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Abstract. Ozone (O3) pollution reduces wheat yields as well
as the protein and micronutrient yield of the crop. O3 concen-
trations are particularly high in India and are set to increase,
threatening wheat yields and quality in a country already fac-
ing challenges to food security. This study aims to improve
the existing DO3SE-CropN model to simulate the effects of
O3 on Indian wheat quality by incorporating antioxidant pro-
cesses to simulate protein and the concentrations of nutrition-
ally relevant amino acids. As a result, the improved model
can now capture the decrease in protein concentration that
occurs in Indian wheat exposed to elevated O3. The struc-
ture of the modelling framework is transferrable to other abi-
otic stressors and easily integrable into other crop models,
provided they simulate leaf and stem nitrogen (N), demon-
strating the flexibility and usefulness of the framework de-
veloped in this study. Further, the modelling results can be
used to simulate the dietary indispensable amino acid score
(DIAAS), the metric for measuring protein quality recom-
mended by the Food and Agriculture Organization (FAO)
of the United Nations, setting up a foundation for nutrition-
based risk assessments of O3 effects on crops. The result-
ing model was able to capture grain protein, lysine and me-
thionine concentrations reasonably well. As a proportion of
dry matter, the simulated percentages ranged from 0.26 % to
0.38 % for lysine and from 0.13 % to 0.22 % for methionine,
while the observed values were 0.16 % to 0.38 % and 0.14 %
to 0.22 %, respectively. For grain and leaf protein simula-
tions, the interdependence between parameters reduced the
accuracy of their respective relative protein loss under O3

exposure. Additionally, the decrease in lysine and methion-
ine concentrations under O3 exposure was underestimated by
∼ 10 percentage points for methionine for both cultivars and
by 37 and 19 percentage points for lysine for HUW234 and
HD3118, respectively. This underestimation occurs despite
simulations of relative yield loss being fairly accurate (av-
erage deviation of 2.5 percentage points excluding outliers).
To provide a further mechanistic understanding of O3 effects
on wheat grain quality, future experiments should measure N
and protein concentrations in leaves and stems, along with
the proportion of N associated with antioxidants, which will
aid in informing future model development. Additionally, ex-
ploring how grain protein relates to amino acid concentra-
tions under O3 will enhance the model’s accuracy in predict-
ing protein quality and provide more reliable estimates of the
influence of O3 on wheat quality. This study builds on the
work of Cook et al. (2024) and supports the second phase of
the Tropospheric Ozone Assessment Report (TOAR) by in-
vestigating the impacts of tropospheric O3 on Indian wheat
and the potential of this to exacerbate existing malnutrition
in India.

1 Introduction

A growing body of literature from Europe, China and In-
dia has shown that exposure to O3 reduces wheat protein
and micronutrient yields (Broberg et al., 2015; Feng et al.,
2008; Mishra et al., 2013; Yadav et al., 2020). This is im-
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portant as cereals often make up the most available protein
source per capita and wheat is the dominant dietary cereal
globally (Shiferaw et al., 2013). Therefore, any reduction in
yield, protein and micronutrient content caused by O3 could
threaten both food and nutrition security, especially in coun-
tries such as India where O3 concentrations are high and food
security is low (FAO et al., 2020; Herforth et al., 2020; Mills
et al., 2018b). The first phase of the Tropospheric Ozone
(O3) Assessment Report (TOAR) (https://igacproject.org/
activities/TOAR/TOAR-I, last access: 30 September 2024)
compiled information on surface O3 metrics to produce the
world’s largest database for the identification of O3 global
distribution and trends (Schultz et al., 2017). From the first
phase of TOAR, it was observed that tropospheric O3 in-
creased globally in the 20th century, with atmospheric chem-
istry and climate modelling studies finding that O3 produc-
tion is greatest in middle to high latitudes due to greater emis-
sions of O3 precursors (Archibald et al., 2020; Cooper et al.,
2014). Additionally, using the database, Mills et al. (2018b)
found that in East Asia O3 concentration metrics for wheat-
growing locations were much greater than in Europe. Several
authors from the first phase of TOAR commented on the un-
derrepresentation of some key wheat-producing areas (par-
ticularly India but also China and Russia) in the database,
which limited some of the analysis (Cooper et al., 2014;
Mills et al., 2018b; Schultz et al., 2017). This paper is part of
the second phase of TOAR (https://igacproject.org/activities/
TOAR/TOAR-II, last access: 30 September 2024), which ex-
pands on the first phase to investigate O3 impacts on human
health and vegetation. This study contributes to the second
phase of TOAR by examining the impacts of tropospheric
O3 on wheat yield and quality in India, enhancing our un-
derstanding of the broader implications for food and nutri-
tion security. Understanding the interplay of different factors
affecting O3-induced reductions in wheat yield and quality
will be important for current, as well as future, food and nu-
tritional security risk assessments.

1.1 Malnutrition and the importance of wheat in India

Malnutrition is prevalent in India with ∼ 40 % of the popula-
tion unable to afford a nutritionally adequate diet and ∼ 80 %
unable to afford a healthy diet (FAO et al., 2023). In India,
∼ 35 % of children under the age of 5 are affected by stunting
and ∼ 20 % are affected by wasting, with the prevalence of
wasting in India being one of the highest in the world (Global
Nutrition Report, 2025). Stunting and wasting occur when an
individual does not have sufficient calories or micronutrients
in their diet to grow and develop (Gonmei and Toteja, 2018).
Wasting and muscle function loss can result from dietary pro-
tein that is of poor quantity or quality (Medek et al., 2017).
For most Indian states, at least 30 % of the population is at
risk of protein deficiency, which is of concern for people who
are pregnant or in poorer socioeconomic circumstances, who

require higher-quality protein for growth or fighting infec-
tions (Minocha et al., 2017; Swaminathan et al., 2012).

In India, cereals are the most available protein source per
capita and are a key dietary protein source (Minocha et al.,
2017). Wheat makes up the dominant dietary cereal in the
north of India, where the majority of the crop is grown
(Khatkar et al., 2015). Globally, India has the greatest area
under wheat cultivation, 31.6 million hectares, and produced
109.5 million tonnes of wheat in 2021, second only to the
amount of wheat produced by China (Ministry of Agricul-
ture & Farmers Welfare, 2022). As a result, the country is
self-sufficient/self-reliant when it comes to wheat (Tripathi
and Mishra, 2017). The consumption of wheat varies by
state, with the dominant wheat-producing states (Punjab, Ra-
jasthan, Haryana and Madhya Pradesh) consuming the most.
Resulting from population growth and income increases, the
total demand for wheat is increasing (Tripathi and Mishra,
2017). However, numerous experimental and modelling stud-
ies have shown that O3 is substantially reducing wheat yields
across India (Mills et al., 2018a; Mishra et al., 2013; Sharma
et al., 2019; Sinha et al., 2015; Yadav et al., 2021).

1.2 O3 pollution in India

Ground level O3 is a secondary pollutant, formed when pre-
cursor gases (predominantly volatile organic compounds and
nitrogen oxides) react in the presence of ultraviolet light
(Fowler et al., 2008). The first phase of TOAR identified
that South Asia and, in particular, India experience some of
the highest O3 burdens of any region or country worldwide,
though this analysis was limited by the availability of O3
concentration data for India (Emberson, 2020; Mills et al.,
2018b). These high O3 burdens occur due to increasing pre-
cursor emissions and insufficient pollution control measures
(Archibald et al., 2020; Elshorbany et al., 2024; Singh et al.,
2023; Wang et al., 2023). Atmospheric chemistry and climate
models have found that, geographically, the highest O3 con-
centrations in India occur in the northern part of the coun-
try and the Indo-Gangetic Plain (IGP), where the majority
of wheat is grown (Lu et al., 2018; Ministry of Agriculture
& Farmers Welfare, 2022; Rathore et al., 2023). In the fu-
ture, the changing climate will affect O3 concentrations, with
model projections agreeing that climatic conditions across
the north of India will favour greater O3 production (Kumar
et al., 2018; Li et al., 2023; Stevenson et al., 2013). Using a
Nested Regional Climate Model with Chemistry, Kumar et
al. (2018) projected that O3 concentrations across India will
rise under RCP8.5 (Representative Concentration Pathway),
while they will remain comparable to current levels under
RCP6.0. For the dry, wheat growing season, the authors pro-
jected that O3 concentrations across the IGP will increase
under both RCP6.0 and RCP8.5, with a much larger increase
under RCP8.5 (Kumar et al., 2018). This is a critical finding
given the majority of wheat is grown in the north of India,
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across the IGP (Ministry of Agriculture & Farmers Welfare,
2022).

