
This is a repository copy of Subexponential Parameterized Algorithms for Hitting
Subgraphs.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/225445/

Version: Accepted Version

Proceedings Paper:
Lokshtanov, D., Panolan, F. orcid.org/0000-0001-6213-8687, Saurabh, S. et al. (2 more
authors) (Accepted: 2025) Subexponential Parameterized Algorithms for Hitting
Subgraphs. In: The 57th ACM Symposium on Theory of Computing (STOC 2025). The
57th ACM Symposium on Theory of Computing (STOC 2025), 23-27 Jun 2025, Prague,
Czech Republic. ACM (In Press)

https://doi.org/10.1145/3717823.3718192

© Owner/Author | ACM 2025. This is the author's version of the work. It is posted here for
your personal use. Not for redistribution. The definitive Version of Record will be published
in The 57th ACM Symposium on Theory of Computing (STOC 2025),
https://doi.org/10.1145/3717823.3718192.

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse
Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless
indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by
national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of
the full text version. This is indicated by the licence information on the White Rose Research Online record
for the item.

Takedown
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

Subexponential Parameterized Algorithms for Hitting Subgraphs

Daniel Lokshtanov
University of California Santa Barbara

USA
daniello@ucsb.edu

Fahad Panolan
University of Leeds

UK
F.panolan@leeds.ac.uk

Saket Saurabh
The Institute of Mathematical

Sciences, HBNI
India

saket@imsc.res.in

Jie Xue
New York University Shanghai

China
jiexue@nyu.edu

Meirav Zehavi
Ben-Gurion University

Israel
meiravze@bgu.ac.il

ABSTRACT

For a finite set F of graphs, the F -Hitting problem aims to com-

pute, for a given graph 𝐺 (taken from some graph class G) of 𝑛

vertices (and𝑚 edges) and a parameter 𝑘 ∈ N, a set 𝑆 of vertices

in 𝐺 such that |𝑆 | ≤ 𝑘 and 𝐺 − 𝑆 does not contain any subgraph

isomorphic to a graph in F . As a generic problem, F -Hitting

subsumes many fundamental vertex-deletion problems that are

well-studied in the literature. The F -Hitting problem admits a

simple branching algorithm with running time 2𝑂 (𝑘) ·𝑛𝑂 (1) , while

it cannot be solved in 2𝑜 (𝑘) ·𝑛𝑂 (1) time on general graphs assuming

the ETH, follows from the seminal work of Lewis and Yannakakis.

In this paper, we establish a general framework to design subex-

ponential parameterized algorithms for the F -Hitting problem on

a broad family of graph classes. Specifically, our framework yields al-

gorithms that solve F -Hittingwith running time 2𝑂 (𝑘𝑐) ·𝑛+𝑂 (𝑚)

for a constant 𝑐 < 1 on any graph class G that admits balanced sep-

arators whose size is (strongly) sublinear in the number of vertices

and polynomial in the size of a maximum clique. Examples in-

clude all graph classes of polynomial expansion (e.g., planar graphs,

bounded-genus graphs, minor-free graphs, etc.) and many impor-

tant classes of geometric intersection graphs (e.g., map graphs,

intersection graphs of any fat geometric objects, pseudo-disks, etc.).

Our algorithms also apply to the weighted version of F -Hitting,

where each vertex of𝐺 has a weight and the goal is to compute the

set 𝑆 with a minimum weight that satisfies the desired conditions.

The core of our framework, which is our main technical con-

tribution, is an intricate subexponential branching algorithm that

reduces an instance of F -Hitting (on the aforementioned graph

classes) to 2𝑂 (𝑘𝑐) general hitting-set instances, where the Gaifman

graph of each instance has treewidth 𝑂 (𝑘𝑐), for some constant

𝑐 < 1 depending on F and the graph class.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

STOC ’25, June 23ś27, 2025, Prague, Czechia

© 2025 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-1510-5/25/06
https://doi.org/10.1145/3717823.3718192

CCS CONCEPTS

· Theory of computation→ Parameterized complexity and

exact algorithms; Graph algorithms analysis.

KEYWORDS

Subgraph hitting, Subexponential paramterized algorithms, Separa-

tors, Generalized coloring numbers

ACM Reference Format:

Daniel Lokshtanov, Fahad Panolan, Saket Saurabh, Jie Xue, and Meirav Ze-

havi. 2025. Subexponential Parameterized Algorithms for Hitting Subgraphs.

In Proceedings of the 57th Annual ACM Symposium on Theory of Computing

(STOC ’25), June 23ś27, 2025, Prague, Czechia. ACM, New York, NY, USA,

10 pages. https://doi.org/10.1145/3717823.3718192

1 INTRODUCTION

A vertex-deletion problem takes as input a graph 𝐺 , and aims to

delete from𝐺 a minimum number of vertices such that the resulting

graph satisfies some property. In many vertex-deletion problems,

the desired properties can be expressed as excluding a finite set

of “forbidden” structures. This motivates the so-called F -Hitting

problem. Formally, for a finite set F of graphs (which represent

the forbidden structures), the F -Hitting problem is defined as

follows.

F -Hitting Parameter: 𝑘

Input: A graph 𝐺 of 𝑛 vertices and𝑚 edges (taken from

some class G) and a number 𝑘 ∈ N.

Goal:Compute a set 𝑆 ⊆ 𝑉 (𝐺) of vertices such that |𝑆 | ≤ 𝑘

and 𝐺 − 𝑆 does not contain any graph in F as a subgraph.

As a generic problem, F -Hitting subsumes many fundamen-

tal vertex-deletion problems that have been well-studied in the

literature, such as Vertex Cover, Path Transversal [5, 25, 30],

Short Cycle Hitting [23, 32, 33, 38], Component Order Con-

nectivity [11, 24, 28], Degree Modulator [2, 21, 25], Treedepth

Modulator [4, 15, 20], Cliqe Hitting [1, 16], Bicliqe Hit-

ting [22], etc. We present in the appendix detailed descriptions of

these problems as well as their background (see also the work [13]).

On general graphs (i.e., when the graph class G contains all

graphs), the complexity of F -Hitting is well-understood. For any

(finite) F , the problem admits a simple branching algorithm with

STOC ’25, June 23ś27, 2025, Prague, Czechia Daniel Lokshtanov, Fahad Panolan, Saket Saurabh, Jie Xue, and Meirav Zehavi

running time 2𝑂 (𝑘) · 𝑛𝑂 (1) [6]. On the other hand, it follows from

the reductions given in the work of Lewis and Yannakakis [31],

F -Hitting cannot be solved in 2𝑜 (𝑘) · 𝑛𝑂 (1) time or even 2𝑜 (𝑛)

time for any F such that there are infinitely many graphs that

do not contain any graphs in F as a subgraph1, assuming the

Exponential-Time Hypothesis. However, this does not rule out

the existence of subexponential (parameterized) algorithms for F -

Hitting on restrictive graph classes. In fact, many special cases of

F -Hitting have been solved in subexponential time on various

graph classes. For example, Vertex Cover, the simplest (nontrivial)

case of F -Hitting, was known to have 2𝑜 (𝑘) · 𝑛𝑂 (1) -time algo-

rithms on many graph classes, such as planar graphs [9], minor-free

graphs [10], unit-disk graphs [18, 19], map graphs [9, 17, 19], and

disk graphs [32]. Some other cases, such as Path Transversal,

Cliqe Hitting, Component Order Connectivity, etc., were

also known to admit subexponential parameterized algorithms on

specific graph classes, mostly planar graphs, minor-free graphs,

and (unit-)disk graphs [1, 9, 18, 19, 32]. Nevertheless, there has not

been a comprehensive study on subexponential algorithms for the

general F -Hitting problem.

In this paper, we systematically study the F -Hitting problem on

a broad family of graph classes, in the context of subexponential pa-

rameterized algorithms.We show that onmany graph classes where

subexponential algorithms have been well-studied, F -Hitting ad-

mits a subexponential parameterized algorithm for any F . Before

presenting our result in detail, we first discuss a difficulty in design-

ing subexponential algorithms for F -Hitting.

Difficulty of solving F -Hitting in subexponential time. Compared

to most vertex-deletion problems, designing subexponential algo-

rithms for F -Hitting seems especially challenging, due to lack

of efficient algorithms for the problem on small-treewidth graphs.

In fact, many fundamental vertex-deletion problems can be solved

in 2𝑂 (𝑡)𝑛𝑂 (1) time or 𝑡𝑂 (𝑡)𝑛𝑂 (1) time on graphs of treewidth 𝑡 ,

by standard dynamic programming on tree decompositions. When

the treewidth 𝑡 is (strongly) sublinear, the running time is subexpo-

nential. Using this result as a cornerstone, a common approach for

designing subexponential algorithms for such problems is to first

reduce the treewidth 𝑡 of the graph to sublinear, and then solve

the problem in 2𝑂 (𝑡)𝑛𝑂 (1) time or 𝑡𝑂 (𝑡)𝑛𝑂 (1) time. Unfortunately,

this kind of approach does not work for F -Hitting. Indeed, the

best known algorithm for F -Hitting on graphs of treewidth 𝑡 ,

given by Cygan et al. [8], requires 2𝑡
𝑓 (F)

𝑛 time for some function

𝑓 . Even worse, Cygan et al. [8] also showed that such running time

is necessary assuming the ETH. Therefore, even if the treewidth

𝑡 is already sublinear, the algorithm for F -Hitting can still run

in superexponential time. This fact makes the task of solving F -

Hitting in subexponential time rather difficult and require new

insights to the problem.

Other related work on F -Hitting. The general F -Hitting prob-

lem has been studied on graphs of bounded treewidth by Cygan et

al. [8], who gave FPT algorithms (parameterized by treewidth) and

lower bounds for the problem and its variants. Recently, Dvořák

et al. [13] studied F -Hitting in the perspective of approximation,

1Note that if there are only a finite number of graphs that do not contain any graphs
in F as a subgraph, then F-Hitting can be trivially solved in polynomial time.

showing that the local-search approach of Har-Peled and Quan-

rud [26] for Vertex Cover and Dominating Set on graph classes

of polynomial expansion can be extended to obtain PTASes for F -

Hitting as well. They also gave a (1 + 𝜀)-approximation reduction

from the problem on any bounded-expansion graph class to the

same problem on bounded degree graphs within the class, resulting

in lossy kernels for the problem. Bougeret et al. [3] considered the

kernelization of F -Hitting with various structural parameters.

Finally, F -Hitting is a special case of 𝑑-Hitting Set, and hence

the algorithms for 𝑑-Hitting Set [7, 40] also apply to F -Hitting.

However, as the set system considered in F -Hitting is implicitly

defined and can have size 𝑛𝑂 (𝛾) where 𝛾 = max𝐹 ∈F |𝑉 (𝐹) |, trans-

ferring the algorithms for 𝑑-Hitting Set to F -Hitting usually

results in an overhead of 𝑛𝑂 (𝛾) .

1.1 Our result

Our main result is a general framework to design subexponential

parameterized algorithms for F -Hitting. In fact, our framework

applies to the weighted version of F -Hitting, where the vertices

are associated with weights and we want to find the solution with

the minimum total weight.

Weighted F -Hitting Parameter: 𝑘

Input: A graph 𝐺 of 𝑛 vertices and𝑚 edges (taken from

some classG) together with a weight function𝑤 : 𝑉 (𝐺) →

R≥0, and a number 𝑘 ∈ N.

Goal: Compute a minimum-weight (under the function𝑤)

set 𝑆 ⊆ 𝑉 (𝐺) of vertices such that |𝑆 | ≤ 𝑘 and 𝐺 − 𝑆 does

not contain any graph in F as a subgraph.

Another nice feature of our framework is that the algorithms

it yields have running time not only subexponential in 𝑘 but also

linear in the size of the input graph 𝐺 . More precisely, the running

time of our algorithms is of the form 2𝑂 (𝑘𝑐) · 𝑛 +𝑂 (𝑚) for some

constant 𝑐 < 1.

