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Abstract 

Purpose This scoping review aims to identify and summarise artificial intelligence (AI) methods applied to patient-
reported outcome measures (PROMs) for prediction of patient outcomes, such as survival, quality of life, or treatment 
decisions.

Introduction AI models have been successfully applied to predict outcomes for patients using mainly clinically 
focused data. However, systematic guidance for utilising AI and PROMs for patient outcome predictions is lacking. 
This leads to inconsistency of model development and evaluation, limited practical implications, and poor translation 
to clinical practice.

Materials and methods This review was conducted across Web of Science, IEEE Xplore, ACM, Digital Library, 
Cochrane Central Register of Controlled Trials, Medline and Embase databases. Adapted search terms identified 
published research using AI models with patient-reported data for outcome predictions. Papers using PROMs data 
as input variables in AI models for prediction of patient outcomes were included.

Results Three thousand and seventy-seven records were screened, 94 of which were included in the analysis. AI 
models applied to PROMs data for outcome predictions are most commonly used in orthopaedics and oncology. 
Poor reporting of model hyperparameters and inconsistent techniques of handling class imbalance and missingness 
in data were found. The absence of external model validation, participants’ ethnicity information and stakeholders 
involvement was common.

Conclusion The results highlight inconsistencies in conducting and reporting of AI research involving PROMs 
in patients’ outcomes predictions, which reduces the reproducibility of the studies. Recommendations for external 
validation and stakeholders’ involvement are given to increase the opportunities for applying AI models in clinical 
practice.

Introduction
Artificial Intelligence (AI) is a field of computer sci-
ence and engineering which uses computer systems able 
to mimic intelligent behaviour [1]. AI is known to have 
potential to improve the effectiveness, accessibility and 
accuracy of screening, diagnosis and treatment in many 
areas of health [2, 3]. AI models predicting patient out-
comes can achieve high performance, and as a result aid 
clinical decisions and improve quality of healthcare [3]. 
AI has been applied to various data types in medicine, 
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using mainly clinical data, such as diagnostic images, 
genetic data, or brain activity data [4].

While there is a growing attention at patient-reported 
data in clinical practice and some attempts to use AI 
models on such data exist [5], systematic guidance 
on how to apply AI on patient-reported data for out-
come predictions is lacking. Patient-reported data can 
be collected using patient-reported outcome measures 
(PROMs). These are questionnaires which measure 
patients’ perception on their health status, without being 
influenced by clinical opinion [6]. PROMs data can be 
either standardised and validated tools designed to cap-
ture patients’ reports, or any other forms of symptom and 
quality of life measures [7]. For instance, mobile applica-
tions for PROMs collection, have been widely used in 
healthcare and have potential to improve the quality and 
personalisation of patient care [8]. The recent systematic 
evaluation of PROMs in clinical trials of AI health tech-
nologies has shown that patients’ perspective is central 
even in novel technological advancements [9].

Unfortunately, the complexity of PROMs data and lim-
ited universal guidelines for AI use in healthcare research 
[10], can lead to inconsistent reporting of study design 
and evaluation [11]. Furthermore, studies often lack 
reproducibility, external validity [12], and generalisability 
of the results to the clinical context [10]. Inadequate and 
inconsistent selection of patient-reported input data also 
introduces a challenge to useful application of patient-
centred AI models in healthcare [13]. Additionally, there 
is a lack of patient and clinician involvement in the pro-
cess of study design, which plays an important role in 
addressing bias in AI research for healthcare [14].

There are existing literature reviews exploring AI 
models applied on PROMs data. For example, a scop-
ing review from 2021 investigated PROMs as standalone 
input variables in models, however, they did not explore 
reproducibility and clinical adoption of studies. Moreo-
ver, only 2 medically oriented literature databases were 
searched, while databases from engineering and com-
puter science backgrounds were not considered [5]. 
Other existing reviews focused on specific healthcare 
domains (e.g. oncology) and did not investigate all poten-
tial applications of using AI and PROMs data. [15–17].

This review aims to address the gap in the literature 
by investigating AI models used in primary studies for 
predicting patient outcomes using PROMs. It focuses 
on methodological rigour of conducting, evaluating and 
reporting AI research including PROMs as input data. It 
highlights the importance of ensuring standardised data-
set description and justification for chosen methods of 
model development and evaluation, focusing on clinical 
relevance. Recommendations for engaging stakeholders, 
including patients, are suggested.