1.3 Effects of O3 pollution on wheat yields

O3 diffuses into wheat leaves via the stomates and impacts
photosynthesis and senescence when antioxidant defences
are compromised (Emberson et al., 2018; Rai and Agrawal,
2012; Tiwari and Agrawal, 2018). Accelerated senescence
shortens the grain-filling period, and the decline in photo-
synthesis decreases biomass production, ultimately leading
to lower crop yields (Emberson et al., 2018; Tiwari and
Agrawal, 2018).

Several experimental studies using wheat cultivars com-
monly grown in India have shown decreases in yield due to
elevated O3 exposure (Naaz et al., 2022; Pandey et al., 2018;
Tomer et al., 2015; Yadav et al., 2021). National estimates
of relative yield (RY) loss due to O3 across India vary be-
tween 3.8 %–41 % between studies (Avnery et al., 2011; Van
Dingenen et al., 2009; Droutsas, 2020; Ghude et al., 2014;
Lal et al., 2017; Sharma et al., 2019; Sinha et al., 2015). The
effects of O3 on wheat yield also vary spatially (Droutsas,
2020; Ghude et al., 2014; Lal et al., 2017; Mills et al., 2018a;
Sharma et al., 2019). Mills et al. (2018a) found the greatest
yield losses across the north of the country as the meteoro-
logical conditions are more favourable to O3 uptake. Lal et
al. (2017) also found the greatest wheat yield losses due to O3
in the north and west of India, where the majority of wheat
is grown. Further, Naaz et al. (2022) exposed Indian wheat
cultivars to different conditions representing future O3 and
climate scenarios, finding that areas suitable for wheat culti-
vation will be reduced in the future.

1.4 Effects of O3 pollution on wheat quality

Studies have shown that the starch, protein and micronu-
trient yield of wheat decreases under elevated O3 exposure
(Broberg et al., 2015; Piikki et al., 2008; Tomer et al., 2015).
Pre-anthesis, the accumulation of nitrogen (N) in upper plant
parts, is unaffected by elevated O3 concentrations (Brewster
et al., 2024). However, after anthesis, the O3-induced accel-
eration of plant senescence limits the remobilisation of N
from the leaves and stem to the grain (Brewster et al., 2024;
Broberg et al., 2017; Chang-Espino et al., 2021). Brewster
et al. (2024) also suggest that an additional process affects
N remobilisation to the grain, as they found an increase in
residual N in the flag leaf, despite not detecting a difference
in senescence onset. It is possible that the residual N is in
the form of antioxidants (for example glutathione) which the
plant creates for defence against O3-induced reactive oxygen
species (ROSs) (Brewster et al., 2024; Sarkar and Agrawal,
2010; Yadav et al., 2019). Overall, the reduction in N remo-
bilisation leads to reduced N deposition to the grain and a re-
duced grain N, as well as protein, yield (Broberg et al., 2015;
Cook et al., 2024; Yadav et al., 2020).

In wheat, since the grain yield is decreased to a greater
extent than proteins and micronutrients under increased O3,
the concentration of protein and micronutrients in the grains
generally increases (Feng and Kobayashi, 2009; Piikki et al.,
2008). However, some wheat varieties, particularly Indian
wheat, have shown a different pattern, where the protein yield
and concentration of the grains decreases under O3 exposure
(Baqasi et al., 2018; Mishra et al., 2013; Yadav et al., 2020).

Indispensable amino acids (AAs) are most important for
nutrition as they cannot be synthesised by the body and must
be obtained through diet (Brestenský et al., 2019). Addition-
ally, the quantity of N-containing compounds consumed is
important for the synthesis of dispensable AAs (Brestenský
et al., 2019). Nevertheless, while dispensable AAs can be
produced by the body, their consumption is still important
for supporting metabolic functions (Brestenský et al., 2019).
The production of different proteins in the body requires
AAs in differing proportions (Shewry and Hey, 2015). The
AA that is available in the lowest proportion, the most limit-
ing AA, determines protein production (Elango et al., 2008;
Shewry and Hey, 2015). Un-utilised AAs cannot be stored,
so if they are not used for protein production, they are oxi-
dised (Brestenský et al., 2019; Elango et al., 2008). Yadav et
al. (2020) looked at the AA profiles of a modern (HD3118),
as well as old (HUW234), wheat cultivar exposed to O3, find-
ing indispensable and dispensable AAs decreased under O3
exposure. The effect of O3 on the protein quality of wheat is
of particular concern given the existing state of malnutrition
in India.

1.5 Crop modelling for O3 and nutrition

Several crop models have been used to investigate the im-
pacts of O3 pollution on crop yields in a wide range of coun-
tries and globally (Droutsas, 2020; Guarin et al., 2019, 2024;
Nguyen et al., 2024; Schauberger et al., 2019; Tai et al., 2021;
Tao et al., 2017; Tian et al., 2015; Xu et al., 2023; Zhou et
al., 2018). Ebi et al. (2021) highlight the usefulness of models
for such risk assessments, while they stress that most do not
consider aspects relevant for human nutrition in their simula-
tions. Currently, only one model has been developed which
captures the effect of O3 on crop nutrition: DO3SE-CropN
(Cook et al., 2024). DO3SE-CropN is built on the existing
DO3SE-Crop model, which takes inputs of hourly meteorol-
ogy and O3 concentrations to simulate crop phenology, O3-
impacted net photosynthesis, dry matter partitioning, grain
filling and O3-impacted crop senescence (Pande et al., 2025).
The DO3SE-CropN model then simulates crop N and ex-
plicitly models the effect of O3 on reducing the amount of
N from the leaves and stems that is available for the grain.
From the grain N content (g N m−2), grain protein content
(g protein m−2) is easily obtained using conversion factors
(Mariotti et al., 2008).

The DO3SE-CropN model was originally developed to
capture the increase in N concentration (100g N g DM−1,
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where DM refers to dry matter) and decrease in N yield
(g N m−2) that occur under O3 exposure in European wheat
(Cook et al., 2024). However, Indian wheat experiences a de-
crease in grain protein concentration as well as a decrease in
grain protein yield under elevated O3 concentrations (Mishra
et al., 2013; Yadav et al., 2020). In India, the ambient O3
concentrations are high, leading to ROS production and sub-
sequent yield losses (Sharma et al., 2019; Sinha et al., 2015;
Tiwari and Agrawal, 2018). The production of antioxidants
by the plant to defend against ROSs reduces the proportion
of proteins that would otherwise be remobilised to the grain,
reducing grain protein (Yadav et al., 2019, 2020). Therefore,
to capture the decrease in the protein concentration of Indian
wheat under O3 exposure, the inclusion of antioxidant pro-
cesses is essential. Further, the inclusion of such processes
will improve the wider applicability of the model for simu-
lating O3 effects on wheat quality for regions with high O3
concentrations.

Further, to expand the nutritional relevance of the model,
it would be useful to simulate the effect of O3 on protein
quality. This can be done through simulating AA concentra-
tions, which can subsequently be used to calculate the metric
for measuring protein quality recommended by the Food and
Agriculture Organization (FAO) of the United Nations, the
dietary indispensable AA score (DIAAS). The inclusion of
protein quality would allow for risk assessments of O3 ef-
fects on wheat nutrition in addition to yield.

