANS-k-ɛ turbulent flow simulations (Sec. 4.1) and the DG2-RANS 

laminar flow simulations (Sec. 4.2); GPU runtimes for the DG2-SWE simulations–at fine, medium and coarse resolutions. 

Test case (Sec. No.) DG2-RANS-k-ɛ solver DG2-SWE solver 

 CPU runtime (hr)  

[cells No. (in k)] 

GPU runtime (hr)  

[CPU/GPU] 

GPU runtime (hr)  

[RANS-k-ɛ/SWE] 

Turbulent flows (4.1) Coarse Medium Fine Coarse Medium Fine Coarse Medium Fine 

Vortex shedding past a conical 

island (4.1.1)–submerged  

1.1 

[16.4] 

12.3 

[64.9] 

102.1 

[259.7] 

0.75 

[1.46] 

2.9 

[4.2] 

17.75 

[5.75] 

0.03 

[25] 

0.08 

[36.3] 

0.3 

[59.2] 

Recirculation flow in sharp 

building cavities (4.1.2) 

-- 6.21 

[21.0] 

38.5 

[84.0] 

-- 2.7 

[2.3] 

8.3 

[4.63] 

-- 0.04 

[67.5] 

0.1 

[83] 

Flow past a square block in a 

diverting T-junction (4.1.3) 

2.2 

[35.5] 

14.5 

[142.1] 

218.5 

[568.0] 

0.83 

[2.65] 

4.66 

[3.11] 

34.5 

[6.33] 

0.03 

[27.7] 

0.1 

[46.6] 

0.38 

[90.8] 

 

 DG2-RANS solver DG2-SWE solver 

CPU runtime (hr)  

[cells No. (in k)] 

GPU runtime (hr)  

[CPU/GPU] 

GPU runtime (hr)  

[RANS/SWE] 

Laminar flows (4.2) Coarse Medium Fine Coarse Medium Fine Coarse Medium Fine 

Wake past a cylinder (4.2.1) 9.6 

[15.6] 

72.2 

[62.4] 

617.8 

[249.8] 

9.0 

[1.06] 

32.0 

[2.25] 

200.0 

[3.09] 

0.18 

[50] 

-- -- 

Wake interactions past many 

cylinders (4.2.2) 

-- 1309.1 

[1000] 

-- -- 199.3 

[6.56] 

-- 2.5 

[--] 

-- -- 

 

3.3. Runtime cost 

The computational cost of the DG2-RANS/DG2-RANS-k-ɛ solver is greatly higher than that of the DG2-SWE 

solver since (Secs. 2.2 and 2.3): (i) in the former, there are 12 to 30 additional degrees of freedom involved, 

adding to the 9 degrees of freedom involved in the latter, resulting in larger (cellwise) operational costs; (ii) 

the former must at least use the medium resolution to acquire reliable simulations, whereas only the coarse 

resolution is suited for the latter to acquire acceptable simulations (shown in Sec. 4); and, (iii) the former has 

a greatly smaller time-step than that of the latter. Consequently, as shown in Table 2, the former entails greatly 

larger runtimes (hours to days) than the latter (minutes to hours) in all the simulated test cases.  

In Table 2, the runtimes by the DG2-RANS/DG2-RANS-k-ɛ simulations are shown for both the CPU 

and the GPU runs, including the relative GPU-to-CPU speedup ratios. Also, the GPU runtimes from the DG2-

SWE simulations are included with the associated speedup ratios with respect to the DG2-RANS/DG2-RANS-

k-ɛ simulations. On average, the runtimes of the DG2-RANS/DG2-RANS-k-ɛ solver are reduced, by around 

7-fold, when doubling the resolution from fine to medium and further reduced, by around 2-to-6-fold, when 

running on the GPU. Notably, the DG2-RANS/DG2-RANS-k-ɛ solver achieve considerable speedups on the 
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GPU despite using small-sized grids (e.g., 20k-to-250k cells, Table 2), indicating that the use of GPU is suited 

to alleviate the costs of storing/evolving its large number of degrees of freedom.  

Compared to the DG2-SWE solver, the DG2-RANS/DG2-RANS-k-ɛ solver is 25-to-90-fold slower to 

run. However, the DG2-SWE solver’s costs are incomparable with the DG2-RANS/DG2-RANS-k-ɛ solver’s 

costs: the former tends to succeed (as an implicit large eddy simulator) for the coarse resolution; whereas, the 

latter can succeed from the medium resolution (Table 2, Sec. 4). Overall, the analysis of runtime costs suggests 

using medium-resolution DG2-RANS/DG2-RANS-k-ɛ GPU runs in favour of efficiency to fairly match the 

accuracy of the fine-resolution runs (as shown in the results and discussion, Sec. 4).  

 

3.4. Quantitative comparison metrics  

The simulated velocity fields will be compared qualitatively and quantitively (Sec. 4). The quantitative metrics 

will be based on three scores, hereafter denoted by: L1, R2 and RI and shown in Eqs. (16-18). For any simulated 

velocity field, these scores were evaluated with reference to measured data (limited and test-specific); and, 

more generally, with reference to the most accurate simulation data (i.e., the fine-resolution DG2-RANS/DG2-

RANS-k-ε simulation available at all grid points) when comparing two simulated 2D spatial maps.  

The L1 score, or L1-norm error in (Eq. 16), measures the average deviation between the simulated and 

the reference data (L1 closer to 0 means less deviation); the R2 score, or the coefficient of determination (square 

of the correlation coefficient, Eq. 17) measures the extent to which the simulated data fits the reference data 

(the closer the R2 to 1 the better the fit); and the RI score, or the relevance index (Eq. 18), measures directional 

alignments between the simulated and reference data [RI = 1 (perfect alignment) and -1 (opposite alignment)].  𝐿1 = 1𝑁𝑠(∑ |𝑉𝑝Ref−𝑉𝑝Sim|𝑁𝑠𝑝=1 )        (16) 

𝑅2 = { ∑ [(𝑉𝑝Ref−𝑉̅𝑝Ref)(𝑉𝑝Sim−𝑉̅𝑝Sim)]𝑁𝑠𝑝=1√[∑ (𝑉𝑝Ref−𝑉̅𝑝Ref)𝑁𝑠𝑖=𝑝 2][∑ (𝑉𝑝Sim−𝑉̅𝑝Sim)𝑁𝑠𝑝=1 2]  }
2
       (17) 

𝑅𝐼 = 1𝑁𝑠 {∑ [(𝑢𝑝Ref𝑢𝑝Sim+𝑣𝑝Ref𝑣𝑝Sim)𝑉𝑝Ref𝑉𝑝Sim ]𝑁𝑠𝑝=1 }       (18) 

In Eqs. (16-18), 𝑁𝑠 is the total number of points considered in the velocity data sample; superscripts “Ref” vs. 

“Sim” designate reference vs. simulated data, respectively; 𝑢𝑝, and 𝑣𝑝 are the longitudinal and transverse 

velocity components at any sample points 𝑝, respectively; and 𝑉𝑝 = (𝑢𝑝2 + 𝑣𝑝2)0.5 is the velocity magnitude. 
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              (a) 

 
                           (b) 

 
(c) 

Figure 2. Vortex shedding past a conical island: (a) domain area showing the steady inflow (using arrows) and the conical 

island; (b) the profile of the conical island along section A-A; and (c) observed, instantaneous, velocity field [reprinted 

from Lloyd and Stansby (1997a) with permission from ASCE] in the wake region.  

