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Functional diversity is increasingly used alongside taxonomic diversity to describe 
populations and communities in ecology. Indeed, functional diversity metrics allow 
researchers to summarise complex occupancy patterns in space and/or time across 
communities and/or populations in response to various stressors. In other words, 
investigating what, how, and why something is changing in an ecosystem by looking 
at changes of patterns under a certain process through a specific mechanism. However, 
as the diversity of functional diversity metrics and methods increases, it is often not 
directly clear which metric is more readily appropriate for which question. We studied 
the ability of different functional diversity metrics to recover patterns and signals from 
different processes linked to common assembly mechanisms in community ecology, 
such as environmental filtering, competitive exclusion, equalising fitness, and facilita-
tion. Using both simulated data and an empirical dataset affected by more complex 
and nuanced mechanisms, we tested the effectiveness of different space occupancy 
metrics to recover the simulated or empirical changes. We show that different metrics 
perform differently when trying to capture signals from different approximations of 
common mechanisms relative to no mechanism at all (null). For example, competi-
tion was harder to disentangle from the null mechanisms compared to facilitation in 
our simulations. This emphasises the importance of not using a one-size-fits-all metric. 
Instead, researchers should carefully consider and test whether a particular metric will 
be effective in capturing a pattern of interest.
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processes
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Introduction

In the last two decades, there has been a progressive expansion 
in ecology and evolution studies from taxonomic-oriented 
approaches, with species as the focal point, to functional 
approaches that place species-specific characteristics (traits) 
at the centre of analyses (Violle et al. 2007, Mammola et al. 
2021, Palacio  et  al. 2022). Although numerous definitions 
exist (Dawson  et  al. 2021), we here consider a trait to be 
any observable characteristic (e.g. morphological, anatomi-
cal, ecological, physiological, behavioural, phenological) 
measured on individual organisms at any level, from genes 
to whole organisms. A trait-based approach has two advan-
tages for answering core questions in ecology and evolution. 
First, it allows a deeper understanding of the mechanisms 
generating biodiversity patterns, by putting organisms’ traits 
at the centre of natural selection rather than the organisms 
themselves. Second, it allows comparisons across subdisci-
plines in biology, while facilitating the conceptualisation of 
general principles broadly valid in space (e.g. unrelated spe-
cies pools) and time (e.g. anatomical traits are comparable 
between palaeontology and ecology, which is not always 
the case with species; Luza  et  al. 2023). Already used rou-
tinely in palaeontology (Raup 1961, Gould 1991, Foote 

1995, Guillerme  et  al. 2020a), this trait-focused ecology 
and evolution is unlocking the possibility to answer a broad 
range of questions in disciplines as diverse as community 
ecology (McGill  et  al. 2006), biogeography (Violle  et  al. 
2014), conservation biology (Chichorro et al. 2022), micro- 
(Chapin et al. 1993) and macro-evolution (Guillerme et al. 
2023), and applied fields (e.g. agronomy Martin and Isaac 
2015). This is because trait-based approaches closely align 
with the general analytical framework proposed by Anand 
(1994) to answer three sequential questions: ‘what?’ (describ-
ing the pattern), ‘how?’ (describing the process) and ‘why?’ 
(understanding the mechanism) (Box 1).

Although some previous work has been done in under-
standing patterns in the context of mechanisms and processes 
(Novack-Gottshall 2016a, 2016b), we argue that often the 
pattern description follows some previously used frame-
work without a proper evaluation of its adequacy to answer 
the how and why. The choice of the tool or metric used to 
describe the pattern is crucial for allowing us to understand 
the process and the mechanism. Using an inappropriate met-
ric for describing a pattern can lead to biased conclusions. For 
example, let us imagine one is interested in understanding 
how two populations compete with each other for a resource 
(the mechanism – ‘why?’) on two islands, one home to both 

Box 1. What, how, and why: pattern, process, and mechanism.

Anand (1994) conceptualised a general analytical framework for answering scientific questions in ecology and evolution, 
based on three sequential questions: ‘what?’ (describing the pattern), ‘how?’ (describing the process), and ‘why?’ (under-
standing the mechanism). This framework can be effectively applied to trait-based analyses:

What? Pattern description corresponds to the steps needed to collect and summarise data to answer a question of 
interest (i.e. ‘how?’ and ‘why?’ as defined below). Usually this consists of: 1) collecting target traits at the focal level 
(e.g. genes, individual, population, species; Violle et al. 2007); 2) arranging these traits into some kind of trait space 
(Guillerme et al. 2020a, Mammola et al. 2021); and 3) using one or more unidimensional or multidimensional statistic 
to summarise properties of the trait space. For unidimensional spaces (i.e. distributions), these statistics can be as simple 
as the mean and the standard deviation (e.g. community weighted mean). For multidimensional spaces, the statistics 
are usually named disparity metrics or indices (Guillerme et al. 2020a) or functional diversity metrics (Mammola et al. 
2021), but all attempt to capture some pattern of interest in the trait space.

How? Process description can be seen as linking the pattern of interest (‘What?’) to some dynamic element. This 
can be a punctual change. For example, change of the pattern under a certain condition, such as how traits X differ 
between two habitats (Martínez et al. 2021). But it can also be one or more continuous or ordinal changes, such as how 
the pattern X changes in space, time, and/or along ecological gradients (Belmaker and Jetz 2013, Lamanna et al. 2014, 
Bjorkman et al. 2018, Jarzyna and Jetz 2018, McLean et al. 2021). The distinction here might seem trivial but it is sig-
nificant: usually, the process designates the change of the pattern, not the change of the traits. Although the traits are 
what is really changing, researchers will usually analyse some emergent property of the trait aggregation as described by 
the change in statistic values between two or more conditions.

Why? Mechanism description is then about linking the pattern and the process to some biological properties (some-
times referred to as ‘rules’) and is at the core of answering the biological question at hand. In most cases, this is what 
researchers are actually trying to understand. For example, one might be interested in understanding the effect of climate 
change on some trait (Boonman et al. 2022). In fact, most researchers work on understanding the causal link between 
variables (i.e. ‘why’ are ‘what’ and ‘how’ linked). This can be very useful, for example, to provide predictions about the 
past or the future. Ultimately, studying the mechanisms (‘why’) is often the reason why researchers get funded (or not).

