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1. Introduction

Numerical modelling of metallic materials has emerged as a pivotal research area in

modern materials science and engineering [1]. With the advancement of computational

power and the development of sophisticated modelling techniques, numerical simulation

has become an indispensable tool for studying the microstructural evolution, enhancing

process understanding and optimisation, and predicting the mechanical properties of

metallic materials [2–9]. By employing accurate mathematical models and efficient compu-

tational methods, researchers can simulate the complex behaviours of real-world materials

in a virtual environment. This approach not only reduces experimental costs and boosts

research efficiency, but also uncovers physical phenomena that are challenging to observe

directly through experiments [10–15].

This Topic is dedicated to the “Numerical Modelling on Metallic Materials” and

presents a curated collection of twenty cutting-edge research papers in the field. These

studies span multiple scales, from microstructural evolution to macroscopic mechanical

behaviour, and explore the response of various metallic materials under diverse process-

ing and service conditions. At the microscopic level, numerical modelling is applied

extensively to explore phase transformations, diffusion behaviours, and microstructural

evolution in metallic materials. At the mesoscopic and macroscopic levels, numerical

simulations are employed to predict the mechanical properties and failure mechanisms of

metallic materials, offering insights into performance and durability. The studies featured

in this collection highlight the vital role of advanced modelling techniques, including

finite element analysis (FEA), molecular dynamics simulations (MDS), computational fluid

dynamics (CFD), discrete element method (DEM), and phase-field (PF) and other mod-

elling techniques, in optimising engineering designs, predicting material performance, and

improving manufacturing processes.

Additionally, this Topic also showcases emerging numerical modelling approaches,

such as topology optimisation and the applications of various other optimisation algorithms,

in metallic material simulations. These innovative approaches, when combined with

traditional physical modelling techniques, extend the capabilities of numerical modelling

to encompass intelligent computation and multi-scale analysis. Such advancements pave

the way for more efficient and effective strategies for the design and optimisation of

future materials.

2. Outline of This Topic

This Topic includes twenty technical papers contributed by the authors working in the

field and is organised into three main sections, each offering a comprehensive exploration
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of numerical modelling applications in metallic materials. The three sections comprise

atomic-scale and microstructural evolution modelling, meso- and macro-scale mechanical

behaviour simulations, and emerging computational techniques and advanced applications

in metallic materials research. These contributions are summarised and listed below.

2.1. Atomic-Scale and Microstructural Evolution Modelling

Baidak, S.T. et al. (contribution 1) analysed the electronic band structures of intermetal-

lic compounds and their topological characteristics using an ab initio method. Xiang, G.,

et al. (contribution 2) investigated the diffusion of atoms and crystal structure evolution

at the Fe-Ti interface through MDS. Zheng, H., et al. (contribution 3) employed MDS to

examine how different orientations, temperatures, and strain rates influence the diffusion

behaviour and mechanical properties of the Fe/Cu solid–liquid interface. Lv, B., et al.

(contribution 4) developed computational interatomic potentials for accurately modelling

the behaviours of multi-component metallic systems. Fashu, S., et al. (contribution 5)

explored the impact of intragranular nanoparticles on precipitate-coarsening behaviours in

metallic alloys based on PF modelling. Kumnorkaew, T., et al. (contribution 6) presented

a kinetic model for predicting bainitic transformation kinetics in low-carbon steels under

different thermomechanical treatments. Chen, X., et al. (contribution 7) investigated how

multi-directional forging (MDF) at 1150 ◦C affects the microstructure of SDP1 steel and

compared it to traditional forging methods.

2.2. Meso- and Macro-Scale Mechanical Behaviour Simulations

Ciepielewski, R., et al. (contribution 8) investigated the energy-absorbing properties

of aluminium honeycomb structures, particularly focusing on the impact of entrapped

air within the cells during dynamic loading conditions. Zhao, Y., et al. (contribution 9)

developed a model combining CFD with DEM and investigated the mechanism of laser

polishing and its influence on the surface finish of additively manufactured nickel alloys.

Alshoaibi, A.M., et al. (contribution 10) applied FEA to predict fatigue crack growth

behaviours under cyclic loading conditions. Ma, W., et al. (contribution 11) modelled the

buckling and post-buckling behaviours of thin-walled structures under axial loads. Lopez-

Garcia, R.D., et al. (contribution 12) studied how quenching parameters influence distortion

and residual stresses in high-strength steel components. Peng, Y., et al. (contribution 13)

examined the effectiveness of different stiffener geometries in enhancing the stability of

steel girders. Huang, Z., et al. (contribution 14) simulated fracture expansion behaviours in

steel cylindrical shells subjected to explosive loads. In addition, He, T., et al. (contribution

15) analysed the effects of mould design on shrinkage porosity in titanium alloy casting.

2.3. Emerging Computational Techniques and Advanced Applications

Kim, M.S., et al. (contribution 16) introduced a novel constitutive model to predict

ductile fracture initiation and progression. Wallat, L., et al. (contribution 17) explored

computational methods for designing gyroid-based porous structures with tuneable me-

chanical properties. Liu, M., et al. (contribution 18) enhanced the accuracy of temperature

prediction for steel slabs in industrial heating processes using an optimised particle swarm

algorithm. Zhao, T., et al. (contribution 19) modelled and analysed the optical properties of

nanochain aggregates on silicon surfaces. Chen, Y., et al. (contribution 20) used smooth

particle hydrodynamic simulation to examine how steel fibre reinforcement enhances the

tensile and bonding properties of explosion-welded aluminium–steel composites.

3. Concluding Remarks

This Topic is intended for researchers, engineers, and graduate students engaged

in metallic materials research. Through these research papers, readers will gain valu-
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able insights into the latest advancements in numerical modelling, explore cutting-edge

computational techniques, and discover diverse applications of numerical modelling and

simulation in materials science and engineering. This Topic serves as a comprehensive

reference for both academic research and industrial practice, advancing the field of metallic

materials.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflicts of interest.
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