 

4. Results and discussion 

4.1. Turbulent flows 

4.1.1. Vortex shedding past a conical island  

A turbulent flow (𝑅𝑒 = 6,210) with periodic vortex shedding past an island is investigated (Lloyd and Stansby 

1997a). The domain area is 9.75 m long and 1.52 m wide; it has a flat and smooth bed (nM = 0.014) including 

a conical island located 5 m from the inflow (Fig. 2a). The height of the conical island is 0.049 m, its side slope 

is 8.0°, and its top and bottom base diameters are 0.05 and 0.75 m, respectively (Fig. 2b). The inflow (along 

the transverse cross-section x = 0 m) has a velocity, of 𝑈∞ = 0.115 s-1 m, and the surface-water level is 0.054 

m (CL = 0.054 m, Table 1), slightly submerging the island  past which the quasi-steady flow involves periodic 

vortex shedding cycles. In Fig. 2c, an observed instantaneous velocity field in the wake region past the island 

[from x = 5 m (centre of the island) to 6.2 m past the two-gauge points P1 (6.02 m, 0.76 m) and P2 (6.02 m, 

1.03 m)] is shown (Loyd and Stansby1997a), which is divided into equidistant subregions of 0.75 m (following: 

http://coastal.usc.edu/currents_workshop/problems/prob1.html). Along the area of vortex shedding (0.6 m ≤𝑦 ≤0.9 m and 5 m ≤ 𝑥 ≤ 6.2 m) subregion 1 exhibits a zone of recirculating flow and subregions 2 and 3 are 

http://coastal.usc.edu/currents_workshop/problems/prob1.html
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dominated by flows that are skewed towards P2 and P1, respectively. Outside this area, the flow is quite 

rectilinear (Fig. 2c). At P1 and P2, the measured time-series of v-velocity components allow the number of 

vortex-shedding period cycles (𝑁𝑐𝑦𝑐) to be calculated, indicating roughly that 𝑁𝑐𝑦𝑐 = 8 for around 80 s (i.e., 

based on the plots of v-velocity time-series in http://coastal.usc.edu/currents_workshop/problems/prob1.html). 

 
Figure 3. Vortex shedding past a conical island. Time-series of simulated transverse velocity profiles compared with the 

measured data (Lloyd and Stansby 1997): (a)-(c) at gauge-point P1 from the fine-, medium-, and coarse-resolution DG2-

RANS-k-ɛ and DG2-SWE simulations; and (d)-(f) at gauge-point P2 for the same simulations, respectively. The R2 scores 

shown were calculated with reference to the measured data and 𝑁𝑐𝑦𝑐 represents the number of period cycles per data.  

 

Fine- (0.0076 m or 0.14CL, using 259,772 cells), medium- (0.0152 m or 0.28CL, using 64,943 cells), 

and coarse-resolution (0.0304 m or 0.56CL, using 16,422 cells) DG2-RANS-k-ɛ and DG2-SWE simulations 

were run, such that the medium resolution matches that reported in Loyd and Stansby (1997a). The simulation 

time was 500 s and the time-series of v-velocity profiles were extracted during that last 80 s (between 420  and 

500 s) to be compared with the measured v-velocity time-series, of relevance to assess the ability of the DG2-

RANS-k-ɛ and DG2-SWE solvers in tracking vortex-shedding period cycles. A video of the fine-resolution 

DG2-RANS-k-ε simulation is on https://www.seamlesswave.com/DG2_RANS (linked to the test-case image). 

In Fig. 3, the simulated v-velocity time-series are plotted and compared with the measured data at P1 

(along section A-A) and at P2 (along the rectilinear flow), shown in Fig. 3a-3c and Fig. 3d-3f, respectively. 

With the DG2-RANS-k-ɛ simulations, the tracking of the vortex-shedding period cycles is most accurately 

achieved at the fine-resolution (highest R2 scores, all calculated with respect to the measured data)–as expected, 

http://coastal.usc.edu/currents_workshop/problems/prob1.html
https://www.seamlesswave.com/DG2_RANS
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since 0.0076 m is close to the turbulence length scale (0.007 m). This accurate tracking is acceptably preserved 

at the medium resolution (slightly lower R2 scores), that leads to the same number of vortex-shedding period 

cycles as at the fine resolution: 𝑁𝑐𝑦𝑐 = 9, which is the closest to 𝑁𝑐𝑦𝑐 = 8 seen in the measured data. In contrast, 

at the coarse resolution, a larger 𝑁𝑐𝑦𝑐 = 11 is predicted, revealing the inability of the DG2-RANS-k-ɛ solver to 

track the vortex-shedding period cycles below the medium resolution.  

With the DG2-SWE simulations (also shown in Fig. 3a-3c and Fig. 3d-3f), the tracking ability of the 

number of vortex-shedding period cycles is at best similar to that of the coarse-resolution DG2-RANS-k-ɛ 

simulation (better-to-similar R2 scores). At both the fine and medium resolution, 𝑁𝑐𝑦𝑐 = 10 is predicted but 

with an enlarged velocity magnitude compared that seen in the DG2-RANS-k-ɛ simulations and the measured 

data; whereas, at the coarse resolution, the velocity magnitude is fairly reproduced but with a larger 𝑁𝑐𝑦𝑐 = 11. 

Hence, none of the DG2-SWE simulations can compete with the medium- and fine-resolution DG2-RANS-k-

ɛ simulations when reproducing the vortex-shedding period cycles and the velocity magnitude. Next in Fig. 4, 

the simulated 2D spatial maps of velocity fields were plotted at the first half-period cycle [i.e., based on the v-

velocity profiles at P1, around 5 s (Fig. 3a-3c)]. However, any score shown in Fig. 4 (for L1, R2 and RI) is an 

average of the scores calculated from the (unshown) simulated 2D spatial maps at all the cycles.  

In Fig. 4, the instantaneous velocity fields in the wake region (Fig. 2c) are shown in terms of direction 

and magnitude for the coarse-, medium- and fine-resolution DG2-SWE and DG2-RANS-k-ɛ simulations.  

Except for the dead zone of flow recirculation in subregion 1, all the simulations predict the same directional 

flow alignment in subregions 2 and 3. In these regions, the velocity magnitude is consistently similar for the 

DG2-RANS-k-ɛ simulations but significantly deviates for the DG2-SWE simulations, which exhibit spurious 

overestimations that tend to amplify with the resolution refinement. In subregion 1, only the medium- and fine-

resolution DG2-RANS-k-ɛ simulations could well reproduce the patterns of the dead zone of flow recirculation 

detected in the observed velocity field (Fig. 2c); whereas a spuriously transverse flow occurs with the coarse-

resolution DG2-RANS-k-ɛ simulation that is further amplified with the DG2-SWE simulations.  

Because a score shown in Fig. 4 (among the L1, R2 and RI scores) is the average of the scores extracted 

from instantaneous velocity fields at all the vortex-shedding period cycles, the standard deviation was also 

calculated to analyse the consistency in the spatial predictions across the period cycles. The average scores for 

the medium-resolution DG2-RANS-k-ɛ simulation (i.e., L1 = 0.003, R2 = 0.98 and RI = 0.99) show that it is 

very close to the fine-resolution simulation, which is relatively not the case for the coarse-resolution simulation 
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(i.e., L1 = 0.011, R2 = 0.86 and RI = 0.93), reinforcing the need to use at least the medium resolution. Moreover, 

the standard deviation is found zero with the DG2-RANS-k-ɛ simulations despite the resolution, which signals 

that the same spatial predictions occurred at any period cycle.  

 
 
 

         (a)           (b)            (c) 

   

          (d)           (e)           (f) 

Figure 4. Vortex shedding past a conical island: (a-c) and (d-f) show the instantaneous (i.e., at around 5 s in Fig. 3a-3c, 

first half-period cycle) 2D map of velocity field and magnitude from the coarse-, medium- and fine-resolution DG2-SWE 

and DG2-RANS-k-ɛ simulations, respectively; any score for L1, R2 and RI was time-averaged from the scores (i.e., with 

reference to the simulation data shown in sub-figure 4f) calculated for all the 2D maps at the period cycles.  

 

With the DG2-SWE simulations, the averages (scores shown in Fig. 4) and standard deviations are 

found to be the largest with fine resolution (i.e., L1 = 0.019 ± 0.007, R2 = 0.79 ± 0.05 and RI = 0.87 ± 0.089), 

but reduced with the medium resolution (i.e., L1 = 0.012 ± 0.002, R2 = 0.86 ± 0.02 and RI = 0.917 ± 0.025), 

and reduced further with the coarse resolution (i.e., L1 = 0.013 ± 0.001, R2 = 0.85 ± 0.01 and RI = 0.922 ± 

0.010). This reinforces that the DG2-SWE simulation at the coarse resolution is able to provide more reliable 

and consistent prediction of time-averaged spatial velocity fields than at the finer resolutions.   

For the same island, the surface-piercing case (Lloyd and Stansby 1997b) was also simulated, starting 

from a surface-water level of 0.045 m (CL = 0.045 m, Table 1). As there is no velocity time-series reported for 

this case, its DG2-RANS-k-ε simulation was not analysed. However, a video showing the medium-resolution 
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DG2-RANS-k-ε simulation is on https://www.seamlesswave.com/DG2_RANS (linked to the test-case image). 