Note that the distinction between what, how, and why is not categorical in its nature and is often nuanced, with 
patterns and process or process and mechanisms sometimes being used interchangeably to describe the same questions.
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Table 1. Glossary and equivalence of terms used in this paper; adapted from Guillerme (2018) and Mammola et al. (2021). *Note that our 
definition of a trait is a generalisation of McGill et al. (2006), Violle et al. (2007), and Dawson et al. (2021)’s suggestions expanded to include 
traits beyond the ones common in functional ecology (e.g. also in macroevolution, palaeontology, and microbiology).

Term in this 
paper Definition In ecology In macroevolution

Trait space Matrix (n × d) with a structural 
relation between rows and 
columns

Functional space, morphospace, etc. Morphospace, trait space, etc.

Observations Rows (n) Taxa, field sites, environments, etc. Taxa, specimen, populations, 
elements, OTUs, etc.

Dimensions Columns (d) Traits, ordination scores, distances, etc. Traits, ordination scores, distances, 
etc.

Traits Columns subset (b × n; b ≤ d) Uni/multidimensional characteristic*; e.g. 
body mass, geographical location

Uni/multidimensional characteristic; 
e.g. landmark coordinates

Group Rows subset (m × d; m ≤ n) Treatments, phylogenetic group (clade), etc. Clades, geological stratum, etc.
Metric Statistic (i.e. a measure) Dissimilarity index or metric, hypervolume, 

functional diversity, etc.
Disparity metric or index

Stressors An algorithm removing a 
proportion of the 
observations

Introduction of invasive species, change of 
landscape use, climate change, pollution, 
experimental design, etc.

Mass extinction, tectonic change, 
climate change, etc.

Stressors’ 
intensity

The amount of observations 
removed (percentages)

Proportion of species affected, proportion 
of temperature change, etc.

Severity of mass extinction, number 
of co-occurring species, etc.

populations and another one home to only one of the popu-
lation (the process – ‘how?’). In such a scenario, measuring 
the occupied area (i.e. km2) of each population on each island 
(a pattern – ‘what?’) will not be the most appropriate way to 
understand the potential competition between these popu-
lations because it might not give information on whether 
the two populations actually interact in some way – a very 
likely condition for competition to take place. In this sim-
plistic example, the functional overlap between populations 
(‘what and how’) might be more appropriate. See for exam-
ple Carvalho and Cardoso (2020) for a discussion of how 
Darwin’s finches share resources depending on the existence 
or not of competition. 

Through a simulation exercise, we analysed different pat-
terns (what) across different processes (how) approximating 
different mechanisms (why) of interaction between organ-
isms: equalisation, filtering, facilitation, and competition 
(Fig. 1, Table 2). Our goal is to test the relative performance 
of different metrics to capture the patterns of different mech-
anisms by comparing the scores of various metrics under spe-
cifically approximated mechanisms and the absence of any 
specific mechanism (null mechanism). We expect that our 
ability to capture a pattern does not only depend on the choice 
of metric (what) but also on the process and mechanism at 
hand (how and why). To apply our framework to a realistic 
context, we also used an empirical dataset of Hawaiian bird 
traits and looked at how anthropogenic pressures have shaped 
the trait space (mechanism; why) based on extinction events 
on Hawaiian islands before and after the year 1500 (process; 
how), and how different metrics (pattern; what) can lead to 
different interpretations of the data. We show that, with a 
fixed process and mechanism approximation, the choice of 
the statistic to describe the pattern (the disparity or func-
tional diversity metrics) has a great impact on the interpreta-
tion of the data, with the exact same data sometimes being 

interpreted in opposite ways leading to sometimes opposite 
potential interpretations.

Material and methods

Simulating trait space patterns

First, we simulated multiple independent random time 
dependent traits (Brownian motion) under a model where lin-
eages only speciate (no extinction; i.e. a pure birth speciation 
model) until reaching 200 observations in R (R Core Team 
2024) using treats (Guillerme 2024). We simulated either 2, 
4, or 8 independent (uncorrelated) Brownian motion traits 
(equivalent to 2, 4, or 8 dimensional traits). Note here that 
we refer to traits as any measurable aspect of an organism 
(sensu McGill et al. (2006) – but see Dawson et al. (2021) 
for nuances in what researchers perceive as traits). These 
aspects are often expressed in one dimension but can in fact 
be described in any number of dimensions. For example, for 
a trait defined as ‘leaf insertion angle’, this can be measured in 
one dimension (an angle in degrees) or three dimensions (the 
same angle expressed as the trigonometric relation of three 
sides of a triangle). The observations on which the traits are 
measured can represent any biological focal entities, e.g. tips 
in a phylogenetic tree, individuals, species, populations, and 
OTUs (Table 1). This simulation approach resulted in a neu-
tral null model of trait evolution with no effect of competi-
tion, extinction, selection, or other processes (sensu Bausman 
2018). We refer to this as the ‘non-stressed trait space’.

Applying stressors to the trait space

We then applied five different stressors to the trait space with 
different intensities. The five different stressors are effectively 
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Figure  1. Illustration of the simulation protocol used in this paper. (A) We simulated a pure birth-tree with a trait evolving under a 
Brownian motion process until reaching 200 observations resulting in a trait space of 2, 4, or 8 dimensions. The first plot on row (A) illus-
trates one such simulation in one dimension through time (with time on the horizontal axis and trait value for one dimension on the vertical 
axis). The second plot on the same row shows the same results but with a two dimensional trait represented here. We then applied different 
stressors to the resulting trait space. We represent the elements removed by the stressors in blue and the ones kept in the trait space in orange. 
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five specific algorithms removing either 20, 40, 60, or 80% 
of the data (the intensities of the stressors, resulting in trait 
spaces with, respectively, 160, 120, 80, and 40 observations). 
We used the following specific algorithms (Fig. 1, Table 2; 
all algorithms, except ‘increasing evenness’, were previously 
described in Guillerme et al. 2020b):

• Random removal: by randomly removing 20, 40, 60, or 
80% of the data. This approximates our null mechanism. 

This is used to establish a reference to be compared to 
the other mechanisms and to test how removing elements 
in a specific way influences the metric scores compared 
to removing them randomly. We chose this algorithm to 
approximate the absence of any specific stressor (i.e. the 
removal of data only changes the number of observations, 
not the properties of the trait space in a systematic way).