To present our result, we need to define the graph classes to

which our framework applies. We define these graph classes in the

language of balanced separators, which serve as a key ingredient in

many efficient graph algorithms. For 𝜂, 𝜇, 𝜌 ≥ 0, we say a graph 𝐺

admits balanced (𝜂, 𝜇, 𝜌)-separators if for every induced subgraph

𝐻 of 𝐺 , there exists 𝑆 ⊆ 𝑉 (𝐻) of size at most 𝜂 · 𝜔𝜇 (𝐻) · |𝑉 (𝐻) |𝜌

such that every connected component of 𝐻 − 𝑆 contains at most
1
2 |𝑉 (𝐻) | vertices, where𝜔 (𝐻) denotes the size of amaximum clique

in 𝐻 . Throughout this paper, we denote by G(𝜂, 𝜇, 𝜌) the class of

all graphs admitting balanced (𝜂, 𝜇, 𝜌)-separators. Trivially, every

graph admits balanced (1, 0, 1)-separators. Thus, we only consider

the case 𝜌 < 1. The main result of this paper is the following

theorem.

Theorem 1. Let G ⊆ G(𝜂, 𝜇, 𝜌) where 𝜂, 𝜇 ≥ 0 and 0 ≤ 𝜌 < 1.

Also, let F be a finite set of graphs. Then there exists a constant 𝑐 < 1

(depending on 𝜂, 𝜇, 𝜌 , and F) such that theWeighted F -Hitting

problem on G can be solved in 2𝑂 (𝑘𝑐) · 𝑛 +𝑂 (𝑚) time.

We now briefly discuss why the graph classes in Theorem 1

are interesting. The sub-classes of G(𝜂, 0, 𝜌) for 𝜌 < 1 are known

Subexponential Parameterized Algorithms for Hitting Subgraphs STOC ’25, June 23ś27, 2025, Prague, Czechia

as graph classes with strongly sublinear separators. Dvořák and

Norin [14] showed that these classes are equivalent to graph classes

of polynomial expansion, which is a well-studied special case of

bounded-expansion graph classes introduced by Nešetřil and Ossona

De Mendez [36, 37]. Important examples of polynomial-expansion

graph classes include planar graphs, bounded-genus graphs, minor-

free graphs, 𝑘-nearest neighbor graphs [35], greedy Euclidean span-

ners [29], etc. For a general 𝜇 ≥ 0, the classes G(𝜂, 𝜇, 𝜌) with 𝜌 < 1

in addition subsume a broad family of geometric intersection graphs.

A geometric intersection graph is defined by a set of geometric ob-

jects in a Euclidean space, where the objects are the vertices and

two vertices are connected by an edge if their corresponding ob-

jects intersect. Intersection graphs of any fat objects (i.e., convex

geometric objects whose diameter-width ratio is bounded) and

intersection graphs of pseudo-disks (i.e., topological disks in the

plane satisfying that the boundaries of every pair of them are either

disjoint or intersect twice) admit balanced (𝜂, 𝜇, 𝜌)-separators for

𝜌 < 1 [13, 35]. These two families, in turn, cover many interesting

cases of geometric intersection graphs, such as (unit-)disk graphs,

ball graphs, hypercube graphs, map graphs, intersection graphs

of non-crossing rectangles, etc. To summarize, the graph classes

G(𝜂, 𝜇, 𝜌) for 𝜌 < 1 cover many common graph classes on which

subexponential algorithms have been well-studied.

It is natural to ask whether the result in Theorem 1 can be ex-

tended to F -Hittingwith an infinite F . A typical example is Feed-

back Vertex Set, where F consists of all cycles. Unfortunately,

this seems impossible. Indeed, it was known [19] that Feedback

Vertex Set does not admit subexponential FPT algorithms on unit-

ball graphs with bounded ply, which belong to the class G(𝜂, 0, 𝜌)

for some 𝜂 and 𝜌 < 1. Another extension one may consider is to the

Induced F -Hitting problem, where the goal is to hit all induced

subgraphs of 𝐺 that are isomorphic to some graph in F . Again,

Theorem 1 is unlikely to hold for Induced F -Hitting. Indeed,

when F consists of a single edgeless graph of 𝑝 vertices, Induced

F -Hitting (with 𝑘 = 0) is equivalent to detecting an independent

set of size 𝑝 and thus an algorithm for Induced F -Hitting on a

graph class G with running time as in Theorem 1 would imply an

FPT algorithm for Independent Set on G. But Independent Set is

W[1]-hard even on unit-disk graphs [7]. Note that while this rules

out the possibility of extending Theorem 1 to Induced F -Hitting,

it might still be possible to obtain a weaker bound of 2𝑂 (𝑘𝑐) ·𝑛𝑓 (F)

for 𝑐 < 1 and some function 𝑓 , which we leave as an interesting

open question for future study.

1.2 Our framework and building blocks

In this section, we discuss our algorithmic framework for achiev-

ing Theorem 1 and its technical components. Let G ⊆ G(𝜂, 𝜇, 𝜌)

where 𝜌 < 1. In a high level, our framework solves a Weighted

F -Hitting instance (𝐺,𝑤, 𝑘) with 𝐺 ∈ G through three general

steps:

1. Reduce the size of the problem instance to 𝑘𝑂 (1) in linear

time.

2. Reduce the F -Hitting instance to a subexponential num-

ber of general (weighted) hitting-set instances, where the

Gaifman graph of each instance has treewidth sublinear in 𝑘 .

3. Solve each hitting-set instance efficiently using the sublinear

treewidth of its Gaifman graph.

Among the three steps, the second one is the main step which is

also the most difficult one, while the third step is standard. In what

follows, we discuss these steps in detail.

To achieve Step 1, we give a polynomial kernel for theF -Hitting

problem on G that runs in linear time. Specifically, we show that

one can compute in linear time an induced subgraph 𝐺 ′ of the

input graph 𝐺 with size 𝑘𝑂 (1) such that solving the problem on

𝐺 ′ is already sufficient for solving the problem on 𝐺 . We say a

set 𝑆 ⊆ 𝑉 (𝐺) is an F -hitting set of 𝐺 if 𝐺 − 𝑆 does not contain

any graph in F as a subgraph. Formally, we prove the following

theorem.

Theorem 2. Let G ⊆ G(𝜂, 𝜇, 𝜌) where 𝜂, 𝜇 ≥ 0 and 𝜌 < 1. Also,

let F be a finite set of graphs. There exists an algorithm that, for a

given graph𝐺 ∈ G of 𝑛 vertices and𝑚 edges together with a number

𝑘 ∈ N, computes in 𝑘𝑂 (1) · 𝑛 +𝑂 (𝑚) time an induced subgraph 𝐺 ′

of 𝐺 with |𝑉 (𝐺 ′) | = 𝑘𝑂 (1) such that any F -hitting set 𝑆 ⊆ 𝑉 (𝐺 ′)

of 𝐺 ′ with |𝑆 | ≤ 𝑘 is also an F -hitting set of 𝐺 .

Note that polynomial kernels for𝑑-Hitting Set arewell-known [7].

Unfortunately, we cannot apply these kernels to obtain Theorem 2.

The main reason is what we already mentioned in the introduc-

tion: in the F -Hitting problem, the sets to be hit are implicit, and

the number of these sets can be 𝑛𝑂 (𝛾) , where 𝛾 = max𝐹 ∈F |𝑉 (𝐹) |,

so that we cannot afford to compute all of them. Besides this, an-

other (less serious) difficulty here is that the instance obtained by

the kernelization algorithm is required to be another F -Hitting

instance (whose underlying graph is an induced subgraph of 𝐺)

rather than a general 𝑑-Hitting Set instance. Our approach for

Theorem 2 is a variant of the sunflower-based kernel for 𝑑-Hitting

Set, which can overcome these difficulties when properly com-

bined with the linear-time first-order model checking algorithm

of Dvořák et al. [12]. Thanks to Theorem 2, it suffices to design

algorithms with subexponential XP running time, i.e., 𝑛𝑂 (𝑘𝑐) time

for 𝑐 < 1.

Step 2 is the core of our framework. It is achieved by an intricate

branching algorithm, which is the main technical contribution of

this paper. Let X be a collection of sets (in which the elements

belong to the same universe). The Gaifman graph of X is the graph

with vertex set
⋃
𝑋 ∈X 𝑋 where two vertices 𝑢 and 𝑣 are connected

by an edge if 𝑢, 𝑣 ∈ 𝑋 for some 𝑋 ∈ X. We say a set 𝑆 hits X if

𝑆 ∩ 𝑋 ≠ ∅ for all 𝑋 ∈ X. The algorithm for Step 2 is stated in the

following theorem.

Theorem 3. Let G ⊆ G(𝜂, 𝜇, 𝜌) where 𝜂, 𝜇 ≥ 0 and 𝜌 < 1. Also,

let F be a finite set of graphs. Then there exists a constant 𝑐 < 1

(depending on 𝜂, 𝜇, 𝜌 , and F) such that for a given graph 𝐺 ∈ G of

𝑛 vertices and a parameter 𝑘 ∈ N, one can construct in 𝑛𝑂 (𝑘𝑐) time

𝑡 = 2𝑂 (𝑘𝑐) collections X1, . . . ,X𝑡 of subsets of 𝑉 (𝐺) satisfying the

following conditions.

• For any 𝑆 ⊆ 𝑉 (𝐺) with |𝑆 | ≤ 𝑘 , 𝑆 is an F -hitting set of 𝐺 iff

𝑆 hits X𝑖 for some 𝑖 ∈ [𝑡].

• The Gaifman graph of X𝑖 has treewidth 𝑂 (𝑘𝑐), for all 𝑖 ∈ [𝑡].

• |X𝑖 | = 𝑘
𝑂 (1) for all 𝑖 ∈ [𝑡].

STOC ’25, June 23ś27, 2025, Prague, Czechia Daniel Lokshtanov, Fahad Panolan, Saket Saurabh, Jie Xue, and Meirav Zehavi

The proof of Theorem 3 is highly nontrivial, which combines theo-

ries of sparse graphs, sunflowers, tree decomposition, branching

algorithms, together with novel insights to the F -Hitting problem

itself. In the proof, we introduce interesting combinatorial results

for the set systems considered in the F -Hitting problem (i.e.,

the vertex sets of all subgraphs isomorphic to some graph in F),

which are of independent interest and might be useful for under-

standing the structure of such set systems. Using Theorem 2, one

can straightforwardly improve the running time of Theorem 3 to

2𝑂 (𝑘𝑐) · 𝑛 +𝑂 (𝑚), yielding the following result.

Corollary 4. Let G ⊆ G(𝜂, 𝜇, 𝜌) where 𝜂, 𝜇 ≥ 0 and 𝜌 < 1. Also,

let F be a finite set of graphs. Then there exists a constant 𝑐 < 1

(depending on 𝜂, 𝜇, 𝜌 , and F) such that for a given graph𝐺 ∈ G of 𝑛

vertices and a parameter 𝑘 ∈ N, one can construct in 2𝑂 (𝑘𝑐) ·𝑛+𝑂 (𝑚)

time 𝑡 = 2𝑂 (𝑘𝑐) collections X1, . . . ,X𝑡 of subsets of 𝑉 (𝐺) satisfying

the following conditions.

• For any 𝑆 ⊆ 𝑉 (𝐺) with |𝑆 | ≤ 𝑘 , 𝑆 is an F -hitting set of 𝐺 iff

𝑆 hits X𝑖 for some 𝑖 ∈ [𝑡].

• The Gaifman graph of X𝑖 has treewidth 𝑂 (𝑘𝑐), for all 𝑖 ∈ [𝑡].

• |X𝑖 | = 𝑘
𝑂 (1) for all 𝑖 ∈ [𝑡].