Materials and methods
The methodology of this scoping review was based on the 
Joanna Briggs Institute (JBI) guidance [18]. The review 
protocol is available on Open Science Framework [19]. 
The completed PRISMA checklist for scoping reviews 
[20] is added in the Supplementary Materials Fig. 1 and 2.

Search strategy
The databases used to search for relevant papers were: 
Web of Science, IEEE Xplore, ACM Digital Library, 
Cochrane Central Register of Controlled Trials, Medline 
and Embase. These databases were selected to include 
the variety of fields publishing papers on AI in medi-
cine, covering both medical and engineering aspects. The 
keywords adapted to each database are listed in Supple-
mentary Materials Table 1. Initially, the limited search of 
Web of Science and Medline was conducted to analyse 
and approve the keywords. The finalised search of all the 
records across all the databases was completed on the 
7 th November 2023. The reference lists of all relevant 
reports were also screened. All studies identified through 
the search strategy were exported to Endnote citation 
management system.

Inclusion and exclusion criteria
The inclusion and exclusion criteria followed the Popu-
lation/Concept/Context (PCC) framework [18] and 
are described in Table  1. The participants in the papers 
included in the review were patients, whose symptoms 
and quality of life data were recorded using various 
PROMs. These can include mobile applications, or sur-
veys completed either online or in a clinic. The type of 
data can be collected through either validated and widely 
used PROMs, or any other patient self-reports. Papers 
reporting the use of PROMs data as both a predictive and 
predicted variable were included in the study. If PROMs 
data were only used as a predicted variable, and not 
included as inputs, the reference was excluded. The con-
cept was the methods of AI used for predictions of the 
patients’ outcomes. Papers that explicitly mentioned use 
of AI or Machine Learning methods were included. Any 
papers using AI models for purposes other than predic-
tion were excluded. Papers that reported prediction of 
patient outcomes in the healthcare context were included 
in the analysis. These outcomes should belong to the cat-
egories of patient-related outcomes identified by Kersting 
et al. (2020) [21], presented in Table 1. The broad under-
standing of healthcare context allowed focusing on the 
AI used for various medical reasons.

Review process
All duplicates found in the databases were removed 
automatically in Endnote. Titles and abstracts of the 
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papers were screened by a researcher and re-selected 
based on inclusion and exclusion criteria, presented in 
Table 1. Full texts of articles admitted to the study were 
assessed against the inclusion and exclusion criteria 
again. The researcher’s approach was validated through 
a second reviewer, who repeated scanning through 
10% of abstracts, selected full texts and compared their 
results with the first reviewer. The validation showed 
high consistency between the reviewers’ decisions, as 
out of 218 validated papers, 184 (84.4%) were consist-
ently selected or rejected. Therefore, no further valida-
tion was performed.

Data extraction and analysis
The data was extracted from all papers selected for this 
review. Extracted and summarised information for each 
included paper is presented in Supplementary Materi-
als Tables  1 and 2. A second reviewer extracted data 
from 10% of admitted papers for the purpose of valida-
tion, and the extracted information was compared and 
agreed between the reviewers. The summary of data 
was reported in tabular form in Excel spreadsheet and 
presented in a narrative form in this review.

The extracted and analysed data included:

• Study characteristics (country and year of publica-
tion, healthcare domain, input PROMs variables 
used, types of PROMs, output variable types, and 
sample sizes)

• Data pre-processing (missingness in the datasets, 
missing data imputation techniques, class distribu-
tion, techniques for handling class imbalance)

• Model development (types of AI models used, fre-
quency of AI models used, AI techniques for address-
ing temporality in data, hyperparameter tuning)

• Model evaluation (performance metrics used, vari-
able importance, best-performing AI models)

• Clinical relevance and adoption (patients and clini-
cians involvement in the study design, validation and 
deployment stage of research, reporting of sociode-
mographic information)

Results
Out of 3077 records screened, 94 were selected for analy-
sis in this review. PRISMA diagram [20] (Fig.  1) illus-
trates the process of paper selection. The reasons for 
paper exclusions were: no full-text available (38.1%), no 
PROMs used as input variables (35%), or no AI models 
used (12%), or methods did not aim to predict patient 
outcomes (8.75%).