• Decreasing size: by removing the required amount (20, 
40, 60, or 80%) of data away from a distance (radius) 

Table 2. Description of the stressors applied to the simulated data and the mechanism each approximated. Here we distinguish between the 
biological mechanism we are trying to simulate and the algorithmic one we used to simulate it. We also provide a more detailed description 
of the stressor. Note that, in biological data, we don’t expect any of the mechanisms to act on communities alone (e.g. equalising fitness and 
facilitation can both act on the distribution of species traits). Nor do we expect their effects to be unidirectional (for example, equalising 
fitness can happen both by removing the edges or changing the position of a trait distribution), thus, the type of metric expected to recover 
the mechanism can be variable. These mechanisms serve as a simplified description of reality for the narrative purpose of this paper. * 
Richness, divergence, and regularity are dimensions of functional diversity metrics that have been proposed to reflect the sum of differences, 
the average differences, and how regular the differences are among observations, respectively (Pavoine and Bonsall 2011, Tucker et al. 2017, 
Mammola et al. 2021).

Approximated 
mechanism 
(biological)

Used mechanism (algorithm 
in dispRity::reduce.space) Stressor description

Type of metric expected 
to recover the 
mechanism

Null mechanism Random removal (‘random’) No overall systematic change in observations’ traits or 
community structure except for the reduction in the 
number of observations

Metrics sensitive to the 
amount of data

Equalising fitness Size change (‘size’) When observations with trait combinations that are 
more extreme (i.e. observations located away from 
the centre of the trait space) are disadvantaged due to 
some resource concentration gradient (Chesson 2000, 
Barot 2004)

Metrics mainly 
capturing changes in 
richness* (but less in 
divergence* and not 
in regularity*)

Facilitation Density change (‘density’) When observations with similar trait combinations (i.e. 
located close together in the trait space) are more 
likely to survive the stressor (Bruno et al. 2003, 
Danet et al. 2024). In other words, this simulates the 
idea that some observations are more likely to be 
resilient if they are present in a community of 
observations (e.g. a community of species) with 
shared traits rather than the opposite

Metrics capturing 
changes in regularity* 
(but not richness* and 
divergence*)

Environmental 
filtering

Position change (‘position’) When an increase in observations’ trait similarity 
happens through some strong abiotic constraints 
(Cornwell et al. 2006). For example, some trait 
combinations become more and more unlikely due to 
some environmental constraints (i.e. some regions of 
the trait space become unsuitable)

Metrics capturing 
changes in position 
(and richness*)

Competitive 
exclusion

Evenness change (‘evenness’) When functionally similar observations compete more 
intensively with one another than with functionally 
dissimilar observations (‘competitive exclusion 
principle’; Hardin 1960). At the extreme, it implies 
that only dissimilar observations will coexist (‘limiting 
similarity principle’; MacArthur and Levins 1967)

Metrics capturing 
changes in 
divergence* (but not 
richness* and 
regularity*)

The first column illustrates the distribution of the elements in one dimension with the overlap between the removed (blue) and kept 
(orange) elements in brown (note we did not measure any metric on 1D spaces). The second column illustrates the same distributions in 2 
dimensions. We do not illustrate the distributions in 4 or 8 dimensions here. We used the following stressors: (B) null mechanism: ran-
domly removing a proportion of the observations; (C) approximating equalising mechanism: removing observations on the edge of the 
distribution; (D) approximating facilitation mechanism: removing observations to reduce the distance between pairs of observations 
(increasing local density; decreasing evenness); (E) approximating filtering mechanism: removing observations from one extreme of the 
distribution; (F) approximating competition mechanism: proportionally removing observations from the centre of the distribution. The 
expected changes indicate the main type of metric affected by the stressor (following the aspects in Mammola et al. 2021). (G) we presented 
the results of the simulations as the scaled metric scores for the approximated mechanisms (C–F) relative to the null mechanism. The dot 
represents the median metric score and the thick and dashed lines the 50 and 95% confidence intervals, respectively.

Figure 1. Continued.
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ρ of the centre of the trait space. ρ is estimated for each 
trait space to match the required intensity. For example, 
for one trait space, the algorithm estimated ρ20 to be the 
minimum radius excluding 20% of the observations, ρ40 
the one removing 40%, etc. (with ρ20 > ρ40 > ρ60 > ρ80). 
This approximates our equalising mechanism. We chose 
this algorithm to approximate equalisation assuming that 
a stressor could increase the probability of extinction for 
observations with more rare trait combinations (i.e. obser-
vations on the edges of the trait space).

• Increasing density: by removing the required amount of 
pairs of points with a variable pairwise distance of at least 
D. D is a distance estimated for each trait space to cor-
respond to the minimal Euclidean distance that encom-
passes at least n pairs of points corresponding to the 
intensity of the stressor. For example D20 is the distance 
that excludes any n20 pairs of points that are a distance 
of at least D20 from each other, D40 is the distance that 
excludes n40 pairs, etc. (with D20 > D40 > D60 > D80). Note 
that this algorithm is not directly based on the change 
in average density but rather on the change in pairwise 
distance between observations. This approximates our 
facilitation mechanism (i.e. the points left are only ones 
that are close to at least another point in space). We chose 
this algorithm to approximate the facilitation mechanism 
where a stressor could increase the probability of extinc-
tion for observations that are more isolated in the trait 
space. In other words, pairs of observations that share 
similar trait combinations are more common in the trait 
space than observations with dissimilar trait combinations 
(i.e. observations adjacent to each other in the trait space 
are more common).

• Shifting space: by removing the required amount of data 
from a distance (radius) ρ′ of the observation with the 
maximum numerical value on all dimensions. This is sim-
ilar to the decreasing size algorithm but, instead of choos-
ing ρ to be the radius from the centre of the trait space, 
ρ′ is a radius from the ‘top right corner’ of the trait space. 
In other words the centre of the radius ρ′ is the observa-
tion with the highest numerical value on all dimensions, 
in a 2D representation this is the observation in the top 
right corner (with � � � �20 40 60 80

� � � �� � � ). This approxi-
mates our filtering mechanism. We chose this algorithm 
to approximate a filtering mechanism assuming a stressor 
that could increase the probability of extinction for obser-
vations further from some trait combination optimum. 
This is similar to our equalising mechanism approxima-
tion but with the optimum not being in the centre of the 
trait space (a region with a high density of observations) 
but with the optimum being in a corner of the trait space 
(a region with low density).

