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ABSTRACT: Drinking water is becoming more difficult to treat,
especially in the UK, due to the changing concentration and
composition of aquatic dissolved organic matter (DOM). The spatial
and temporal variations in the DOM composition are not well
understood. This study investigated how DOM composition varies
along a north/south gradient in the UK, over four years, and between
headwaters and reservoirs. There were trends in DOM composition
metrics from north to south; carbohydrate and peptide-like
compounds were lower in northern sites, while lipid-like compounds
were lower further south, suggesting different sources of DOM in
north/south catchments. DOM collected in Autumn 2021, after a
Summer of low rainfall, was more aromatic, less oxidized, and more
diverse than DOM collected in 2018−2020. Decreased lipid content
and increased oxy-aromatic content occurred in Autumn, at the end of the plant growing season, when increased rainfall rewets
catchments and mobilizes soil OM into surface waters. These seasonal changes in DOM composition coincide with increased DOM
concentrations in raw drinking water, leading to more challenges for drinking water treatment, especially as climate change alters
rainfall distribution in the UK.
KEYWORDS: FT-ICR MS, dissolved organic matter, elemental analysis, drinking water treatment, carbon

■ INTRODUCTION
Decay of vegetation and peat leads to natural organic matter
(OM) in waterways draining from peatland sites that are rich
in carbon-containing compounds; OM from peat can contain
between 44 and 70% carbon (C).1,2 Fluvial OM fluxes
represent a significant C loss from peatland habitats to
downstream systems and to the atmosphere.3,4

In temperate peatlands, OM inputs to aquatic systems vary
seasonally due to climate-driven changes in vegetation growth
and decay, affecting both concentration and composition of
OM.5 OM concentrations in peatland waters are influenced by
location, climate, weather, vegetation, and land use.6−8 Sea
spray impacts peatland vegetation, decomposition, and soil
OM, influencing terrestrial and aquatic OM near coastlines.9,10

The UK’s maritime climate is changing, with increasing
summer temperatures and decreasing annual rainfall expected
to alter peatland extent and OM concentrations.4,11 Addition-
ally, rising sea levels around UK islands and more frequent
storms will likely increase sea spray.12

Variable OM compositions lead to complex issues for
drinking water suppliers. In the UK, up to 70% of drinking
water is sourced from peatland and upland environments, and
these incoming waters contain high OM and organic C
concentrations.13,14 Any residual OM present after drinking
water treatment (DWT) can form potentially carcinogenic

disinfection byproducts (DBPs), and so water companies must
minimize the residual OM concentration in their water.15

Water companies know to expect seasonal variations in OM
concentration (e.g., high concentrations in Autumn, due to
plant dieback after Summer growing season), but seasonal
changes in OM composition, and their impact on DWT
processes, are less well understood.16 Water entering DWT
plants has become more difficult to treat, with water companies
reporting that OM concentrations have risked exceeding the
capacity of treatment works, especially in reservoirs on peat
soils, and an increase in DBPs in coastal and island
reservoirs.17,18 To continue providing clean and safe drinking
water, water companies need to know more about OM
composition in their raw water sources, how it varies over time
in their supply area, and how to remove it effectively and
efficiently.

Dissolved organic matter (DOM, fraction smaller than 0.45
μm) is comprised of thousands of different compounds of
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various origins.19 In peatland headwater streams, compounds
are from biodegradation of vegetation, peat and photo-
degradation products, and from physical erosion of peat, and
contain aromatic compounds, lipids, carbohydrates, peptides,
amino acids, and sugars.2,20 The relative contribution of these
different compounds impacts bioavailability and therefore is
important in determining microbial productivity and reac-
tivity21 and its treatability during DWT.22

Analytical methods have been used to understand more
about aquatic DOM composition (e.g., UV−vis, fluorescence,
elemental analysis, and nuclear magnetic resonance23−25).
Techniques such as Fourier transform ion cyclotron resonance
mass spectrometry (FT-ICR MS) give much more detail of the
molecular composition of complex mixtures.7,17,26−29 Advances
in compound libraries and analysis have made FT-ICR MS
more accessible, making it possible to analyze and interpret
data from more samples in a short amount of time (e.g.,
Kitson, Kew, Ding, and Bell30).