1.6 Aims

In the present study, the DO3SE-CropN model was further
developed and applied with 2 years of meteorological data.
The model was calibrated using phenology, photosynthesis
and yield data collected for two cultivars (HUW234 and
HD3118) grown under both ambient and elevated O3 treat-
ments. All data were available from Yadav et al. (2021).
Grain quality data were obtained from an experiment on the
same cultivars a year prior; however hourly meteorological
and O3 data were not available for this year (Yadav et al.,
2020). In the absence of further data, this study assumes
that the grain protein concentration and grain protein quality
will respond similarly to O3 between years. The aims of the
present study were to use the available data for the following:

1. develop a framework to simulate the antioxidant re-
sponse of wheat under O3 exposure for incorporation
into the existing DO3SE-CropN model

2. develop a method for simulating the impact of O3 expo-
sure on the protein quality of wheat, focussing on AAs
essential for human nutrition, for incorporation into the
existing DO3SE-CropN model.

2 Model development

2.1 Integrating antioxidant processes into

DO3SE-CropN

The DO3SE-Crop model is a coupled stomatal conductance–
photosynthesis model, which simulates stomatal O3 uptake
and its impact on photosynthesis which the plant can re-
cover from overnight, as well as O3-induced accelerated crop
senescence (Pande et al., 2025). Daily photosynthate is par-
titioned between the leaves, stem, roots and grains according
to the plant’s growth stage (Osborne et al., 2015; Pande et
al., 2025). Development of DO3SE-Crop has allowed for the
O3 impact on wheat production in China and Europe to be
estimated (Nguyen et al., 2024; Pande et al., 2025). The N
module for DO3SE-Crop, developed by Cook et al. (2024),
takes inputs of daily stem and leaf dry matter (DM), as well
as the onset of crop senescence, to simulate the N accumu-
lated by the leaf and stem. The remobilisation of N from the
leaf and stem to the grain after anthesis is simulated using a
sigmoid function. To account for the reduction in N remobili-
sation under O3 exposure, a relationship linking accumulated
O3 flux to the minimum N levels in the leaf and stem is incor-
porated (Brewster et al., 2024; Cook et al., 2024). The model
allowed for the decrease in grain N yield (g N m−2) and in-
crease in grain N concentration (100 g N g DM−1) of Euro-
pean wheat under O3 exposure to be simulated (Cook et al.,
2024). When the N module is integrated within the existing
DO3SE-Crop model, the resulting model is termed DO3SE-
CropN. A full write-up of the equations and processes of the
DO3SE-Crop model is given in Pande et al. (2025). Addi-
tionally, a full description of the equations and processes of
version 1.0 of the N module developed for DO3SE-Crop is
given in Cook et al. (2024). In this study version 4.39.16 of
the DO3SE-Crop model was used (Bland, 2024), along with
version 2.0 of the N module (Cook, 2024).

The first iteration of DO3SE-CropN (Cook et al., 2024)
did not consider the utilisation of leaf and stem N in creating
defence proteins, yet for Indian wheat this may be an im-
portant process to explain the decrease in grain protein con-
centration as well as yield (Yadav et al., 2019, 2020). Here
we propose a method by which the leaf and stem N involved
in antioxidant production may be quantified (Fig. 1). For the
purposes of this study, we do not consider individual antioxi-
dants (e.g. superoxide dismutase, Tiwari and Agrawal, 2018).
Instead, we model a general pool of N that we hypothesise to
be associated with antioxidants. This antioxidant pool of N
is subsequently unavailable to the grain and is suggested to
partially explain the decrease in grain protein of Indian wheat
under O3 exposure.

Figure 1 shows how antioxidant processes can be inte-
grated within the existing DO3SE-CropN framework. When
the leaf senesces, N is released from the leaf. The N module
is linked to the existing DO3SE-Crop model so that increas-
ing stomatal O3 flux accelerates senescence, which acceler-
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Figure 1. Diagram of the proposed method for integrating antioxidant response under O3 exposure into the existing N module for DO3SE-
Crop. The lightning strikes represent the points where O3 interacts with the antioxidant processes in the model.

ates N release from the leaf. N is released until the mini-
mum leaf N concentration is reached. Previously, the mini-
mum leaf N concentration increased with O3 concentration
to represent the increase in residual N (Cook et al., 2024).
Now it is hypothesised that this increase in residual N is due
to the leaf and stem using N for antioxidants which remain
in the leaf. After a threshold of accumulated O3 flux has
been exceeded, we allocate a proportion of the released N
to an antioxidant pool, which means it is unavailable to the
grain. Since the stem is also involved in antioxidant response
and defence against ROSs (Bazargani et al., 2011; Gao et
al., 2018; Li et al., 2022), the same mechanism is used for
the stem. We determine the proportion of N that will be al-
located to the antioxidant pool using an equation that fol-
lows a structure similar to the drought stress factor of Liu et
al. (2018), as both O3 and drought stress are ROS mediated
(Khanna-Chopra, 2012). Liu et al. (2018) use their drought
stress factor to empirically modify the N : protein conversion
factor under drought stress. Here, we introduce this method
to the DO3SE-CropN model via Eq. (1) as a more mecha-
nistic approach. Instead of modifying the N : protein conver-
sion factor under an abiotic stress, we use the structure of
the equation of Liu et al. (2018) to determine N allocation to
the antioxidant pool, thereby reducing the N available to the
grain and subsequently affecting grain protein.

The proportion of N allocated to the antioxidant pool,
fO3,Antioxidants, takes the following form:

fO3,Antioxidants =

{

0, fstacc < cLO3
fstacc−cLO3

apart×fstend−cLO3
, fstacc ≥ cLO3

, (1)

where fstacc is the current stomatal accumulation of O3 flux
in the DO3SE model; fstend is the stomatal accumulation of
O3 flux when N is only allocated to the antioxidant pool and
is not available to the grain; cLO3 is the critical level above
which O3 flux starts, affecting the onset of senescence in the
base DO3SE-Crop model; and apart is a constant modifier that
can be calibrated to customise the O3 effect on antioxidants
for each plant part (leaf and stem). apart must be equal to or

greater than
cLO3
fstend

for the antioxidant factor equation to show
a decrease in released N with accumulated O3 flux. Further,
fstend must be greater than cLO3 . Of the N released that day,
the proportion available to the grain is 1−fO3,Antioxidants. The
cLO3 term was chosen as the O3 stress factor as if O3 has ex-
ceeded a critical threshold and is affecting senescence onset;
we can hypothesise that the allocation of N to antioxidants
to protect against O3 stress will be increased. fstend was in-
corporated into the equation to allow for the end point of the
slope to be customised. For varying values of apart, the O3
stress factor is used to calculate the proportion of N available
to the grain as a function of accumulated stomatal O3 flux
according to Fig. 2.

2.2 Identification of nutritionally relevant AAs for

O3-exposed wheat

The quality of a protein depends on the proportions of in-
dispensable and dispensable AAs in the food. While Yadav
et al. (2020) found that dispensable AAs were reduced to a
greater extent than indispensable AAs under O3 exposure,
the most limiting for protein production were the indispens-
able AAs lysine and methionine. Additionally, the concen-
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Figure 2. Proportion of N released from stem or leaf senescence that is available to the grain for varying values of apart. The plot uses
fstend = 30000 and cLO3 = 15000.

trations of lysine and methionine were reduced under O3 ex-
posure for both the HD3118 and HUW234 cultivars (Yadav
et al., 2020). Therefore, to simulate the protein quality under
O3 exposure, lysine and methionine were focussed on.

2.3 Protein and AA calculations

The DO3SE-CropN model outputs a grain N yield (g N m−2)
and concentration (100g N g DM−1). From the grain N con-
tent, the protein content can be calculated by considering a
standard N : protein conversion factor. The Jones’ factors are
commonly used to convert from N to protein; however, these
factors vary between foods and within the same food group
(Jones, 1941; Mariotti et al., 2008). On average for whole
wheat, the conversion factor is 5.49, which is used in this
study to convert grain N to protein (Mariotti et al., 2008).
The regressions used to calculate lysine and methionine con-
centrations of the wheat grain from grain protein percentage
are taken from Table 5 of Liu et al. (2019).

2.4 DIAAS

The metric recommended by the FAO for evaluating food
protein quality is the dietary indispensable AA score (DI-
AAS), which corrects for the AA digestibility at the end of
the small intestine (FAO, 2013). It therefore reflects the fact
that the nutritional quality of protein should account for the
AAs required for metabolism (FAO, 2013). The metric also
varies for different age groups which have different protein
quality requirements (FAO, 2013). Currently, no crop model
has incorporated a nutrition measure such as the DIAAS into
their models. Additionally, no model has considered the im-
pact of O3 pollution on protein quality, which is critical for
risk assessments of O3 stress on food and nutrition security.