As shown in the video, the DG2-RANS-k-ε solver can reproduce periodic vortex-shedding, matching that seen 

for a measured instantaneous velocity vector field at the same resolution [i.e., Fig. 6(a) in Lloyd and Stansby 

(1997b), which is shown in the test-case image on https://www.seamlesswave.com/DG2_RANS].       

 

4.1.2. Recirculation flow in sharp building cavities 

A turbulent flow (𝑅𝑒 = 112,673) is considered in a computational domain including steep (dry) buildings (i.e., 

grey rectangles in Fig. 5a, assigned a high ground elevation), that are 0.35 m wide (CL = 0.35 m, Table 1), 

defining side-wall “sharp building cavities”. Experiments (Rubinato 2015), made at the University of Sheffield 

(nM = 0.011, longitudinal bed-slope is 0.001 m m-1) , included instantaneous velocity fields from particle image 

velocimetry (PIV) measurements at 16 cm resolution (Rubinato et al. 2021). The inflow is not rectilinear along 

the transverse cross-section (i.e., blue arrows in Fig. 5a), and was extracted, as line-source (i.e., shown in Fig. 

5b), from the time-averaged 2D map of the measured velocity fields (i.e., shown in Fig. 5c).  

As shown in Fig. 5b, the skewed inflow is dominated by the v-velocity component, leading to highly 

turbulent flow along the upper part of the channel including the first two cavities (Fig. 5c). Along this part, the 

entering flow includes compound eddies, of various sizes, along the zone spanning the first building and the 

first cavity, that lead a skewed shear layer thereafter, towards the second cavity around which an eddy of flow 

recirculation occurs (Navas-Montilla et al. 2019). In the lower part of the channel (Fig. 5c), the flow is not as 

complex, exhibiting individual eddies in the bottom corner and in the cavities (i.e., from rectilinear shear layers 

along the cavity entrances, after the flow becoming rectilinear by the end of the first building).    

The DG2-SWE and DG2-RANS-k-ɛ simulations were conducted for resolutions that are much coarser 

than the optimal 0.003 m resolution of the turbulence length scale: the fine resolution was dictated by that of 

the skewed inflow (0.16 m or around 0.46CL, using 84,016 cells) and the medium resolution was twice-coarser 

(0.32 m or around 0.9CL, using 21,004 cells). Resolutions coarser than 0.32 m were not explored (exceed the 

CL) nor finer than 0.16 m (lead to instabilities). The simulations started from zero initial flow conditions and 

in an extended domain’s length, of 11.4 m, and computational duration of 600 s to avoid interferences between 

the outflow boundary conditions and the turbulent-flow velocity fluctuations (could affect convergence). 

https://www.seamlesswave.com/DG2_RANS
https://www.seamlesswave.com/DG2_RANS
https://www.sciencedirect.com/science/article/pii/S0021999119304450?via%3Dihub
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(a)                                                                                                           (b) 

 

 

 
(c)  

 

 
     (d) 

 

 
(e)  

 

 
(f)  

 

 
(g) 

 

 
(h) 

Figure 5. Recirculation flow in sharp building cavities: (a) channel with the cavities between rectangular buildings (the 

blue arrows indicate the inflow); (b) components of the velocity along the transverse cross-section (𝑥 = 0) at the inlet. 

Panel (c): streamlines and magnitude of the measured velocity field (time-averaged experimentally) in the portion of the 

channel including the first two cavities; (d) time-series of L1-error, calculated between the instantaneous 2D map of 

simulated velocity fields and the measured velocity field–the shown L1, R2 and RI scores were similarly calculated but 

only during the time-averaging interval [500 s, 600 s]; (e-h) streamlines and magnitude of time-averaged 2D maps from 

the fine- and medium-resolution DG2-RANS-k-ɛ and DG2-SWE simulations, respectively–the shown L1, R2 and RI were 

evaluated with reference to the simulation data shown in sub-figure 5e.  
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In Fig. 5d, the shown L1-error time-series were calculated between the instantaneous 2D map of the 

simulated velocity fields and the (time-averaged 2D map of the) measured velocity field; whereas, the shown 

L1, R2 and RI scores were calculated based the on time-averaged 2D maps of the simulated velocity fields (i.e., 

after averaging of the instantaneous 2D maps of the simulated velocity fields during 500 s and 600 s). As seen 

in Fig. 5d, the fine-resolution DG2-RANS-k-ɛ simulation has the lowest and the steepest L1-error, settling to 

values around 0.02; thus, produces instantaneous velocity fields with the closest variations with respect to the 

measured velocity field. The medium-resolution DG2-RANS-k-ɛ simulation has a slightly higher L1-error, thus 

show a relatively wider range of variations in its instantaneous velocity fields. With the DG2-SWE simulations, 

the L1-error at the fine resolution is only lower than at the medium resolution in the first 100 s, where it exhibits 

a similar range of variations as that the L1-error for the medium-resolution DG2-RANS-k-ɛ simulation. After 

100 s, the L1-error with both the fine- and medium-resolution DG2-SWE simulations are close to each other 

and stagnate to values between 0.03 and 0.04, indicating that their prediction of velocity fields may have larger 

magnitudes compared to those predicted by the medium-resolution DG2-RANS-k-ɛ simulation. Ultimately, 

the DG2-SWE simulation tends to have a lower L1-error at the medium resolution indicating that the medium-

resolution simulation is likely to provide more reliable predictions than the fine-resolution simulation.  

In Fig. 5d, the L1, R2 and RI scores compare the time-averaged 2D maps from the simulated velocity 

fields with respect to the 2D map of the measured data (experimentally time-averaged). Note that, the L1 scores 

(i.e., time-averaged L1-error) are lower than the instantaneous L1-error, suggesting that time-averaging renders 

the predicted velocity fields closer to the measured data. From the L1, R2 and RI scores, it can be inferred that: 

the fine-resolution DG2-RANS-k-ɛ simulation is the most accurate (i.e., L1 = 0.018, R2 = 0.90 and RI = 0.88), 

then comes the medium-resolution DG2-RANS-k-ɛ simulation (i.e., L1 = 0.021, R2 = 0.88 and RI = 0.86), 

followed by the medium-resolution DG2-SWE simulation (i.e., L1 = 0.025, R2 = 0.74 and RI = 0.86) that is 

more accurate than the fine-resolution DG2-SWE simulation (i.e., L1 = 0.026, R2 = 0.69 and RI = 0.86).  

In Fig. 5e, the streamlines and magnitude of the time-averaged 2D map is shown for the fine-resolution 

DG2-RANS-k-ɛ simulation (used as the reference data to calculate the L1, R2 and RI scores shown in Fig. 5f-

5h); and the maps for the medium-resolution DG2-RANS-k-ɛ simulation and the fine- and medium-resolution 

DG2-SWE simulations, shown in Fig. 5f to Fig. 5h, respectively. For the upper part of the channel, the size, 

position and near-zero velocity magnitude of the compound eddies–up to the second cavity–are best captured 

by the fine-resolution DG2-RANS-k-ɛ simulation (Fig. 5e vs. Fig. 5c). Comparatively, the medium-resolution 
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DG2-RANS-k-ɛ simulation (Fig. 5e vs. Fig. 5f) shows slight loss of accuracy in predicting the size of the 

compound eddies but still preserves the prediction of the near-zero velocity magnitude (i.e., L1 = 0.008, R2 = 

0.76 and RI = 0.94). In contrast, the DG2-SWE simulations predict spurious velocity magnitudes around the 

compound eddies and change the location of the entering eddy (Fig. 5e vs. Fig. 5g and Fig. 5e vs. Fig. 5h).  

In the lower part of less complex flow, all individual eddies are quite well-captured with all the DG2-

RANS-k-ɛ and the DG2-SWE simulations (Fig. 5e vs. Fig. 5f-5h). However, the medium-resolution DG2-

SWE simulation (i.e., L1 = 0.012, R2 = 0.679 and RI = 0.92) outperforms the fine-resolution DG2-SWE 

simulation (i.e., L1 = 0.013, R2 = 0.676 and RI = 0.94). Note that, some of the secondary eddies in the cavities 

seen in the measured velocity field (Fig. 5c) are not as clear in the simulated ones (Fig. 5e-5f), likely because 

numerical time-averaging is smoother than the experimental time-averaging.  