Proof. We first apply Theorem 2 on 𝐺 and 𝑘 to obtain the in-

duced subgraph𝐺 ′. Then we apply Theorem 3 on𝐺 ′ and 𝑘 to obtain

the collections X1, . . . ,X𝑡 of subsets of 𝑉 (𝐺 ′), which are also sub-

sets of 𝑉 (𝐺). Since |𝑉 (𝐺 ′) | = 𝑘𝑂 (1) by Theorem 2, the total time

cost is 𝑘𝑂 (1) ·𝑛+𝑂 (𝑚) +𝑘𝑂 (𝑘𝑝) for some constant 𝑝 < 1. Choosing

an arbitrary constant 𝑐 ∈ (𝑝, 1), the running time is bounded by

2𝑂 (𝑘𝑐) · 𝑛 +𝑂 (𝑚). The bounds on the sizes of X1, . . . ,X𝑡 and the

treewidth of the Gaifman graphs directly follow from Theorem 3.

It suffices to show that a set 𝑆 ⊆ 𝑉 (𝐺) with |𝑆 | ≤ 𝑘 is an F -hitting

set of 𝐺 iff 𝑆 hits X𝑖 for some 𝑖 ∈ [𝑡]. If 𝑆 is an F -hitting set of 𝐺 ,

then 𝑆 ∩𝑉 (𝐺 ′) is an F -hitting set of 𝐺 ′. Thus 𝑆 ∩𝑉 (𝐺 ′) hits X𝑖
for some 𝑖 ∈ [𝑡] by Theorem 3, which implies that 𝑆 hits X𝑖 . On

the other hand, if 𝑆 hits X𝑖 for some 𝑖 ∈ [𝑡], then 𝑆 is an F -hitting

set of 𝐺 ′ by Theorem 3, which is in turn an F -hitting set of 𝐺 by

Theorem 2 since |𝑆 | ≤ 𝑘 . □

Step 3 is achieved by standard dynamic programming on tree

decomposition. For each hitting-set instance X𝑖 obtained in Corol-

lary 4, we build a tree decomposition of the Gaifman graph of

X𝑖 of width 𝑂 (𝑘𝑐), which can be done using standard constant-

approximation algorithms for treewidth [7]. Then we apply dy-

namic programming to compute a minimum-weight (under the

weight function 𝑤) hitting set 𝑆𝑖 for X𝑖 satisfying |𝑆𝑖 | ≤ 𝑘 . Fi-

nally, we return the set 𝑆𝑖 with the minimum total weight among

𝑆1, . . . , 𝑆𝑡 . The first condition in Corollary 4 guarantees that 𝑆𝑖 is an

optimal solution for the Weighted F -Hitting instance (𝐺,𝑤, 𝑘).

2 OVERVIEW

Due to the limited space, in this paper, we only give an overview of

our algorithms and the underlying ideas/techniques. The detailed

proofs can be found in the full version of the paper [34].

The kernelization algorithm in Theorem 2 is relatively simple. So

we only focus on our main technical result, the reduction algorithm

in Theorem 3. Before the discussion, let us recall a standard notion

called weak coloring numbers. Let𝐺 be a graph and 𝜎 be an ordering

of 𝑉 (𝐺). For 𝑢, 𝑣 ∈ 𝑉 (𝐺), we write 𝑢 <𝜎 𝑣 if 𝑢 is before 𝑣 under

the ordering 𝜎 . The notations >𝜎 , ≤𝜎 , ≥𝜎 are defined similarly.

For an integer 𝑟 ≥ 0, 𝑢 is weakly 𝑟 -reachable from 𝑣 under 𝜎 if

there is a path 𝜋 between 𝑣 and 𝑢 of length at most 𝑟 such that 𝑢

is the largest vertex on 𝜋 under the ordering 𝜎 , i.e., 𝑢 ≥𝜎 𝑤 for all

𝑤 ∈ 𝑉 (𝜋). Let WR𝑟 (𝐺, 𝜎, 𝑣) denote the set of vertices in 𝐺 that are

weakly 𝑟 -reachable from 𝑣 under 𝜎 . The weak 𝑟 -coloring number of

𝐺 under 𝜎 is defined as wcol𝑟 (𝐺, 𝜎) = max𝑣∈𝑉 (𝐺) |WR𝑟 (𝐺, 𝜎, 𝑣) |.

Then the weak 𝑟 -coloring number of 𝐺 is defined as wcol𝑟 (𝐺) =

min𝜎∈Σ(𝐺) wcol𝑟 (𝐺, 𝜎) where Σ(𝐺) is the set of all orderings of

𝑉 (𝐺). It is well-known [36, 41] that a graph class G is of bounded

expansion iff there is a function 𝑓 : N → N such that wcol𝑟 (𝐺) ≤

𝑓 (𝑟) for all 𝐺 ∈ G and all 𝑟 ∈ N.

For simplicity, we only discuss the algorithm of Theorem 3 in a

special case where 𝜇 = 0 (i.e., G is of polynomial expansion) and F

only contains a single graph 𝐹 . The same algorithm directly extends

to the case where F consists of multiple graphs. Further extending

it to a general G ⊆ G(𝜂, 𝜇, 𝜌) is also not difficult, by adapting some

standard techniques. Note that if G ⊆ G(𝜂, 0, 𝜌), then for any fixed

𝑟 ∈ N, we have wcol𝑟 (𝐺) = 𝑂 (1) for all 𝐺 ∈ G.

The first simple observation we have is that one can assume

𝐹 is connected without loss of generality. To see this, consider

a graph 𝐺 ∈ G. We say a graph is 𝐹 -free if it does not contain

any subgraph isomorphic to 𝐹 . Let 𝐺+ (resp., 𝐹+) be the graph

obtained from 𝐺 (resp., 𝐹) by adding a new vertex with edges to

all other vertices. Now 𝐺+ ∈ G(𝜂 + 1, 0, 𝜌) and 𝐹+ is connected.

Furthermore, one can easily verify that for any 𝑆 ⊆ 𝑉 (𝐺), 𝐺+ − 𝑆

is 𝐹+-free iff 𝐺 − 𝑆 is 𝐹 -free. As long as Theorem 3 works for

G(𝜂 + 1, 0, 𝜌) and F +
= {𝐹+}, we can apply it to compute the

collections X1, . . . ,X𝑡 of subsets of 𝑉 (𝐺+) satisfying the desired

conditions. Define X′
𝑖 = {𝑋 ∩𝑉 (𝐺) : 𝑋 ∈ X𝑖 } for 𝑖 ∈ [𝑡]. It turns

out that X′
1, . . . ,X

′
𝑡 are collections of subsets of 𝑉 (𝐺) that satisfy

the desired conditions for 𝐺 and F .

An 𝐹 -copy in 𝐺 refers to a pair (𝐻, 𝜋) where 𝐻 is a subgraph of

𝐺 and 𝜋 : 𝑉 (𝐻) → 𝑉 (𝐹) is an isomorphism between 𝐻 and 𝐹 . As

is usual in hitting-set problems [27, 39], we consider and branch on

sunflowers in the set system (which in our setting consists of the

vertex sets of the 𝐹 -copies in 𝐺). Recall that sets 𝑉1, . . . ,𝑉𝑟 form a

sunflower if there exists a set 𝑋 such that 𝑋 ⊆ 𝑉𝑖 for all 𝑖 ∈ [𝑟] and

𝑉1\𝑋, . . . ,𝑉𝑟 \𝑋 are disjoint; 𝑋 is called the core of the sunflower

and 𝑟 is the size of the sunflower.

As the sets in our problem are vertex sets of subgraphs of𝐺 , it is

more convenient to consider sunflowers with additional structures

related to the graph. We say 𝐹 -copies (𝐻1, 𝜋1), . . . , (𝐻𝑟 , 𝜋𝑟) in 𝐺

form a structured sunflower if 𝑉 (𝐻1), . . . ,𝑉 (𝐻𝑟) form a sunflower

with core 𝑋 and (𝜋1) |𝑋 = · · · = (𝜋𝑟) |𝑋 ; the core of the structured

sunflower is the pair (𝑋, 𝑓) where 𝑓 : 𝑋 → 𝑉 (𝐹) is the unique

map satisfying 𝑓 = (𝜋1) |𝑋 = · · · = (𝜋𝑟) |𝑋 . A pair (𝑋, 𝑓) is a heavy

core if it is the core of a structured sunflower of size 𝛾 |𝑋 |𝛿 , where

𝛾 = |𝑉 (𝐹) | and 𝛿 is a parameter to be determined. The reason

why we pick 𝛾 |𝑋 |𝛿 as the threshold will be clear later. Note that

we do not require the 𝐹 -copies in a structured sunflower to be

distinct. Therefore, for an 𝐹 -copy (𝐻, 𝜋) in 𝐺 , the pair (𝑉 (𝐻), 𝜋)

is a heavy core, because it is the core of the structured sunflower

(𝐻1, 𝜋1), . . . , (𝐻Δ, 𝜋Δ) where Δ = 𝛾 |𝑉 (𝐻) |𝛿 = 𝛾𝛾𝛿 and (𝐻1, 𝜋1) =

· · · = (𝐻Δ, 𝜋Δ) = (𝐻, 𝜋).

Subexponential Parameterized Algorithms for Hitting Subgraphs STOC ’25, June 23ś27, 2025, Prague, Czechia

To get some basic idea about how X1, . . . ,X𝑡 in Theorem 3 are

generated, let us first consider a trivial branching algorithm, which

can generate X1, . . . ,X𝑡 satisfying the first condition in Theorem 3

without any guarantee on the running time, the number 𝑡 , or the

treewidth. Imagine there is some (unknown) F -hitting set 𝑆 of 𝐺 .

The branching algorithm essentially guesses whether each heavy

core is hit by the solution or not. It maintains a set𝑈 ⊆ 𝑉 (𝐺) and a

collection X of subsets of𝑉 (𝐺). The vertices in𝑈 are “undeletable”

vertices, namely, the vertices that are not supposed to be in 𝑆 . On

the other hand, the sets in X are supposed to be hit by 𝑆 . Initially,

𝑈 = ∅ and X = ∅. Then it calls the function Branch(𝑈 ,X), which

works as follows.

• Pick a heavy core (𝑋, 𝑓) satisfying 𝑋 ⊈ 𝑈 and 𝑋 ∉ X. If

such a heavy core does not exist and 𝐺 [𝑈] is 𝐹 -free, then

create a new X𝑖 = {𝑋\𝑈 : 𝑋 ∈ X}, and return to the last

level.

• Branch on (𝑋, 𝑓) in two ways (i.e., guess whether 𝑆 hits 𝑋

or not):

– “Yes” branch (guess 𝑆∩𝑋 ≠ ∅): recursively callBranch(𝑈 ,X∪

{𝑋 }).

– “No” branch (guess 𝑆∩𝑋 = ∅): recursively callBranch(𝑈∪

𝑋,X).

Let X1, . . . ,X𝑡 be the collection generated by the above proce-

dure. One can easily check that a subset 𝑆 ⊆ 𝑉 (𝐺) is an F -hitting

set of 𝐺 iff 𝑆 hits X𝑖 for some 𝑖 ∈ [𝑡]. Indeed, if 𝑆 is an F -hitting

set of 𝐺 and the algorithm makes the right decision in each step

(i.e., makes the “yes” decision whenever 𝑆 ∩ 𝑋 ≠ ∅ and the “no”

decision whenever 𝑆 ∩𝑋 = ∅), at the end of that branch a collection

X𝑖 = {𝑌\𝑈 : 𝑌 ∈ X} is created and 𝑆 hits X𝑖 . On the other hand,

if 𝑆 ⊆ 𝑉 (𝐺) is a set that hits some X𝑖 , then 𝑆 hits all 𝐹 -copies in

𝐺 . Why? Note that X𝑖 = {𝑋\𝑈 : 𝑋 ∈ X}. At the point we create

X𝑖 , we have 𝑋 ∈ X for all heavy cores (𝑋, 𝑓) with 𝑋 ⊈ 𝑈 , and in

particular 𝑉 (𝐻) ∈ X for all 𝐹 -copies (𝐻, 𝜋) with 𝑉 (𝐻) ⊈ 𝑈 . By

assumption, 𝑆 hits these 𝐹 -copies. Furthermore, as 𝐺 [𝑈] is 𝐹 -free,

there is no 𝐹 -copy (𝐻, 𝜋) with 𝑉 (𝐻) ⊆ 𝑈 . Thus, 𝑆 hits all 𝐹 -copies

in 𝐺 .