There are two steps in calculating the DIAAS. First, the
DIAAS reference ratio is calculated for each AA as follows:

DIAAS
reference ratio =

true ileal IAA digestibility × AA (mg)
in 1 g of the dietary protein

digestible IAA (mg)
in 1 g of the dietary protein

, (2)

where IAA stands for indispensable AAs.
Once the AA concentrations have been obtained from

grain protein simulations, as detailed in Sect. 2.3, Eq. (2) is
re-written using the parameters used in the crop modelling as

DIAAS
reference ratio =

true ileal IAA digestibility
×

1000×grain AA (% in DM)
grain protein (% in DM)

digestible IAA (mg)
in 1 g of the dietary protein

. (3)

In the second step, the lowest DIAAS reference ratio is se-
lected and used to calculate the DIAAS as in Eq. (4). The
lowest reference ratio is selected as this corresponds to the
AA which is most limiting in the food and is available in
the smallest proportion relative to a person’s requirements
(Elango et al., 2008). The AA with the lowest availability de-
termines protein production, as well as quality, and the other
AAs which are in excess of the most limiting one will be
oxidised (Elango et al., 2008).

DIAAS
score = 100 × lowest (reference ratio) (4)

The true ileal IAA digestibility coefficients for wheat flour
required for Eq. (3) can be obtained from Shaheen et
al. (2016) for the different AAs. Additionally, the digestible
indispensable AA (mg) in 1 g of the dietary protein is tabu-
lated for the different AAs and age groups in FAO (2013).
There are different requirements for different age groups as
adults only require AAs for maintenance, whereas children
require them for growth and maintenance (Shewry and Hey,
2015).
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2.5 Calculations of RY loss and the decrease in protein

and AA concentrations under O3

For performing risk assessments of O3 damage to crops, RY
and RY loss (1 − RY) are the commonly used response pa-
rameters which quantify the magnitude of the crop yield loss
under O3 by comparing it to the corresponding preindustrial
value (∼ 10 ppb) (see Eq. 5) (CLRTAP, 2017). Such risk as-
sessments allow for the magnitude of the effects of O3 on
crop yields to be estimated (Emberson, 2020).

Relative yield (RY) =
yield under O3 treatment

yield under preindustrial O3
(5)

For the model simulations, the yield under preindustrial O3
was extracted by performing a model run with a constant O3
concentration of 10 ppb, while the yields under the O3 treat-
ment were obtained by running the model with the hourly
experimental O3 concentration data for the ambient and el-
evated (ambient + 20 ppb) treatments. To extract the yield
under preindustrial O3 concentrations for the experimental
data, the yields for the ambient and elevated treatments were
regressed against their M7 (mean hourly O3 concentration
during daylight hours from 09:00 to 17:00) value. The re-
gression was then used to calculate the expected yield at a
preindustrial M7 value of 10 ppb.

The calculations for obtaining the observed RY for the ex-
perimental data assume that the response of yield to increas-
ing O3 concentrations is approximately linear, which is veri-
fied in the literature (Pleijel et al., 2022). However, the effect
of O3 on leaf and grain protein and grain AAs has received
far less attention in the literature, and it is unknown if their
response to increasing O3 is also linear. Due to these factors
it was not possible to estimate preindustrial leaf and grain
protein and grain AA concentrations. Instead, we focus on
the reduction in leaf and grain protein and grain AAs under
the elevated, as compared to the ambient, O3 treatment.

3 Parameterisation and calibration of the

DO3SE-CropN model

3.1 Experimental datasets

Datasets for training and evaluation of the DO3SE-CropN
model were taken from 3 years of field experiments for
wheat harvested between March 2016–2018 at the Botani-
cal Garden, Banaras Hindu University, Varanasi, India, using
the HUW234 and HD3118 cultivars. The cultivars are both
late-sown and heat-tolerant wheat varieties. For all years,
O3 fumigation began 3 d after seed germination, on 13, 14
and 15 December, respectively, for the 2015, 2016 and 2017
wheat growing periods. The wheat was exposed to ambi-
ent O3 concentrations and an elevated O3 treatment (ambi-
ent + 20 ppb), with the seasonal maximum O3 concentrations
ranging from 80–100 ppb and an average ambient M7 of

48 ppb across 2017 and 2018. For all experiments the wheat
was sown on 5 December and harvested on 30 March. The
wheat was grown in non-filtered open-top chambers across
all 3 years. The wheat did not experience any soil water or
N stress. For greater detail about the experimental set-up
and measurements taken, the reader is referred to Yadav et
al. (2020) and Yadav et al. (2021). A scaling factor was ap-
plied to each AA concentration in Yadav et al. (2020) based
on the mean concentration of AAs in Siddiqi et al. (2020)
to ensure values were consistent with the wider literature on
AA concentrations for Indian wheat.

The meteorological data for the model input were taken
from an on-site weather and O3 monitoring system. The in-
put temperature data were corrected for the heating effect of
the open-top chambers, with the chambers found to be ap-
proximately 2 °C warmer than the ambient air (see Supple-
ment). Due to gaps in the hourly meteorological data, gap
filling was performed according to Emberson et al. (2021).

3.2 Model calibration and evaluation

3.2.1 Model calibration

The calibration for DO3SE-CropN is performed sequentially
to allow for the interactions between parameters at each stage
to be limited (Cook et al., 2024). The key parameters cal-
ibrated in the DO3SE-CropN model are given in Cook et
al. (2024), and the same method of calibration is used in this
study. In the present study, there are three additional param-
eters to calibrate based on the newly introduced antioxidant
module: fstend, aleaf and astem.

The maximum catalytic rate at 25 °C (Vcmax,25) and the
maximum rate of electron transport at 25 °C (Jmax,25) were
fixed at the values provided by Yadav et al. (2020) in their
supplementary data. The authors’ supplementary data on the
maximum photosynthetic rate were combined with data pro-
vided by the authors on maximum stomatal conductance to
vary the species-specific sensitivity of stomatal conductance
to the assimilation rate (m), as well as the parameter de-
scribing variation in stomatal conductance in response to
the vapour pressure deficit (VPD0), until a close match be-
tween the photosynthetic rate and stomatal conductance was
achieved (Yadav et al., 2020). Additional data provided by
the authors of Yadav et al. (2020) were utilised to calculate
the dark respiration rate, allowing for calibration of the dark
respiration coefficient for all simulations. Subsequently, the
parameters controlling biomass accumulation and O3 dam-
age were calibrated using the biomass data provided and as-
suming a seasonal maximum leaf area index (LAI) of 5. The
O3 damage parameters were incorporated at this stage due to
high ambient O3 concentrations which caused an O3-induced
reduction in yield even under the ambient treatment. The pa-
rameters controlling leaf and stem N were varied to achieve a
close match for the leaf and grain protein simulations, as no
stem N data were available for calibration. During this stage
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of the calibration, the gradient of the equations describing the
effect of O3 on N remobilisation of the leaf and stem were set
to 0 to allow for the newly developed antioxidant processes to
be tested, as it was hypothesised in Cook et al. (2024) that the
O3 impact on N remobilisation occurs due to antioxidant pro-
cesses. However, as the calibration was performed, the best
results were achieved when the new antioxidant processes
were used in combination with the previously developed O3
effect on remobilisation. Therefore, the parameters control-
ling N remobilisation from the leaf and stem (calibrated in
Cook et al., 2024) were varied as little as possible from their
defaults to allow for the newly developed antioxidant pro-
cesses to be parameterised. For a tabulation of parameters
calibrated for, as well as the values they were calibrated to,
please refer to the Supplement.

Model parameters were calibrated using a combination of
a genetic algorithm and a trial-and-error approach to min-
imise the difference between simulated and observed values
while also retaining parameterisations that are physiologi-
cally realistic for the plant. For further details of the cali-
bration method, see Cook et al. (2024).

