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Abstract: Godunov-based finite volume (FV) methods are widely employed to numerically
solve the Shallow-Water Equations (SWEs) with application to simulate flood inundation
over irregular geometries and real-field, where unstructured triangular meshing is favored.
Second-order extensions have been devised, mostly on the MUSCL reconstruction and
the discontinuous Galerkin (DG) approaches. In this paper, we introduce a novel second-
order Runge–Kutta discontinuous Galerkin (RKDG) solver for flood modeling, specifically
addressing positivity preservation and wetting and drying on unstructured triangular
meshes. To enhance the RKDG model, we adapt and refine positivity-preserving and
wetting and drying techniques originally developed for the MUSCL-based finite volume
(FV) scheme, ensuring its effective integration within the RKDG framework. Two analytical
test problems are considered first to validate the proposed model and assess its performance
in comparison with the MUSCL formulation. The performance of the model is further
explored in real flooding scenarios involving irregular topographies. Our findings indicate
that the added complexity of the RKDG model is justified, as it delivers higher-quality
results even on very coarse meshes. This reveals that there is a promise in deploying
RKDG-based flood models in real-scale applications, in particular when field data are
sparse or of limited resolution.

Keywords: shallow-water equations; flood modeling; MUSCL scheme; discontinuous
Galerkin scheme; wetting and drying; coarse mesh performance

1. Introduction

The frequency and intensity of floods are expected to rise as a result of the combined
impacts of urbanization and climate change [1]. Numerical flood models have been estab-
lished to reliably predict complex real-world flood problems, as in the case, for example,
of Infoworks ICM [2], LISFLOOD-FP [3], ANUGA [4], and TUFLOW-HPC [5]. A power-
ful numerical model should maintain stability when handling wetting and drying fronts
over steep topographic slopes, and second-order accuracy is desired for long-duration
flood simulation when it comes to the cumulative effects of numerical diffusions in the
outcomes [6,7]. Models able to run on unstructured triangular meshes are also preferred to
accommodate the complex geometry and boundaries of real-world topologies [8].

Most existing flood models that use the FV method meet the aforementioned stan-
dards and are widely used for modeling real-world flooding problems [9–23]. They often
adopt second-order FV method (FV2) using the Monotonic Upstream-Centered Scheme
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for Conservation Laws (MUSCL) approach [24]. This approach represents the flood flow
variables as a piecewise-constant field over a triangular mesh element, but reconstructs
piecewise-linear estimates from the piecewise-constant fields located at the neighbours.
Therefore, the MUSCL-FV2 approach has a wider calculation stencil that can impact the
handling of practical treatments, such as moving wet–dry fronts and parallel comput-
ing [12], and can still quickly become affected by numerical diffusion for long-duration
simulation [25].

The local Runge–Kutta discontinuous Galerkin (RKDG) discretisation approach has
gained popularity in modeling shallow-water flows [26–32], showing superior capabilities
compared to the MUSCL approach, such as better numerical conservation properties and
velocity predictions [25,31,33], and better parallel scaling [34–36]. The RKDG approach
elegantly shapes local piecewise-polynomial solutions over the mesh element, but requires
more degrees of freedom and complexity compared with FV methods. This pays off with
an inherent local structure in the storage and update of the flow solutions, leading to a
faster convergence rate and parallel scaling.

Compared to structured meshes, unstructured triangular meshes have received less
attention in the development of robust RKDG flood models. Most studies on triangu-
lar meshes have focused on key properties such as well-balancing [37,38], positivity-
preserving [39], slope-limiting [28,40–42], and wetting and drying capabilities [37,43].
Ref. [37] proposed an RKDG approach that extends the wetting and dying condition
of [44], but its applicability was only validated for academic test cases. Ref. [43] proposed
a slope adaptation technique in their RKDG solver and made it mass-conservative using
the thin-water-layer approach. However, their approach does not guarantee momentum
conservation and deteriorates the order of accuracy below one. Ref. [45] developed an
implicit wetting and drying formulation that allows the bed to adjust over time as water
levels decrease. However, this approach may compromise mass and momentum conserva-
tion, potentially leading to numerical instability. Ref. [38] introduced a correction to the
numerical fluxes using hydrostatic reconstruction combined with a positivity-preserving
limiter for partially wet cells [46]. However, their method generates errors when the flow is
not hydrostatic, and the introduced limiter may disrupt the well-balanced property and
momentum conservation, as it rotates the solution over its mean value [30]. More recently,
Ref. [41] applied a new wetting and drying treatment using a small flux adjustment and
a velocity limiter of the momentum but did not explore its validity for realistic flood in-
undation problems. The RKDG formulation, despite its potential, is rarely adopted for
simulating flood propagation on unstructured meshes, likely due to its perceived complex-
ity. Most DG methods that are robust for flood inundation modeling have been designed for
structured meshes [25,33,47,48]. Existing flood RKDG models utilizing triangular meshes
have primarily been designed to support simulations in rivers and coastal systems [49–51].
Therefore, it is crucial to thoroughly examine its key strengths and limitations, particularly
in the context of flood inundation modeling in urban areas.