Of course, this trivial branching procedure can only provide us

some intuition about how the collections X1, . . . ,X𝑡 are generated.

It guarantees neither sublinear treewidth of the Gaifman graphs of

X1, . . . ,X𝑡 nor subexponential bound on 𝑡 . Thus, we are still far from

proving Theorem 3. In the following two sections, we shall focus on

how to achieve sublinear treewidth (Section 2.1) and subexponential

branching (Section 2.2), respectively. Both parts are quite technical.

Interestingly, to obtain sublinear treewidth, we only need to slightly

modify the trivial branching algorithm, and the main challenge lies

in the proof of a structural lemma for the Gaifman graph of certain

heavy cores (Lemma 5). For subexponential branching, however,

we have to further elaborate the branching algorithm significantly,

with an involved analysis.

In this overview, we ignore the requirements of Theorem 3 on

the running time of the algorithm and the sizes of X1, . . . ,X𝑡 . It

turns out that these requirements can be achieved almost for free

as long as the algorithm admits a subexponential branching tree.

2.1 How to achieve sublinear treewidth

Recall that we want the Gaifman graph of eachX𝑖 to have treewidth

sublinear in 𝑘 . To see how to achieve the sublinear treewidth bound,

let us introduce some additional notions. For two heavy cores (𝑋, 𝑓)

and (𝑌,𝑔), we write (𝑋, 𝑓) ≺ (𝑌,𝑔) if𝑋 ⊊ 𝑌 and 𝑓 = 𝑔 |𝑋 , and write

(𝑋, 𝑓) ⪯ (𝑌,𝑔) if (𝑋, 𝑓) ≺ (𝑌,𝑔) or (𝑋, 𝑓) = (𝑌,𝑔). Clearly, ≺ is a

partial order among all heavy cores. For a subset𝑈 ⊆ 𝑉 (𝐺), we say

a heavy core (𝑋, 𝑓) is 𝑈 -minimal if 𝑋 ⊈ 𝑈 and for any heavy core

(𝑌,𝑔) with (𝑌,𝑔) ≺ (𝑋, 𝑓), we have 𝑌 ⊆ 𝑈 . The key to achieve

sublinear treewidth is the following important structural lemma

for𝑈 -minimal heavy cores.

Lemma 5. Suppose 𝛿 > wcol𝛾 (𝐺). Then for any subset𝑈 ⊆ 𝑉 (𝐺)

and any𝑈 -minimal heavy cores (𝑋1, 𝑓1), . . . , (𝑋𝑟 , 𝑓𝑟) in 𝐺 , the Gaif-

man graph of {𝑋1\𝑈 , . . . , 𝑋𝑟 \𝑈 } has treewidth 𝛿𝑂 (1) · 𝑘𝑐 for some

constant 𝑐 < 1, where 𝑘 is the size of a minimum hitting set of

{𝑋1\𝑈 , . . . , 𝑋𝑟 \𝑈 }. Here 𝑐 and the constant hidden in 𝑂 (·) only de-

pend on 𝐹 and the polynomial-expansion graph class G from which

𝐺 is drawn.

The proof of Lemma 5 is technical. Before giving a sketch of

the proof, we first explain how this lemma helps us. Recall the

branching procedure discussed before. The first observation is that

we actually only need to branch on𝑈 -minimal heavy cores. Specif-

ically, we require the heavy core (𝑋, 𝑓) picked in the first step

of Branch(𝑈 ,X) to be 𝑈 -minimal. With this modification, the

collections X1, . . . ,X𝑡 generated still satisfy the first condition in

Theorem 3, because a set 𝑆 ⊆ 𝑉 (𝐺)\𝑈 hits all heavy cores if and

only if it hits all 𝑈 -minimal heavy cores. More importantly, the

Gaifman graph of each X𝑖 has treewidth sublinear in the size of a

minimum hitting set of X𝑖 , by Lemma 5. The second observation

is that if the size of a minimum hitting set of a collection X𝑖 is

larger than 𝑘 , then we can simply discard X𝑖 . This is because the

first condition in Theorem 3 only considers 𝑆 ⊆ 𝑉 (𝐺) with |𝑆 | ≤ 𝑘 .

Therefore, only keeping the collections X𝑖 whose minimum hitting

set has size at most 𝑘 is sufficient. In this way, we can guarantee

that the Gaifman graphs of all X𝑖 have treewidth sublinear in 𝑘 , as

required in Theorem 3.

Proof sketch of Lemma 5. In the rest of this section, we provide

a high-level overview for the proof of Lemma 5. We first need to

show the following auxiliary lemma, which essentially states that

whenever there are many heavy cores (𝑋1, 𝑓1), . . . , (𝑋𝑝 , 𝑓𝑝) forming

a large sunflower, one can find certain smaller heavy cores inside

each 𝑋𝑖 . This lemma heavily relies on the threshold 𝛾 |𝑋 |𝛿 we chose

for a heavy core (𝑋, 𝑓).

Lemma 6. Let 𝑝 = 𝛾𝛾𝛿 . Suppose (𝑋1, 𝑓1), . . . , (𝑋𝑝 , 𝑓𝑝) are heavy

cores in 𝐺 satisfying that |𝑋1 | = · · · = |𝑋𝑝 | and 𝑋1, . . . , 𝑋𝑝 form a

sunflower with core 𝐾 where (𝑓1) |𝐾 = · · · = (𝑓𝑝) |𝐾 . Define 𝑓 : 𝐾 →

𝑉 (𝐹) as the unique map satisfying 𝑓 = (𝑓1) |𝐾 = · · · = (𝑓𝑝) |𝐾 . Then

for any 𝑖 ∈ [𝑝] and any set C of connected components of 𝐹 − 𝑓 (𝐾),

(𝑋 C
𝑖 , 𝑓

C
𝑖) is a heavy core in𝐺 where 𝑋 C

𝑖 = 𝐾 ∪ (
⋃
𝐶∈C 𝑓

−1
𝑖 (𝑉 (𝐶)))

and 𝑓 C𝑖 = (𝑓𝑖) |𝑋 C
𝑖
.

Proof sketch. We only need to consider the pair (𝑋 C
1
, 𝑓 C
1
). If

C contains all connected components of 𝐹 − 𝑓 (𝐾), then (𝑋 C
1
, 𝑓 C
1
) =

(𝑋1, 𝑓1) and we are done. Otherwise, |𝑋
C
1
| < |𝑋1 | = · · · = |𝑋𝑝 |. Our

STOC ’25, June 23ś27, 2025, Prague, Czechia Daniel Lokshtanov, Fahad Panolan, Saket Saurabh, Jie Xue, and Meirav Zehavi

goal is to find a structured sunflower (𝐻1, 𝜋1), . . . , (𝐻Δ, 𝜋Δ) in 𝐺

for Δ = 𝛾 |𝑋
C
1
|𝛿 whose core is (𝑋 C

1
, 𝑓 C
1
). We say an 𝐹 -copy (𝐻, 𝜋) is

a candidate if 𝑋 C
1

⊆ 𝑉 (𝐻) and 𝑓 C
1

= 𝜋 |𝑋 C
1
. Then our task becomes

finding Δ candidates whose vertex sets are disjoint outside 𝑋 C
1
.

Where do these candidates come from? In fact, we can construct

them from the structured sunflowers that witness the heavy cores

(𝑋1, 𝑓1), . . . , (𝑋𝑝 , 𝑓𝑝). Let𝐴 = 𝑓 (𝐾)∪(
⋃
𝐶∈C 𝑉 (𝐶)) and 𝐵 = 𝑓 (𝐾)∪

(𝑉 (𝐹)\𝐴). Then 𝑉 (𝐹) is the disjoint union of 𝐴\𝐵, 𝑓 (𝐾), and 𝐵\𝐴.

Also, note that there is no edge in 𝐹 between 𝐴\𝐵 and 𝐵\𝐴. Con-

sider an 𝐹 -copy (𝑃, 𝜙) in the structured sunflower that witnesses

(𝑋1, 𝑓1) and another 𝐹 -copy (𝑄,𝜓) in the structured sunflower that

witnesses (𝑋𝑖 , 𝑓𝑖) for some 𝑖 ∈ [𝑝]. The key observation is the

following: if 𝜙−1 (𝐴\𝐵) ∩ 𝜓−1 (𝐵\𝐴) = ∅, then 𝐻 = 𝑃 [𝜙−1 (𝐴)] ∪

𝑄 [𝜓−1 (𝐵)] is isomorphic to 𝐹 with the isomorphism 𝜋 : 𝑉 (𝐻) →

𝑉 (𝐹) defined as 𝜋 (𝑣) = 𝜙 (𝑣) for 𝑣 ∈ 𝜋−1 (𝐴) and 𝜋 (𝑣) = 𝜓 (𝑣)

for 𝑣 ∈ 𝜋−1 (𝐵) Ð one can easily verify that 𝜋 is well-defined and

is an isomorphism Ð and furthermore (𝐻, 𝜋) is a candidate (for

convenience, we call 𝑃 [𝜙−1 (𝐴)] the 𝐴-half and 𝑄 [𝜓−1 (𝐵)] the

𝐵-half of the candidate). We use this observation to construct the

candidates. The structured sunflower that witnesses (𝑋1, 𝑓1) has

size 𝛾 |𝑋1 |𝛿 > Δ, so we can take Δ 𝐹 -copies (𝑃1, 𝜙1), . . . , (𝑃Δ, 𝜙Δ)

from it. Then we use 𝑃1 [𝜙
−1
1

(𝐴)], . . . , 𝑃Δ [𝜙
−1
Δ

(𝐴)] as the 𝐴-halves

of the candidates, each of which will be “glued” with a 𝐵-half to

obtain a complete candidate. We briefly discuss how to find the 𝐵-

halves. Outside 𝐾 , the 𝐵-halves should be disjoint from each other

and also disjoint from the 𝐴-halves. Suppose we already found the

𝐵-halves for 𝑃1 [𝜙
−1
1

(𝐴)], . . . , 𝑃𝑖−1 [𝜙
−1
𝑖−1 (𝐴)] and are now looking

for the 𝐵-half for 𝑃𝑖 [𝜙
−1
𝑖 (𝐴)]. We say a set 𝑆 ⊆ 𝑉 (𝐺) is safe if

it is disjoint from all 𝐴-halves and the 𝐵-halves we have found.

We first find 𝑗 ∈ [𝑝] such that 𝑋 𝑗\𝐾 is safe. Such an index exists

since 𝑋1\𝐾, . . . , 𝑋𝑝\𝐾 are disjoint and 𝑝 is sufficiently large. Then

we further find an 𝐹 -copy (𝑄,𝜓) in the structured sunflower that

witnesses (𝑋 𝑗 , 𝑓𝑗) such that 𝑉 (𝑄)\𝑋 𝑗 is safe. This is possible be-

cause the size of the structured sunflower is 𝛾 |𝑋 𝑗 |𝛿 , which is much

larger than Δ = 𝛾 |𝑋
C
1
|𝛿 as |𝑋 C

1
| < |𝑋 𝑗 |. Now we use 𝑄 [𝜓−1 (𝐵)] as

the 𝐵-half for 𝑃𝑖 [𝜙
−1
𝑖 (𝐴)]. In this way, we can successfully find all

𝐵-halves. □

Note that the above lemma directly implies the “sparseness” of

𝑈 -minimal heavy cores outside𝑈 : every vertex in 𝑉 (𝐺)\𝑈 hits at

most 𝛿𝑂 (1) (distinct) 𝑈 -minimal heavy cores in 𝐺 . Why? Suppose

a vertex 𝑣 ∈ 𝑉 (𝐺)\𝑈 hits too many 𝑈 -minimal heavy cores. By

the sunflower lemma and Pigeonhole principle, among these 𝑈 -

minimal heavy cores, we can find (𝑋1, 𝑓1), . . . , (𝑋𝑝 , 𝑓𝑝) satisfying

the condition in the lemma. The core 𝐾 of the sunflower 𝑋1, . . . , 𝑋𝑝

is nonempty as 𝑣 ∈
⋂𝑝
𝑖=1 𝑋𝑖 = 𝐾 . Also, 𝐾 ⊈ 𝑈 , since 𝑣 ∈ 𝐾\𝑈 .