3.2.2 Model evaluation

The input data available for the present study were limited.
Initially, the data were split in half, with the 2017 data being
used for model calibration and the 2018 data being used for
the model evaluation. However, when looking at the results
of the evaluation it was clear that the limited input data led to
overfitting of the 2017 dataset (see Supplement Figs. S8 and
S9). Therefore, to focus on the development of the modelling
framework, all available data were used for model calibra-
tion. The root mean square error (RMSE) and R2 were used
to evaluate the model’s suitability at simulating the yields
and protein contents of the two cultivars using scikit-learn
(Pedregosa et al., 2011). Using the R2 calculation from Pe-
dregosa et al. (2011) can give negative R2 values, where a
negative value means that using the mean of the observed
values is a better fit to the data than using the model. In this
paper the units of the RMSE are the same as the units of the
model variable; e.g. for yield the RMSE is reported in g m−2,
and for protein percentage (% or 100 g protein g DM−1) the
RMSE is reported as percentage points.

4 Results

4.1 Biomass and protein simulations

Overall, the calibrations for grain yield and leaf and grain
protein were reasonable for both cultivars. The grain yield
and RY loss simulations performed better for 2018 than
2017. However, there was little difference in the model’s ca-
pacity to capture the leaf and grain protein concentrations, as
well as the relative loss in these, under O3 exposure between
the years. As seen in Fig. 3a, the grain yield calibration was

satisfactory with an RMSE of 141 g m−2; however it is clear
that the calibration was able to simulate the grain DM bet-
ter for 2018 than 2017. The underestimation of the grain DM
in the 2017 dataset ranged between 35 %–46 %. Further, the
negative R2 implies that using the mean of the observed data
would be a better estimate of grain DM than the model (Pe-
dregosa et al., 2011). The RY loss was captured much better
than the grain DM. In Fig. 3b, the model captures the RY loss
of the HD3118 cultivar well. However, the HUW234 cultivar
has a large difference in RY loss between the 2 years which
the model was unable to capture. The average deviation of
RY loss from the observed value is 2.5 percentage points ex-
cluding the HUW234 cultivar for 2018. When this cultivar is
included, the deviation increases to 7 percentage points.

Figure 4 shows the grain and leaf protein simulations and
the relative protein (RP) loss between the ambient and el-
evated treatments. The grain protein (Fig. 4a) is captured
better for 2017 than 2018, but overall, the results are good,
with an R2 of 0.5 and an RMSE of only 1.3 %. The grain
RP loss between the ambient and elevated O3 treatment is
slightly overestimated for the HUW234 cultivar, and for the
HD3118 cultivar in 2017 it is slightly underestimated, both
by ∼ 2.5 percentage points. However, in 2018 the grain RP
loss of the HD3118 cultivar was heavily overestimated by
∼ 6.5 percentage points.

The simulations of leaf protein (Fig. 4c) showed a good
fit to the experimental data and were closer to the observed
values than grain protein simulations, with an R2 of 0.6 and
an RMSE of 0.8 %. Nevertheless, the model captured the
pattern of the grain protein concentrations under ambient
and elevated O3 concentrations better than the pattern of the
leaf protein concentrations (Fig. 4a and c). The leaf RP loss
(Fig. 4d) was not well captured. For the HD3118 cultivar, the
leaf RP loss was underestimated, and for the HUW234 cul-
tivar it was overestimated. For the HUW234 cultivar the leaf
RP loss was overestimated by ∼ 42 percentage points, and
for the HD3118 cultivar the RP losses were more variable,
with the leaf RP loss underestimated by ∼ 13.5 and ∼ 25 per-
centage points for 2017 and 2018, respectively.

4.2 AA simulations

Lysine and methionine were the key AAs focussed on as
they were found to be the most limiting to protein produc-
tion under O3 exposure (Yadav et al., 2020). To calculate
their concentrations the grain protein concentrations (Fig. 4)
were used along with the regressions from Liu et al. (2019).
Figure 5a and c show the concentration of methionine in the
wheat grains is predicted better than the lysine concentra-
tions, with a higher R2 of 0.73 (compared with 0.31) and a
lower RMSE (0.02 compared with 0.06). However, the de-
crease in both AA concentrations under O3 exposure was not
captured as well (Fig. 5b and d). For both lysine and methio-
nine, the decrease in AAs under O3 exposure was heavily
underestimated. The decrease in methionine for HUW234
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Figure 3. Calibration of grain DM (a) and RY loss (b) using the DO3SE-CropN model for the Varanasi dataset. RY loss was calculated in
comparison to preindustrial O3 concentrations (see Sect. 2.5).

Figure 4. The concentration of grain (a) and leaf (c) protein of the HUW234 and HD3118 cultivars under ambient and elevated O3. Calibra-
tion of grain (b) and leaf (d) RP loss. As shown in (b), the relative change in grain protein for the HUW234 cultivar for the years 2017 and
2018 was almost identical, hence the overlain points. As shown in (c), the leaf protein concentration for the HD3118 cultivar in the ambient
treatment was almost identical for 2017 and 2018, giving the overlain points. The RMSE and R2 of the calibration are indicated in the plot.

https://doi.org/10.5194/bg-22-1035-2025 Biogeosciences, 22, 1035–1056, 2025



1044 J. Cook et al.: Modelling O3 impacts on wheat protein and amino acids

and HD3118 was underestimated by 9 and 10.5 percent-
age points, respectively. The decrease in lysine concentra-
tions were underestimated by 37 and 19 percentage points
for HUW234 and HD3118, respectively. The decrease in AA
concentration for HUW234 was similar between years for
both methionine and lysine, whereas for the HD3118 culti-
var, the simulations showed a drastically different decrease
in AA concentration between years.

4.3 DIAAS of the nutritionally relevant AAs

Methionine and lysine are the most limiting AAs for pro-
tein production for the HUW234 and HD3118 cultivars and
experience a decrease in concentration under O3 exposure
(Yadav et al., 2020). Since the relative impact of O3 on the
AA concentrations was not captured well, the observed con-
centrations of the AAs were used to calculate the DIAAS,
with the value that would be obtained if using the simulated
outputs in brackets. After calculating the reference ratios for
lysine and methionine using Eq. (3), lysine was found to give
the lowest reference ratio for all O3 treatments and cultivars
and was used to calculate the DIAAS using Eq. (4). Table 1
shows the results of the DIAAS calculation. Using the ob-
served data, both cultivars experience a decrease in protein
quality under elevated O3 with the HUW234 cultivar experi-
encing a greater reduction than the HD3118 cultivar. Overall,
the quality of wheat protein was lower for children aged be-
tween 6 months–3 years than for older children and adults
(>3 years). When using the simulated outputs to calculate
the DIAAS, there is an increase in protein quality under O3
exposure. This discrepancy occurs due to the structure of the
DIAAS equation. The decrease in AA concentrations under
O3 was underestimated by DO3SE-CropN in comparison to
the grain protein (see Figs. 4 and 5), leading to a greater ratio
of grain AAs to grain protein (Eq. 3). The greater ratio un-
der elevated O3 then led to a higher-value DIAAS under the
treatment compared to the ambient, though this would not be
the case in reality.

4.4 Difference between the 2017 and 2018 simulations

After performing the simulations for 2017 and 2018 in
Sect. 4.1, it was clear there was a large difference in grain
DM for the 2 years. The reasons for this discrepancy are
important to understand since uncertainties in the grain DM
simulation will compound errors in protein concentration and
yield (Cook et al., 2024). To investigate the grain DM dis-
crepancy further, the meteorological variables, stomatal con-
ductance and photosynthetic rate were plotted for both years.
The accumulation of biomass each day and the LAI were
overlaid to see if there were any differences that could ex-
plain the large difference in biomass. The temperature in
2018 was greater at the beginning and end of the growing
season compared to 2017 (Fig. 6). The reverse was true for
relative humidity (Fig. S2). In relation to the other inputs, air

pressure, precipitation and wind speed had negligible differ-
ences between the years (Figs. S1, S3 and S4). O3 concentra-
tions were generally greater in 2017 than 2018 (Figs. 7 and
S11), and photosynthetic photon flux density (PPFD) was
greater at the start of the growing season in 2018 (Fig. 8).
The daily photosynthetic rate was mostly greater in 2018
than 2017 and showed the same pattern for both cultivars
(Figs. 9 and S5). The difference in stomatal conductance be-
tween the years for both cultivars mimicked the shape of
the photosynthetic rate plots (Figs. S6 and S7). Given that
the O3 effect is more strongly determined by senescence
than the instantaneous impact on photosynthesis (Pande et
al., 2025) and senescence onset did not differ strongly be-
tween years (Fig. S11), it is unlikely that the differences in
yield were caused by O3 effects. Instead, it is likely that the
higher early-season PPFD and temperatures of 2018, along
with lower RH, promoted earlier LAI development and in-
creased biomass production in simulations.