Study characteristics
Among the identified studies, 33 (35%) were conducted 
in USA, 31 (33%) in Europe, 6 (6%) in Canada, 15 (16%) 
in Asia, 1 (1%) in South America, 1 (1%) in New Zealand, 
and 1 (1%) in Turkey. Six (6%) studies were conducted 
internationally (USA and Canada (n = 2, 2%); UK and 
USA (n = 2, 2%); Canada and Sweden (n = 1, 1%); Europe, 
US, Australia and Israel (n = 1, 1%)). Identified papers 
focused on orthopedics (n = 38, 40%), oncology (n = 22, 
23%), mental health (n = 17, 18%), respiratory (n = 8, 
9%), neurology (n = 4, 4%) and other domains (n = 5, 5%), 
which appeared only once: hearing, endometriosis, palli-
ative care, sub-health state, and cardiovascular. The stud-
ies were published between 2010 and 2023 (Fig. 2). The 

Table 1 Inclusion and Exclusion criteria for the study selection

Category Inclusion criteria Exclusion criteria

Input variables Data reported by patients using standardised PROMs; 
electronic data collection designed for self-reporting 
of symptoms or clinical outcomes. These can be used 
with combination of different non-patient reported 
data

Only not patient-reported data, e.g., data reported through a clinician, 
recorded, written down during an appointment, data reported on online 
forums/social media, or data from physiological measurements

Output variables Any data describing patient outcomes: sleep behav-
iour, coping and self-efficacy, healthcare utilisation, 
body image perception, function, communication 
skills, reliability of diagnosis and therapy, optimal 
support, confidence in therapy, satisfaction, cognitive 
performance, treatment decision, disease control, 
daily activities, reoperation, mental health, quality 
of life, mobility, co-morbidities, pain, survival, adverse 
events, and symptoms

Output that does not relate to health or healthcare, or papers which did 
not aim to predict outcomes

Models Machine learning or deep learning predictive models Statistical models (e.g., only regression analysis)

Paper type Primary research reported in English language Abstracts only, theses, dissertations, letters to editors, guidelines, commen-
taries, introductions, papers published not in English, or review papers
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data were obtained either from existing registry/database 
(n = 44, 47%), or pre-existing or current research studies 
(n = 47, 50%, not reported: n = 3, 3%).The self-reported 
input variables were combined with clinical and demo-
graphic data (n = 63, 67%), only demographic data (n = 
14, 15%), only clinical data (n = 3, 3%), or other types 
of data (n = 4, 4%), such as wearable, electroencephalo-
graphic, bio-mechanical, or family data. Ten studies used 
only self-reported data for predictions. Most papers (n = 
63, 67%) were predicting self-reported outcomes, 14 
(15%) of which were Minimally Clinically Important Dif-
ferences (MCID) between pre- and post-clinical event 
data collection. Other papers used either only objectively 
measured outcome (n = 28, 30%), or a combination of 
self-reported and objective outcomes (n = 3, 3%). Sam-
ple sizes of the papers varied from 20 to 1,434,868 (mean 
= 25,888, median = 1022, 1 st quartile = 429.75, 3rd quar-
tile = 2879.75). The quartiles do not indicate clear bound-
aries between the data, as there are small differences in 
the sample sizes. Hence, a boundary-based approach 
was followed instead of quartile-based: very small (< 
300), small (300–700), medium (701–2000), large (2001–
20000), and very large (> 20,000), as presented in Fig. 3. 
The vast majority of studies (n = 69, 73%) used condition-
specific PROMs, such as orthopedic-specific Knee Injury 

and Osteoarthritis Outcome Score (KOOS) [22] or can-
cer-specific EORTC Core Quality of Life Questionnaire 
(QLQ-C30) [23]. In 31 papers (33%) condition-specific 
measures with generic questionnaires, for example Euro-
Qol- 5D (EQ- 5D) [24]. Twelve papers (13%) used generic 
measures only. Out of 81 (86%) papers that reported the 
types of questionnaires used, 18 (22%) focused on physi-
cal health, 11 (14%) on mental health, and 52 (64%) on 
both.