This paper introduces a robust nodal RKDG model designed for flood modeling in
urban areas using unstructured triangular grids; its scope includes simultaneously address-
ing accuracy, preserving positivity, and wetting and drying over irregular topographies.
The model builds on and extends widely utilized positivity-preserving and wetting and
drying frameworks previously developed for FV schemes [12]. Two analytical test problems
are chosen to first assess the capability of the proposed approach to capture moving wetting
and drying fronts and handle high-speed discontinuous flows. In addition, the model’s per-
formance is compared to its MUSCL counterpart, considering accuracy, mesh coarsening,
and computational cost. Finally, the model’s capability is validated through simulations of
real-world flood propagation in urban areas.



Water 2025, 17, 1141 3 of 22

The rest of this paper is structured as follows. Section 2 presents the 2D shallow-water
equations, while Section 3 outlines the RKDG flood model on unstructured triangular
meshes. Numerical results are provided and analyzed in Section 4. Finally, Section 5
provides a conclusion and summarizes the key findings of the study.

2. Shallow-Water Equations

The conservative form of the two-dimensional shallow-water equations is expressed
as follows:

∂U

∂t
+∇F(U) = Sb(U) + S f (U), (1)

where t denotes the time, U(x, y, t) is the flow vector at location (x, y), and F = (E, G) is
the numerical flux. The source terms Sb and S f represent the bed slope and friction source
terms, respectively, given as follows:
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
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where h refers to the water depth, qx = hu
(

m2/s
)

and qy = hv are the components of
the unit width flow discharge, with u and v being the components of the depth-averaged
horizontal velocity, g represents the gravitational acceleration, z is the topography function,
and n denotes the Manning’s roughness coefficient.

3. Robust RKDG Flood Model on Unstructured Triangular Meshes

3.1. Second-Order RKDG Method

In the context of a second-order RKDG spatial discretization, the solution U on each
cell (triangle) T is locally approximated as a linear combination of first-order basis functions
ϕk. These functions are defined on the cell such that they take the value of 1 at the k-th
edge midpoint mk and 0 at the other two midpoints.

U(x, y) =
3

∑
k=1

Uk ϕk(x, y). (3)

Here, Uk = U(mk). The solution is therefore discontinuous between adjacent elements.
Apart from the friction term, multiplying Equation (1) by the basis function ϕk, and in-
tegrating over an arbitrary triangle T, the RKDG discretization results in the following
equation:

∂

∂t

∫

T
UϕkdT =

∫

T
F(U) · ∇ϕkdT −

∮

Γ
F(U) · nϕkdΓ +

∫

T
Sb(U)ϕkdT, (4)

where Γ denotes the boundary of the cell under consideration. The surface integrals
on each triangles are discretized using the three-point Gauss quadrature rule, while the
boundary integrals are approximated using the two-point Gaussian rule as shown in
Figure 1. Equation (4) is then rewritten as

∂Uk

∂t
= Lk(U), k = 1, 2, 3, (5)
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where

Lk(U) =

(
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∑
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(6)

where Ω is the area of the considered triangle, f is the index of the faces of the cell, x f j

and y f j are the j-th Gaussian point coordinates of the f -th face, and l f is the f -th edge
length. UL and UR are the reconstructed values of U on the left and right sides of the edge,
respectively, and are computed using Equation (3). The numerical fluxes F∗

f j(UL, UR) · n f

at the interfaces are calculated using the HLL Riemann solver [52].
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Figure 1. The quadrature points within a triangular element. Gi (i = 1, 2, and 3) represent the local
Gauss quadrature points used to approximate the volume integral terms in Equation (6). G f j ( f = 1, 2,
and 3; j = 1 and 2) are Gaussian points for aggregating the normal Riemann fluxes in Equation (6).