• Increasing evenness: by resampling the proportion of 
data (i.e. 20, 40, 60, or 80%) but with skewed resam-
pling probabilities. In brief, this algorithm reduces the 
probability of resampling observations in regions of the 
trait space that have many observations and increases it 
in regions that have few observations. This is done by 

selecting B discrete categories to summarise the distribu-
tion – i.e. bandwidths – using Silverman’s ‘rule of thumb’ 
(bw.nrd0 function in R; Silverman 1986). Each discrete 
category B has an observed probability of sampling of b 
(the proportion of observations in the category) and each 
observation then gets a probability of resampling scal-
ing with the intensity of the stressor (the proportion of 
what to remove i) of i × (1 − b)p. Where p is a factor 
increasing the scaling power of the algorithm (here we 
arbitrarily used p = 3 which was a relatively low scaling 
value that still resulted in visible changes observable in 
2D). In other words, observations in categories with a low 
density (b < 0.5) were more likely to be resampled and 
the ones in categories with high density (b > 0.5) were 
less likely to be resampled. This approximates our com-
petition mechanism, where observations in dense regions 
of the trait space are more likely to be removed than in 
sparse regions of the trait space (or, inversely, observa-
tions are more likely to be ‘preserved’/’surviving’ in less 
dense regions). We chose this algorithm to approximate 
a stressor that could increase the probability of extinction 
for observations that share trait combinations. This could 
approximate the fact that observations that have similar 
trait combinations are more likely to go extinct due to 
competition (e.g. using the same resources).

For the decreasing size, increasing density, and shifting 
space stressors, we estimated the parameters ρ, D, and ρ′ 
recursively with the dispRity package to obtain the required 
amount of data to be removed (dispRity::reduce.space, 
Guillerme 2018, Guillerme et al. 2020b). Note that the algo-
rithm used here to simulate the stressors depends, to some 
extent, on the distribution of the data for each trait space. The 
algorithms used can lead to similar stressor effects depending 
on the simulated data distribution. For example, ‘increasing 
density’ and ‘decreasing size’ stressors will lead to just what 
their names suggest if the observations are uniformly distrib-
uted (just an average increase in density for ‘increasing den-
sity’ and just an overall decrease in size for the ‘decreasing 
size’ stressors) but will have more or less similar effects (albeit 
not identical) in the case of a normal distribution (aver-
age increase in density and overall decrease in size for both 
‘increasing density’ and ‘decreasing size’ stressors). These steps 
resulted in 3420 simulated trait spaces (171 simulated spaces 
× 5 stressors × 4 intensities of data removal). We used 171 
replicates because that was empirically the smallest number 
of replicates required to reach a variance between replicates 
lower than 1% across all metrics (i.e. any additional replicates 
beyond 171 added less than 1% extra variance). See Table 2 
for a biological description of these stressors and Fig. 1 for a 
visual description of them.

Note that in empirical data, depending on the distribution 
of the data, some mechanisms can lead to similar or dissimi-
lar patterns. For example, if the data are normally distributed, 
the equalising mechanisms, by removing data on the edges of 
the distribution, also increases the density of the trait space 
(because normally distributed data are denser in the centre of 
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the distribution), in a similar way to the facilitation mech-
anism. However, if the data are distributed uniformly, this 
does not happen. Furthermore, in real-world scenarios, we do 
not expect these mechanisms to act in isolation of each other: 
multiple mechanisms may stress the observed data simultane-
ously, with cumulative or synergistic effects. However, this is 
not tackled here for both simplicity and to understand how 
the stressors work in isolation. Therefore the prediction of 
how each different mechanism approximation would affect 
the metrics (Table 2) should be taken as a cautionary guide-
line when dealing with empirical data where the distribu-
tion of the data might not be normal and where it could be 
affected by multiple mechanisms.

We repeated each simulation pipeline for 4 dimensional 
traits (generate a trait space and apply the stressor – Fig. 2), 
and for 2 and 8 dimensional traits (Supporting information). 
In each pipeline, the dimensions were simulated as uncorre-
lated. We limited our simulations to a relatively small number 
of dimensions due to the constraints of some of the metrics 
used (e.g. TPD::TPDsMean is only implemented for up to 
4 dimensions, Carmona et al. 2019) but also to avoid deal-
ing with the curse of dimensionality (Bellman et  al. 1957). 
This curse changes the properties of space occupancy in a 
non-linear way depending on each observation’s distribution 
and the number of dimensions. For example, the volume of a 
trait space (or hypervolume when using more than 3 dimen-
sions) typically tends to zero in a high number of dimensions. 
However, the rate at which it approaches zero is not linear 
and depends on the distribution of each observation on every 
dimension. This makes it practically difficult to compare two 
randomly generated spaces with similar characteristics (e.g. for 
two spaces with 200 observations and 10 dimensions gener-
ated in the exact same way, one might have a hypervolume 
of nearly 0 and the other one of 105). Note also that, in our 
simulations, all dimensions have the same properties (i.e. same 
variance and distribution). This is often not the case in empiri-
cal cases (e.g. see our empirical example) where the dimen-
sions have a decreased variance due to ordination techniques.

Metrics for measuring trait space occupancy (aka 
functional diversity, dissimilarity, disparity)

We structured our simulations based on three aspects of 
diversity commonly captured by functional diversity met-
rics (trait space occupancy metrics; Mammola  et  al. 2021) 
using 12 metrics (Table 3): 1) richness, encompassing met-
rics reflecting the sum of differences among observations; 
(four metrics, equivalent to size metrics in Guillerme et al. 
2020b); 2) divergence, encompassing metrics reflecting the 
average differences among observations (four metrics); and 
3) regularity, encompassing metrics reflecting how regular the 
differences among observations are (four metrics, equivalent 
to density metrics in Guillerme et al. 2020b). Note that we 
focused here on three packages fully devoted to functional 
diversity analyses (FD Laliberté and Legendre 2010, BAT 
Cardoso et al. 2015, and TPD Carmona et al. 2019) in the R 
statistical environment (Mammola et al. 2021).

Comparing and scaling the results to the random 
removals (null stressor)

To understand the ability of each metric to capture a mecha-
nism of interest, we compared their scores relative to the same 
metric scores of a null mechanism. To ease interpretation of 
the results across a range of metrics with different orders of 
magnitudes of outputs and different random simulations, we 
first calculated the difference between the stressor of inter-
est and the null stressor (e.g. metricstressor 20% − metricnull 20%). 
We then scaled these differences to be relative to the highest 
relative differences between all the simulations for that one 
metric and stressor (across the four levels of removal –20, 
40%, etc.) This resulted in each metric being scaled between 
−1 and 1 where a negative difference can be interpreted as 
the random removal of elements leading to a higher metric 
score; a positive difference as the focal removal of elements 
(i.e. approximating equalisation, facilitation, filtering, and 
competition) leading to a higher metric score; and a differ-
ence near 0 meaning that both the null stressor and the focal 
stressor have a similar effect on the metric score (Fig. 1–3). 
We interpret this last scenario as the metric score being 
unable to clearly distinguish between a random removal of 
elements and a non-random one. To assess these poor per-
formances further, we compared the distributions of the 
171 scores for each metric with each reduction level for each 
non-null stressor to the null stressor using pairwise t-tests. 
The results of these tests are displayed in Fig. 2 (for the non-
null stressor, grey distributions are not clearly distinguishable 
from the null stressor).