The analysis of Fig. 5 indicates that the fine-resolution DG2-RANS-k-ɛ simulation seems inevitable to 

reproduce the size, magnitude, and positions of compound eddies. Notably, the fine resolution (0.46CL) is here 

quite larger than resolution at the turbulence length scale (0.0086CL), yet the fine-resolution DG2-RANS-k-ɛ 

solver could reproduce the compound eddies of various sizes. The medium-resolution (0.9CL) DG2-RANS-k-

ɛ simulation preserves an accurate prediction for the velocity magnitudes but can change the eddies’ size and 

position. The DG2-SWE simulations acquire competitive predictions outside the zone of complex flow with 

compound eddies and is more accurate with the medium resolution.  

 

4.1.3. Flow past a square block in a diverting T-junction 

This test case involves complex main-to-lateral flow separation in a T-junction system, made of three-branches 

(Fig. 6a). The main-branch flow develops compound eddies past the (dry, topographical) square block, located 

before the entrance into the side-branch. The compound eddies in the main-branch [shown in Fig. 6b based on 

the zoomed-in snapshot; reproduced by a three-dimensional (3D) RANS turbulent flow simulator (Mignot et 

al. 2013)] impacts the zone of flow separation as the flow diverts into the side-branch.  

The T-junction system has a smooth and flatbed (nM = 0.01). In the computational domain, the main-

branch’s 5 cm square block (CL = 0.05 m, Table 1) was spanned as a sharp-edged building as well as the two 

(rectangular) blocks along the lateral-branch (i.e., the grey blocks in Fig. 6a; assigned a high ground elevation). 

The main-branch has a rectilinear inflow of 0.002 s-1 m3 and outflow water depths of 0.0451 and 0.0446 m in 

the lateral and downstream branches, respectively. In this test case (AR  = 6.5, Table 1) the effects of turbulence 
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are less compared to the two previous test cases (much larger AR, Table 1).Therefore, without the square block, 

DG2-SWE simulations can reproduce the main feature of classical T-junction flow (Kesserwani et al. 2023), 

which is the eddy of recirculation in the lateral-branch (Shettar and Murthy 1996; Ramamurthy et al. 2007). 

However, the compound eddies past the block render the flow too complex in the locality of the main-

to-lateral flow separation (Fig. 6b). Still, the lateral-branch flow should involve the eddy of recirculation (Bazin 

et al. 2017), despite the main-branch flow exhibiting compound eddies (Sen et al. 2011; Zhang et al. 2022). In 

this case, DG2-SWE simulations fall short (Kesserwani et al. 2023) and DG2-RANS-k-ɛ simulations may not 

fully reproduce the (essentially 3D) flow features in the localities between the block and main-to-lateral flow 

separation (Dewals et al. 2023), even at resolutions finer than the turbulence length scale (0.006 m). 

 DG2-SWE and DG2-RANS-k-ɛ simulations were performed for the fine resolution (0.005 m or 0.1CL, 

using 568,040 cells) used in Bazin et al. (2017), a twice-coarser medium resolution (0.01 m or 0.2CL, using 

142,100 cells) and a coarse resolution (0.02 m or 0.4CL, using 35,525). A video of the fine-resolution DG2-

RANS-k-ε simulation is on https://www.seamlesswave.com/DG2_RANS (linked to the test-case image). All 

simulations started from zero initial flow conditions and were run for 250 s; convergence was assumed when 

the L1-error ≤ 10-4 (i.e., L1-error was calculated between the 2D maps of the water depth across two subsequent 

time-steps). Fig. 6c illustrates the plots of the L1-error time-series for the fine-, medium- and coarse-resolution 

simulations. For the DG2-RANS-k-ɛ simulations, the finer the resolution the steeper the L1-error decay and the 

lower its value. After 200 s, the L1-error became ≤ 10-8, 10-5 and 10-4 for the fine, medium and resolution, 

respectively, demonstrating a reliable convergence with the DG2-RANS-k-ɛ solver (steeper L1-error decay 

with resolution refinement). In contrast, the DG2-SWE simulations lead to the L1-error that stagnates at a 

magnitude > 10-4, suggesting that the DG2-SWE solver cannot properly converge. 

In Fig. 6d-6f and Fig. 6g-6i, the streamlines and magnitude of the time-averaged (during 200 and 250 

s) 2D maps for the velocity fields are shown for the DG2-SWE and DG2-RANS-k-ɛ simulations, respectively, 

with the coarse-, medium- and fine-resolutions, each including the zoom-in view of the complex zone of flow 

separation (for comparison with that in Fig. 6b).  

https://www.seamlesswave.com/DG2_RANS
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        (a)                                                                                          (c)                       

 
 

 
   (d)                                                     (e)                                                     (f) 
 

 
    (g)                                                                   (h)                                                                (i) 

Figure 6. Flow past a square block in a diverting T-junction: (a) a sketch of the T-junction channel system made of three 

branches outside which a high dry wall (grey coloured) is generated (0.15 m height); the block in the main channel branch 

is also generated as a high dry wall (0.15 m height); (b) complex patterns of vortex structure interactions simulated by a 

3D RANS turbulent flow solver [reprinted from Journal of Hydrology, Vol 494, Pages 10-19, © 2013, with permission 

from Elsevier]; (c) L1-error convergence rates resulting from the coarse-, medium- and fine-resolution DG2-SWE and 

DG2-RANS-k-ɛ simulations; (d-f) and (g-i) show the velocity streamlines and magnitude for the time-averaged 2D maps 

(between 200 and 250 s) from the coarse-, medium- and fine-resolution DG2-SWE and DG2-RANS-k-ɛ simulations; in 

which L1, R2 and RI were evaluated with reference to the simulation data in sub-figure 6i.  

 

(b) 
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As can be seen in Fig. 6d-6f, the DG2-SWE simulations fail to reproduce the patterns in the complex 

flow zone. The coarse-resolution DG2-RANS-k-ɛ simulation also fails, even more than the coarse-resolution 

DG2-SWE simulation (Fig. 6d vs. Fig. 6g): the former overlooks the high-magnitude velocity past the block 

and the eddy of recirculation in the lateral branch, which could both be somewhat detected by the latter. Hence, 

there is no benefit of using the DG2-RANS-k-ɛ simulation over the DG2-SWE simulation at the coarse 

resolution, nor from using a finer resolution DG2-SWE simulation.  

In contrast, the medium- and fine-resolution DG2-RANS-k-ɛ simulations detect the presence of the 

high velocity magnitude between the main-branch’s side wall and block, the compound eddies past the block, 

and the lateral-branch’s eddy of flow recirculation (Fig. 6d-6-i); therefore, resulting in unrivalled predictions 

from the medium resolution.  

The reference fine-resolution DG2-RANS-k-ɛ prediction (Fig. 6i) is best reproduced by the medium-

resolution DG2-RANS-k-ɛ simulation (i.e., L1 = 0.08, R2 = 0.98 and RI = 0.99) and worst reproduced by coarse-

resolution DG2-RANS-k-ɛ simulation (i.e., an uncompetitive RI = 0.36). Comparatively, the coarse-resolution 

DG2-SWE simulation (i.e., L1 = 0.17, R2 = 0.86 and RI = 0.71) is better than the medium- and fine-resolution 

DG2-SWE simulations (i.e., L1 increases to 0.23 and to 0.32, respectively; while R2 decreasing to 0.81 and to 

0.61). Hence, the DG2-SWE solver may only be useful at the coarser resolution.  

Fig. 7a and 7b include the plots of the experimentally measured (Bazin et al. 2017) u- and v-velocity 

profiles and those from the DG2-SWE and DG2-RANS-k-ɛ simulations: these profiles were extracted along 

the cross-section 𝑥 = 0.15 m, shown as a vertical dashed line in Fig. 6a, located in the zone of main-to-lateral 

flow separation. Also, the R2 scores shown in Figs. 7a and 7b were calculated with reference to the measured 

data. Along the cross-section 𝑥 = 0.15 m (0 m ≤ 𝑦 ≤ 0.6 m),  the main-branch flow spans 0 m ≤ 𝑦 ≤ 0.2 m, the 

lateral-branch flow spans 0.4 m ≤ 𝑦 ≤ 0.6 m, and 0.2 m ≤ 𝑦 ≤ 0.4 m spans the zone of complex flow separation. 