Finally, each of the local coefficients, Uk (k = 1, 2, 3), is forwarded in time using a
second-order RK time discretization and a CFL number of 0.33 [53]. To mitigate spurious
oscillations around sharp gradients, Cockburn and Shu’s slope limiter [53] is applied after
each RK step. The solution at any point in the cell is then computed from Equation (3).

3.2. Source Terms Discretization

The topography function z in the bed source term is expressed as a linear combination
of the same basis functions used for the flow variables. This formulation ensures that the
well-balanced property in DG methods is effectively achieved [54]. Given the value of z at
three midpoints of the cell (z1, z2, z3), at any point in the cell, z can be approximated as

z(x, y) =
3

∑
k=1

zk ϕk(x, y). (7)
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The local coefficients z1, z2, and z3 can be obtained from the topography values at the three
vertices of the triangle A, B, and C as follows:

z1 =
zA + zB

2
, z2 =

zB + zC

2
, z3 =

zA + zC

2
. (8)

Following this bed topography discretization, the continuity property is smoothly proven,
especially at the interface points. Consequently, the partial derivatives of the topography
function z are calculated using Equation (7) as follows:

∂z

∂x
=

3

∑
k=1

zk
∂ϕk(x, y)

∂x
and

∂z

∂y
=

3

∑
k=1

zk
∂ϕk(x, y)

∂y
. (9)

Finally, the friction term is handled using a semi-implicit scheme [55] to prevent
numerical instabilities that may arise during rapid changes in flow depth or velocity.

3.3. Preserving Positivity and Wetting and Drying

The positivity preservation and wetting and drying approaches initially developed
for the FV method on unstructured triangular meshes [12] are extended for the proposed
DG method. The discretization of fluxes and the slope source term in Equation (6) with
positivity preservation and wetting and drying can be summarized in the steps below:

1. Evaluate the local flow variables UL and UR at each Gaussian point, G11, G12, G21,
G22, G31, and G32, via Equation (3) in order to evaluate the Riemann fluxes at the
interfaces.

2. Evaluate the associated velocities:

uL = qxL/hL, vL = qyL/hL,

uR = qxR/hR, vR = qyR/hR.
(10)

However, if the water depth is below 10−6, the velocities are set to zero to prevent
unphysical high velocities that can occur in very shallow-water.

3. Produce a locally continuous topography at each interface as follows:

zLR = max(zL, zR). (11)

4. Reconstruct the water depths hL and hR at cell interfaces as follows:

h∗L = max(0, hL + zL − zLR) and h∗R = max(0, hR + zR − zLR), (12)

to maintain the positivity of the water depth.
5. Compute the associated Riemann states of the flow discharge according to the depth

in a way that is positivity-preserving:

q∗xL = h∗LuL, q∗yL = h∗LvL,

q∗xR = h∗RuR, q∗yR = h∗RvR.
(13)

6. Use Equation (9) and all coefficients in steps (4) and (5) to establish the fluxes and
source term discretization within the DG spatial operator of Equation (6).

7. Finally, solve the friction term using a semi-implicit scheme as proposed in [55] to
mitigate numerical instabilities that may arise during rapid changes in flow depth or
velocity.
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4. Model Validation

In this section, five well-known benchmark test cases are used to assess the perfor-
mance and practical abilities of the RKDG model. Initially, two test problems with analytical
solutions are employed to assess the model’s behavior in scenarios involving smooth and
sharp flow transitions, flow curvatures, wetting and drying fronts, and high-speed discon-
tinuous flows. These tests also facilitate a comparative analysis of the model’s performance
against the MUSCL formulation, focusing on accuracy, mesh coarsening, and computa-
tional efficiency. The MUSCL formulation implemented in this work is the traditional
finite volume scheme with MUSCL reconstruction [24]. The source term treatments and
positivity-preserving techniques are adopted from [12]. Thereafter, the RKDG’s capability
to simulate urban flash flooding is evaluated through three real-world flood events. All
simulations are carried out in parallel on a Dell workstation equipped with 20-core 2.6 GHz
Intel Xeon(R) Gold (Xiamen, China). The accuracy of the model is assessed by calculating
the root mean square error (RMSE) and the relative root mean square error (RRMSE):

RMSE =

√

∑
N
i=1(ho − hs)

2

N
, (14)

RRMSE =

√

√

√

√

1
N

N

∑
i=1

(

ho − hs

ho

)2

, (15)

where N is the number of observation data; ho and hs are the observed and simulated water
depth, respectively.