Data pre‑processing
Thirty papers did not report the missingness in the data-
set. Therefore, it is uncertain if the datasets in these stud-
ies did not have any missing data, or if missing data were 
not disclosed. Out of 64 papers (68%) which reported 
missing data, only 1 (2%) stated that there was no miss-
ingness in the dataset. Ten papers (16%) which reported 
having missing data did not report how the missing-
ness was handled or addressed. Out of all papers, only 
53 (56%) reported the technique for data imputation 
(Fig. 4c). The 2 most common techniques were complete 
case analysis (n = 16, 30%), and mean/median/mode 
imputation (n = 15, 28%). Most papers (N = 89, 95%) used 
classification as a prediction method. Fourteen (16%) of 
these did not provide any information about the class 

Fig. 1 PRISMA flow diagram



Page 5 of 15Wójcik et al. Health and Quality of Life Outcomes           (2025) 23:37  

distribution. All papers which reported class distribu-
tion (n = 75, 80%) performed binary classification. Out of 
these papers, only 11 (15%) had balanced classes (maxi-
mum imbalance ratio of 60:40 between the minority and 
majority class [25]). Sixty-four papers (68%) used data-
set with imbalanced classes, 29 (45%) of which did not 
mention the class imbalance problem. Thirty-five papers 
(55%) acknowledged the issue but 13 (37%) of them left 
the data imbalanced. In total, 22 papers (23%) reported 
the need for balancing the classes, but there was incon-
sistency in the methods across papers (Fig. 4).

Model development
Most papers (n = 84, 89%) used multiple AI models for 
outcomes prediction. Forty papers (43%) used only tra-
ditional machine learning (ML) models, 5 (5%) only 
deep learning (DL) models, and 49 (52%) both ML and 

DL. The most frequently used models were regression 
models (n = 61, 65%), including linear, logistic, ridge and 
LASSO regressions; boosting methods (n = 53, 56%), 
including adaptive boosting, extreme gradient boost-
ing and gradient boosting machine; random forest (n = 
50, 53%); artificial neural network (n = 43, 46%), includ-
ing single-or multi-layer perceptrons; and support vector 
machine (n = 39, 41%) (Fig. 5). Most studies (n = 74, 81%) 
applied AI models on data recorded in one time-point. 
The remaining studies trained their models on data col-
lected in multiple time-points (Table 2). Out of these, 3 
studies (3%) reported using models that process the tem-
poral dependencies in the data, such as long-short term 
memory (LSTM) model [26, 27], and recurrent neural 
network with gated recurrent units (GRU) [28]. Nine 
studies (12%) considered temporality through coding 
it in the feature sets, and 5 papers (7%) did not address 

Fig. 2 Year of publication of all 94 studies (top figure) and studies based on health domain (bottom figure)
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Fig. 3 Number of papers categorised based on sample sizes in each healthcare domain

Fig. 4 Reporting of pre-processing and model development methods in the studies. Sub-figure a) Frequency of hyperparameter tuning and values 
reporting. Sub-figure b) Proportion of hyperparameter tuning techniques. Sub-figure c) Missingness reporting and imputation in papers. Sub-figure 
d) Handling class imbalance in studies
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temporality at all (Table  3). Half of the papers in this 
review (n = 47, 50%) reported performing hyperparam-
eter tuning, and out of these only 16 (34%) reported used 
hyperparameters (Fig. 4a)).

Model evaluation
The evaluation metrics varied across the studies. Area 
under the curve (AUC) was most commonly used (n = 
60, 64%), and 32 (53%) of  papers used this value to 
assess model performance with imbalanced classes. 
Other frequently used performance metrics were recall, 
also known as sensitivity (n = 44, 47%), accuracy (n = 
43, 46%), and specificity (n = 34, 36%). The majority of 
the studies used multiple performance metrics (n = 83, 
88%). Variable importance analysis was performed by 64 
studies (68%) 61 of which (95%) reported PROMs data 
being valuable for prediction. Seventy-nine papers (84%) 
provided information on the best performing model. 
Regression models were the most frequently selected as 
best-performing algorithms (n = 24, 30%), followed by 
boosting methods (n = 20, 25%), random forest (n = 10, 
13%) and neural network (n = 10, 13%).

Clinical relevance and adoption
No studies reported that the developed methods had 
been applied in the clinical practice. Although we 
acknowledge, that in such multidisciplinary research 

clinicians are generally involved in the study design, only 
3 papers (3%) explicitly mentioned how clinicians con-
tributed to the model development. They helped select-
ing input variables [30, 111], or creating a testing set 
[100]. No papers mentioned patients involvement in the 
model development or any part of the study design. The 
majority of papers reported age (n = 63, 67%) and gen-
der (n = 60, 64%) of study participants and only 24 (26%) 
studies reported ethnicity. Papers were classified into 3 
different categories, inspired by a previously conducted 
scoping review [118]: internal validation (one source of 
data used for training and validation, including cross-val-
idation or holdout sample for validation on unseen data 
from the same dataset), external validation (the model 
developed on one dataset and then tested/validated on 
a completely new (i.e. external) dataset) or deployment 
(”integrated into a prototype application, and evaluated 
for its feasibility in clinical workflows”[118]). Based on 
these definitions, 81 papers (86%) were in the internal 
validation stage, 10 (11%) completed external validation, 
and 3 papers (3%) were in the deployment stage.