 As shown in Fig. 7a, the measured 𝑢-velocity profile of the main-branch flow (0 m ≤ 𝑦 ≤ 0.2 m) is 

best reproduced by the fine- and medium-resolution DG2-RANS-k-ɛ simulations, and somewhat by the coarse-

resolution DG2-SWE simulation. The fine- and medium-resolution DG2-SWE simulations overpredict the 

measured profile and the coarse-resolution DG2-RANS-k-ɛ simulation underpredicts it. As for the measured 𝑢-velocity profile in the lateral-branch flow (0.4 m ≤ 𝑦 ≤ 0.6 m), the near-zero velocity (inside the dead zone) 

is better reproduced by the fine- and the medium-resolution DG2-RANS-k-ɛ simulations compared to any other 

simulation. Within the zone of complex flow (0.2 m ≤ 𝑦 ≤ 0.4 m), all simulated 𝑢-velocity profiles are not very 
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close to the measured profile; however, only the fine-resolution DG2-RANS-k-ɛ simulation predicts a rising 

limb that is bounded by the variations seen in the measured profile. This is likely why the latter simulation has 

the highest R2 = 0.98, with respect to the measured profile compared to the other simulations, with 0.76 ≤ R2 

≤ 0.94, suggesting that they have slightly less accurate predictions for the 𝑢-velocity profile.  

 
         (a) 

 
          (b) 

Figure 7. Flow past a square block in a diverting T-junction: (a) and (b) include a comparison between the measured and 

simulated 𝑢- and 𝑣-velocity spatial profiles [along the centreline (𝑥 = 0.15) marked as a dashed line in Fig. 6a]; the main- 

and lateral-branch flows span the zones: 0 ≤ 𝑦 ≤ 0.2 and 0.4 ≤ 𝑦 ≤ 0.6, respectively; whereas the zone of complex main-

to-lateral flow separation spans 0.2 ≤ 𝑦 ≤ 0.4; The R2 scores shown were calculated with reference to the measured data. 
 

The measured 𝑣-velocity profile is found to be more challenging to reproduce by both DG2-RANS-k-

ɛ and DG2-SWE simulations. As shown in Fig. 7b, the coarse-resolution DG2-RANS-k-ɛ and DG2-SWE 

simulations fail to capture the rising limb of the main-branch flow (0 m ≤ 𝑦 ≤ 0.2 m), exhibiting spuriously 

negative predictions; whereas, only the fine- and medium-resolution DG2-RANS-k-ɛ simulations could trail 

the lateral-branch flow (0.4 m ≤ 𝑦 ≤ 0.6 m), involving a slightly increasing near-to-zero velocity. Again, none 

of the DG2-RANS-k-ɛ and DG2-SWE simulations yield a very close agreement with the measured profile in 

the zone of complex flow (0.2 m ≤ 𝑦 ≤ 0.4 m); however, the fine-resolution DG2-RANS-k-ɛ simulation can be 

said to be the most accurate: it has the highest R2 = 0.42 with respect to the measured profile and could predict 

the velocity recovery rate (along y  > 0.3 m) more accurately than any of the other simulations. The DG2-SWE 

simulations have uncompetitive R2 scores (i.e., all of which resulted from a negative coefficient of correlation), 

suggesting that they predict the velocity in the opposite direction in some location (compared to the measured 

profile). The medium- and coarse-resolution DG2-RANS-k-ɛ simulations have also low R2 scores (i.e., that 

resulted from positive coefficient of correlation), also suggesting uncompetitive predictions when reproducing 
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the 𝑣-velocity profile. Arguably, as concluded in Dewals et al. (2023), the accurate reproduction of the velocity 

components in such a complex locality–where the flow is impacted by the compounded eddies past the block– 

is beyond the capability of 2D turbulent flow simulators. In such a case, only the fine-resolution DG2-RANS-

k-ɛ simulation can acquire fairly accurate approximations of the complex 3D flow processes taking place, and 

could be used as an alternative to more expensive 3D turbulent flow simulators (Ramamurthy et al. 2007; Li 

and Zeng 2009; Mignot et al. 2013; Jin et al. 2023; Pandey and Mohapatra 2023). 

 
Figure 8. Wake past a cylinder: (a) the domain including the 4 mm diameter cylinder and showing the rectilinear inflow 

(using arrows); (b-d) time-averaged, scaled longitudinal velocity (𝑢̅/𝑢∞) profiles, along the centreline cross the cylinder 

(y/d = 16), from the fine- and medium-resolution laminar DG2-RANS simulations [sub-figure (b)], the medium-resolution 

DG2-RANS-k-ɛ turbulent flow and Fluent’s 2D-RANS-k-ɛ simulations [sub-figure (c)], and the coarse-resolution DG2-

RANS and DG2-SWE simulations [sub-figure (d)]– all compared to the reference profile (Qu et al. 2013); and, (e) time-

series of the scaled transverse velocity (𝑣/𝑢∞) at point P1 [sub-figure (a)], used to analyse tracking of vortex-shedding 

frequency and magnitude for the fine-, medium- and coarse-resolution laminar DG2-RANS simulations. 
 

 

4.2. Laminar flows 

4.2.1. Wake past a cylinder  

A laminar wake flow past a cylinder of diameter d = 4 mm (CL = 0.004 m, Table 1) is reproduced for a 𝑅𝑒 = 

200 [i.e., here and in Sec. 4.2.2, 𝑅𝑒 denotes the cylinder Reynolds number (Rajani et al. 2009; Qu et al. 2013; 

Sun et al. 2023)]. The  cylinder area (i.e., assigned a high ground elevation) is around the middle of a flat and 

smooth domain (nM = 0.01), with dimensions of 30.5d × 32d, scaled with respect to d (the portion shown in 

https://ascelibrary.org/doi/10.1061/JHEND8.HYENG-13424
https://doi.org/10.1016/j.apm.2008.01.017
https://doi.org/10.1016/j.jfluidstructs.2013.02.007
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Fig. 8a). These dimensions were extended (computationally) to ensure that inflow and outflow boundaries 

remain far from the near-cylinder region, thereby avoid possible flow boundary impacts on the wake structures 

past the cylinder. The steady inflow has a velocity of 𝑢∞ = 0.05 s m-1, with respect to which the velocity field 

components were scaled for analysis based on the scaled time unit, t* = t u∞/d.  

 Three DG2-RANS simulations were run, to include at least 50 vortex-shedding wake period cycles 

(Sun et al. 2023), for coarse (1 mm, or 0.25CL, using 15,616 cells), medium (0.5 mm, or 0.125CL, using 62,464 

cells) and fine (0.25 mm, or 0.0625CL, 249,856 cells) resolutions (CL = d, Table 1). Further, medium-

resolution DG2-RANS-k-ɛ and Fluent’s 2D-RANS-k-ɛ simulations were run. In Fig. 8b-8d, the simulated 

centreline (i.e., along y/d = 0) profiles of the time-averaged longitudinal velocity component are plotted and 

compared with a reference profile [i.e., a 2D-RANS simulation at a cylinder resolution of 0.0001CL (Qu et al. 

2013)] and considering the profile from the coarse-resolution DG2-SWE simulation (Sun et al. 2023). 

 
 

 
       (a) 

 
      (b) 

 

 
       (c) 

 

 
       (d) 

 

Figure 9. Wake past a cylinder. Streamlines and magnitude of the 2D maps of instantaneous velocity fields (i.e., after 9 

vortex-shedding wake cycles) for the by the laminar DG2-RANS simulations at the (a) fine, (b) medium, and (c) coarse 

resolutions; and (d) by the coarse-resolution DG2-SWE simulation; with L1, R2 and RI evaluated with reference to the 

simulation data in sub-figure 9a. 

 

As can be detected in Fig. 8b-8d, the fine-resolution DG2-RANS simulation has the best agreement 

with the reference profile. This agreement is acceptably preserved by the medium-resolution DG2-RANS 
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simulation (Fig. 8b), in contrast to with the medium-resolution DG2-RANS-k-ɛ and Fluent’s 2D-RANS-k-ɛ 

simulations that fall short (Fig. 8c). The coarse-resolution DG2-RANS simulation also falls short (Fig. 8d), by 

exhibiting similar shortcomings (Fig. 8c-8d): spuriously prolonged velocity recovery rate and recirculation 

length in the near-cylinder region (x/d < 5) and a spuriously flattened profile in far-wake region (x/d ≥ 5), 

which are, somewhat, better predicted by coarser-resolution DG2-SWE simulation (Fig. 8d).   