DOM composition metrics can be calculated from elemental
content of carbon (C), hydrogen (H), nitrogen (N), and
oxygen (O) and the molecular formula. C/N and oxidative
ratios give indicators about DOM treatability and oxidation
state, and H/C and DBE (double-bond equivalent) give
indicators about DOM structure and reactivity.15,16 The
molecular formula allows ‘molecular richness’ diversity metrics
to be calculated31 and compounds classes to be assigned,
including lipids, carbohydrates, peptides, amino sugars, oxy-
aromatic phytochemicals, and nucleotides.32

The aim of this study was to determine how DOM
composition from peatland surface waters varies over space
and time in the UK. Water and DOM samples were collected
either monthly or yearly from sites within drinking water
catchments in four geographical areas and analyzed to find
their composition using elemental analysis and FT-ICR MS.
Specifically, we hypothesized the following:

1. DOM composition and molecular diversity would be
different at geographic areas of the UK, related to mean
annual temperatures, rainfall, and marine influence (e.g.,
island and mainland locations) impacting on DOM
source materials.

2. DOM composition and molecular diversity would vary
over time, with interannual and intra-annual trends, due
to interannual variations in climate and intra-annual
variations in vegetation cycles and seasonal weather.

■ MATERIALS AND METHODS
Study Sites. There were 192 water samples, from 41

individual sites in upland areas across the UK. Sites were
visited up to 24 times between 2018 and 2021, and water
samples were collected and analyzed from 28 catchments
(some catchments contained more than one site; Figure 1,
Table 1). Water companies are keen to understand remote
island drinking water supplies, as they are particularly
vulnerable to changes in DOM concentration and composi-
tion, and so several sites on islands were included in this study.
Locations were chosen in four distinct groups with different
mean annual temperatures (MAT) and rainfall (MAR) to
determine the impact of location, climate, and distance to the
sea on DOM (Table 1).33 Drinking water supplies from
catchments with peat soils on Shetland Islands (Group 1,
highest latitude, coolest max MAT, close to the sea), the Inner
and Outer Hebrides (Group 2, furthest west, close to the sea),

Borders and Argyll and Bute (Group 3, highest MAR), and
Yorkshire Dales and Peak District (Group 4, highest MAT,
lowest MAR, lowest latitude) regions were included in the
study. Water was collected from two or three sites within each
catchment, in collaboration with water company partners, and
within access constraints. Meta-data for each site, including
catchment area, percentage peat cover, land use and vegetation
cover, and distance from the sea, was assigned based on
observations at the site or derived from publicly available
databases and maps. See the Supporting Information for more
detail.

Sampling Frequency. The sites were revisited between
2018 and 2021, yearly, quarterly (every 3 months), or monthly
(Table 1) and were therefore subject to different weather and
flow conditions. Underlying geology has been shown to impact
groundwater contributions to peat streams and rivers at
baseflow conditions;34 the annual samples were collected
during Autumn when flows were high; therefore the impact of
underlying geology on annual samples was considered
minimal. Flow conditions varied during quarterly and monthly
sampling at the Group 4 sites. Sampling was disrupted by the
covid-19 pandemic lockdown in Spring/Summer 2020, during
which only sites local to the authors could be sampled. Due to
variable reservoir and lake surface water levels, the exact
sampling location varied by up to 5 m (up/down slope).

Sample Collection and Water Chemistry. Water pH,
electrical conductivity, dissolved oxygen and temperature
(Hach MM156 portable multiparameter meter), and air
temperature, pressure, and humidity were recorded at the
time of water sample collection. Two water samples were
collected at each site. A small sample (50 mL) was
immediately filtered (0.45 μm), stored in a cool box (in the
dark), and later analyzed for DOC, total nitrogen, total
phosphorus, dissolved nutrients, metal and ion concentrations,
and absorbance. A large sample (approximately 5 L) was

Figure 1. Locations of sites used in this study. Some symbols
represent more than one site as they were too close to separate at this
scale. The number of sites in each group is in Table 1.
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filtered (0.7 μm), particulate organic matter (POM) was
collected and rotary evaporated, and DOM was collected
(using the method from Moody25). For all analysis methods, a
subset of samples was analyzed in replicate, and certified
reference materials were used to calibrate equipment.