Discussion
This scoping review aimed to identify AI methods used 
on PROMs data to predict patient outcomes. The analy-
sis of 94 papers allowed the exploration of algorithms 
applied on complex patient-reported data and revealed 

Fig. 5 Frequency of algorithms used on datasets with very small (fewer than 300), small (300–700), medium (701–2000), large (2001–20000) 
and very large (more than 20,000) sample size
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the opportunities, challenges and best practice recom-
mendations for AI medical research involving PROMs. 
The main findings suggest the variety of data types and 
evaluation metrics used, as well as inconsistencies in 
data pre-processing and model development design and 
reporting.

Study characteristics
Due to fragmented data collection of PROMs, incorpo-
rating them into AI systems is very challenging [119]. 
Therefore, the majority of papers in this study have 
small sample size. In orthopedics settings PROMs have 
been increasingly collected as a part of routine care 
[120], which explains the large proportion of orthope-
dics papers with medium-to-large datasets. The large 
sample size was common in mental health papers, as 

Table 2 Machine learning and deep learning models used on data collected in one and multiple timepoints, ordered by number of 
publications

In the square brackets we list the number of the cited paper, according to the reference lis

Machine Learning (ML) One Timepoint Multiple Timepoints

Regression (n = 61) [29–39]
[40–50]
[40, 51–60]
[61–71]
[72–75]
[76]

[77–86]
[28, 87, 88]

Boosting (n = 53) [31, 32, 36–40, 42, 44, 89, 90]
[45, 48, 49, 51–53, 91–94]
[40, 56, 58, 60, 62–64, 95–97]
[2, 33, 66, 69, 72, 73, 75, 98–100]
[70, 74, 101]
[76]
[102]

[28, 77–79, 81–84, 103, 104]

Random Forest (n = 50) [29–33, 36, 41, 42, 44, 89, 105]
[45–48, 50–53, 56, 92, 106]
[58, 60, 61, 64, 65, 69, 75, 95, 100, 107, 108]
[62, 63, 71, 73, 74, 97, 101]

[26, 28, 77, 78, 80, 87, 88, 104, 109, 110]

Support Vector Machine (n = 39) [29, 31, 32, 34, 37, 41–43, 45, 46, 48]
[26, 50–52, 56, 57, 92, 96, 111, 112]
[61, 62, 64, 66, 71, 74, 89, 107, 108]
[102]

[78, 81, 83, 84, 87, 88, 103, 104]

Decision Tree (n = 24) [37, 39, 41, 57, 92–95, 111, 112]
[2, 58, 63, 74, 96, 98, 100, 101, 108]

[77, 79, 84, 103, 109]

K-Nearest-Neighbours (n = 13) [34, 36, 37, 39, 48, 56, 61, 74, 113] [26, 83, 87, 104]

Na¨ıve Bayes (n = 12) [36, 44, 50, 57, 70, 73, 74, 94, 108] [26, 104, 109]

Voting Classifier (n = 4) [37, 44] [28, 82]

Discriminant Analysis (n = 4) [34, 38, 94, 108] None reported

Classification and Regression Tree (n = 2) [34, 46] None reported

Super Learner (n = 2) [62, 69] None reported

Other ML Methods (n = 8) Wide and Deep [49]
Stochastic Gradient Descent [61] Bagging [63]
Bayesian Updating Algorithm [66]
Graphical Gaussian Model [67]
Multivariate Adaptive Regression Spline [41]

Hierarchical Gaussian Process [85]
Autoregressive Integrated Moving Average [26]

Deep Learning (DL) One Timepoint Multiple Timepoints
Multilayer Perceptron (n = 43) [29, 30, 35–37, 39–42, 45, 90]

[48, 52–54, 56, 92, 94, 111, 112, 114]
[40, 57, 59, 61, 64, 66, 68, 96, 107, 115]
[72–75]
[76]

[26, 28, 79, 83, 84, 86, 104, 109, 116]