In Fig. 8e, the time-series of the transverse velocity profile at point P1 (shown in Fig. 8a) are plotted 

for the fine-, medium- and coarse-resolution DG2-RANS simulations. From these time-series, vortex-shedding 

frequency, 𝑓𝑠, can be calculated for evaluating the Strouhal number, 𝑆𝑡 = 𝑓𝑠𝑑/𝑢∞. The fine-resolution DG2-

RANS simulation predicts a velocity profile (Fig. 8e), leading to 𝑆𝑡 = 19 in agreement with the reference 𝑆𝑡 = 

0.19 (Rajani et al. 2009; Qu et al. 2013). This agreement is acceptably preserved by the medium-resolution 

DG2-RANS simulation, leading a fairly close 𝑆𝑡 = 18, in contrast to with the coarse-resolution DG2-RANS 

simulation. As can seen in Fig. 8e, the latter simulation manifested in a relatively lower velocity magnitude 

and a relatively unaligned frequency, leading to 𝑆𝑡 = 0.15 that is closer to that from the coarse-resolution DG2-

SWE simulation (Sun et al. 2023).  

In Fig. 9, the 2D maps of the simulated (instantaneous) velocity streamlines and magnitude [i.e., the time 

instant after 9 vortex-shedding cycles passed (Sun et al. 2023)] are compared, considering: the fine-, medium- 

and coarse-resolution DG2-RANS simulations (Fig. 9a-9b) and the coarse-resolution DG2-SWE simulation 

(Fig. 9d)–the L1, R2 and RI scores in Fig. 9b-9d are evaluated with reference to the data shown in Fig. 9a. In 

the near-cylinder region, the coarse-resolution DG2-RANS and DG2-SWE simulations predict unaligned wake 

position and extent, compared to those predicted by the fine-resolution DG2-RANS simulation [and to those 

by the medium-resolution DG2-RANS simulation, leading to similar velocity streamlines and magnitude as 

the fine-resolution DG2-RANS simulation (L1 = 0.048, R2 = 0.89 and RI = 0.99)]. Outside this locality, in the 

far-wake region, the velocity streamlines and magnitude are better predicted by the coarse-resolution DG2-

SWE simulation (L1 = 0.11, R2 = 0.623 and RI = 0.951) compared to the coarse-resolution DG2-RANS 

simulation (L1 = 0.124, R2 = 0.599 and RI = 0.956).  

Overall, the analysis of Figs. 8 and 9 suggests a reliable use of the DG2-RANS laminar flow solver from 

the medium resolution, such as to reproduce wake evolutions and interactions in the near-cylinder region (Sec. 

4.2.2). It also suggests preferring the DG2-SWE solver over DG2-RANS laminar flow solver when conducting 

simulations at the coarse resolution (Sec. 4.2.2). 
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4.2.2. Wake interactions past many cylinders 

The medium-resolution DG2-RANS simulation (0.5 mm or 0.125CL, CL = d) is further explored to reproduce 

wake evolutions and interactions past many randomly distributed cylinders, over 50 vortex-shedding cycles. 

A video of the medium-resolution DG2-RANS simulation is on https://www.seamlesswave.com/DG2_RANS 

(linked to the test-case image). The cylinders are identical, of diameter d = 4 mm, and are located in a 3750d 

× 75d computational flume [i.e., dry cells inside the cylinder areas (Fig. 10a) were assigned a high ground 

elevation– see test-case image on https://www.seamlesswave.com/DG2_RANS]. The flume had a longitudinal 

slope of 4.6×10-4 m m-1 and a rough bed (nM = 0.045) to keep the uniform water depth, following the 

experiments made in a flume at the University of Warwick (Sun et al. 2023), leading an inflow velocity of 𝑢∞ 

= 0.06 s m-1. The cylinders were only generated along a 1875d length of the domain, as duplicates of a randomly 

generated cylinder distribution on a 625d × 75d baseplate. The part of the computational flume including the 

cylinders, along 1875d, is here referred to as “cylinder array section”. Surface PIV measurements of 

instantaneous u- and v-velocity data (Corredor-Garcia et al. 2021) were collected for the red-framed area (i.e., 

the 137.5d × 75d area shown in Fig. 10a), that is1332.5d far from the start of the cylinder array section.  

 

 
     
   (a) 

 
     (b) 

 

 
  (c) 

 
     (d) 

Figure 10. Wake interactions past many cylinders: (a) a part of the laboratory flume including the cylinder array section 

(with randomly distributed cylinders) and showing the direction of the inflow (arrows); (b) the time-averaged, scaled 

longitudinal velocity (𝑢̅/𝑢∞) map of the measured data, covering in the red-framed portion in sub-figure (a); (c) and (d) 

https://www.seamlesswave.com/DG2_RANS
https://www.seamlesswave.com/DG2_RANS
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include 𝑢̅/𝑢∞ maps from the coarse-resolution DG2-SWE simulation and the medium-resolution DG2-RANS simulation, 

respectively; with L1, R2 and RI evaluated with reference to the measured data in sub-figure 9b.  

 

In Fig. 10b-10d, the time-averaged 2D maps of the u-velocity components are compared, considering: 

the measured data (Fig. 10b) versus the simulated fields from the coarse-resolution DG2-SWE simulation (Fig. 

10c) and the medium-resolution DG2-RANS simulation (Fig. 10d)–the shown L1, R2 and RI scores within were 

calculated with reference to the time-averaged measured data (Fig. 10b). Since the time-averaged 2D maps of 

the v-velocity component were (visually) very similar (not shown), the prediction of the v-velocity component 

was based on a quantitative analysis of the average and standard deviation of the 𝑆𝑡 (i.e., sampled from all the 

v-velocity time-series at a 2.5d distance past and along all the cylinders). 

As can be seen in Fig. 10b-10d, the locality of high u-velocity preferential flow in the open area (10 < 

y/d < 30) is much better captured by the medium-resolution DG2-RANS simulation as compared to the coarse-

resolution DG2-SWE simulation. This improvement is expected as the former simulation included the effects 

of the viscous stresses, leading to better L1, R2 and RI scores . For the predictability of the v-velocity component, 

the 𝑆𝑡 range sampled from the medium-resolution DG2-RANS simulation, of 0.15 ± 0.081, is closer to the 

range sampled from the measured data, of 0.2 ± 0.055, than that, of 0.11 ± 0.057, sampled from the coarse-

resolution DG2-SWE simulation. This indicates the medium-resolution DG2-RANS simulation provides better 

prediction of the v-velocity component too.  

Note that, the comparisons made are quite rough since the measured data was subject to experimental 

discrepancies, mostly due to uncorrected projection bias that shifted the measured cylinder positions; and the 

simulated data to numerical discrepancies, mostly due to squared-grid representation of the cylinders. Still, the 

results are quite illustrative of the capability of the medium-resolution DG2-RANS simulation to better capture 

the preferential longitudinal flow and wake interactions than the coarse-resolution DG2-SWE simulation. 

 

5. Conclusions and recommendations 

A novel second-order Discontinuous Galerkin (DG2) solver of the advective-diffusive 5×5 RANS-k-ε system–

the three Partial Differential Equations (PDEs) of the Reynolds-Averaged Navier–Stokes incorporating the k-

ε model and two associated PDEs for the update of the turbulent-flow variables–was developed (DG2-RANS-

k-ε). In so doing, the 5×5 RANS-k-ε system was, first, transformed to become an advective-dominated 13×13 

RANS-k-ε system, and, then, solved by extending the “slope-decoupled” advective DG2 solver’s formulation 

and adapting robustness treatments for the mean-flow variables–the localised treatments integrating steep wet-
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dry fronts and local slope-limiting featuring in the DG2 solver the shallow water equations (DG2-SWE). A 

new combination of stability/positivity-preserving treatments for the turbulent-flow quantities was also needed 

to ensure the overall reliability of the DG2-RANS-k-ε solver.    