5 Discussion

We developed the DO3SE-CropN model to address a current
limitation in the ability of crop models to assess the effects
of O3 stress on not only crop yields but also quality. We de-
scribe the further development and applications of the model
to simulate O3 effects on nutritionally important AAs based
on current understanding of antioxidant processes and impli-
cations for N remobilisation. This work is important since
currently there are few models that consider protein quality
in their simulations. CN-Wheat considers AAs from the per-
spective of being used for leaf, stem and grain protein pro-
duction (Barillot et al., 2016). It does not explicitly consider
the AAs of the wheat grains, relevant for nutrition (Barillot
et al., 2016). In SiriusQuality1, Martre et al. (2006) consider
the fractions of N that are split between gliadin, glutenin,
albumin–globulin and other proteins in the wheat grains as
a measure of wheat quality for bread production, not human
nutrition. To our current knowledge, Liu et al. (2019) are the
only authors who have extended a crop model to simulate
protein quality, in the form of AAs, from the perspective of
human nutrition. In their work they extended the CERES-
Wheat model to simulate lysine and other indispensable AA
concentrations. Further, none of these crop models that con-
sider crop quality have incorporated the effects of antioxi-
dants. In our study we extend the equations used by Liu et
al. (2019) to produce the first framework by which the effect
of O3 on protein quality (through antioxidants, AAs and the
DIAAS) can be captured.

5.1 Ability of the model to simulate DM and protein

The present model was able to reproduce the observed grain
DM for 2018 but underestimated it for 2017 due to differ-
ences in meteorology that triggered earlier LAI development,
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Figure 5. A comparison of the simulated concentrations of lysine (a) and methionine (c) for the different cultivars and years of treatment.
The change in AAs from ambient for lysine (b) and methionine (d) is also shown for both cultivars.

Table 1. The DIAAS for the HUW234 and HD3118 cultivars under the two O3 treatments and for the age categories of 6 months–3 years and
> 3 years (for older children and adults). The reduction in the DIAAS under O3 for the HUW234 and HD3118 cultivars was also calculated.
The numbers in brackets represent the DIAAS calculated using model outputs; the average AA and protein concentrations across the 2017
and 2018 simulations were used in the calculation.

DIAAS

Age category HUW234 HUW234 HUW234 HD3118 HD3118 HD3118
ambient elevated relative change ambient elevated relative change

DIAAS (>3 years) 49.9 (59.1) 31.0 (61.1) −37.9 % (+3.3 %) 49.9 (50.8) 39.9 (52.4) −20.1 % (+3.2 %)
DIAAS (6 months–3 years) 42.0 (49.80) 26.1 (51.5) −37.9 % (+3.3 %) 42.0 (42.8) 33.6 (44.1) −20.1 % (+3.2 %)

leading to greater photosynthesis and biomass production in
the model for 2018. The model was able to capture the RY
loss of the HD3118 cultivar well for both years. However,
the HUW234 cultivar experienced a large difference in RY
loss between the 2 years, with the model only able to cap-
ture the RY loss well for 1 year. With only 2 years of data, it
was not possible to determine which of the observed RY loss
values is the most common response for HUW234. Data for
additional O3 treatments and years are required to develop
a more robust model parameterisation for different meteoro-
logical conditions and cultivars.

While the model underestimated the grain DM for 2017 by
∼ 40 %, there appears to have been no effect of this underes-
timation on the capacity of the model to capture grain protein
concentration (100 g protein g DM−1). A possible reason for
this is that the lower photosynthesis in 2017 led to lower sim-
ulations of leaf and stem biomass. As a result, the N required
by the leaf and stem for growth in the model was reduced,
leading to lower N accumulation in these parts. Upon re-
mobilisation to the grains, the reduction in N accumulated
by the grains in 2017 compared to 2018, along with the re-
duced grain DM in 2017, led to similar protein concentra-
tions. The model’s ability to reproduce the observed grain
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Figure 6. The difference in daily temperature between 2017 and 2018 (where the temperatures for 2018 were subtracted from those for
2017), along with the difference in aboveground DM accumulation for the ambient treatment for both years and the LAI profiles. The LAI
and aboveground DM profiles are for the HUW234 cultivar.

Figure 7. The difference in daily O3 between 2017 and 2018 (where the O3 concentrations for 2018 were subtracted from those for 2017),
along with the difference in aboveground DM accumulation for the ambient treatment for both years and the LAI profiles. The LAI has been
multiplied by 2 to more easily show the profile. The LAI and aboveground DM profiles are for the HUW234 cultivar.

protein concentration, despite yield discrepancies, suggests
that the underlying N allocation and remobilisation equations
reasonably approximate plant processes. This outcome sup-
ports the reliability of the equations, though further valida-
tion is needed to confirm their accuracy. Future work should
focus on improving the model’s estimates of protein yield
and concentration so that O3 threats to food security can be
assessed with greater confidence.

In the model, there was a strong interdependence between
the parameters controlling protein accumulation in the leaf
and stem with grain protein, which is to be expected as pro-
tein remobilisation from the leaf and stem are key contrib-
utors to grain protein (Feller and Fischer, 1994; Gaju et al.,
2014; Nehe et al., 2020). On calibrating the model, this inter-

dependence meant that any attempt to improve the model’s
accuracy in capturing the decrease in leaf protein under ele-
vated O3 resulted in reduced model accuracy in capturing the
decrease in grain protein under elevated O3 and vice versa
(see Fig. 4b and d). This meant that there was a trade-off
between calibrating leaf and grain RP loss under O3 expo-
sure. No data were available on stem RP loss, so the accuracy
of the stem parameterisation is unclear. Given this study fo-
cussed on grain quality, capturing the grain RP loss under O3
was prioritised over the leaf. If the model is not able to match
the decrease in leaf protein with the corresponding decrease
in grain protein under O3 exposure for a given cultivar, then
it implies a problem with the parameterisation or model con-
struct. Regarding the parameterisation, leaf DM data were
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Figure 8. The difference in daily PPFD between 2017 and 2018 (where the PPFD for 2018 was subtracted from that for 2017), along with
the difference in aboveground DM accumulation for the ambient treatment for both years and the LAI profiles. The LAI has been multiplied
by 50 to more clearly show the profile. The LAI and aboveground DM profiles are for the HUW234 cultivar.

Figure 9. The difference in net photosynthetic rate (anet) for 2017 and 2018 (where the anet for 2018 was subtracted from that for 2017),
along with the difference in aboveground DM accumulation and LAI for the ambient treatment for the 2 years. The LAI and aboveground
DM profiles are for the HUW234 cultivar.

not available which would affect leaf N, and hence protein,
accumulation. Therefore, in the future leaf (and stem) DM
data at anthesis and harvest would aid in parameterising the
equations describing the partitioning of photosynthate each
day and could improve simulations of RP loss.

5.2 Ability of the model to simulate AA concentrations

To date, there is only one study (Yadav et al., 2020) that has
investigated the effect of elevated O3 on the AA concentra-
tions of wheat. Data from this study were used to calibrate
and evaluate the DO3SE-CropN model and test the frame-
work for the AA simulations. While the grain methionine
concentrations were reproduced well, the grain lysine con-
centrations were overestimated for the elevated O3 treatment.