4.1. Curved Flow in Parabolic Bowl

The wetting and drying in a parabolic bowl problem is a commonly used benchmark
test to assess the capability of numerical schemes to handle moving wet/dry interfaces
and nonlinear flow curvatures over complex topography. Here, we consider the oscillatory
motion of water within a parabolic basin with a topography defined over the domain
[−4000, 4000]2 as follows:

z(x, y) = D0

(

x2 + y2

L2 − 1
)

. (16)

The parameters D0 and L are constants (D0 = 3 m and L = 3000 m). The parabolic
topography results in a nonlinear flow that oscillates infinitely with an amplitude of

w =
(

8gD0/L2
)1/2

and a period of T = 2π/w (i.e., T = 2457 s). In a frictionless bowl,
the exact water level is expressed as follows:

η(x, y, t) = D0

[ √
1 − A2

1 − A cos(wt)
− 1 − x2 + y2

L2

(

1 − A2

(1 − A cos(wt))2 − 1

)]

, (17)

A =
(D0 + Z0)

2 − D2
0

(D0 + Z0)
2 + D2

0

, (18)

where Z0 = 1 m is a constant.
In the numerical modeling, all boundaries are considered closed and the initial con-

dition is obtained by substituting t = 0 into Equation (17), together with u = v = 0.
The numerical model is expected to ideally recover the initial condition, as there is no
friction to dampen the flow momentum.

To assess the performance and response of the RKDG and MUSCL models to mesh
coarsening, simulations are performed on two meshes made up of 10,048 cells (coarse)
and 80,594 cells (fine), respectively, corresponding to a grid resolution of 80 and 30 m.
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Simulations are carried out for four period cycle 4T. Figures 2 and 3 display the RKDG
and MUSCL water level predictions as well as the analytical solution along the centerline
y = 0. Solutions are presented at four-time intervals, 3T/4, T, 15T/4, and 4T, until four
period cycles are accomplished. As Figures 2 and 3 indicate, the mesh coarsening appears
to have a significant effect on the accuracy of the MUSCL predictions. On the coarse
mesh, the MUSCL scheme gives satisfactory results up to one period cycle (Figure 2a,b).
However, for long-duration simulations up to a four period cycle, the MUSCL model
lags behind the line of the wetting and drying front during the wetting stage at 15T/4
(Figure 2a), while it seems to advance too quickly during the drying phase at 4T (Figure 2d).
In addition, the flow curvature is overestimated at the wetting stages (3T/4 and 15T/4) and
underestimated at the dry stages (T and 4T). Nevertheless, the MUSCL model demonstrates
a significantly improved ability to capture the dynamics of the wetting and drying front on
the fine mesh (see Figure 3). In contrast, the RKDG scheme delivers accurate predictions of
both the moving wet/dry fronts and the flow curvature on both meshes.

h
+

z
 (

m
)

(a)

Bed

Exact

RKDG

MUSCL

(b)

x (m)

h
+

z
 (

m
)

(c)

x (m)

(d)

Figure 2. Curved flow in a parabolic bowl: water level computed by the RKDG and MUSCL schemes
on the coarse mesh: (a) t = 3T/4; (b) t = T; (c) t = 15T/4; (d) t = 4T.

For a quantifiable validation, RMSEs for both formulations are calculated after each
cycle and listed in Table 1. It should be noted that the RKDG model on the coarse mesh
outperforms the MUSCL scheme even on the fine mesh. In terms of computational cost,
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measured runtimes for both solvers are presented in Table 2. The RKDG method is definitely
more computationally demanding than the MUSCL model when applied on the same mesh.
The RKDG simulation on the coarse mesh requires around 29.94 s, while the MUSCL scheme
costs 12.37 s corresponding to a computational time ratio of 2.42. However, the MUSCL
solver takes 157.51 s to run on the fine mesh, which is approximately about 5 times longer
than the RKDG solver on the coarse mesh. In this respect, the RKDG scheme can be
considered economically efficient, as it delivers highly accurate results on a coarse mesh,
whereas achieving similar accuracy with the MUSCL scheme demands a finer mesh and
significantly higher computational costs. Overall, the RKDG solver seems to be a precise
and reliable alternative for simulating nonlinear shallow-water flows with wetting and
drying on coarse meshes.

h
+

z
 (

m
)

(a)

Bed

Exact

RKDG

MUSCL

(b)

x (m)

h
+

z
 (

m
)

(c)

x (m)

(d)

Figure 3. Curved flow in a parabolic bowl: water level computed by the RKDG and MUSCL schemes
on the fine mesh: (a) t = 3T/4; (b) t = T; (c) t = 15T/4; (d) t = 4T.