Five experimental benchmarks were used to evaluate the capability of the DG2-RANS-k-ε turbulent 

flow solver and DG2-RANS laminar flow solver, jointly with that of the DG2-SWE solver. The benchmarks 

were simulated considering coarse, medium and fine resolutions–between the Characteristic length (CL) and 

the turbulence length scale (benchmark-specific). The evaluation was based on qualitative and quantitative 

comparisons of the simulated spatial velocity fields (instantaneous and/or time-averaged) against the 

benchmark-specific measured data and against the most accurate simulation data [from the fine-resolution 

DG2-RANS-k-ε (resp. DG2-RANS) simulations in the turbulent flow (resp. laminar flow) benchmarks].  

For the turbulent flow simulations, the DG2-RANS-k-ε solver could further replicate compound eddies 

from the medium resolution, which cannot otherwise be captured by the DG2-SWE solver. For the laminar 

flow simulations, the DG2-RANS solver (without the k-ε model) could better reproduce the evolution and/or 

interaction of wake structures–also from the medium resolution. In both of the turbulent flow and the laminar 

flow simulations, the DG2-SWE solver yielded its best predictions at the coarsest resolution, at which both the 

DG2-RANS-k-ε turbulent flow solver and laminar DG2-RANS solver fell short.  

 The open-source code of the DG2-RANS-k-ɛ turbulent flow solver (thereby, the DG2-RANS laminar 

flow solver) is available within a new release of the LISFLOOD-FP hydraulic software environment–with the 

benchmark-specific initial condition set up files–to run parallel simulations on the CPU or on the GPU (DOI: 

https://doi.org/10.5281/zenodo.7628739). The operational (memory) costs in the DG2-RANS/DG2-RANS-k-

ε solver (21/39 cellwise degrees of freedom) are much higher compared to those in the DG2-SWE solver (9 

cellwise degrees of freedom). Consequently, the runtimes of the DG2-RANS/DG2-RANS-k-ε solver reduced 

by 7-fold with doubling in resolution, from fine to medium [on CPU (10 threads) or on GPU (V100 card)], 

and further by 2-to-6-fold with the GPU runs–despite on unusually small-sized grids (20k-to-250k cells).    

The evaluation of both the predictive accuracy and runtime efficiency suggests preferring the medium 

resolution, over the fine resolution, to make practical DG2-RANS laminar flow simulations and DG2-RANS-

k-ε turbulent flow simulations. However, the fine resolution (below the turbulence length scale) may be needed 

with the DG2-RANS-k-ε turbulent flow solver (e.g., if applied as an alternative to three-dimensional turbulent 

flow simulators) to approximate highly-turbulent localities involving compound eddies of various sizes.  
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Appendix A.  

 A.1. Inter-cell evaluation of the advective fluxes 

Following a similar derivation from the, slope-decoupled, advective DG2 formulation (Kesserwani et al. 2018, 

Shaw et al. 2021), the DG2 discretisation of the gradients, 𝜕𝑄/𝜕𝑥 and 𝜕𝑄/𝜕𝑦, of any advective flux component 𝑄 ∈ 𝐼𝑖𝑛𝑣𝑖𝑠𝑐𝑖𝑑⋃ 𝐼𝑣𝑖𝑠𝑐𝑜𝑢𝑠 (see Eq. 12) can be derived and simplified to be expressed, over the sample cell, as: 

(𝜕𝑄/𝜕𝑥)𝑗0 = 1Δ𝑥 (𝑄̃𝐸 − 𝑄̃𝑤)  (𝜕𝑄/𝜕𝑥)𝑗1𝑥 = √3Δ𝑥 (𝑄̃𝐸 + 𝑄̃𝑊 − 𝑄𝐺𝑥2 − 𝑄𝐺𝑥1)  (𝜕𝑄/𝜕𝑥)𝑗1𝑦 = 0   
(𝜕𝑄/𝜕𝑦)𝑗0 = 1Δ𝑦 (𝑄̃𝑁 − 𝑄̃𝑆)  (𝜕𝑄/𝜕𝑦)𝑗1𝑥 = 0   (𝜕𝑄/𝜕𝑦)𝑗1𝑦 = √3Δ𝑦 (𝑄̃𝑁 + 𝑄̃𝑆 −𝑄𝐺𝑦2 − 𝑄𝐺𝑦1)  (A1) 

 

In Eq. (A1), 𝑄𝐺𝑥1, 𝑄𝐺𝑥2, 𝑄𝐺𝑦1 and 𝑄𝐺𝑦2 are component-wise physical flux evaluations at the inner-cell values 𝑊𝑗(𝐺𝑥1, 𝑡), 𝑊𝑗(𝐺𝑥2, 𝑡), 𝑊𝑗(𝐺𝑦1, 𝑡) and 𝑊𝑗(𝐺𝑦2, 𝑡), respectively (Fig. 1 and Eq. 11). Whereas, 𝑄̃𝐸 and 𝑄̃𝑊, 

in (𝜕𝑄/𝜕𝑥)𝑗𝐾, and 𝑄̃𝑁 and 𝑄̃𝑆, in (𝜕𝑄/𝜕𝑦)𝑗𝐾, are inter-cell approximate numerical fluxes that must be evaluated 

across faces 𝐸 and W, and faces 𝑁 and 𝑆, respectively (Fig. 1)–these faces are shared by the four cells adjacent 

to the sample cell. Next, only the discretisation of (𝜕𝑄/𝜕𝑥)𝑗𝐾 is described, since that of (𝜕𝑄/𝜕𝑦)𝑗𝐾 is similar, 

for which it suffices to describe the evaluation of 𝑄̃𝐸, since 𝑄̃𝑊 can be evaluated in a similar way.  

 The involvement of a two-argument numerical flux function is key to the evaluation of 𝑄̃𝐸 in a way 

that links the inner-cell limit at 𝐸 [i.e., from the DG2 approximation at the sample cell in 𝐖(𝐸, 𝑡)] to the outer-

cell limit at 𝐸 [i.e., from the DG2 approximation outside the sample cell, denoted hereafter by 𝐖+(𝐸, 𝑡)].  
When 𝑄 ∈ 𝐼𝑖𝑛𝑣𝑖𝑠𝑐𝑖𝑑 (Eq. 12), the numerical flux function is based on a Riemann solver for properly 

linking potentially discontinuous limits (Toro 2010). The Local Lax Friedrich Riemann solver was used to 

reduce the computational costs (Kesserwani et al. 2008; Hejranfar and Hajihassanpour 2017; Hajihassanpour 

and Hejranfar 2022), from which 𝑄̃𝐸 is evaluated as: 𝑄̃𝐸 = 12 (𝑄𝐸+ + 𝑄𝐸) − 𝜆max[𝑊𝑗+(𝐸, 𝑡) −𝑊𝑗(𝐸, 𝑡)]   (A2) 

In Eq. (A2), 𝑊𝑗(𝐸, 𝑡) and 𝑊𝑗+(𝐸, 𝑡) are the associated component of the inner-cell and outer-cell limits at 𝐸, 

respectively; 𝑄𝐸 and 𝑄E+ are physical flux evaluations at 𝑊𝑗(𝐸, 𝑡) and 𝑊𝑗+(𝐸, 𝑡); and, 𝜆max is the maximum 

local characteristic speed, given as 𝜆max = 𝑚𝑎𝑥[√(𝑢𝐸)2  + (𝑣𝐸)2 +√𝑔ℎ𝐸 , √(𝑢𝐸+)2  + (𝑣𝐸+)2 +√𝑔ℎ𝐸+], in 

which 𝑢𝐸, 𝑣𝐸 and ℎ𝐸 are evaluated from within 𝐖(𝐸, 𝑡), and 𝑢𝐸+, 𝑣𝐸+ and ℎ𝐸+ from within 𝐖+(𝐸, 𝑡). Note that 

when, 𝑄 represents a turbulent-flow inviscid flux component the wave celerity terms in 𝜆max must be removed.  
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When 𝑄 ∈ 𝐼𝑣𝑖𝑠𝑐𝑜𝑢𝑠 (Eq. 12), central flux averaging (Hajihassanpour and Hejranfar 2020, 2022) can be 

used to define the numerical flux function, from which 𝑄̃𝐸 is evaluated as: 𝑄̃𝐸 = 12 (𝑄𝐸+ + 𝑄𝐸)       (A3) 

Note that, in Eq. (A2), any of the first five components in 𝑊𝑗(𝐸, 𝑡) and 𝑊𝑗+(𝐸, 𝑡) can be involved (𝑗 = 1,…,5); 

but, in Eq. (A3), any of all the thirteen components can be involved (𝑗 = 1,…,13). 