Measuring the effect of the strength of the stressor

Finally, we measured the effect of the different strengths of the 
stressors (i.e. removing 20, 40, 60, and 80% of the data) by 
fitting a linear regression using the scaled metric difference to 
the null score as a function of the amount of data removed. 
For each of these models, we reported the variance explained 
by the model (adjusted R2) in the Supporting information and 
whether the slope was clearly distinguishable from 0 (Fig. 2; 
sensu Dushoff et al. 2019). This allowed us to see if there was 
any predictable linearity in the metric scores. In other words, 
testing whether the metric scores relative to null removals were 
linearly scaling with the amount of data removed.

Empirical data

We applied all metrics to an empirical dataset of bird extinc-
tions on six Hawaiian islands (Hawaii, Kauai, Lanai, Maui, 
Molokai, Oahu), an archipelago which has suffered large 
numbers of anthropogenic extinctions due to a range of 
extinction drivers (Walther and Hume 2022). A prehistoric 
species list (avifauna known to be present prior to human 
colonisation of the islands), historic species list (avifauna 
known to be present at 1500 CE), and extant species list 
of the native community for each island were taken from 
Matthews et al. (2023) along with trait values for the extinct 
species (Asio flammeus was removed from the historic and 
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Functional evenness
distances

FD::dbFD()$FEve

Functional evenness
dendrogram

BAT::evenness

Functional evenness
hypervolume

BAT::kernel.evenness

Functional evenness
probability density

TPD::REND

Rao's quadratic entropy
distances

FD::dbFD()$RaoQ

Functional dispersion
dendrogram

BAT::dispersion

Functional dispersion
hypervolume

BAT::kernel.dispersion

Divergence
probability density

TPD::REND

Alpha diversity
dendrogram

BAT::alpha

Functional richness
convex hull

BAT::hull.alpha

Functional richness
hypervolume

BAT::kernel.alpha

Functional richness
probability density

TPD::REND

−1.0 −0.5 0.0 0.5 1.0

equalizing

scaled difference from null

−1.0 −0.5 0.0 0.5 1.0

facilitation

scaled difference from null

−1.0 −0.5 0.0 0.5 1.0

filtering

scaled difference from null

−1.0 −0.5 0.0 0.5 1.0

competition

scaled difference from null

Figure 2. Simulation results: the y-axes represent the different metrics tested (sorted by categories). The different columns represent the dif-
ferent stressors. The x-axes represent the metric values centred on the random changes and scaled by the maximum value for each metric 
between the four stressors. Negative and positive values signify that the metric score for the stressor of interest is lower/higher than the one 
from the random stressor. The dots represent the median metric value, the full line their 50% confidence interval (CI), and the dashed line 
their 95% CI. The colours are used here to visually separate the metrics by categories (green = richness, yellow = divergence, blue = regular-
ity); the colour gradient within each row corresponds to a removal of respectively 80, 60, 40, and 20% of the data (from top to bottom). 
The grey dots and corresponding CI lines represent distributions of metric scores not clearly distinguishable from the random metric scores 
(paired t-test p value > 0.05). Grey lines in the background across the distributions of different removal amounts represent the following 
fitted linear model ‘centred and scaled metric score function of the amount of data removed’. Dashed thin grey lines represent non-signifi-
cant linear models (slope’s p value > 0.05). The model results (including R2 and t-statistics) are available in the Supporting information. 
Similar figures are available in the Supporting information for 2 and 8 dimensions.
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extant species lists as its colonisation status is uncertain). We 
extracted traits for extant species from the AVONET data-
base (Tobias et al. 2022). We used nine morphological traits 
associated with dietary/foraging preference and dispersal 
ability (Pigot et al. 2020, Sheard et al. 2020) to represent the 
functional diversity of the communities: mass; beak length 
(culmen); beak length (nares); beak width; beak depth; tar-
sus length; wing length; the length from the first second-
ary feather to the tip of the longest primary feather (Kipp’s 
distance); and tail length. Traits were log transformed and 
standardised to a mean of 0 and standard deviation of 1, 
prior to analyses.

The full trait dataset comprised 118 bird species, all native 
species known to have existed on these islands over the last 
125 000 years. It is known that 55 species have gone extinct 
prior to 1500 CE and 26 after 1500 CE. Note that we used 
the extinct species data as presented in Matthews et al. (2023), 
and thus we do not include Hawaiian species declared extinct 
by the IUCN in 2024. For our analyses, we focused on two 
time periods: 1) the avifauna present in 1500 CE (the ‘his-
toric dataset’) and 2) the current native avifauna (‘extant 
dataset’). We represented the distinct reductions in species 
richness preceding these two time periods as our two stress-
ors, the first one representing all pre-1500 CE extinctions 

Table 3. Functional diversity metrics tested in our simulations. * The TPD package currently only allows calculations for trait spaces of up to 
four dimensions. This metric was excluded from trait spaces with more than four dimensions.

Aspect Method Name Description R function Reference

Richness Trait probability 
density

Functional 
richness

Sum of cells where trait 
probability density > 0

TPD::REND* Carmona et al. 2019

 Kernel density 
hypervolume

Functional 
richness

Size (volume) of the 
hypervolume

BAT::kernel.alpha Mammola and 
Cardoso 2020

 Convex hull Functional 
richness

Volume of the convex hull BAT::hull.alpha Cornwell et al. 2006

 Dendrogram Alpha diversity Total branch length of the 
functional dendrogram

BAT::alpha Petchey and Gaston 
2002, Cardoso et al. 
2015

Divergence Trait probability 
density

Divergence Overlap between the TPD 
function of a single 
observation and the TPD 
function of the whole set 
of observations

TPD::REND* Carmona et al. 2019

 Kernel density 
hypervolume

Functional 
dispersion

Average distance between 
an observation and a 
sample of random points 
within the probabilistic 
hypervolume

BAT::kernel.

dispersion
Mammola and 

Cardoso 2020

 Dendrogram Functional 
dispersion

Average dissimilarity 
between any two 
observations in the 
dendrogram

BAT::dispersion Cardoso et al. 2015

 Distances Rao’s quadratic 
entropy

The mean Euclidean 
distance between every 
two random pairs of 
species

FD::dbFD()$RaoQ Botta-Dukát 2005

Regularity Trait probability 
density

Functional 
evenness

An index of the spread of 
the trait distribution 
compared to an even 
spread of the distribution 
(e.g. the height of bins  
in a histogram)

TPD::REND* Carmona et al. 2019

 Kernel density 
hypervolume

Functional 
evenness

Overlap between a 
hypervolume and an 
imaginary hypervolume 
where dimensions are 
evenly distributed within 
their possible range

BAT::kernel.

evenness
Mammola and 

Cardoso 2020

 Dendrogram Functional 
evenness

Regularity of abundances 
and distances between 
observations in the tree.