Table 1. Curved flow in a parabolic bowl: RMSE for the water depth at t = T and t = 4T.

Mesh MUSCL RKDG

Coarse Fine Coarse Fine

t = T 7.6 × 10−2 2.1 × 10−2 5.2 × 10−3 7.5 × 10−4

t = 4T 2.3 × 10−1 7.7 × 10−2 8.1 × 10−3 1.0 × 10−3
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Table 2. Curved flow in a parabolic bowl: computational time.

MUSCL RKDG

Coarse 12.37 s 29.94 s
Fine 157.51 s 366.68 s

4.2. Oblique Hydraulic Jump

The oblique hydraulic jump is generated by the interaction of a supercritical flow with
a converging wall deflected at an angle of 8.95°. This interaction results in the formation
of a shock wave at an angle β. This problem serves as a valuable standard test case to
assess the capability of the proposed model to handle high-speed discontinuous flows.
The problem domain and a schematic diagram of the induced shock front are illustrated in
Figure 4.

0 10 20 30 40 50 60

x (m)

0

10

20

30

40

y
 (

m
)

Shock front

Inflow

Figure 4. Oblique hydraulic jump: computational domain.

The initial and inflow boundary conditions are defined as a flow depth h0 = 1 m,
and velocity components u0 = 8.57 and v0 = 0 ms−1. A fixed boundary condition is
imposed at the upstream boundary, while a free outflow boundary condition is applied at
the downstream boundary. A wall boundary condition is enforced along the channel walls.
The resulting steady-state flow is expected to remain entirely supercritical, with an oblique
hydraulic jump dividing the flow into two regions at an angle of β = 30◦ relative to the
upstream flow direction. The exact solution downstream of the hydraulic jump is given by
a water depth of 1.5 m and a velocity magnitude of 7.9556 ms−1 [56].

The RKDG and MUSCL models are carried out on two meshes resolution consisting of
10,674 cells (coarse) and 51,821 cells (fine), respectively, corresponding to a grid resolution
of 0.5 and 0.2 m. Figure 5 illustrates the water depth computed by both schemes on the
coarse mesh at t = 30 s, where the steady-state solutions are attained. The hydraulic jump is
well captured by both models and shows good agreement with the analytical position of the
jump. However, the RKDG model produces a steeper representation of the jump compared
to the MUSCL model. The comparison of the water depth profiles along the horizontal
line y = 10 m is shown in Figure 6. The RKDG scheme demonstrates excellent agreement
with the exact solution on both coarse and fine meshes, showcasing its robustness and
accuracy. In contrast, the performance of the MUSCL solver is more dependent on the
mesh resolution. On the coarse mesh, the MUSCL calculations fail to accurately capture the
hydraulic jump and exhibit noticeable oscillations.
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Figure 5. Oblique hydraulic jump: computed water depth contour on coarse mesh at t = 30 s:
(a) RKDG; (b) MUSCL.

0 20 40 60

x (m)

1

1.2

1.4

1.6

h
 (

m
)

(a)

Analytic

RKDG

MUSCL

0 20 40 60

x (m)

1

1.2

1.4

1.6

(b)

Figure 6. Oblique hydraulic jump: comparison between analytical and numerical water depth
profiles delivered by RKDG and MUSCL schemes along horizontal line y = 10 m: (a) coarse mesh;
(b) fine mesh.

For a more detailed analysis, Table 3 presents the RMSEs for the RKDG and MUSCL
solvers together with the computational runtimes. By analyzing the RMSEs, we can
notice that the RKDG scheme on the coarse mesh leads to an error of 0.015 that is very
close to the MUSCL approach on the fine mesh (0.014). In terms of computational times,
as expected, the RKDG model is substantially slower on the same mesh. On the coarse mesh,
the RKDG scheme required approximately 24.81 s, while the MUSCL scheme completed the
computation in just 6.78 s. However, the MUSCL solver on the fine mesh required a runtime
of 72.25 s, which was about 3 times more than the RKDG solver on the coarse mesh. Despite
this, the RKDG model on the coarse mesh remains less costly than the MUSCL scheme
on the fine mesh. Overall, the RKDG scheme proves its cost effectiveness by producing
accurate simulations on coarse meshes, whereas achieving comparable accuracy with the
MUSCL solver necessitates finer meshes and significantly more computational time.
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Table 3. Oblique hydraulic jump: RMSE for the water depth along the line y = 10 m and CPU time.