It is also clear to see that the reduction in concentrations
of both lysine and methionine was underestimated by the
DO3SE-CropN model. The AA concentrations were calcu-
lated using regressions linking protein concentrations to AAs
from Liu et al. (2019), which were constructed using data
from 48 field experiments from major wheat-producing ar-
eas in China. Approximately 95 % of wheat grown in China
is winter wheat (United States Department of Agriculture,
2022), and most of the cultivars used to produce the re-
gressions were winter wheat (Liu et al., 2019). However,
the model was parameterised for Indian spring wheat. Given
the differences between the growing conditions in India and
China, as well as spring and winter wheat, deviations in sim-
ulations of lysine and methionine concentrations from the ob-
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served are to be expected. Additionally, Liu et al. (2019) did
not include experiments with differing levels of O3 in their
treatments. For lysine, this has culminated in a much bet-
ter simulation of the AA concentrations under ambient O3
compared to the elevated treatment. For both lysine and me-
thionine, using the regressions alone to convert grain protein
to grain AA concentrations was not sufficient to account for
the O3 effect on grain quality. Additionally, there is currently
a knowledge gap (discussed further in Sect. 5.3) relating to
our understanding of the effects of O3 on both antioxidants
and grain quality, which affects not only the construction of
the model but also its parameterisation. Suggestions for more
specific experiments which could reduce the knowledge gap
for both modelling and understanding the effect of O3 expo-
sure on grain protein and AAs are discussed in Sect. 5.3, 5.4
and 5.7. Nevertheless, it is clear that additional experimental
data about the effect of O3 on grain AAs would be beneficial
for not only model development but also improving confi-
dence in modelling results.

5.3 Modelling antioxidant processes under O3 exposure

The first iteration of the DO3SE-CropN model simulated the
decrease in grain protein yield (g protein m−2) and increase
in grain protein concentration (100 g protein g DM−1) expe-
rienced by European and Chinese wheat cultivars (Broberg
et al., 2015; Cook et al., 2024). However, Indian wheat has
been shown to experience a decrease in both protein yield
and concentration under O3 exposure (Mishra et al., 2013;
Yadav et al., 2020). Through the incorporation of antioxidant
processes, the present model is now able to capture the de-
crease in protein concentration, as well as yield, of protein
in Indian wheat under O3 exposure, improving the regional
applicability and nutritional relevance of the model.

The design of the antioxidant equations has several bene-
fits which make it useful for further applications. Firstly, the
structure of Eq. (1) means that it could be translated to other
stressors provided they have a similar mechanism of damage
to O3, meaning the framework is flexible. Drought and high
temperature stress are good candidates for this framework as
they are ROS mediated, like O3, and cause a reduction in both
grain yield and protein content (Broberg et al., 2015, 2023;
Mariem et al., 2021). The effect of heat stress on antioxidant
production, and hence grain quality, could be incorporated by
modifying Eq. (1) and Fig. 2 to incorporate the duration (and
potentially timing) of the stress as these are the key factors
affecting grain yield under heat stress (Balla et al., 2019). For
drought stress, the duration of the stress would be useful, but
there would need to be an additional effect of drought on re-
ducing nutrient uptake (as this affects grain quality) (Faisal et
al., 2017; Rijal et al., 2020). The second benefit of the frame-
work is that it is simple. It does not require a large number of
additional parameters, which reduces the complexity of the
modelling process and makes it easier for other modellers to
introduce into their models. Thirdly, the framework is com-

patible with the structure of other models that simulate plant
N. The equations can be used to simply divide leaf and stem
N into pools that are accessible or inaccessible (antioxidants)
to the grain. Following this, the modeller only needs to en-
sure that any N remobilised from the leaf and stem to the
grain comes from the accessible pool.

It was hypothesised that the introduction of the antioxidant
processes would replace the previous O3 effect on leaf and
stem residual N that was parameterised in Cook et al. (2024),
as it was previously hypothesised that the increase in residual
N occurred as a result of antioxidant production (Brewster
et al., 2024; Cook et al., 2024; Sarkar et al., 2010). How-
ever, during model calibration it was noted that the simu-
lations of leaf and grain protein were improved when both
processes were used in combination (see model parameteri-
sation in the Supplement). There are two potential explana-
tions for this: (1) the shape of the antioxidant response to
O3 is such that the two effects working in combination are
a more effective approximation, meaning further data to in-
vestigate the effect could provide insight into the truer shape
of the response, and (2) O3 has an effect on N remobilisation
from the leaf and stem to the grains that is separate from an-
tioxidant production. For example, ROSs have been shown
to oxidise proteins which would decrease protein concentra-
tions but lead to greater residual N in the leaf and stem (Gill
and Tuteja, 2010). Given this and the previously described
trade-off when calibrating leaf and grain RP loss, there is
clearly a knowledge gap in our current understanding of an-
tioxidant production and the remobilisation of nutrients un-
der O3 exposure. Therefore, a study with multiple O3 treat-
ments that identifies the proportion of N in the leaf and stem
at anthesis and the leaf, stem and grains at harvest, as well
as the corresponding proportion of proteins, would allow for
identification of how much N is associated with proteins and
whether this fraction changes under O3 exposure and affects
N remobilisation. Such data would also allow for further de-
velopment of the antioxidant equations in this study, as for
simplicity and a lack of data to test a more complex relation-
ship, we have assumed linearity, but this may not be the case.
Additionally, identification of the N associated with antioxi-
dants at anthesis and harvest, as well as how these change un-
der O3 exposure, would also allow for further development of
the antioxidant equations. If combined with protein measure-
ments at anthesis and harvest, mechanistic understanding of
O3 impacts on protein, antioxidant processes and grain filling
with N could be developed further and used to refine existing
model processes.

5.4 Antioxidant processes and grain quality

For consideration of O3 effects on nutrition, it is important
to consider the protein quality, in addition to its concentra-
tion. From a dietary perspective, indispensable AAs, such as
lysine and methionine, are the most important to consider
when thinking about protein quality as they cannot be pro-
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duced by the body and must be obtained through diet (Elango
et al., 2008; Shewry and Hey, 2015). Lysine and methionine
are key as they are the AAs available in the lowest quantity
in wheat exposed to O3, and therefore the body’s capacity to
produce proteins from them is limited (Yadav et al., 2020).
If a person does not consume enough protein or protein of a
high enough quality, then they are at risk of wasting and a
loss of muscle function (Medek et al., 2017). Understanding
how O3-induced changes to wheat protein will affect protein
quality, and hence diet quality, is key to understanding O3 ef-
fects on human nutrition and its potential role in exacerbating
malnutrition.

The regressions from Liu et al. (2019) were used to simu-
late grain lysine and methionine concentrations as these were
the most limiting for protein production under O3 exposure
(Yadav et al., 2020). However, there is variability in the re-
sponse of AAs in wheat grains under O3 due to the differ-
ential activation of metabolic pathways under stress (Ali et
al., 2019; G A et al., 2024; Li et al., 2024; Wang et al.,
2018). Yadav et al. (2020) found that while overall protein
concentrations decreased under elevated O3, lysine and me-
thionine concentrations decreased, while grain serine con-
centrations increased. The responses also differed between
cultivars, with HUW234 having an increase in threonine,
while HD3118 had a decrease (Yadav et al., 2020). During
stress conditions, the concentrations of AAs vary to enhance
plant defence mechanisms against abiotic stressors (Ali et al.,
2019; G A et al., 2024; Li et al., 2024; Wang et al., 2018). In
HUW234 and HD3118, lysine concentrations decreased un-
der elevated O3, due to its breakdown for energy production
and plant defence (Ali et al., 2019; Yadav et al., 2020). Ly-
sine breakdown produces proline, the concentration of which
increased in both cultivars, which has been shown to protect
against ROS-induced oxidative damage (Nayyar and Walia,
2003; Yadav et al., 2020; Yang et al., 2020). Additionally, the
concentration of methionine decreased in both cultivars un-
der elevated O3 (Yadav et al., 2020). The decrease is likely
due to methionine’s role as an antioxidant and because it is
very sensitive to oxidation by ROSs (Ali et al., 2019). The
changes in AAs aid in the maintenance of the photosyn-
thetic rate and protection of photosynthetic pigments from
ROSs (Zulfiqar and Ashraf, 2023; Naidu et al., 1991; Simon-
Sarkadi and Galiba, 1996). The specific response of an AA to
abiotic stress is cultivar specific and depends on the intensity
of the stress (Ali et al., 2019). As a result, grain AA concen-
trations are linked to the stress response of the plant under
O3. Measurements of AA concentrations under multiple O3
treatments would help to elucidate the shape of the response
of AAs to O3 stress. This is a field which has largely been ne-
glected, with only Yadav et al. (2020) having investigated it
so far. Such data would allow for the effect of O3 on nutrition
to be better understood.