DOM Analysis. Solid DOM samples (n = 192), extracted
from filtered water using low temperature rotary evaporation
(<60 °C), were analyzed by elemental analysis (EA) for their
carbon, hydrogen (H), nitrogen (N), oxygen (O), and organic
C (Corg) content (Elementar Vario MICRO cube). 10% of
samples were analyzed in replicate and reanalyzed if the root-
mean-square error of the replicates was less than 95%.

A subset of DOM samples (n = 77) was analyzed by
negative-mode electron spray ionization (ESI) Fourier-trans-
form ion cyclotron resonance mass spectrometry (FT-ICR
MS). Twenty-four monthly DOM samples from Group 4
reservoir and headwater paired sites, 32 from four catchments
in Group 3, 15 from two catchments in Group 2, and six from
Group 1 catchment were included in this analysis. Samples
were chosen based on sampling frequency and site and enough
material available for analysis, to give more information about
annual and seasonal variations in DOM composition.

0.5 mL of each sample was added to 0.5 mL of LC-MS grade
methanol and centrifuged at 10,000 rpm for 5 min. 200 μL of
the supernatant was then drawn into an analytical syringe and
injected directly into the ESI source. The FT-ICR MS analysis
was conducted on a 12T Bruker Solarix at the University of
Edinburgh, SIRCAMS facility. The following tuning parame-
ters were used: flow rate 120 μL h−1, capillary voltage 4500 V,
low mass cut off 100 m/z, high mass cut off 3000 m/z, ion
accumulation time 0.2 s, and time-of-flight 0.7 ms. In each
case, 200 scans at 8 MW were summed.

The FT-ICR MS output data were processed using the
CoreMS Python library (Corilo, Kew, and McCue;35 https://
github.com/EMSL-Computing/CoreMS). Briefly, raw spectra
were peak-picked in the range 100 to 700 m/z after applying a
noise-threshold based on the log-intensity distribution of each
spectrum36 and a minimum peak prominence filter of 0.01%.
Next, internal calibration was performed with a second-degree

polynomial fit against a reference peak list of CHO containing
formula with double bond equivalent (DBE) of −1, 0, and 1,
shown to be highly abundant in DOM.28,37 The ppm error
thresholds for peak matching during internal calibration were
predetermined by performing an unconstrained assignment of
a CHO containing formula to each spectra and visualizing the
intrinsic error distribution (i.e., the relationship between m/z
error and m/z). Following internal calibration, a constrained
formula assignment was performed using the following
elemental constraints: C 1−90, H 4−200, O 1−26, N 0−2,
and S 0−1 and an m/z error tolerance of ±0.5 ppm.
Phosphorus was not included in elemental constraints as the
ionization efficiency of P molecules during FT-ICR MS is very
limited, and adding P to formula assignments increases the
number of false assignments. Finally, formulas detected in
blank methanol samples with a prominence of more than 20%
were removed from samples acquired on the same day as the
blank. Assigned peak lists were then imported into the PyKrev
Python library for analysis.30

Data and Statistical Analysis. CHNO and organic C
molar concentrations (from elemental analysis and FT-ICR
MS) were used to calculate derived metrics: %Corg (organic C
portion of total C), DBE/C (double bond equivalent per
carbon, SI eq 1), Cox (carbon oxidation state, SI eq 2), OR
(oxidative ratio, SI eq 3), NOSC (nominal oxidation state of
carbon, SI eq 4), C/N, H/C, O/C, and AI (aromaticity index,
SI eq 5).27,38,39 NOSC, Cox, and OR indicate oxidation state,
with negative NOSC and Cox values representing reduced
compounds.40 DBE/C and AI reflect aromaticity, while %Corg
estimates organic soil contribution. Molar ratios help classify
compounds and determine degradation state.24 FT-ICR MS
data were also used to assign molecules to compound classes
(lipids, carbohydrates, peptides, amino sugars, oxy-aromatic
phytochemicals, and nucleotides) based on stoichiometry32

and calculate molecular richness.31 See the Supporting
Information for details.