Mesh MUSCL RKDG

RMSE Runtime RMSE Runtime

Coarse 3.1 × 10−2 6.78 s 1.5 × 10−2 24.81 s
Fine 1.4 × 10−2 72.25 s 1.6 × 10−3 278.56 s

4.3. Toce River Test Case

A physical model of the Toce River valley, located in the Northern Alps of Italy, was
built to study the propagation of flood waves in urban areas following a dam-break [57].
A 5 km reach of the Toce River valley was scaled down at a ratio of 1:100. The urban area was
constructed by placing cubic concrete blocks, each of a length 0.15 m, representing buildings.
These blocks were arranged in two different layouts: aligned and staggered. In this study,
the simulation was performed only for the staggered configuration. The time series of
water levels were recorded at 10 different gauges in the physical model. The topography
of the model as well as the location of experimental gauges are displayed in Figure 7.
The domain was initially dry and the flood propagation was controlled by a time-varying
discharge released from an upstream reservoir as shown in Figure 8. A free outlet condition
was assumed at the downstream boundary and the Manning coefficient was specified as
0.0162 s.m−1/3. Finally, the domain was discretized into 18,400 triangular cells.

Figure 7. Toce River test case: physical domain showing the topography and the location of buildings
(white squares) and 8 gauging points.
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Figure 8. Toce River test case: inflow hydrograph applied as upstream boundary condition.
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The RKDG and MUSCL models were first run on a coarse mesh formed by 2021 cells.
The experimental and predicted time series of water levels at 8 gauges are sketched in
Figure 9. The two models show very close predictions and successfully capture the overall
trend of the water levels; however, they tend to underestimate the flow depth at G8, likely
due to the limitations of the shallow-water equations in representing three-dimensional
transient and turbulent flow dynamics. In general, the RKDG model slightly outperforms
the MUSCL scheme at most of the gauges. A clear discrepancy appears among the two
model predictions at G10 located in the exist zone, where the flow is highly variable
and changes from subcritical to supercritical in a short distance due to the presence of
wake generated by the buildings. The MUSCL scheme clearly underestimates the water
level at this gauge, while the RKDG model closely follows the experimental data. Table 4
summarizes the RRMSE delivered by the two models at the 8 gauges, where lower errors
are observed for the RKDG model, especially at G10.
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Figure 9. Toce River test case: experimental and numerical water level profiles on the coarse mesh at
different gauges.
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Table 4. Toce River test case: RRMSE (%) for the water depth at the 8 gauges on the coarse mesh.

G3 G4 G5 G6 G7 G8 G9 G10

RKDG 0.54 1.01 1.07 0.65 0.64 1.54 0.49 1.21
MUSCL 0.98 1.31 1.17 0.99 0.95 1.48 0.97 2.19

Simulations were undertaken on a fine mesh consisting of 10,653 cells. Figure 10 plots
the water level time series computed by the two models at G10. The RKDG model is seen to
maintain very good agreement compared to the experimental data on both meshes, whereas
the performance of the MUSCL scheme appears to be more reliant on the mesh resolution.
On the fine mesh, the MUSCL prediction is found to closely match the experimental data
and the RKDG profile, and the RRMSEs delivered by the RKDG and MUSCL schemes at
G10 are 1.18% and 1.21%, respectively. It can also be noted that the RKDG model on the
coarse mesh provides lower RRMSE at G10 than the MUSCL scheme on the fine mesh.
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Figure 10. Toce River test case: experimental and numerical water level profiles on the fine mesh at
gauge G10.

Figure 11 displays the water depth delivered by the RKDG model at t = 20 s and
t = 40 s. In general, flow features, hydraulic jumps, recirculation, and wake zones are well
reproduced by the model. This case study demonstrates that the present model accurately
simulates flash flood propagation in urban areas.

Figure 11. Toce River test case: water depth maps predicted by the RKDG solver at (a) t = 20 s and
(b) t = 40 s.