5.5 Protein quality estimates using the DIAAS

Through extending DO3SE-CropN to simulate the DIAAS,
estimates of protein quality are translated into a metric that is
commonly used to assess dietary quality in the nutrition field
(e.g. Kurpad and Thomas, 2020). Using the observed data,
the HUW234 cultivar experienced the greatest loss in pro-
tein quality under increased O3 concentrations despite show-
ing the smallest RP and RY loss. The reason for this is that
HUW234 experienced the greatest decrease in lysine concen-
trations, and lysine is the most limiting AA in wheat (Mey-
bodi et al., 2019; Siddiqi et al., 2020). The DO3SE-CropN
model was not able to reproduce the reduction in protein
quality calculated through the DIAAS as it was not able to
reproduce the magnitude of the decrease in protein and lysine
concentrations under elevated O3 for either cultivar (Table 1,
Fig. 5b and d). Using the observed data, the calculations of
the DIAAS were the same for both cultivars due to the scal-
ing factor used for the AAs (see Sect. 3.1), but, in reality, the
DIAAS would differ between the cultivars. While using the
simulations of grain protein and AAs was able to produce a
difference in the DIAAS between cultivars, it was only able
to reproduce the DIAAS calculated from the observed data
for the HD3118 cultivar in the ambient O3 treatment, as the
protein and lysine concentrations were captured well for this
cultivar and treatment. To develop crop models that use the
DIAAS to understand the reduction in protein quality under
abiotic stress, the reduction in grain protein and the most lim-
iting AAs for protein production under that stress need to be
understood.

5.6 Data requirements for effective model calibration

Initially in this study, the data were split in half, with the
2017 data being used for model calibration and the 2018 data
being used for evaluation. However, due to the model over-
fitting to the 2017 dataset (see the Supplement), the decision
was made to utilise all available data for calibration. This
allowed for the paper to focus on the development of the an-
tioxidant processes and protein quality simulations. Should
future work utilise the antioxidant or protein quality frame-
work presented in this work, a thorough model calibration
and evaluation is recommended. Calibrations that use data
from contrasting growing conditions, such as different grow-
ing seasons/years, sowing dates or experimental conditions,
have been shown to reduce the chance of multiple combi-
nations of parameters giving the same answer (equifinality),
reduce model uncertainty and improve simulation accuracy
(He et al., 2017; Zhang et al., 2023). This is likely a result of
achieving a truer parameterisation for the cultivar, leading to
improved generalisation of the model upon application (Wal-
lach, 2011). Hence, if there are few growing seasons of data
available, it would be helpful to have data spanning a range
of crop treatments.
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5.7 Further work for understanding O3 effects on

wheat nutrition

Current risk assessments of the effect of O3 on Indian wheat
yields have predicted the greatest yield reductions across the
IGP and eastern India due to the high O3 concentrations in
this region as well as meteorological conditions that favour
plant O3 uptake (Droutsas, 2020; Mills et al., 2018a; Tai et
al., 2021). (These estimates exclude concentration-response
methods, which are not as biologically relevant, since these
do not include the modifying effect of meteorology on O3
uptake the spatial distribution of yield losses differs (Em-
berson et al., 2000; Pleijel et al., 2022).) From this, we can
hypothesise that nutrition impacts will also be greater in
these regions, though the specific response will vary by cul-
tivar. However, the work of the present study does not just
have applications for India. Understanding cultivar-specific
responses to increasing O3 concentrations will be important
for food security globally in order to breed cultivars that can
maintain yields and protein quantity, as well as quality, in
the future. Additionally, it can be seen in the calculations of
the DIAAS and is reflected in the wider literature that the
quality of protein in wheat is low, even without the impact of
O3, which will exacerbate protein deficiencies in consumers
who rely on wheat-based diets (Swaminathan et al., 2012).
Therefore, to reduce malnutrition, cultivars with a high pro-
tein quality that can maintain yields and protein concentra-
tion under O3 exposure should be investigated for their po-
tential to maintain wheat supply and quality under conditions
of elevated O3 concentration. Additionally, existing barriers
to diet diversification need to be overcome so that individuals
may have access to higher-quality protein sources (Agrawal
et al., 2019).

To develop an understanding of cultivar-specific responses
to abiotic stress, a modelling approach similar to that used in
this study would be useful, as such a model can capture the
effect of antioxidant processes under stress on grain quality.
To ensure the applicability of the model in addressing this
goal, there are a few existing barriers identified in this study:

1. Before model application, models need to be thoroughly
calibrated and evaluated. To perform a thorough calibra-
tion and evaluation, a range of treatments and/or years
of data need to be available to provide a set of calibra-
tion parameters that are more general for that cultivar
and prevent overfitting. Additionally, obtaining leaf and
stem DM anthesis and harvest will aid in parameter-
ising, partitioning and the remobilisation of photosyn-
thate.

2. Differences in meteorological conditions between the
2 years of experiments in the present study had a large
effect on simulations of grain DM. The effect of mete-
orology on simulations of photosynthetic processes and
biomass production in crop models should be further

investigated in the future to ascertain crop model sensi-
tivity to input data choices.

3. To advance the antioxidant equations and understand O3
effects on grain quality, an O3 exposure (e.g. FACE,
free-air controlled exposure; OTC, open-top chamber;
or solardome) experiment measuring total N and pro-
tein content, as well as N and protein concentrations in
the leaf and stem at anthesis, and harvest stages under
varying O3 treatments should be conducted. The propor-
tion of N associated with specific antioxidants (such as
glutathione and enzymatic antioxidants) under these O3
treatments should also be obtained to improve mecha-
nistic understanding of plant antioxidant response to O3.
This can be used to further develop the model, as it is
anticipated that increased allocation of N to antioxidant
production in leaves and stems under O3 stress reduces
the N available for remobilisation to grains during grain
filling, leading to a decrease in grain protein concentra-
tion and altered amino acid profiles.

4. From the same O3 exposure experiments, measure-
ments of grain protein and AA concentrations for each
O3 treatment should be collected to produce relation-
ships linking the two and showing how the relationship
changes under the influence of O3 to verify whether
there is a trade-off between stress mitigation and nu-
tritional quality. Such relationships could be integrated
into the model to improve its ability to simulate AA con-
centrations under stress and hence provide more trust-
worthy estimates of protein quality.

Reliable estimates of the DIAAS would allow for dietary pro-
tein quality to be incorporated into O3 risk assessments. Per-
forming yield and nutrition-based risk assessments utilising
AA and DIAAS simulations under future O3 scenarios would
allow for assessment of which wheat-growing areas will ex-
perience a decrease in wheat protein quality as well as yield.
Such results could then be combined with dietary surveys
to evaluate adults’ and children’s risk of not getting enough
food or food of a high enough quality under increasing O3.

6 Conclusions

In summary, the present study has developed a framework
by which the antioxidant response of wheat under O3 ex-
posure can be incorporated into wheat quality simulations
in the existing crop model DO3SE-CropN. The key benefits
of the framework are that it is flexible, simple and compati-
ble with other crop models provided they simulate leaf and
stem N. The AAs most limiting for human nutrition under O3
exposure were found to be lysine and methionine. The new
modelling framework allowed for the effect of high O3 con-
centrations leading to a decrease in grain protein, lysine and
methionine concentrations of Indian wheat to be simulated.
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Through calculations of the AAs, the FAO-recommended
metric for simulating wheat quality, the DIAAS, can be cal-
culated. To improve the present model, we identified key ex-
perimental data needed to test and refine model formulations
and parameterisations for a wider range of meteorological
conditions and wheat cultivars. These include greater calibra-
tion data across multiple years and treatments with leaf and
stem DM and N measurements, a mechanistic understand-
ing of plant antioxidant response, and a further development
of relationships linking grain protein concentrations to AA
concentrations under elevated O3.
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