BAT::evenness Cardoso et al. 2015, 
2024

 Dendrogram Functional 
evenness

Regularity of abundances 
and distances along the 
minimum spanning tree 
linking all observations

FD::dbFD()$FEve Villéger et al. 2008, 
Laliberté and 
Legendre 2010
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(i.e. 118–55 species; a species richness reduction of 46%) 
and the second all the extinctions that have occurred until 
the present (i.e. 118 – (55 + 26) species; a species richness 
reduction of 69%).

To build the community trait space, we undertook a PCA 
including all 118 species, which we then subset to calculate 
the trait space for the historic and extant datasets. We selected 
the first five axes to represent the trait spaces that explained 
at least 95% of the variance in each specific group (historic 
and extant species – Supporting information; following the 
recommendations of Pigot et al. 2020 and the dimensional-
ity selection method from Guillerme et al. 2023). We applied 
the same procedure as for the simulated data by simulat-
ing a null mechanism to compare to the observed ones by 
randomly removing 55 and 81 species for each stressor and 
scaling the results proportionally to this null mechanism (as 
described above).

Results

The ability of different metrics to capture the different pat-
terns (and thus approximate the mechanisms) was highly vari-
able. It ranged from metrics capturing no clear pattern (e.g. 
functional evenness based on the dendrogram method for 
competition) to metrics clearly capturing one specific pattern 
(e.g. divergence based on probability density for the equalis-
ing mechanism). Although most metrics captured a decrease 
in metric score relative to the amount of removed data, some 
metrics resulted in a score increase (e.g. the functional even-
ness based on a hypervolume for the equalising mechanism; 
positive values in Fig. 2) or non-linear responses (e.g. alpha 
diversity based on a dendrogram for the equalising mecha-
nism represent distributions of metric scores; Supporting 
information). Furthermore, although we predicted some more 
common changes in aspects of functional diversity for some 
specific mechanisms, our simulations show that most metrics 
under most aspects (richness, divergence, or regularity) cap-
ture changes of trait space occupancy under any mechanism.

For the empirical data, we again see a range of different 
possible interpretations depending on the metric describing 
the pattern (Fig. 3, Supporting information). For example, 
all richness metrics (green; Fig. 3) pick up a similar rela-
tive increase (i.e. relative to the null stressor) in richness for 
both the historic and extant datasets. However, the results 
are occasionally contrasting between the historic and extant 
datasets, with a respective decrease and increase with some 
divergence metrics (e.g. functional dispersion based on den-
drograms or hypervolumes). Finally, some metrics pick up 
a decrease for both datasets (e.g. functional evenness based 
on hypervolumes – although the 95% confidence intervals 
overlapped with 0). Note that this apparent global increase in 
most metric values may appear counterintuitive given that 46 
and 69% of species went extinct over the two time periods. 
This is due to the scaling of the metrics compared to random 
equivalent extinctions. That is, Fig. 3 is not displaying abso-
lute changes in trait space occupancy, but rather changes in 

Figure 3. Empirical results: the metrics and the scaled changes are 
measured in the same way as in Fig. 2 (green = richness, yel-
low = divergence, blue = regularity). Plain circles represent the met-
rics for the species present on Hawaii in 1500 (historic data; 46% 
removal – 63 species present) and feinted squares for the species 
currently present on Hawaii (extant data; 69% removal – 37 species 
present). The model results (including R2 and t-statistics) are avail-
able in the Supporting information.
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trait space occupancy relative to a crude neutral model where 
all species are equally likely to go extinct. 

Discussion

Capturing approximated mechanisms with different 
metrics

We tested 12 trait space occupancy metrics on simulated and 
empirical datasets to assess how each metric captures patterns 
of trait space changes based on stressors approximating eco-
logical and evolutionary mechanisms. Our results show that 
different metrics capture different patterns (what) leading to 
inferring different processes (how) that can be proposed to 
explain different mechanisms (why). Therefore, the choice of 
trait space occupancy metric is essential to accurately describe 
a pattern of interest. We found that different metrics can cap-
ture changes in pattern relative to the null mechanisms in 
different ways depending on the approximated mechanism 
of interest. For example, for the approximated equalising 
mechanism, most metrics capture a pattern clearly smaller 
than the one from the null mechanism (i.e. randomly remov-
ing elements has a greater effect on the metric than removing 
elements following the mechanism). However, some metrics 
(e.g. functional evenness based on the hypervolume) capture 
a pattern clearly greater than the one from the null mecha-
nism. This means that changes in metric values can be coun-
terintuitive and should always be interpreted in the context 
of the metric, data, and question at hand. Note also that, as 
mentioned above, different dimensionalities can have differ-
ent effects on the metrics, depending on both the trait space 
and the metric nature (Bellman et al. 1957).

For example, say one is interested in looking at changes in 
functional diversity using a divergence metric calculated with 
the probability density method (e.g. TPD::REND). They can 
apply this metric to their trait space and get two relative met-
ric scores of 0.7 and 0.65 (pattern) for two levels of extinction 
(process). The interpretation of this score as a change in func-
tional diversity will depend on the worker’s assumption of 
which mechanism affected the trait space. In our simulations, 
if the mechanism approximated was the equalising one, the 
pattern can clearly be interpreted as a change in functional 
diversity, but if the mechanism is a facilitation one, the pat-
tern can be meaningless (i.e. not clearly distinguishable from 
a null mechanism – Fig. 2 shows this example by contrasting 
columns 1 and 2 in row 5). In this made-up example, the 
procedure is done in reverse order where the pattern is speci-
fied first, and then the process and the mechanism (‘what 
process and mechanism are needed to interpret pattern X?’). 
In Box 2 we suggest an approach that specifies the process 
and the mechanism first (‘how do I interpret pattern X under 
a specific process and mechanism?’).