Recurrent Neural Network (RNN) (n = 3) None reported Long-Short Term Memory [26, 27]
RNN with Gated Recurrent Units [28]

Other DL Methods (n = 4) Adaptive Neural Network [36]
Stacking Algorithm [57]
Bayesian Network Model [117]

Adaptive Neural Network [27]
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mental health screening and diagnostic tools are usu-
ally based on PROMs, and there is a long-standing his-
tory of using such tools [121]. Contrary to orthopedics 
and mental health settings, PROMs collection in other 
healthcare domains is very limited. The respiratory data-
sets were mainly  very small or very large. The papers 
with very large sample size were predicting outcomes 
related to COVID- 19 pandemic, where mobile applica-
tions collecting PROMs became more common [122]. 
Most of the studies analysed data collected specifically 
for research studies, rather than in clinical practice, 
which might introduce biases related to inclusion and 
exclusion criteria. Due to inconsistent PROMs ques-
tionnaires used across different studies, the comparison 
of results is limited. Therefore, using standardised and 
validated measures can help explore the overall predic-
tive value of PROMs. The peak in the use of AI methods 
for all domains was between 2021 and 2022. This recent 
increase is compatible with a scoping review on AI in 

healthcare, where 71% of studies were published between 
2020 and 2022 [123].

Data pre‑processing
Missing data in AI research is an important aspect to 
investigate, as it can lead to various biases [124]. There-
fore, the inconsistencies in reporting data quality in the 
analysed studies are concerning. The justification of 
using data imputation techniques was also poor, whilst 
most commonly used techniques (complete case analy-
sis and mean/median/mode imputations) can frequently 
cause bias [124]. Only a small number of papers used 
KNN-based imputation, which can reach the accuracy 
of complete data with a low performance difference 
[125]. Studies applying AI methods on PROMs  should 
ensure that missing data are reported and any imputa-
tion methods are  justified [124]. Another inconsistency 
between the papers was caused by various methods for 
handling class imbalance in classification tasks. Papers 

Table 3 Methods of addressing temporality in time-series data

a Irregular measurements indicate that the reports were completed at any clinical event that occurred

Three papers which used time-series data did not report how the temporality was addressed [83, 109, 110], and are not included in this table

Level of addressing temporality Method of addressing temporality Description of the method Sample size Frequency

Addressed by the model Recurrent Neural Network (RNN) Data transformed to 3D array and fed 
in the LSTM model [26] Events encoded 
by Adaptive Net, pooled by LSTM 
model [27]

823
9,500

Weekly
Irregulara

RNN with GRU, considering each treat-
ment as timestep [28]

105,129 Irregulara

Addressed in the features Measured change Change of measurement from baseline 
[84]
Change in mean measurements 
from baseline [88]
Mean daily change from the 24-h base-
line period [87]
Change in symptom severity from pre-
vious report [78]

245
31,700
116
34

Every 90 days
Daily
Twice a day
Weekly

Binary outcome Variable indicated if a report is followed 
by exacerbation event [80] Occur-
rence of symptom in any day of a time 
window [85]

2,374
182,991

Daily
Daily (3 days)

Dichotomised score one week follow-
ing the prediction date [104]

210 Weekly

Feature for each timeline Score added as an input feature 
at every measurement [82] Created 
a timeline of best overall responses 
(BORs) [103]

83
31

Weekly
Weekly

Not considered Model for each timeline Treated the 2- and 8-week measures 
as if assessed at baseline [81] Three 
models that used 7, 14, and 21 days 
as inputs [116]

1,003
20

3 time-points
3 time-points

Selected 1 value for analysis If patient had multiple follow-up 
events, the first was chosen [77] The 
assessment with the highest overall 
score was used [79]

494
11,761

Irregulara Bi-weekly

Score was updated at each assessment 
[86]

212,615 Irregulara
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which reported class imbalance often did not attempt to 
balance the data, which prevents models from appropri-
ate learning from the training set. Furthermore, most of 
these papers used AUC as a performance metric, which 
require the balanced setting to avoid bias [126]. The 
papers which reported balancing data have also done it 
inconsistently and without justification. Balancing data 
prior to train and test split can cause issues in model vali-
dation, as real data is never perfectly balanced. Therefore, 
it is important to evaluate model performance on test 
set unaffected by sampling methods [127]. The choice 
of performance metrics should also be justified and able 
to uncover potential bias caused by class imbalance (for 
example balanced accuracy and F1 score, instead of accu-
racy and AUC).