DOM composition metrics were analyzed in a general linear
model (GLM). Samples collected in Autumn (Sep, Oct, and
Nov), at all sites and groups and across all four years, were

Table 1. Groups, Number of Sites and Number of Samples in Each Group, Frequency of Visits, and Site Informationa

Variable
Longitude

(°W)
Latitude
(°N)

Elevation
(m asl)

Catchment area
(km2)

Peat
(%)

Distance to the sea
(km)

Mean annual air temp
(°C)

Mean annual rainfall
(mm)

N 41 41 41 41 41 41
Min. −7.45 53.43 −0.76 0.03 52.3 0.10 5.53
Max. −0.90 60.82 401.00 47.13 100 70.5 12.79
Mean −3.30 57.88 131.94 5.88 90.3 11.23 1162.93
Std. Er. 0.38 0.38 19.30 1.54 1.5 3.04
Group 1, Shetland Islands n = 18, visited yearly, 55 DOM samples
Mean −1.21 60.32 61.76 3.29 92.4 2.04 Min:5.60 1252.34
Std. Er. 0.04 0.04 12.57 1.02 2.7 0.35 Max:9.80 (Lerwick)
Group 2, Outer and Inner Hebrides n = 10, visited yearly, 30 DOM samples
Mean −6.90 57.33 62.78 1.42 89.6 1.78 Min:6.17 1235.52
Std. Er. 0.19 0.11 17.54 0.53 3.0 0.30 Max:11.50 (Stornoway)
Group 3, S. Scotland (Borders, Argyll and Bute) n = 9, visited yearly, 36 DOM samples
Mean −4.16 55.48 267.78 16.95 86.3 21.12 Min: 4.07 1827.17
Std. Er. 0.37 0.07 32.61 5.27 2.3 4.31 Max: 11.40 (Eskdalemuir)
Group 4, N. England (N. Yorkshire, Peak District) n = 4, visited quarterly/monthly, 71 DOM samples
Mean −1.79 53.66 315.05 3.78 91.8 68.27 Min:6.92 831.55
Std. Er. 0.10 0.13 42.42 2.83 4.6 1.40 Max:13.71 (Sheffield)

aElevation (m asl) = meters above sea level, Peat (%) = proportion of the whole catchment covered in peat. Mean annual maximum and minimum
air temperatures and total rainfall (30-year averages, 1991−2020) from the UK Met Office Climate Data Portal, from met stations in each area.
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included (Table S1). Results are reported as significant if the p
value is less than 0.05. Posthoc Waller-Duncan k-Ratio t tests
showed differences within significant groups and years. Linear
regressions were used to find relationships between DOM
composition metrics and possible explanatory factors, includ-
ing air and water temperatures, distance to sea, and latitude.
Results are reported as adjusted R2 (adj. R2) values.

The seasonal cycle of DOM composition metrics was
investigated using Group 4 DOM samples, in each calendar
month (January = 1, Dec = 12) and in each UK season
(Winter = Dec, Jan, Feb; Spring = Mar, Apr, May; Summer =
Jun, Jul, Aug; Autumn = Sep, Oct, Nov), using a repeated
measures GLM. To investigate seasonal and within-catchment
differences in diversity, the molecular formula data for two
Group 4 sites (a headwater stream and reservoir surface water
within the same catchment, visited monthly for a year) were
compared. Compounds unique to either site (headwater or
reservoir) or sampling month (Jan-Dec) were identified. This
provides an estimate of diversity, by identifying how ‘unique’
each DOM sample is.

■ RESULTS AND DISCUSSION
Spatial Analysis. Most DOM composition metrics differed

significantly between groups, but group differences only
explained 1−28% of the variation (GLM, partial R2). No
metric was significantly different across all four groups,
although there were some spatial trends. Group 1 DOM had
higher H/C and DBE/C but lower carbohydrate content
(Figure 2). Groups 2 and 3 DOM had intermediate values,
differing significantly in H/C and carbohydrate content. Group
4 DOM had higher %Corg and NOSC but lower lipid content,
C/N, and DBE/C. Overall, DOM from island sites (Groups 1
and 2) had lower carbohydrates and NOSC but higher lipid
content than mainland sites (Groups 3 and 4).

Latitude and air or water temperature explained 4−23% of
variation in DOM composition and molecular diversity (linear
regression, p < 0.05). Gini-Simpson diversity decreased with
increasing air temperature (adj. R2 = 13%, p = 0.0114), but
Shannon−Wiener values showed no significant relationship
with temperature or latitude. C/N, oxygen state (O/C, Cox,
OR), and peptide content were significantly related to the
distance from the sea (lake and reservoir DOM, linear

Figure 2. Box plots of DOM composition metrics for groups 1−4. Groups: 1 = Shetland, 2 = Hebrides, 3 = South Scotland, and 4 = North
England. Letters indicate significant differences.
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regression, adj. R2 = 11−49%). However, across all annual
samples, distance to the sea explained at most 9% of variation
and showed no significant relationship with DOC concen-
tration. Models including six physical location parameters
explained up to 29% of DOM composition variation (Table
S2).