Regarding the different approximated mechanisms, it is 
interesting to note that our different approximations lead 
to different general behaviours of the metrics: for example 
the range of variance in the metric values is greater for the 

equalising mechanism and smaller for the competition 
mechanism (albeit nearly always distinguishable from the 
null mechanism). These differences in metric variance across 
mechanisms suggest that some mechanisms lead to more sub-
tle changes or/and that our approximation of these mecha-
nisms can be variable.

Empirical results

The empirical results are also intriguing in that the loss of 
Hawaiian birds’ functional diversity due to extinction is not 
greater than expected by chance (at least for certain metrics; 
Fig. 3), because one would expect that extinctions target spe-
cific areas of functional space (i.e. birds with specific trait 
combinations). This contrasts with studies that have shown 
that species with certain traits (e.g. larger species) are more 
likely to have gone extinct and thus that functional diversity 
loss is larger than through random extinctions (Sayol  et  al. 
2021, Matthews et al. 2022). This illustrates the importance 
of positing the mechanism and process of interest as well as the 
pattern to capture it before analysing the results. For example, 
for the divergence metrics using hypervolume or dendrogram 
methods, we recovered changes in trait space that are smaller 
than expected by chance when focusing on all extinctions and 
larger than expected by chance when considering only pre-
1500 extinctions. This could lead to the interpretation that 
the trait space was not changed under any specific mechanism 
up to 1500 (i.e. null mechanism) but that, since then, spe-
cific mechanisms have been reducing specific areas of the trait 
space (e.g. filtering mechanism). However, when using a dif-
ferent metric (say the Rao’s quadratic entropy based on dis-
tance matrices), the results would indicate that a reduction of 
specific areas of the trait space could have also occured before 
1500, leading to very different interpretation of the results.

Our results show that the loss of functional diversity for 
several metrics was not more than expected by chance. This 
could be due to the taxonomic distribution of the extinct 
birds: these Hawaiian data comprise approximatively 58% 
passerines while the majority of anthropogenic extinctions 
have involved non-passerines (approximately 75%). Non-
passerines tend to be larger and possess more unique mor-
phological traits (thus resulting in relatively large reductions 
in functional diversity). However, in Hawaii, where the same 
proportion of known species were passerines (approx. 58%), 
the opposite is true: the majority of extinctions (approx. 60%) 
have been of passerine species. It is important to note that we 
are not implying that there existed little morphological varia-
tion within extinct Hawaiian passerines – indeed, many of 
these extinctions involved the honeycreepers, a famous adap-
tive radiation involving substantial evolution of beak mor-
phology (Walther and Hume 2022) – but simply that this 
morphological variation is less than that observed across all 
birds. Given that the proportion of known Hawaiian spe-
cies that are/were passerines roughly matches the proportion 
of extinct species that were passerines, our results indicate 
that these extinct species were more functionally similar than 
expected, thus relatively increasing trait diversity (i.e. relative 
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Box 2. So which metric do I choose?

TL;DR: it depends!
Here is a proposed step by step protocol that could help one decide what to measure by clearly specifying their mecha-

nism, process and pattern of interest prior to any functional diversity or disparity measurements.
We have data of bird traits for native species in Hawaii through time (e.g. the birds known to be present in 1500 

CE and those still extant today). We want to know how anthropogenic stressors (e.g. hunting, invasive species, land use 
change) have affected the trait diversity of native Hawaiian birds (Fig. 4).

Frame the question

• Why? Think of the broad biological mechanism of interest. In our example, this could be asking why (due to what 
mechanism) has the community changed: the trait diversity has changed due to a filtering mechanism where anthropo-
genic stressors affect specific species with specific traits (e.g. through hunting, predation on eggs, by mammals).

• How? With the data we have at hand, identify the process we could analyse. In our example, this could be native bird 
species traits through time: how did filtering affect the native species after 1500?

Although asking why and how is a relatively standard step in the literature, we suggest that proposing them in this frame-
work more easily leads to the next, often less asked question of what pattern to capture:

• What? Choose the appropriate pattern that would capture changes through time in relation to a filtering mechanism. 
In our example, this could be a continuous metric that measures either changes in the trait space position or/and 
changes in the trait space size. The idea being that filtering would remove either the edges or a specific portion of the 
trait space without affecting many other parts of the trait space.

Find the type of metrics of interest

Once the pattern to be captured (what) has clearly been defined, we believe it becomes easier to select an appropriate met-
ric. For example, we can follow the suggestions from Mammola et al. (2021) highlighting which kind of methodological 
pipeline best supports which type of metric of interest (Table 4).

Select the metric most appropriate to your data

To describe the pattern for our specific example question, we will be interested in the size and position of the trait space. 
There are many different metrics that capture changes in the size and position of the trait space and their choice should 
depend on the following questions: do you have a lot of data or not? Do you have a lot of computational time available 

−4 −2 0 2 4 6

−6

−4

−2

0

2

4

Dimension 1 (79.11%)

D
im

e
n

s
io

n
 2

 (
7

.8
1

%
)

Current species
Species in 1500

Figure 4.Example of a trait space based on the empirical data described above. ‘Species in 1500’ refers to now extinct species that were 
believed to have been extant in 1500 CE.
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to random extinctions). In addition, it is worth stressing that 
these analyses included marine species (which constitute less 
than 4% of known extinctions in Hawaii, while making up 
11% of the prehistoric assemblage) and different results may 
have been found if focusing exclusively on terrestrial birds.

More broadly, as can be seen from this empirical case 
study, patterns are likely to be much less clear than with sim-
ulated data due to multiple stressors acting simultaneously. 
For instance, extensive hunting is likely to present equalis-
ing and/or filtering pressure due to the selective hunting 
of larger-bodied species. In contrast, avian malaria, which 
is known to be an important extinction pressure for native 
Hawaiian birds (Samuel et al. 2011), could show signals of a 
null mechanism since susceptibility to the disease is not trait-
dependent (at least not in relation to the dimensions we have 
considered here), but is related to genetics (it mainly affects 
passerines, but there is considerable variation in susceptibility 
within passerines) and distributional range (Atkinson 2023).