Applying the lemma with C = ∅, we see that (𝐾, 𝑓) is a heavy

core, which contradicts the 𝑈 -minimality of (𝑋1, 𝑓1), . . . , (𝑋𝑝 , 𝑓𝑝)

because (𝐾, 𝑓) ≺ (𝑋𝑖 , 𝑓𝑖) for all 𝑖 ∈ [𝑝]. We omit the calculation for

the maximum number of 𝑈 -minimal heavy cores 𝑣 can hit, but the

number turns out to be 𝛿𝑂 (1) .

Now we sketch the proof of Lemma 5. Let (𝑋1, 𝑓1), . . . , (𝑋𝑟 , 𝑓𝑟)

be as in the lemma, and 𝑘 be the size of a minimum hitting set of

{𝑋1\𝑈 , . . . , 𝑋𝑟 \𝑈 }. As argued above, each vertex can hit 𝛿𝑂 (1) sets

in {𝑋1\𝑈 , . . . , 𝑋𝑟 \𝑈 }, which implies |
⋃𝑟
𝑖=1 (𝑋𝑖\𝑈) | = 𝛿𝑂 (1)𝑘 . Fix

an ordering𝜎 of the vertices of𝐺 such thatwcol𝛾 (𝐺, 𝜎) = wcol𝛾 (𝐺).

Let 𝐺 ′ be a supergraph of 𝐺 obtained by adding edges to con-

nect pairs of vertices in which one is weakly 𝛾-reachable (un-

der 𝜎) from the other, i.e., 𝑉 (𝐺 ′) = 𝑉 (𝐺) and 𝐸 (𝐺 ′) = 𝐸 (𝐺) ∪

{(𝑢, 𝑣) : 𝑢 ∈ WR𝛾 (𝐺, 𝜎, 𝑣)}. It turns out that the graph 𝐺 ′ also

admits strongly sublinear separators, which implies the treewidth

of 𝐺 ′ [
⋃𝑟
𝑖=1 (𝑋𝑖\𝑈)] is sublinear in |

⋃𝑟
𝑖=1 (𝑋𝑖\𝑈) | = 𝛿𝑂 (1)𝑘 , i.e.,

bounded by 𝛿𝑂 (1)𝑘𝑐 for some 𝑐 < 1. Let (𝑇, 𝛽) be a minimum-

width tree decomposition of 𝐺 ′ [
⋃𝑟
𝑖=1 (𝑋𝑖\𝑈)]. Our goal is to mod-

ify (𝑇, 𝛽) to a tree decomposition of the Gaifman graph 𝐺∗ of

{𝑋1\𝑈 , . . . , 𝑋𝑟 \𝑈 }, without increasing its width too much. The

modification is done as follows. For each 𝑖 ∈ [𝑟], we pick a node

𝑡𝑖 ∈ 𝑉 (𝑇) such that 𝛽 (𝑡𝑖) ∩ (𝑋𝑖\𝑈) ≠ ∅. For two nodes 𝑡, 𝑡 ′ ∈ 𝑉 (𝑇),

denote by 𝜋𝑡,𝑡 ′ as the (unique) path in 𝑇 connecting 𝑡 and 𝑡 ′. Then

for each 𝑡 ∈ 𝑉 (𝑇) and each 𝑖 ∈ [𝑟], define 𝛽∗𝑖 (𝑡) as the set of all

vertices 𝑣 ∈ 𝑋𝑖\𝑈 such that 𝑡 is on the path 𝜋𝑡𝑖 ,𝑡 ′ for some node

𝑡 ′ ∈ 𝑉 (𝑇) with 𝑣 ∈ 𝛽 (𝑡 ′). Set 𝛽∗ (𝑡) =
⋃𝑟
𝑖=1 𝛽

∗
𝑖 (𝑡) for all 𝑡 ∈ 𝑉 (𝑇).

It is easy to verify that (𝑇, 𝛽∗) is a tree decomposition of𝐺∗. The

tricky part is to bound its width. We want |𝛽∗ (𝑡) | = 𝛿𝑂 (1) · |𝛽 (𝑡) | for

every 𝑡 ∈ 𝑉 (𝑇). Fix a node 𝑡 ∈ 𝑉 (𝑇). Let 𝐼∗ = {𝑖 ∈ [𝑟] : 𝛽∗𝑖 (𝑡) ≠ ∅}.

Since |𝛽∗𝑖 (𝑡) | ≤ |𝑋𝑖\𝑈 | ≤ 𝛾 , we have |𝛽∗ (𝑡) | ≤ 𝛾 |𝐼∗ | and thus

it suffices to show |𝐼∗ | = 𝛿𝑂 (1) · |𝛽 (𝑡) |. Now let 𝐼 = {𝑖 ∈ [𝑟] :

𝛽 (𝑡) ∩ (𝑋𝑖\𝑈) ≠ ∅}. We have seen that each vertex in 𝛽 (𝑡) can hit

at most 𝛿𝑂 (1) sets in {𝑋1\𝑈 , . . . , 𝑋𝑟 \𝑈 }. So |𝐼 | = 𝛿𝑂 (1) · |𝛽 (𝑡) | and

we only need to show |𝐼∗\𝐼 | = 𝛿𝑂 (1) · |𝛽 (𝑡) |.

The high-level plan for bounding |𝐼∗\𝐼 | is to apply a charging

argument as follows. For each 𝑖 ∈ 𝐼∗\𝐼 , we shall pick two vertices

𝑣𝑖 , 𝑣
′
𝑖 ∈ 𝑋𝑖\𝑈 and charge 𝑖 to a set 𝑌𝑖 ⊆ 𝑋𝑖 satisfying that 𝑓𝑖 (𝑌𝑖)

separates 𝑓𝑖 (𝑣𝑖) and 𝑓𝑖 (𝑣
′
𝑖) in 𝐹 , i.e., 𝑓𝑖 (𝑣𝑖) and 𝑓𝑖 (𝑣

′
𝑖) belong to differ-

ent connected components of 𝐹 − 𝑓𝑖 (𝑌𝑖). By a careful construction,

we can guarantee that the number of distinct 𝑌𝑖 ’s is small. Then

using Lemma 6, we can show that each set 𝑌 ⊆ 𝑉 (𝐺) does not get

charged too many times. These two conditions together bound the

size of 𝐼∗\𝐼 .

Consider an index 𝑖 ∈ 𝐼∗\𝐼 . We have 𝛽∗𝑖 (𝑡) ≠ ∅ but 𝛽 (𝑡) ∩

(𝑋𝑖\𝑈) = ∅. By the choice of 𝑡𝑖 , 𝛽 (𝑡𝑖) ∩ (𝑋𝑖\𝑈) ≠ ∅ and so we pick

a vertex 𝑣𝑖 ∈ 𝛽 (𝑡𝑖) ∩ (𝑋𝑖\𝑈). On the other hand, as 𝛽∗𝑖 (𝑡) ≠ ∅, we

can pick another vertex 𝑣 ′𝑖 ∈ 𝛽
∗
𝑖 (𝑡) ⊆ 𝑋𝑖\𝑈 . Note that 𝑣𝑖 , 𝑣

′
𝑖 ∉ 𝛽 (𝑡),

since 𝛽 (𝑡) ∩ (𝑋𝑖\𝑈) = ∅. By the properties of a tree decomposition,

the nodes 𝑠 ∈ 𝑇 with 𝑣𝑖 ∈ 𝛽 (𝑠) (resp., 𝑣
′
𝑖 ∈ 𝛽 (𝑠)) are connected in

𝑇 , and we call the subtree of 𝑇 formed by these nodes the 𝑣𝑖 -area

(resp., 𝑣 ′𝑖 -area) for convenience. Why do 𝑣𝑖 , 𝑣
′
𝑖 appear in 𝛽

∗
𝑖 (𝑡) but

not 𝛽 (𝑡)? The only reason is that the 𝑣𝑖 -area and the 𝑣
′
𝑖 -area belong

to different connected components in the forest 𝑇 − {𝑡}. We can

show that if 𝛿 > wcol𝛾 (𝐺), then this situation happens only when

𝑓𝑖 (𝑋𝑖 ∩ 𝛽 (𝑡)) separates 𝑓𝑖 (𝑣𝑖) and 𝑓𝑖 (𝑣
′
𝑖) in 𝐹 . We omit the details of

this argument. Now a natural idea is to directly set 𝑌𝑖 = 𝑋𝑖 ∩ 𝛽 (𝑡).

But this seems a bad idea, as the number of distinct 𝑌𝑖 ’s cannot

be bounded with this definition. Therefore, we need to construct

𝑌𝑖 from 𝑋𝑖 ∩ 𝛽 (𝑡) with an additional step as follows. Let 𝛱 be the

set of all simple paths in 𝐹 from 𝑓𝑖 (𝑣𝑖) to a vertex in 𝑓𝑖 (𝑋𝑖 ∩ 𝛽 (𝑡))

in which all internal nodes are in 𝑉 (𝐹)\𝑓𝑖 (𝑋𝑖 ∩ 𝛽 (𝑡)). For every

𝑢 ∈ 𝑋𝑖 , we include 𝑢 in 𝑌𝑖 if there exists 𝜋 ∈ 𝛱 such that 𝑢 is the

largest vertex (under the ordering 𝜎) in 𝑓 −1𝑖 (𝑉 (𝜋)). It turns out

that 𝑓𝑖 (𝑌𝑖) also separates 𝑓𝑖 (𝑣𝑖) and 𝑓𝑖 (𝑣
′
𝑖) in 𝐹 . Furthermore, 𝑌𝑖 has

Subexponential Parameterized Algorithms for Hitting Subgraphs STOC ’25, June 23ś27, 2025, Prague, Czechia

a very nice property: 𝑌𝑖 ⊆ WR𝛾 (𝐺, 𝜎, 𝑣) for some 𝑣 ∈ 𝛽 (𝑡). Again,

we omit the proof of this property in this overview.

With the above construction, how many distinct 𝑌𝑖 ’s can there

be? For each 𝑣 ∈ 𝛽 (𝑡), we have |WR𝛾 (𝐺, 𝜎, 𝑣) | ≤ wcol𝛾 (𝐺, 𝜎) =

wcol𝛾 (𝐺). Thus, the nice property of each 𝑌𝑖 and the fact |𝑌𝑖 | ≤ 𝛾

guarantee that the number of distinct 𝑌𝑖 ’s is at most wcol
𝛾
𝛾 (𝐺) ·

|𝛽 (𝑡) |, which is 𝑂 (|𝛽 (𝑡) |). Now it suffices to bound the number of

times a set 𝑌 ⊆ 𝑉 (𝐺) gets charged. The intuition is the following.