Spatial variation in DOM composition differed significantly
between northern and southern UK sites, supporting the
hypothesis of spatial differences. However, these were not
solely explained by location (island vs mainland) or strongly
linked to latitude, distance to sea, or temperature, despite their
relevance to DOM decomposition and plant growth.9,41

Northern sites had lower carbohydrate, oxy-aromatic, and
peptide compounds, while lipid content was lower further

south, indicating different DOM sources. Low-lipid samples
likely originate from terrestrial (plant and peat) sources,
whereas high-lipid samples suggest microbial origins.42 DOM
in northern sites was more oxidized and had fewer double
bonds per C (more saturated) than further south, suggesting it
would degrade more readily at northern sites (Moody and
Worrall 2017; Leifield et al. 2020).

Vegetation cover differed between island and mainland sites
with no trees on the islands. As a key source of terrestrial
DOM, vegetation influences DOM composition.5 Removing
vascular plants from peatlands increased humic to lignin ratios
and decreased aliphatic to polysaccharide ratios, due to
changes in root exudates,43 and planting trees reduced soil
organic C in moorland soils.44 However, in this study,

Figure 3. Boxplots of DOM composition metrics for years 2018−2021. Letters indicate significant differences.
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vegetation cover explained only 14−17% of the variation in a
few DOM composition metrics (Table S2). Site land, which
correlated with vegetation cover, was significant for C/N, H/C,
and AI, explaining 15−23% of variation (Table S2).

Soil is a major source of aquatic DOM, and all of the study
sites had at least 50% peat cover. Group 4 sites (low lipid
content) were likely dominated by terrestrial inputs, with 81−
100% peat cover. Some Group 1 sites had nearly 50%
freshwater cover, where microbial activity could increase DOM
lipid content.20,42 However, the lipid content was not
significantly related to peat cover, indicating a more complex
DOM-peat relationship.

Studies by Roth, Dittmar, Gaupp, and Gleixner,41 Zhu,
Zhao, Bai, Zhou, Chen, and Wei,45 and Verbeke, Lamit,
Lilleskov, Hodgkins, Basiliko, Kane, Andersen, Artz, Benavides,
and Benscoter46 found significant DOM differences across
latitudes (79°N−65°S) and attributed these to temperature,
vegetation cover, and DOM degradability, with implications
for drinking water treatment. The differences in DOM
composition across latitude, vegetation cover, and land use
show the challenge facing water companies, especially those
with large catchments, to treat incoming raw water with highly
variable DOM compositions and concentrations. However, the
differences in DOM compositions in this study explained by
Group, latitude, distance to sea, and temperature were at most
28%, highlighting the need to consider other factors, such as
the impact of riparian zone peat and vegetation cover. For
example, in large reservoir catchments, the vegetation cover of
a distant part of the catchment may have minimal impact on
the in-reservoir DOM composition compared to vegetation in
the reservoir riparian zone. Small streams may have 100% peat
in their riparian zone but have lower % peat cover across the
whole catchment, leading to lower explanatory power of peat
cover in models.

Temporal Analysis - Annual. Annual comparisons of
Autumn DOM samples showed significant interannual differ-
ences in most composition metrics (GLM, partial R2 1−44%,
Table S1), though no metric differed across all four years.
Shannon−Wiener diversity, oxy-aromatic content, and C/N
ratios remained stable. Notably, 2021 samples were more
aromatic, less oxidized, and more diverse, with high amino
sugars and peptide content but lower lipid content than 2018−
2020 samples (Figure 3).

Shatilla and Carey47 linked interannual DOM variation to
rainfall and temperature, where high rainfall led to high stream
discharge and high DOC concentrations, but inversely affected
SUVA and fluorescence indices. Verbeke, Lamit, Lilleskov,
Hodgkins, Basiliko, Kane, Andersen, Artz, Benavides and
Benscoter46 found MAT influenced carbohydrate and aromatic
content in DOM, alongside latitude and altitude.