When face 𝐸 is located at a boundary line (enclosing the computational domain) a gost boundary cell 

is introduced to assign the outer-cell limits [i.e., involved in 𝐖+(𝐸, 𝑡), namely for: ℎ𝐸+, 𝑢𝐸+, 𝑣𝐸+, 𝜀𝐸+, 𝑘𝐸+, (𝐴𝑢𝑥)𝐸+, (𝐴𝑣𝑥)𝐸+, (𝐴𝑢𝑦)𝐸+, (𝐴𝑣𝑦)𝐸+, (𝐴𝑘𝑥)𝐸+, (𝐴𝑘𝑦)𝐸+, (𝐴𝜀𝑥)𝐸+ and (𝐴𝜀𝑦)𝐸+]. Assigning these outer-cell limits is either based 

on extrapolation of components at the inner-cell limits [i.e., in 𝐖(𝐸, 𝑡)] or on given physical values, depending 

on what a boundary line represents, based on three user-specified choices: “Inflow” (Eq. A4), “Outflow” (Eq. 

A5) or “Closed” (Eq. A6), as described in Eqs. (A4-A6): 

In Eqs. (A4) and (A5), the terms with the subscript “BC” are imposed from given inflow boundary 

values, and when doing so for 𝑘𝐵𝐶 and 𝜀𝐵𝐶, pre-processing is required from the given (test-specific) inflow 

values. The pre-processing is based on Eq. (A7) in which 𝐼 is the turbulence intensity and 𝐷𝑟 is the turbulent 

viscosity ratio (Cea 2005).  

Inflow 

ℎ𝐸+ = ℎ𝐸     

(A4) 

𝑢𝐸+ = 𝑢𝐵𝐶   𝑣𝐸+ = 𝑣𝐵𝐶   (𝐴𝑢𝑥)𝐸+ = (𝐴𝑢𝑥)𝐸   (𝐴𝑣𝑥)𝐸+ = (𝐴𝑣𝑥)𝐸    (𝐴𝑢𝑦)𝐸+ = −(𝐴𝑢𝑦)𝐸   (𝐴𝑣𝑦)𝐸+ = −(𝐴𝑣𝑦)𝐸    𝑘𝐸+ = 𝑘𝐵𝐶   𝜀𝐸+ = 𝜀𝐵𝐶   (𝐴𝑘𝑥)𝐸+ = (𝐴𝑘𝑥)𝐸   (𝐴𝜀𝑥)𝐸+ = (𝐴𝜀𝑥)𝐸    (𝐴𝑘𝑦)𝐸+ = −(𝐴𝑘𝑦)𝐸   (𝐴𝜀𝑦)𝐸+ = −(𝐴𝜀𝑦)𝐸    

Outflow 

ℎ𝐸+ = ℎ𝐵𝐶    

(A5) 

𝑢𝐸+ = 𝑢𝐸   𝑣𝐸+ = 𝑣𝐸     (𝐴𝑢𝑥)𝐸+ = −(𝐴𝑢𝑥)𝐸  (𝐴𝑣𝑥)𝐸+ = −(𝐴𝑣𝑥)𝐸     (𝐴𝑢𝑦)𝐸+ = (𝐴𝑢𝑦)𝐸  (𝐴𝑣𝑦)𝐸+ = (𝐴𝑣𝑦)𝐸     𝑘𝐸+ = 𝑘𝐸   𝜀𝐸+ = 𝜀𝐸     (𝐴𝑘𝑥)𝐸+ = −(𝐴𝑘𝑥)𝐸   (𝐴𝜀𝑥)𝐸+ = −(𝐴𝜀𝑥)𝐸     (𝐴𝑘𝑦)𝐸+ = (𝐴𝑘𝑦)𝐸   (𝐴𝜀𝑦)𝐸+ = (𝐴𝜀𝑦)𝐸     

Closed 

ℎ𝐸+ = ℎ𝐸     

(A6) 

𝑢𝐸+ = −𝑢𝐸   𝑣𝐸+ = 𝑣𝐸    (𝐴𝑢𝑥)𝐸+ = (𝐴𝑢𝑥)𝐸   (𝐴𝑣𝑥)𝐸+ = −(𝐴𝑣𝑥)𝐸    (𝐴𝑢𝑦)𝐸+ = −(𝐴𝑢𝑦)𝐸   (𝐴𝑣𝑦)𝐸+ = (𝐴𝑣𝑦)𝐸    𝑘𝐸+ = 𝑘𝑡𝑜𝑙  𝜀𝐸+ = 𝜀𝑡𝑜𝑙   (𝐴𝑘𝑥)𝐸+ = (𝐴𝑘𝑥)𝐸   (𝐴𝜀𝑥)𝐸+ = (𝐴𝜀𝑥)𝐸    (𝐴𝑘𝑦)𝐸+ = −(𝐴𝑘𝑦)𝐸   (𝐴𝜀𝑦)𝐸+ = −(𝐴𝜀𝑦)𝐸    



38 

        𝑘𝐵𝐶 = 32 (𝐼√𝑢𝐵𝐶𝑢𝐵𝐶 + 𝑣𝐵𝐶𝑣𝐵𝐶)2 𝜀𝐵𝐶 = 𝐶𝜇𝑘2𝐷𝑚𝐷𝑟 ,   𝐷𝑟 = 𝐷𝑡/𝐷𝑚 

(A7) 

 

According to Ginting (2019) and Lutsenko (2017), 𝐼 should be lower than 0.01 for low-turbulent flow, between 

0.01 to 0.05 for medium-turbulent flow, and between 0.05 to 0.2 for high-turbulent flow, while 𝐷𝑟 should be 

lower than 10. Since all the simulated test cases (Secs. 3 and 4) have a (subcritical, low-turbulence) inflow that 

is far from the turbulence production region, 𝐼 = 0.01 and 𝐷𝑟 = 0.1 were used – but our numerical experiments 

show that using up to 10-fold higher values for 𝐼 and 𝐷𝑟 leads to very similar results (not shown). 

A.2. Scalable wall function (ScWF)  

Because the k-ε model’s two transport equations are based on the fully turbulent assumption, they may not be 

valid at the near-dry-wall cells: the wet cells including at least one wet-dry front, which are adjacent to the dry 

cells representing unsubmerged topographies. At these cells, a laminar wall-boundary layer should be imposed 

based on the ScWF (Ginting and Ginting 2019) to correct (𝑈turb𝐾 𝑖)𝑖=1,2. For example, assuming the wet sample 

cell is neighboured by an eastern dry-wall cell (Fig. 1), the ScWF uses the velocity’s average component 𝑣0 

(tangential to dry-wall cell) to produce the wall-friction velocity 𝑤𝑝∗ based on the iterative procedure reported 

in Ginting and Ginting (2019). The calculated 𝑤𝑝∗ is then used to correct (𝑈turb0 𝑖)𝑖=1,2, following Eq. (A8), 

while imposing zero values for the slope coefficients [(𝑈turb1𝑥 𝑖)𝑖=1,2 = (𝑈turb1𝑦 𝑖)𝑖=1,2 = 0]:  

𝑈turb10 = ℎ0 (𝑤𝑝∗ )2√𝐶𝜇   

 𝑈turb20 = 2ℎ0 (𝑤𝑝∗ )30.4Δ𝑥  

(A8) 

 

A.3. Cellwise evaluation of the source terms 

The evaluation of the components of in (𝑆mean𝑖𝐾 )𝑖=1,2,3, is achieved cellwise from the DG2 approximation (Eq. 

11): using revised degrees of freedom (the mean-flow variable and of the topography) from the wet-dry front 

treatments when integrating a topography source term component, and stability-preserving integration for a 

friction source term component (Shaw et al. 2021). Whereas (𝑆turb𝑖𝐾 )𝑖=1,2 are evaluated as:  𝑆turb𝑖0 = (𝑆turb𝑖)𝐶 

                               𝑆turb𝑖1𝑥 = 12 [(𝑆turb𝑖)𝐺𝑥2 − (𝑆turb𝑖)𝐺𝑥1] 
                                 𝑆turb𝑖1𝑦 = 12 [(𝑆turb𝑖)𝐺𝑦2 − (𝑆turb𝑖𝑖)𝐺𝑦1] (A9) 
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