Caveats

Our results may be influenced by our choice of space occu-
pancy metrics – specifically, we focused on metrics available 

in three statistical packages in R, the most common statisti-
cal language currently used in ecology (Lai et al. 2019), but 
many others could have been used (Guillerme et al. 2020b). 
Also, our results are likely affected by the use of simplified 
stressors designed to approximate very complex ecological 
and evolutionary mechanisms by simply removing a percent-
age of observations in trait spaces in a non-random manner. 
Note also that the simulated trait spaces here did not always 
share common characteristics with empirical trait spaces. The 
simulated trait spaces in 2, 4, or 8 dimensions had the same 
variance on all dimensions (i.e. we used the same trait simu-
lation process for all dimensions) whereas in empirical trait 
spaces, commonly generated using ordination techniques 
(e.g. PCA, PCO, or PCoA), the dimensions have by defini-
tion a decreasing variance.

Furthermore, we only presented results based on a rela-
tively small number of dimensions (up to 8). Although this 
number of dimensions is in the range of many studies in 
ecology (e.g. six dimensions in Healy et al. 2019), it is not 
uncommon to use a much greater number of dimensions, 
especially in palaeontology (e.g. more than 200 dimensions 
in Van Den Ende et al. 2023). In a higher number of dimen-
sions (usually > 10 but this is highly variable depending on 

or not? What type of data do you use (categorical, continuous, transformed)? Are you familiar with the metric (is there a 
software implementation you can use)? Of course, these are example questions and are not necessarily the only ones you 
should ask. Mammola et al. (2021) proposes a very handy flow chart in this regard.

Here, following our experience and the nature of the data, we will measure the absolute size of the trait space using the 
convex hull size and the potential displacement of the trait space using the displacement metric (Guillerme et al. 2020b). 
Results are displayed in Table 5–6.

Note that it is also possible to test whether the metric is actually capturing the broad mechanism of interest using evo-
lutionary simulations (e.g. by simulating evolutionary scenarios that would include species traits that would go through 
filtering mechanisms – Guillerme 2024) or, like in this manuscript, using stressors (e.g. by using the moms interactive 
package Guillerme et al. 2020b).

Table 4. Examples of questions we can ask with the different metric types. The categories are arbitrary and are taken from 
Mammola et al. (2021).

Metric type Question Are we interested?

Size Is one group bigger than another one? Yes
Divergence Is one group more spread than another one? Not really
Regularity Is one group more evenly dispersed in space? Not really
Something else Does the position of a group change in space? Yes

Table 5. Trait space size measured as the convex hull volume for both groups.

Group n Convex hull volume

Current 37 25.44
At 1500 63 60.84

Table 6. Trait space position measured as the displacement metric: the percentages are the confidence intervals of the distribution.

Group n Median displacement 2.5% 25% 75% 97.5%

Current 37 1.04 0.95 0.99 1.05 1.10
At 1500 63 1.12 0.85 0.94 1.19 1.34
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the system under study), metric results are more difficult to 
scale linearly. This sometimes makes metric interpretation 
more chaotic (Bellman et al. 1957) in the sense that there 
is no direct relationship between the number of observa-
tions and dimensions that can be used to extrapolate results 
in higher dimensional datasets. In fact, the relationship 
between observations has an important effect on how our 
results scale with higher dimensionality (e.g. the volume of 
an evenly occupied space scales differently in high dimen-
sions compared to the same space but with normally distrib-
uted observations).

Another cautionary note could be made about our deci-
sion to scale the metrics relative to a random trait space 
reduction (with the same percentage of reduction). This 
choice allowed us to simulate a null model designed to 
test whether the mechanisms of interest were causing the 
observed change in pattern (Bausman 2018). For example, 
if removing 80% of the edges of a distribution was distin-
guishable or not from removing 80% of a distribution ran-
domly (e.g. facilitation mechanism measured as divergence 
using the probability density method – not distinguishable 
from the null when removing 80 or 60% of the data; Fig. 2). 
Some metrics (e.g. functional evenness using the dendro-
gram method) were not able to distinguish between the null 
mechanism and the mechanism of interest (here the mecha-
nism simulating competition). In other words, our statistical 
question was ‘does metric X distinguish between removing 
N% of data in a biased way (the mechanism) and remov-
ing N% of data randomly (the null)?’. This definition of 
the null hypothesis is also appropriate for the empirical data 
if the question is the same. However, it is very likely that 
researchers will ask a more exciting or intriguing question 
based on these data. For example, an interesting one could 
be ‘are extinct species spread uniformly in the trait space of 
all birds in Hawaii?’. This legitimate question would thus 
require first a trait space (the pattern – what) and maybe 
some contrasting groups of interest like extinctions through 
time (the process – how) to answer the question (the mecha-
nism – why). Furthermore, the scaling of the metrics paired 
with the levels of removal (80, 60, 40, and 20%) creates 
an expected artefactual similarity when comparing the ran-
dom removals against the removals due to stressors: when 
less data are available overall, the metrics are more likely to 
be similar (e.g. if removing 99% of the data, we expect the 
random removal metric score to be nearly identical to the 
non-random ones).

Importantly, it should always be borne in mind that mech-
anisms ought of course to be more complex in real world 
scenarios. For example, evolutionary mechanisms can vary 
through time or across clades (and so patterns are often the 
result of multiple processes); and ecological mechanisms are 
often intertwined and work together to generate a pattern 
(e.g. facilitation + competition; Danet et al. 2024), or coun-
teract each other by operating on the trait space in oppo-
site directions (e.g. competition + filtering; Mammola  et  al. 
2024).

Conclusion

Different ecological and evolutionary processes or mecha-
nisms do not always result in different patterns. Our results 
based on simulations and empirical data suggest that the same 
data can be interpreted differently depending on the choice of 
trait space occupancy metric (also known as disparity, dissim-
ilarity, or functional diversity metrics). Different metrics are 
designed to capture different aspects (Guillerme et al. 2020b, 
Mammola et al. 2021) but also perform better or worse at 
their designed task depending on the data, the mechanism, 
or/and process of interest. Using space occupancy metrics for 
describing functional diversity is tricky. This is because the 
metrics have properties that can be counterintuitive based 
on the data at hand; and also because functions of ecosys-
tems, or the organisms and niches within them, are hard to 
capture/understand/define. This means that measuring func-
tional diversity is based on both the definition of the metric 
and the function of interest, and thus cannot be served by a 
one-fits-all metric. In other words, it is important to choose 
a dispa rity/ dissi milar ity/f uncti onal diversity metric based on 
the question and the data at hand rather than as a default 
option or solely based on a previous inspiring publication. 
We suggest caution when summarising patterns in observed 
data and propose a pipeline and tools for researchers to help 
understand how their pattern (often stemming from multidi-
mensional data) can vary intuitively or not depending on the 
process and mechanism of interest.
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