Despite interannual variations in UK temperature and
rainfall,48,49 2021’s annual values were not extreme (Figures
S1A, S1B). Scotland’s Autumn (Sep-Nov) rainfall quantities
were consistent across 2018−2021 (382−527 mm; Figure
S1C). However, Summer rainfall varied widely, from 197 mm
in 2021 to 436 mm in 2019 (Figure S1C), with 2021 also
experiencing the driest September (Figure S1D). Drought
alters plant root exudates, influencing soil C cycling and
decomposition.8,14,50 In UK peatlands, late-Summer rainfall
mobilizes soil OM into surface waters;5 therefore dry summers,
such as the Summer of 2021, may yield distinctly different
aquatic DOM.

Temporal Analysis - Seasonal. Monthly analysis of
Group 4 DOM samples showed significant seasonal shifts in
composition (DBE/C, NOSC, Shannon−Wiener diversity, %
lipid, %amino, and %oxy-aromatic content). Most changes
occurred in late Summer and Autumn (Figure 4, Figure S2).

Oxy-aromatic content remained stable (∼70%) from January
to August and then decreased to 55% in Autumn, before
recovering in December. Lipid content showed an inverse
trend, rising from ∼20−25% (January to August) to 34−42%
in Autumn. AI varied but stayed low during Autumn. The C/N
ratio increased from 25 in Spring to 41 in Autumn before
slightly decreasing in Winter. Cox peaked in Spring (April =
1.97) and Summer (August = 1.48), while OR showed an
inverse pattern. Amino sugar content followed a trend similar
to that of Cox, peaking in May and August. Molecular diversity,
NOSC, and DBE/C also decreased in Autumn.

The Shannon−Wiener diversity reduction coincides with an
increase in lipid-like compounds, suggesting a shift in DOM
composition. Autumn increased rainfall flushes freshly leached
plant-derived DOM from plant senescence and decomposi-
tion.51 The H/C and O/C values indicate a greater
contribution of lignin-derived compounds, while the reduced
NOSC and decline in oxy-aromatic compounds support the
interpretation that the DOM is less degraded and freshly
mobilized from the soil. Additionally, toward the end of the
growing season, microbial activity in the peat declines, leading
to reduced degradation and oxidation of DOM.52

Wilske, Herzsprung, Lechtenfeld, Kamjunke, Einax, and von
Tümpling53 showed monthly changes in molecular formula
intensities in reservoirs in Germany. They discovered
significant changes in DOM composition, such as aliphatic
compounds with low molecular weights that were more
intensive when the reservoir was stratified and were generally

Figure 4. Mean and standard errors of DOM composition metrics for
months 1−12 (1 = Jan, 12 = Dec). A) lipid (GLM repeated measures
p = 0.01) and oxy-aromatic content (p = 0.03), B) Shannon−Wiener
diversity (p = 0.03) and amino content (p = 0.01), C) DBE/C (p =
0.01) and NOSC (p = 0.01).
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found at the surface, and during Summer, aromatic compounds
with high molecular weight and high O content decreased.
These changes impacted DWT, as highly unsaturated and O-
rich compounds can be removed by coagulation with Fe or Al,
whereas smaller products of photodegradation were precursors
of DBPs. Wilske, Herzsprung, Lechtenfeld, Kamjunke, Einax,
and von Tümpling53 and Chen, Uzun, Tolic,́ Chu, Karanfil,
and Chow40 show that proxies for H/C ratios and DOM
molecular weight could be useful for water companies to
determine DOM removal efficiency, particularly via coagu-
lation treatment.