Assume there are too many indices 𝑖 ∈ 𝐼∗\𝐼 that are charged to

the same set 𝑌 , in order to deduce a contradiction. Then among

the heavy cores (𝑋𝑖 , 𝑓𝑖) corresponding to the indices charged to 𝑌 ,

we can find 𝑝 = 𝛾𝛾𝛿 of them satisfying the conditions in Lemma 6,

by the sunflower lemma and Pigeonhole principle. Without loss of

generality, suppose they are (𝑋1, 𝑓1), . . . , (𝑋𝑝 , 𝑓𝑝), where𝑋1, . . . , 𝑋𝑝
form a sunflower with core 𝐾 and 𝑓 = (𝑓1) |𝐾 = · · · = (𝑓𝑝) |𝐾 . Then

𝑌 = 𝑌1 = · · · = 𝑌𝑝 . Applying Lemma 6 with C = ∅, we see that

(𝐾, 𝑓) is a heavy core in 𝐺 . Since (𝐾, 𝑓) ≺ (𝑋𝑖 , 𝑓𝑖) for all 𝑖 ∈ [𝑝],

we must have 𝐾 ⊆ 𝑈 , for otherwise (𝑋1, 𝑓1), . . . , (𝑋𝑝 , 𝑓𝑝) are not𝑈 -

minimal. As all 𝑖 ∈ [𝑝] are charged to 𝑌 , we have 𝑌 ⊆
⋂𝑝
𝑖=1 𝑋𝑖 = 𝐾 .

Recall the vertices 𝑣𝑖 , 𝑣
′
𝑖 ∈ 𝑋𝑖\𝑈 we picked when constructing 𝑌𝑖 .

We just consider 𝑣1 and 𝑣
′
1
. Neither 𝑓 (𝑣1) nor 𝑓 (𝑣

′
1
) is contained

in 𝑓 (𝐾), because 𝐾 ⊆ 𝑈 and 𝑣𝑖 , 𝑣
′
𝑖 ∈ 𝑋𝑖\𝑈 . Let 𝐶 (resp., 𝐶′) be the

connected component of 𝐹 − 𝑓 (𝐾) containing 𝑣1 (resp., 𝑣
′
1
). Note

that 𝐶 ≠ 𝐶′. Indeed, 𝑓 (𝑣1) and 𝑓 (𝑣
′
1
) lie in different connected

components of 𝐹 − 𝑓1 (𝑌1) = 𝐹 − 𝑓1 (𝑌) and thus lie in different

connected components of 𝐹 − 𝑓 (𝐾), since 𝑓1 (𝑌) ⊆ 𝑓1 (𝐾) = 𝑓 (𝐾).

Set C = {𝐶} and let (𝑋 C
1
, 𝑓 C
1
) as defined in Lemma 6. Lemma 6

shows that (𝑋 C
1
, 𝑓 C
1
) is a heavy core. Observe that 𝑋 C

1
⊈ 𝑈 , since

𝑣1 ∈ 𝑋 C
1
\𝑈 . On the other hand, 𝑣 ′

1
∉ 𝑋 C

1
, as𝐶′

∉ C. Thus,𝑋 C
1

⊊ 𝑋1

and (𝑋 C
1
, 𝑓 C
1
) ≺ (𝑋1, 𝑓1). But this contradicts the fact that (𝑋1, 𝑓1)

is 𝑈 -minimal. As a result, we see that 𝑌 cannot get charged too

many times. This bounds |𝐼∗\𝐼 | and hence bounds |𝛽∗ (𝑡) |. The final

bound we achieve is |𝛽∗ (𝑡) | = 𝛿𝑂 (1) · |𝛽 (𝑡) | for all 𝑡 ∈ 𝑉 (𝑇). As

the width of (𝑇, 𝛽) is 𝛿𝑂 (1)𝑘𝑐 for 𝑐 < 1, the width of (𝑇, 𝛽∗) is also

𝛿𝑂 (1)𝑘𝑐 , so is the treewidth of 𝐺∗. This completes the overview of

the proof of Lemma 5.

2.2 How to do subexponential branching

Next, we discuss how to achieve the subexponential bound on the

number 𝑡 of collections generated by our algorithm. Note that 𝑡 is

at most the number of leaves of the branching tree. So the key here

is to have a branching tree with subexponential size.

To get some intuition, consider a stage of our branching proce-

dure, where we are branching on a𝑈 -minimal heavy core (𝑋, 𝑓).

There is a structured sunflower (𝐻1, 𝜋1), . . . , (𝐻Δ, 𝜋Δ) that wit-

nesses (𝑋, 𝑓), where Δ = 𝛾 |𝑋 |𝛿 . When we make the “yes” decision

for (𝑋, 𝑓), what we gain is that the size of X increases by 1. When

we make the “no” decision for (𝑋, 𝑓), we add all vertices in 𝑋 to 𝑈 ,

and by doing this we also gain something: originally the 𝐹 -copies

(𝐻1, 𝜋1), . . . , (𝐻Δ, 𝜋Δ) can be hit by a single vertex in𝑋\𝑈 , but after

the vertices in 𝑋 are added to𝑈 , we have to use Δ vertices outside

𝑈 to hit these 𝐹 -copies since 𝑉 (𝐻1), . . . ,𝑉 (𝐻Δ) form a sunflower

with core 𝑋 . So ideally, this could make the size of a minimum F -

hitting set of 𝐺 contained in 𝑉 (𝐺)\𝑈 increase by Δ > 𝛿 . (Clearly,

this is not the case in general. But let us assume it is true just for ex-

plaining the intuition.) It turns out that, by a corollary of Lemma 6,

the size of X on any successful branch path cannot exceed 𝛿𝑂 (1)𝑘 .

As such, the number of “yes” decisions along a successful path in

the branching tree is at most 𝜃yes = 𝛿𝑂 (1)𝑘 . On the other hand,

the number of “no” decisions along a successful path is at most

𝜃no = 𝑘/𝛿 . Indeed, every “no” decision increases the size of a min-

imum F -hitting set of 𝐺 contained in 𝑉 (𝐺)\𝑈 by at least 𝛿 , and

when we need more than 𝑘 vertices in 𝑉 (𝐺)\𝑈 to hit all 𝐹 -copies

in𝐺 , we know that the current path is not successful. Thus, during

the branching procedure, if we have made more than 𝜃yes “yes”

decisions (resp., 𝜃no “no” decisions), we can stop branching further.

In this way, the branching tree has size
(𝜃yes+𝜃no

𝜃no

)
= (𝛿𝑘)𝑂 (𝑘/𝛿) ,

which is subexponential in 𝑘 when setting 𝛿 = 𝑘𝜀 for a sufficiently

small 𝜀 > 0. This is the intuition about where the subexponential

bound comes from. Of course, the analysis does not actually work,

because we cheated when bounding the number of “no” decisions.

In fact, the branching tree of our current algorithm does not have a

subexponential size, and we have to further elaborate it.

The above intuition has been used (implicitly) in several subexpo-

nential branching algorithms for general hitting set [27, 39], which

aim to sparsify the input set system. A crucial reasonwhy these algo-

rithms have subexponential-size branching trees is that, during the

branching procedure, they keep cleaning out “redundant” sets from

the set system and only consider large sunflowers formed by the

sets that survive. In our setting, an 𝐹 -copy (𝐻, 𝜋) is 𝑈 -redundant

for 𝑈 ⊆ 𝑉 (𝐺) if there exists another 𝐹 -copy (𝐻 ′, 𝜋 ′) such that

𝑉 (𝐻 ′) ⊈ 𝑈 and 𝑉 (𝐻 ′)\𝑈 ⊊ 𝑉 (𝐻)\𝑈 . Note that if (𝐻 ′, 𝜋 ′) is hit

by a set 𝑆 ⊆ 𝑉 (𝐺)\𝑈 , then (𝐻, 𝜋) must also be hit by 𝑆 . Therefore,

if𝑈 is the “undeletable” set maintained in the branching procedure,

intuitively,𝑈 -redundant 𝐹 -copies are useless and can be ignored (be-

cause they will be anyway hit as long as the non-𝑈 -redundant ones

are hit). As aforementioned, the branching algorithms of [27, 39]

keep cleaning out the redundant sets and only branch on the cores

of large sunflowers formed by the sets that are non-redundant. By

doing this, they can guarantee that the number of “no” decisions

along any successful path is sublinear (which in turn implies the

subexponential bound on the size of the branching tree). Unfortu-

nately, this is not a good idea for our problem. Of course, in each

step of our branching algorithm, we can choose to branch on only

the heavy cores witnessed by a structured sunflower formed by

non-𝑈 -redundant 𝐹 -copies. This can still give us the collections

X1, . . . ,X𝑡 satisfying the first condition in Theorem 3. The main

issue is the treewidth bound: Lemma 5 heavily relies on the fact

that (𝑋1, 𝑓1), . . . , (𝑋𝑟 , 𝑓𝑟) are𝑈 -minimal heavy cores. If we restrict

ourselves to heavy cores witnessed by non-𝑈 -redundant 𝐹 -copies,

we cannot guarantee the heavy cores in X to be𝑈 -minimal during

the branching procedure. Indeed, there can exist heavy cores (𝑋, 𝑓)

and (𝑌,𝑔) with (𝑋, 𝑓) ≺ (𝑌,𝑔) such that (𝑌,𝑔) can be witnessed by

non-𝑈 -redundant 𝐹 -copies but (𝑋, 𝑓) cannot. Thus, at some stage

of the branching, it might happen that every𝑈 -minimal heavy core

cannot be witnessed by non-𝑈 -redundant 𝐹 -copies while there are

still (non-𝑈 -minimal) heavy cores witnessed by non-𝑈 -redundant

𝐹 -copies; in this situation, we are forced to consider heavy cores

that are not𝑈 -minimal (and possibly add them to X). This entirely

ruins the sublinear treewidth of the Gaifman graphs.

STOC ’25, June 23ś27, 2025, Prague, Czechia Daniel Lokshtanov, Fahad Panolan, Saket Saurabh, Jie Xue, and Meirav Zehavi

However, the insight that “𝑈 -redundant 𝐹 -copies can be ignored”

still turns out to be useful. But we have to be more careful about

which heavy cores should be considered and which can be ignored.

As aforementioned, only branching on the heavy cores witnessed

by non-𝑈 -redundant 𝐹 -copies does not work. Thus, we try to loosen

the condition of “being witnessed by non-𝑈 -redundant 𝐹 -copies”

as follows. We say a heavy core (𝑋, 𝑓) is 𝑈 -redundant if every 𝐹 -

copy (𝐻, 𝜋) with (𝑋, 𝑓) ⪯ (𝑉 (𝐻), 𝜋) is 𝑈 -redundant. Note that

for a heavy core, “being not𝑈 -redundant” is strictly weaker than

“being witnessed by non-𝑈 -redundant 𝐹 -copies”. Furthermore, the

former condition has a nice hereditary property (which the latter

condition does not have): for heavy cores (𝑋, 𝑓) and (𝑌,𝑔) such

that (𝑋, 𝑓) ≺ (𝑌,𝑔), if (𝑌,𝑔) is not𝑈 -redundant, then (𝑋, 𝑓) is also

not𝑈 -redundant. This property is important and allows us to avoid

the issue we had before (when trying to branch on heavy cores

witnessed by non-𝑈 -redundant 𝐹 -copies). Now we say a heavy

core (𝑋, 𝑓) is 𝑈 -active if it is 𝑈 -minimal and not 𝑈 -redundant. We

modify our algorithm so that it only branches on 𝑈 -active heavy

cores. We show that the collectionsX1, . . . ,X𝑡 generated still satisfy

both conditions in Theorem 3 after this modification. Clearly, the

treewidth bound for the Gaifman graphs of X1, . . . ,X𝑡 still holds,

because 𝑈 -active heavy cores are 𝑈 -minimal. Also, we still have

that if 𝑆 ⊆ 𝑉 (𝐺) is an F -hitting set of 𝐺 , then it hits some X𝑖 . The

only part slightly different is to show that if 𝑆 hits some X𝑖 , then it

is an F -hitting set of𝐺 . Consider the point we generate X𝑖 . At this

point,𝑋 ∈ X for all𝑈 -active heavy cores (𝑋, 𝑓),𝐺 [𝑈] is 𝐹 -free, and

we set X𝑖 = {𝑋\𝑈 : 𝑋 ∈ X}. Without loss of generality, we only

need to consider the case 𝑆 ⊆ 𝑉 (𝐺)\𝑈 , as the sets in X𝑖 are disjoint

from𝑈 . Assume 𝑆 hits X𝑖 but 𝑆 is not an F -hitting set of𝐺 , for the

sake of contradiction. Then there must exist a non-𝑈 -redundant

𝐹 -copy (𝐻, 𝜋) with 𝑆 ∩𝑉 (𝐻) = ∅. Indeed, as 𝑆 ⊆ 𝑉 (𝐺)\𝑈 , if 𝑆 hits

all non-𝑈 -redundant 𝐹 -copies in 𝐺 , then it is an F -hitting set of

𝐺 . Now (𝑉 (𝐻), 𝜋) is a heavy core, which is also not𝑈 -redundant.