4.4. Malpasset Dam-Break

The Malpasset dam was situated on the Reyran River, approximately 12 km upstream
of Frejus, a town on the Côte d’Azur, southeastern France. The dam, with a maximum
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reservoir capacity of 55 × 106 m3, collapsed in December 1959 following exceptionally
heavy rainfall, resulting in the deaths of 421 people and significant damage to downstream
areas, including the Esterel freeway. Following the disaster, a police survey was conducted
to record maximum water levels across the Reyran River and the arrival times at three
electric transformers were also recorded. In addition, a 1:400 scale physical model was
constructed to measure flood arrival times and water levels at nine gauges in the floodplain.
Due to the complexity of the flow, the Malpasset dam-break problem has been widely
studied by many researchers to validate their numerical schemes for modeling flood wave
propagation over a complex topography [12,58–61].

The computational domain was generated in [62] and consists of 26,000 unstructured
triangular cells with local refinement near the dam and along the main channel for better
accuracy. The mesh resolution ranged from 5 to 50 m. Figure 12 shows the bed topography
along with the locations of survey points P and experimental gauges G. The initial water
level in the reservoir is set to 100 m, while the rest of the domain is supposed to be dry.
A transmissive boundary condition is imposed downstream near the sea and the Manning
coefficient is assumed to be 0.033 s.m−1/3 as suggested in [62].

Figure 12. Malpasset dam-break: topography and locations of the experimental gauges and sur-
vey points.

Figure 13 depicts the evolution of the flood wave obtained by the RKDG scheme at
t = 1800 s, when the flood has arrived at the downstream floodplain. The flood path
and the reflections and deflections due to irregular bed topography are well reproduced
by the model. Maximum water levels observed and computed by the RKDG model at
the experimental gauges and survey police points are plotted in Figure 14 and compared
to the MUSCL outputs. The results provided by the two models are in good agreement
with the survey and data, despite some deviations at P1, P13, and G9,which could be
associated with the restrictions of 2D models in modeling 3D flows, modifications in the
topography after the event, and uncertainties in the survey and measurements. However,
the RKDG model provides slightly better estimation of the water level, notably at P1 and
G6. The RMSEs computed by the RKDG and MUSCL models at P1 are 9.60% and 15.12%,
respectively, while at G6, they are 4.16% and 8.43%, respectively.
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Figure 13. Malpasset dam-break: computed water depth by the RKDG scheme at t = 1800 s.
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Figure 14. Malpasset dam-break: maximum water level observed and computed by the RKDG model
at (a) experimental gauges and (b) police survey points.

Figure 15 displays the wave arrival times at the three transformers. At T1 and T3,
the arrival times provided by both the RKDG and MUSCL models are very similar, showing
a good agreement with the observed values. At T2, the RKDG model demonstrates excellent
agreement with the measured arrival time, yielding an RRMSE of just 0.08%. In contrast,
the MUSCL prediction overestimates the measured arrival time, with a corresponding
RRMSE 12.74%.
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Figure 15. Malpasset dam-break: arrival times (ta) at the three electric transformers.

Overall, this test problem demonstrates that the proposed model can effectively handle
unsteady wet–dry interfaces and complex topography, making it well suited for real-world
and large-scale applications.

4.5. Tous Dam-Break

The Tous dam, located on Spain’s Mediterranean coast, is the final flood control
structure for the Júcar River basin, which spans approximately 21,600 km2 (Figure 16).
On 20–21 October 1982, intense rainfall affected the Tous dam catchment, which covers
an area of 17,820 km2), with an average depth of 500 mm. The total rainfall volume in the
basin reached nearly 600 million m3, far exceeding the Tous reservoir’s storage capacity of
120 million m3. At 19:00 on 20 October, the Tous dam collapsed, triggering a catastrophic
flood wave that inundated many cities situated downstream of the dam. Sumacárcel,
a small town located approximately 5 km downstream of the dam, was among the most
severely affected areas. The older section of Sumacárcel, located closer to the Júcar river’s
right bank, was completely inundated on 20 October 1982. A detailed analysis of the Tous
dam failure and the associated dataset is provided in [63].

In the numerical simulation, a triangular grid consisting of 25,782 cells is employed,
with finer mesh resolution applied to the main river bed and the street of Sumacárcel to
enhance accuracy in these critical areas. The mesh resolution varies between 0.5 m to
50 m. The initial condition assumes a dry bed, while the upstream boundary condition
is defined by the flow discharge hydrograph presented in Figure 17. At the downstream
boundary, a critical flow condition is imposed. To account for the diversity of soil types,
two different values for the Manning roughness coefficient are used: a value of 0.1 s.m−1/3

corresponding to areas with a high friction and 0.03 s.m−1/3 for the remaining parts of the
domain, as suggested by [63].