Spatial and Temporal Analysis within a Catchment.
Headwater DOM had more individual compounds (average =
6,554) than reservoir DOM (average = 5,453; Figure S2) in
the same catchment, suggesting higher DOM composition
diversity in the headwater. Across both Group 4 sites, 7,388
compounds appeared only once in a single sample (Figure 5).
Headwater DOM had more unique compounds (average =
493, 8% of total) than the reservoir (average = 123, 2.4% of
total). Unique compounds in headwater DOM peaked in
Summer, while reservoir DOM had the most in Spring. The
high number of unique compounds in headwater DOM
coincided with warmer temperatures and lower rainfall, though
relationships were not significant. Increased Summer head-
water DOM diversity could indicate a higher input of
groundwater during baseflow conditions.34

There were several significant relationships between the
number of unique compounds on each sampling occasion and
other metrics (DOM composition and water chemistry),
explaining 16−88% of the variation (Table 2). DOM samples
with high numbers of unique compounds had low lipid,
peptide, and H content, low H/C, O/C, and Cox values, and
low pH and cation (Ca, K, Mg, and Na) concentrations. This
indicates that the increase in unique compounds during
Summer (e.g., baseflow conditions) is not due to groundwater
input, as groundwater has higher cation concentration
(specifically Ca, Na, and Mg), electrical conductivity, and
higher pH than peat streamwater.34

DOM samples with high numbers of unique compounds had
a high DOC concentration; this shows that water with high
DOC concentrations is more likely to have more unique
compounds. These DOM samples also had high C, O, N
(Figure 5B), carbohydrate, amino sugar, and oxy-aromatic
content and high C/N and OR. Water with high heavy metal
and DON concentrations and a high proportion of organic N

(%DON) also had DOM with a high number of unique
compounds. These higher values also coincide with the end of
the growing season and a change in weather (the Summer of
2021 had lower than average rainfall in the UK49), when
compounds that have built up in the soil over a dry Summer
will be mobilized into the water as the catchments rewet.54

Figure 5. Number of unique compounds from the headwater (white) and reservoir (gray) A) on each sampling occasion with B) mean N content
of DOM.

Table 2. Relationship between the Number of Unique
Compounds in All 24 Samples with DOM Metrics and
Water Chemistry Metricsa

Variable
(y) n adj R2 p Intercept

Count of
unique

compounds
parameter
estimate (x)

EA C/N 24 0.43 0.0003 14.38 0.03527
EA Cox 23 0.20 0.0174 1.78 −0.00121
EA H/C 22 0.33 0.0029 2.50 −0.00146
EA O/C 15 0.43 0.0050 1.57 −0.00079
EA OR 23 0.16 0.0355 0.61 0.00025
MS %amino 24 0.49 0.0001 0.68 0.00097
MS %carb 24 0.22 0.0116 0.50 0.00031
MS %lipid 24 0.52 0.0001 30.10 −0.01899
MS %oxy-

aro.
24 0.46 0.0002 63.00 0.01758

MS %peptide 24 0.46 0.0002 1.93 −0.00142
MS Mean AI 24 0.34 0.0016 0.06 0.00008
MS Mean C 24 0.60 0.0001 21.28 0.00334
MS Mean H 24 0.38 0.0008 24.68 −0.00253
MS Mean

m/z
24 0.61 0.0001 411.46 0.06774

MS Mean N 24 0.88 0.0001 0.37 0.00025
MS Mean

NOSC
24 0.56 0.0001 −0.30 0.00030

MS Mean O 24 0.37 0.0009 7.56 0.00132
MS DBE/C 24 0.53 0.0001 0.48 0.00013
Water %DON 22 0.39 0.0010 32.73 0.05446
Water DOC 24 0.63 0.0001 4.80 0.04634
Water DON 22 0.61 0.0001 0.18 0.00092
Water Alkali

and
AEM

24 0.31 0.0027 17.95 −0.01502

Water Heavy
metals

24 0.42 0.0004 0.44 0.00153

Water pH 20 0.48 0.0004 6.45 −0.00294
aAlkali and alkaline earth metals (AEM) = Ca, K, Mg, and Na; Heavy
metals = Al, Fe, Pb, Co, Cu, and Zn.
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Using the molecular composition data showed the number
and complexity of DOM compounds (similar to Liu, Tan,
Fang, Chen, Tang, Liu, and Yu55 and Cooper, Chanton,
D’Andrilli, Hodgkins, Podgorski, Stenson, Tfaily, and Wil-
son29) found in reservoir water that are not present in
headwaters, to show how much in-stream processing occurs in
streams. The results also show that the number of unique
compounds in a water can be directly related to water
chemistry variables, with important implications for carbon
cycling and DWT. Water chemistry and DOM metrics can give
indications about how many unique compounds are likely to
be in a water body, which can be used as a proxy for turnover
of DOM − a water body with a high number of unique
compounds with high m/z will have high DOC concentration
and therefore lots of DOM available for photo and bio
degradation and will therefore have a high turnover. Water
with a low number of unique compounds has a more ‘stable’
and less varied composition, with low m/z and low DOC, and
therefore is likely to be more refractory and have a lower DOM
turnover.39,55