Model development
The studies in this review reported model develop-
ment process inconsistently, with majority of studies 
missing model hyperparameters reporting. According 
to Jha et  al. (2023)[128], it should be”the ethical obliga-
tion” to document all stages of model development that 
are essential for the reproducibility of results. Therefore, 
model hyperparameters and their optimisation technique 
should always be reported and justified. The missing-
ness in data was also handled and reported inconsist-
ently, which is an important step for reproducibility as 
well. The lack of large PROMs datasets prevents apply-
ing deep learning methods, which can be extremely use-
ful in capturing patterns in high-dimensional data or 
dependencies that other algorithms can’t capture [129]. 
Only the simple”vanilla” neural network was applied 
more often than some of the basic ML models. Studies 
which collected data in multiple timepoints often did 
not address the temporality at all or analysed time-series 
data through data pre-processing strategies and conven-
tional ML models. Only 3 papers used DL models that 
are appropriate for temporal processing. These are for 
example LSTM or GRU methods. Most papers in this 
review chose various ways to include temporal informa-
tion through feature engineering, as described in Table 3. 
Nevertheless, DL models have been more successful in 
accurate predictions of patients’ outcomes when applied 
to time-series data, as they are able to process more com-
plex dependencies in high dimensionality and temporal-
ity of medical data [130].

Model evaluation
Most studies used multiple evaluation metrics, which 
allow between-studies comparisons and in-depth analysis 
of model performance. Variable importance analysis was 
also commonly conducted, which supports the explain-
ability of AI models [131]. Furthermore, the studies used 

multiple models, which allowed them to select the best-
performing one. The analysis of these showed that most 
common models were rarely selected as best models (e.g., 
random forest was selected as the best model only 20% 
of the times). However, voting classifier was used only 4 
times, but selected as the best model 3 times. This sug-
gest that further studies should perhaps pay more atten-
tion to models that are used less-frequently, which have a 
potential to perform better.

Clinical relevance and adoption
Limited reporting of clinician and patient engagement 
in the study development is of concern. This process is 
known as crucial for ensuring a patient-centred research 
and feasibility of the studies [132]. Involving stakeholders 
also can help building trust of the public to AI research-
ers, and as a result support the implementation of the 
studied tools in clinical practice [133]. Another issue 
arising from this review is the lack of external valida-
tion of the model performance in the studies, which is 
an essential step to potential clinical adoption. Assessing 
the model performance in a different setting may show 
different model performance which might suggest bias 
in the original study [118]. This review shows that new 
models keep being developed to address original prob-
lems, without taking the studies further and exploring 
their potential in the real-world settings. Therefore, vali-
dating existing models on external datasets and commu-
nicating the design and results with stakeholders should 
be the next step to support the adoption of AI methods 
in clinical practice. Furthermore, the majority of papers 
did not provide any information on the ethnicity of the 
study participants. Ensuring diverse study population 
is an essential ethical consideration and lack of ethnic 
information can further contribute to deepening health-
care inequalities [128].

Strengths and limitations
The main strength of this review is that it identifies AI 
models applied on self-reported data for predicting 
patient outcomes in all healthcare domains. The use of 6 
different databases from both health and computer sci-
ence field helped reaching many relevant papers, which 
might have been omitted by reviews using limited num-
ber of databases. This paper also analyses the rigour of 
model development and evaluation reporting. It focuses 
on clinical adoption potential, from the perspective of 
patients and clinicians involvement and ethical consid-
eration of participants’ diversity. The limitations of this 
study include the possibility of omitting the studies pub-
lished in language other than English. Only published 
studies were considered, which might affect the conclu-
sions and further deepen the publication bias. Since the 
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study focuses on rigour in model development, evalua-
tion, and wider stakeholder engagement, it is important 
to note, that the results are based on what was reported, 
and not what was done in the included papers.

Conclusions
The analysis of 94 papers in this scoping review revealed 
the potential of using PROMs data in AI healthcare 
research, and inconsistencies in conducting and report-
ing these studies. It showed the importance of jus-
tification of chosen data  pre-processing and model 
development methods, and the involvement of all stake-
holders during the study. Our future work will involve 
applying AI on PROMs data and further explore the 
potential of time-series patient-reported data for health-
care outcomes predictions. We believe that insights from 
this paper can inform the rigorous implementation of AI 
models in clinical practice.
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