As 𝑆 hits X𝑖 (thus hits X) and X contains all𝑈 -active heavy cores,

we know that (𝑉 (𝐻), 𝜋) is not𝑈 -active, which further implies it is

not𝑈 -minimal. Hence, there exists a𝑈 -minimal heavy core (𝑋, 𝑓)

such that (𝑋, 𝑓) ≺ (𝑉 (𝐻), 𝜋). By the hereditary property of 𝑈 -

redundancy, (𝑋, 𝑓) is also not𝑈 -redundant and is thus 𝑈 -active. It

follows that 𝑋 ∈ X and 𝑋\𝑈 ∈ X𝑖 . However, as 𝑆 ∩𝑉 (𝐻) = ∅, we

have 𝑆 ∩ 𝑋 = ∅, which contradicts our assumption that 𝑆 hits X𝑖 .

Thus, if 𝑆 hits X𝑖 , 𝑆 must be an F -hitting set of 𝐺 .

Now we see that only branching on 𝑈 -active heavy cores can

still give us the collections satisfying the conditions in Theorem 3.

This yields a smaller branching tree, as𝑈 -active heavy cores form a

subset of𝑈 -minimal heavy cores. However, this has not yet given us

a sublinear bound on the number of “no” decisions. We need the last

elaboration on our branching algorithm. Still, we keep branching

on𝑈 -active heavy cores (𝑋, 𝑓). When making a “yes” decision, we

recursively call Branch(𝑈 ,X ∪ {𝑋 }) as before. The changes are

made to the “no” decisions. Whenmaking a “no” decision, instead of

simply adding the vertices in𝑋 to𝑈 , we further guess an additional

set 𝑃 of vertices that are not in the (unknown) solution 𝑆 and add

the vertices in 𝑃 to 𝑈 as well. As such, at each stage, we have

one “yes” decision and multiple “no” decisions corresponding to

different choices of 𝑃 . The choices of 𝑃 are as follows. Take 𝐹 -

copies (𝐻1, 𝜋1), . . . , (𝐻Δ, 𝜋Δ) that witness (𝑋, 𝑓), where Δ = 𝛾 |𝑋 |𝛿 .

Suppose 𝐶1, . . . ,𝐶𝑡 are the connected components of 𝐹 − 𝑓 (𝑋).

Define𝑉𝑖, 𝑗 = 𝜋
−1
𝑗 (𝑉 (𝐶𝑖)) for (𝑖, 𝑗) ∈ [𝑡] × [Δ], which is the copy of

𝐶𝑖 in 𝐻 𝑗 . For each 𝑖 ∈ [𝑡], we pick at most 𝛾 sets in {𝑉𝑖,1, . . . ,𝑉𝑖,Δ}

and include them in 𝑃 . Formally, let

P =

𝑡⋃

𝑖=1

⋃

𝑗∈ 𝐽𝑖

𝑉𝑖, 𝑗 : 𝐽1, . . . , 𝐽𝑡 ∈ J

,

where J = {𝐽 ⊆ [Δ] : |𝐽 | ≤ 𝛾}. Then the choices of 𝑃 are just

the sets in P. Specifically, for each 𝑃 ∈ P, we recursively call

Branch(𝑈 ∪𝑋 ∪𝑃,X), which corresponds to a “no” decision. Note

that |P | = Δ
𝑂 (𝛾)

= 𝛿𝑂 (1) . Thus, the degree of the branching tree

becomes 𝛿𝑂 (1) , but this does not influence the entire size of the

branching tree too much, as 𝛿 = 𝑘𝜀 . Surprisingly, with such a twist,

we can in fact make the number of “no” decisions sublinear in 𝑘 .

Finally, we briefly discuss our analysis for the number of “no”

decisions. Unfortunately, as our branching algorithm is already

rather different from the ones in [27, 39], their arguments is not

applicable here. Instead, we use a very different analysis, which

takes advantage of the graph structure, or more specifically, the

bounded weak coloring number of𝐺 , as well as the assumption that

the graph 𝐹 is connected. Consider an F -hitting set 𝑆 of 𝐺 . When

branching on a (𝑈 -active) heavy core (𝑋, 𝑓), we define 𝑆-correct

decisions as follows. If 𝑆 ∩𝑋 ≠ ∅, then the “yes” decision is the only

𝑆-correct decision. If 𝑆 ∩𝑋 = ∅, then a “no” decision is 𝑆-correct iff

its corresponding set 𝑃 ∈ P satisfies (i) 𝑆 ∩𝑃 = ∅ and (ii) 𝑆 ∩𝑃 ′ ≠ ∅

for any 𝑃 ′ ∈ P with 𝑃 ⊊ 𝑃 ′ (in other words, the set 𝑃 we guess is

a maximal set in P that is disjoint from 𝑆). We say a path in the

branching tree from the root is 𝑆-successful if every decision on the

path is 𝑆-correct. It is clear that at any node of an 𝑆-successful path,

the sets 𝑈 and X always satisfy that 𝑆 ∩𝑈 = ∅ and 𝑆 is a hitting

set of X.

Let 𝑆 be an F -hitting set of 𝐺 with |𝑆 | ≤ 𝑘 . Our goal is to

show that along any 𝑆-successful path in the branching tree, the

number of “no” decisions is bounded by 𝑂 (𝑘/𝛿). This is done by

a subtle charging argument. Fix an ordering 𝜎 of 𝑉 (𝐺) such that

wcol𝛾 (𝐺, 𝜎) = wcol𝛾 (𝐺). For 𝑣 ∈ 𝑉 (𝐺), define 𝜆𝑆 (𝑣) = |{𝑢 ∈ 𝑆 :

𝑣 ∈ WR𝛾 (𝐺, 𝜎,𝑢)}|. Then we define a set

𝑅 = {𝑣 ∈ 𝑉 (𝐺) : 𝜆𝑆 (𝑣) ≥ 𝛿 − 𝛾 −wcol𝛾 (𝐺)}.

We have
∑
𝑣∈𝑉 (𝐺) 𝜆𝑆 (𝑣) =

∑
𝑢∈𝑆 |WR𝛾 (𝐺, 𝜎,𝑢) | ≤ wcol𝛾 (𝐺, 𝜎) ·

|𝑆 | = wcol𝛾 (𝐺) · |𝑆 |. By an averaging argument, we deduce that

|𝑅 | ≤
wcol𝛾 (𝐺)

𝛿−𝛾−wcol𝛾 (𝐺)
· |𝑆 |. Note that 𝐺 is taken from a graph class

of polynomial expansion and thus wcol𝛾 (𝐺) = 𝑂 (1). Therefore, if

we choose 𝛿 much larger than 𝛾 +wcol𝛾 (𝐺), then |𝑅 | = 𝑂 (|𝑆 |/𝛿) =

𝑂 (𝑘/𝛿). Our plan is (essentially) to charge every “no” decision on

the 𝑆-successful path to a vertex in 𝑅, with the guarantee that each

vertex in 𝑅 only gets charged 𝑂 (1) times. If this can be done, then

the number of “no” decisions is 𝑂 (𝑘/𝛿).

Observation 7. Let (𝑋, 𝑓) be a heavy core in𝐺 , and 𝑥 ∈ 𝑋 be the

largest vertex under 𝜎 . If 𝑆 ∩ 𝑋 = ∅, then 𝑥 ∈ 𝑅. Furthermore, if

𝛿 > wcol𝛾 (𝐺), then 𝑥 ∈ WR𝛾 (𝐺, 𝜎,𝑢) for all 𝑢 ∈ 𝑋 .

Proof sketch. There exist 𝐹 -copies (𝐻1, 𝜋1), . . . , (𝐻Δ, 𝜋Δ) such

that 𝑉 (𝐻1), . . . ,𝑉 (𝐻Δ) form a sunflower with core 𝑋 , where Δ =

𝛾 |𝑋 |𝛿 . Since 𝑆 ∩ 𝑋 = ∅ and 𝑆 is an F -hitting set, there exists

𝑢𝑖 ∈ 𝑆 ∩ (𝑉 (𝐻𝑖)\𝑋) for all 𝑖 ∈ [Δ]. Note that 𝑢1, . . . , 𝑢Δ are distinct,

as𝑉 (𝐻1)\𝑋, . . . ,𝑉 (𝐻Δ)\𝑋 are disjoint. Using the assumptions that

Subexponential Parameterized Algorithms for Hitting Subgraphs STOC ’25, June 23ś27, 2025, Prague, Czechia

𝐹 is connected and 𝑥 is the largest vertex in 𝑋 , we can deduce

that 𝑥 ∈ WR𝛾 (𝐺, 𝜎,𝑢𝑖) for at least Δ − wcol𝛾 (𝐺) indices 𝑖 ∈ [Δ].

As 𝑢1, . . . , 𝑢Δ ∈ 𝑆 , this implies 𝜆𝑆 (𝑥) ≥ Δ − wcol𝛾 (𝐺) ≥ 𝛿 − 𝛾 −

wcol𝛾 (𝐺). Thus, 𝑥 ∈ 𝑅. The second statement also follows easily

from the facts that 𝐹 is connected and 𝑥 is the largest vertex in

𝑋 . □

Consider a “no” decision on the 𝑆-successful path, and let (𝑋, 𝑓)

be the heavy core on which the decision was made. At the time

we made the decision for (𝑋, 𝑓), we have 𝑋 ⊈ 𝑈 . Pick an arbitrary

vertex𝑦 ∈ 𝑋\𝑈 . As we made a “no” decision for (𝑋, 𝑓), we have 𝑆 ∩

𝑋 = ∅. The above observation then implies𝑋∩𝑅∩WR𝛾 (𝐺, 𝜎,𝑦) ≠ ∅,

since it contains the largest vertex in 𝑋 . We then charge the “no”

decision for (𝑋, 𝑓) to the smallest vertex in 𝑋 ∩ 𝑅 ∩WR𝛾 (𝐺, 𝜎,𝑦).

It is non-obvious that why each vertex in 𝑅 only gets charged

𝑂 (1) times. The intuition is roughly as follows. Assume there are

too many “no” decisions charged to the same vertex in 𝑅. Let

(𝑋1, 𝑓1), . . . , (𝑋𝑟 , 𝑓𝑟) be the heavy cores these “no” decisions are

made on, where 𝑟 is very large. By the sunflower lemma, we may

assume that 𝑋1, . . . , 𝑋𝑟 form a sunflower, without loss of generality.

Suppose the decisions for (𝑋1, 𝑓1), . . . , (𝑋𝑟 , 𝑓𝑟) are made in order.

After we made the “no” decisions for (𝑋1, 𝑓1), . . . , (𝑋𝑟−1, 𝑓𝑟−1), the

vertices in 𝑋1, . . . , 𝑋𝑟−1 are all added to 𝑈 . In addition, each “no”

decision here also adds a set 𝑃 of vertices to𝑈 , where 𝑃 is maximal

among all choices that are disjoint from 𝑆 (because the “no” decision

is 𝑆-correct). We somehow show that using these vertices added

to 𝑈 , for every 𝐹 -copy (𝐻, 𝜋) with (𝑋𝑟 , 𝑓𝑟) ⪯ (𝑉 (𝐻), 𝜋), we can

construct another 𝐹 -copy (𝐻 ′, 𝜋 ′) satisfying 𝑉 (𝐻 ′)\𝑈 ⊊ 𝑉 (𝐻)\𝑈 ;

the construction of𝐻 ′ is done by carefully replacing a part of𝐻 that

is not totally contained in 𝑈 with an isomorphic one that consists

of those vertices added to 𝑈 (of course this construction relies on

our charging rule as well). It then follows that when we branch

on (𝑋𝑟 , 𝑓𝑟), every 𝐹 -copy (𝐻, 𝜋) with (𝑋𝑟 , 𝑓𝑟) ⪯ (𝑉 (𝐻), 𝜋) is 𝑈 -

redundant and hence (𝑋𝑟 , 𝑓𝑟) is 𝑈 -redundant. But this contradicts

the fact that we only branch on 𝑈 -active heavy cores, and thus

each vertex in 𝑅 cannot get charged too many times. As a result,

the number of “no” decisions on any 𝑆-successful path is bounded

by 𝑂 (𝑘/𝛿).