Implications for Drinking Water Treatment. Water
companies need to know the DOM composition in their
incoming water supplies, so combining these results with
findings from other studies (e.g., Moody56) will allow water
companies to predict their composition envelopes and build
treatment plans to manage with the variations likely to occur.
This study showed significant changes in molecular-level DOM
composition over time and space. However, smaller molecules
(below the low mass cut off for FT-ICR MS 100m/z) such as
short-chain organic acids and amino acids, small peptides,
sugars, and phenol from plant decomposition and microbial
metabolism were not included in this analysis.57 Including
metrics derived from elemental analysis ensured these
compounds were included in measures of DBE/C, Cox, etc.
and show the benefit of analyzing DOM by more than one
method.

In the UK, water companies use water color and SUVA254 to
determine the best methods for treating drinking water
‘envelopes’. SUVA254 is a good predictor of precursors of
DBPs in water treatment.58 DBP-precursors with high
SUVA254, C/N, and C/O values resulted from C-rich DOM
with high molecular weight and aromatic structures. DOM that
was rich in N or O and lower in C resulted in DBP-precursors
with low SUVA254 values. Only extremely low SUVA254 values
resulted in low yields of DBPs. Hua, Chao, Huang, and
Huang58 conclude that SUVA254 is a useful parameter for water
companies, but it should be used in combination with other
indicators, especially when SUVA254 is low, as it is not
necessarily colinear with DOM composition or DOC
concentration in water from varied locations, as it overlooks
UV-inactive DOM components.59 Combining SUVA254
measurements with high resolution techniques such as NMR
or FT-ICR MS will allow water companies to understand and
treat their incoming DOM more efficiently.

The seasonal fluctuations in DOM composition found in
reservoirs (such as changes in DBE/C, molecular diversity, and
C/N) in this study would likely result in changes to the DBP-
precursors and could lead to issues for DWT capabilities,
especially when further enhanced by increased DOC
concentrations during late Summer/early Autumn. DOM
seasonal changes (and their impact on DWT) have been
reported in countries with wet/dry seasons (e.g., Australia60

and Bangladesh61) and snowmelt (e.g., USA).62 Autumn leaf

fall was a significant component in changing DOM
composition in forested catchments in Maryland, USA.63

Shi, Zhuang, Hur, and Yang15 show how each DOM metric
can give information about potential DWT efficiency e.g.
compounds with high DBE and NOSC are adsorbed by
ferrihydrite, whereas DOM with more lipid-like compounds
were degraded by RuO2/Ti electrolysis. Smith, Moore, Semiao,
and Uhriń64 used FT-ICR MS to show that ceramic membrane
filtration significantly decreased aromatic and highly oxy-
genated DOM compounds (most likely to form DBPs), using
unique compound analysis to determine the differences
between raw and treated water. These studies demonstrate
that with enough information about the DOM composition
treatment processes can be targeted at specific types of DOM,
resulting in lower DBPs and more efficient drinking water
treatment.

■ CONCLUSIONS
The results of this study show DOM composition varied
spatially across 8° latitude, between the north of Scotland and
mid-England in the UK, and temporally, between 2018 and
2021, both inter- and intra-annually. These differences were
likely related to differences in Summer and Autumn rainfall
trends and plant senescence at the end of the growing season.
During 2021, when there was lower Summer rainfall, DOM
was more aromatic, less saturated, and more diverse; these
compounds could be absorbed by hematite nanocrystal
adsorbent or coagulation during drinking water treatment
(Shi et al. 2021). Higher rainfall (e.g., 2019 and 2020) resulted
in DOM with lower diversity and peptide content, low H/C
and higher lipid content, and lower NOSC. These samples
were more reduced and would be removed via sand filtration.
This study also showed that no simple model could explain or
predict fluctuations of spatial and temporal DOM, highlighting
the need to further investigate the drivers of the identified
differences. As water companies are finding it more difficult to
supply consistently high quality and quantity of water as the
climate changes, these results can help determine future trends
in DOM composition and steer water treatment priorities and
requirements.
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