The water depth predicted by the RKDG model after 20 h is illustrated in Figure 18,
demonstrating the model’s ability to accurately capture the flow path along the river.
Additionally, the models effectively handle reflections and deflections caused by the irreg-
ular bed topography. Maximum water level was recorded at 21 locations within or near
Sumacárcel (Figure 19). Figure 20 compares the maximum water depth produced by the
RKDG model with measurements and survey data, alongside the results obtained from the
MUSCL scheme. Both models are found to be very close to each other, and show a good
agreement with measurements and police survey despite some discrepancies potentially
due to the limitations of 2D models in representing 3D flow dynamics, as well as vari-
ous sources of uncertainty, including the Manning coefficient, measurement inaccuracies,
and changes in the topography after the event.
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Figure 16. Topography of the Tous dam problem showing the location of the dam, Júcar River, and
the town of Sumacárcel.
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Figure 17. Tous dam-break: inflow hydrograph imposed as upstream boundary condition.

At gauge 1, the two models underestimate the water level, likely due to its proximity
to the upstream boundary, where inflow conditions may carry significant uncertainties [64].
Despite this lower prediction at gauge 1, the RKDG and MUSCL models accurately predict
maximum water depths further inside the city at gauges 2, 3, 4, 12, 19, and 20. Similarly,
satisfactory predictions are obtained at gauges 5, 6, 7, 8, 9, 10, and 14. Nonetheless, larger
discrepancies are observed at gauges 11, 13, 15, 16, and 17. Notably, gauges 18 and
21 recorded no flooding, which aligns with field observations. The RMSEs of the maximum
water depth for the RKDG model is 5.23%, compared to 5.74% for the MUSCL scheme.
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The closeness of these results may be attributed to the absence of time series data for water
depth and wave arrival times, as maximum water depth alone is not a reliable metric for
model comparison. Overall, this test case highlights the potential of the proposed model to
accurately simulate long-term urban flash flood evolution over natural terrain.

Figure 18. Tous dam-break: water depth predicted by the RKDG model after 20 h.

Figure 19. Tous dam-break: gauge locations in the streets of Sumacárcel.
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Figure 20. Tous dam-break: maximum water depth measured and computed by the RKDG and
MUSCL solvers at different gauges in the town of Sumacárcel.

5. Conclusions

Godunov-type numerical schemes applied to the 2D shallow-water equations on
triangular unstructured meshes are particularly useful for modeling flood inundation
over complex and irregular domains in real-world applications. This study therefore
presents a new nodal RKDG flood model with positivity preservation and wetting and
drying on unstructured triangular grids for real-scale flood simulation. The positivity-
preserving and wetting and drying approaches proposed by [12] for MUSCL-based models
are reviewed and extended to the RKDG solver. First, analytical test problems are used
to investigate the performance of the proposed RKDG flood model in contrast with its
traditional MUSCL counterpart, focusing particularly on their accuracy, sensitivity to mesh
coarsening, and computational cost. Further, the predictive accuracy of the proposed model
is explored for three complex and challenging real flood events.

Numerical simulations indicate that the two models generically lead to adequate
performance. However, the RKDG scheme shows better accuracy in various benchmark and
real-world flood scenarios. The RKDG formulation consistently delivers higher accuracy
on coarse meshes, reducing the need for computationally expensive mesh refinement. This
advantage is particularly evident in cases involving complex flow features such as moving
wet/dry fronts, nonlinear flow curvatures, and hydraulic jumps, where the MUSCL scheme
exhibits significant numerical diffusion and mesh-dependence. Nevertheless, the proposed
model shows excellent capability in simulating real-world flood events. In general, key flow
features, including flood pathways, hydraulic jumps, recirculation zones, and reflections
and deflections caused by buildings and irregular topography, are accurately captured by
the model. Additionally, the water depths delivered by the model align closely with the
experimental data and police survey.

In real-world flood risk management problems, the computational grids are usually
dominated by a larger fraction of coarse cells and only a few portions of the grid have
refined cells, often limited to urban areas or areas of critical features. In this context,
the RKDG model can be favored to maintain the quality of the predictions at large-sized
cells, and thereby all over the grid. However, for real-time flood forecasting on grids
dominated by small-sized cells, at a resolution less than 15 m, the MUSCL model provides
competitive accuracy and is up to 2.5-fold faster for real-world simulations.
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