According to the above discussion, we can set 𝜃no = 𝑂 (𝑘/𝛿)

as the budget for “no” decisions, which makes the branching tree

have subexponential size. This completes the overview of how we

achieve the subexponential bounds in Theorem 3.

3 CONCLUSION

In this paper, we studied the (Weighted) F -Hitting problem, in

which we are given a (vertex-weighted) graph 𝐺 together with a

parameter 𝑘 , and the goal is to compute a set 𝑆 ⊆ 𝑉 (𝐺) of vertices

(with minimum total weight) such that |𝑆 | ≤ 𝑘 and 𝐺 − 𝑆 does not

contain any graph in F as a subgraph. We gave a general frame-

work for designing subexponential FPT algorithms for Weighted

F -Hitting on a large family of graph classes that admit “small”

separators relative to the graph size and the maximum clique size.

Such graph classes include all classes of polynomial expansion and

many important classes of geometric intersection graphs, on which

subexponential algorithms are widely studied. The algorithms ob-

tained from our framework runs in 2𝑂 (𝑘𝑐) · 𝑛 +𝑂 (𝑚) time, where

𝑛 = |𝑉 (𝐺) | and𝑚 = |𝐸 (𝐺) |. The technical core of our framework

is a subexponential branching algorithm that reduces an instance

of F -Hitting (on the aforementioned graph classes) to 2𝑂 (𝑘𝑐)

instances of the general hitting-set problem, where the Gaifman

graph of each instance has treewidth 𝑂 (𝑘𝑐), for some constant

𝑐 < 1.

We now propose several open problems for future research. First,

as mentioned in the introduction, one can study the “induced” vari-

ant of the F -Hitting problem, called Induced F -Hitting, which

aims to delete 𝑘 vertices from an input graph 𝐺 such that the re-

sulting graph does not contain any 𝐹 ∈ F as an induced subgraph.

It is interesting to ask whether Induced F -Hitting can be solved

in 2𝑂 (𝑘𝑐) · 𝑛𝑓 (F) time for 𝑐 < 1 and some function 𝑓 on the graph

classes considered in this paper. For more restrictive graph classes

(such as graph classes of polynomial expansion), one can even seek

for algorithms with running time 2𝑂 (𝑘𝑐) · 𝑛 for 𝑐 < 1. Second, the

constant 𝑐 in the running time 2𝑂 (𝑘𝑐) · 𝑛 +𝑂 (𝑚) of our algorithms

is only slightly smaller than 1. How to further improve the running

time would be a natural problem. Finally, one can investigate the

problem with parameters other than the solution size 𝑘 , such as

the treewidth 𝑡 (or other width parameters) of the input graph 𝐺 .

Although Cygan et al. [8] showed that solving F -Hitting requires

2𝑡
𝑓 (F)

· 𝑛 time for some function 𝑓 , this hardness result was proved

on general graphs. An interesting open question here is whether

F -Hitting on the graph classes considered in this paper can be

solved in 2𝑂 (𝑡𝑐) · 𝑛 time for a constant 𝑐 independent of F , or even

subexponential time in 𝑡 .

ACKNOWLEDGMENTS

The research of Saket Saurabh was partially supported by the Euro-

pean Research Council (ERC) grant no. 819416, and Swarnajayanti

Fellowship no. DST/SJF/MSA01/2017-18. The research of Meirav

Zehavi was partially supported by the European Research Council

(ERC) grant no. 101039913. The authors would like to thank the

anonymous reviewers for their insightful comments on this paper.

REFERENCES
[1] Gaétan Berthe, Marin Bougeret, Daniel Gonçalves, and Jean-Florent Raymond.

2024. Kick the Cliques. In 19th International Symposium on Parameterized and Ex-
act Computation (IPEC 2024). Schloss DagstuhlśLeibniz-Zentrum für Informatik,
13ś1.

[2] Nadja Betzler, Robert Bredereck, Rolf Niedermeier, and Johannes Uhlmann. 2012.
On bounded-degree vertex deletion parameterized by treewidth. Discrete Applied
Mathematics 160, 1-2 (2012), 53ś60.

[3] Marin Bougeret, Bart MP Jansen, and Ignasi Sau. 2024. Kernelization Dichotomies
for Hitting Subgraphs under Structural Parameterizations. In 51st International
Colloquium on Automata, Languages and Programming.

[4] Marin Bougeret and Ignasi Sau. 2019. How much does a treedepth modulator
help to obtain polynomial kernels beyond sparse graphs? Algorithmica 81, 10
(2019), 4043ś4068.

[5] Boštjan Brešar, Marko Jakovac, Ján Katrenič, Gabriel Semanišin, and Andrej
Taranenko. 2013. On the vertex 𝑘-path cover. Discrete Applied Mathematics 161,
13-14 (2013), 1943ś1949.

[6] Leizhen Cai. 1996. Fixed-Parameter Tractability of Graph Modification Problems
for Hereditary Properties. Inf. Process. Lett. 58, 4 (1996), 171ś176.

[7] Marek Cygan, Fedor V. Fomin, Lukasz Kowalik, Daniel Lokshtanov, Dániel Marx,
Marcin Pilipczuk, Michal Pilipczuk, and Saket Saurabh. 2015. Parameterized
Algorithms. Springer.

[8] Marek Cygan, Dániel Marx, Marcin Pilipczuk, and Michał Pilipczuk. 2017. Hit-
ting forbidden subgraphs in graphs of bounded treewidth. Information and
Computation 256 (2017), 62ś82.

[9] Erik D. Demaine, Fedor V. Fomin, Mohammad Taghi Hajiaghayi, and Dimitrios M.
Thilikos. 2005. Fixed-parameter algorithms for (k, r)-center in planar graphs and
map graphs. ACM Trans. Algorithms 1, 1 (2005), 33ś47.

STOC ’25, June 23ś27, 2025, Prague, Czechia Daniel Lokshtanov, Fahad Panolan, Saket Saurabh, Jie Xue, and Meirav Zehavi

[10] Erik D. Demaine, Fedor V. Fomin, Mohammad Taghi Hajiaghayi, and Dimitrios M.
Thilikos. 2005. Subexponential parameterized algorithms on bounded-genus
graphs and H -minor-free graphs. Journal of the ACM (JACM) 52, 6 (2005), 866ś
893.

[11] Pål Grùnås Drange, Markus Dregi, and Pim van’t Hof. 2016. On the computational
complexity of vertex integrity and component order connectivity. Algorithmica
76, 4 (2016), 1181ś1202.

[12] Zdeněk Dvořák, Daniel Král, and Robin Thomas. 2013. Testing first-order prop-
erties for subclasses of sparse graphs. Journal of the ACM (JACM) 60, 5 (2013),
1ś24.

[13] Zdeněk Dvořák, Daniel Lokshtanov, Fahad Panolan, Saket Saurabh, Jie Xue,
and Meirav Zehavi. 2023. Efficient Approximation for Subgraph-Hitting Prob-
lems in Sparse Graphs and Geometric Intersection Graphs. arXiv preprint
arXiv:2304.13695 (2023).

[14] Zdeněk Dvořák and Sergey Norin. 2016. Strongly Sublinear Separators and
Polynomial Expansion. SIAM Journal on Discrete Mathematics 30, 2 (2016), 1095ś
1101.

[15] Eduard Eiben, Diptapriyo Majumdar, and MS Ramanujan. 2022. On the Lossy
Kernelization for Connected Treedepth Deletion Set. In International Workshop
on Graph-Theoretic Concepts in Computer Science. Springer, 201ś214.

[16] Samuel Fiorini, R Krithika, NS Narayanaswamy, and Venkatesh Raman. 2018.
Approximability of clique transversal in perfect graphs. Algorithmica 80, 8 (2018),
2221ś2239.

[17] Fedor V Fomin, Daniel Lokshtanov, Fahad Panolan, Saket Saurabh, and Meirav
Zehavi. 2019. Decomposition of Map Graphs with Applications. In 46th Inter-
national Colloquium on Automata, Languages, and Programming (ICALP 2019).
Schloss-Dagstuhl-Leibniz Zentrum für Informatik.

[18] Fedor V. Fomin, Daniel Lokshtanov, Fahad Panolan, Saket Saurabh, and Meirav
Zehavi. 2019. Finding, Hitting and Packing Cycles in Subexponential Time on
Unit Disk Graphs. Discrete & Computational Geometry 62, 4 (2019), 879ś911.

[19] Fedor V. Fomin, Daniel Lokshtanov, and Saket Saurabh. 2018. Excluded Grid
Minors and Efficient Polynomial-Time Approximation Schemes. Journal of the
ACM (JACM) 65, 2 (2018), 10:1ś10:44.

[20] Jakub Gajarskỳ, Petr Hliněnỳ, Jan Obdržálek, Sebastian Ordyniak, Felix Reidl,
Peter Rossmanith, Fernando Sánchez Villaamil, and Somnath Sikdar. 2017. Ker-
nelization using structural parameters on sparse graph classes. J. Comput. System
Sci. 84 (2017), 219ś242.

[21] Robert Ganian, Fabian Klute, and Sebastian Ordyniak. 2021. On structural pa-
rameterizations of the bounded-degree vertex deletion problem. Algorithmica 83,
1 (2021), 297ś336.

[22] Lito Julius Goldmann. 2021. Parameterized Complexity of Modifying Graphs to be
Biclique-free. Ph. D. Dissertation. Institute of Software.

[23] Marina Groshaus, Pavol Hell, Sulamita Klein, Loana Tito Nogueira, and Fábio
Protti. 2009. Cycle transversals in bounded degree graphs. Electronic Notes in
Discrete Mathematics 35 (2009), 189ś195.

[24] Daniel Gross, Monika Heinig, Lakshmi Iswara, L William Kazmierczak, Kristi
Luttrell, John T Saccoman, and Charles Suffel. 2013. A survey of component
order connectivity models of graph theoretic networks. WSEAS Transactions on
Mathematics 12 (2013), 895ś910.

[25] Anupam Gupta, Euiwoong Lee, Jason Li, Pasin Manurangsi, and Michał Włodar-
czyk. 2019. Losing treewidth by separating subsets. In Proceedings of the Thirtieth
Annual ACM-SIAM Symposium on Discrete Algorithms. SIAM, 1731ś1749.

[26] Sariel Har-Peled and Kent Quanrud. 2017. Approximation algorithms for
polynomial-expansion and low-density graphs. SIAM J. Comput. 46, 6 (2017),
1712ś1744.

[27] Russell Impagliazzo, Ramamohan Paturi, and Francis Zane. 2001. Which problems
have strongly exponential complexity? J. Comput. System Sci. 63, 4 (2001), 512ś
530.

[28] Mithilesh Kumar and Daniel Lokshtanov. 2017. A 2𝑙𝑘 Kernel for 𝑙-Component
Order Connectivity. In 11th International Symposium on Parameterized and Exact
Computation (IPEC 2016). Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik.

[29] Hung Le and Cuong Than. 2022. Greedy Spanners in Euclidean Spaces Admit
Sublinear Separators. In Proceedings of the 2022 Annual ACM-SIAM Symposium
on Discrete Algorithms (SODA). SIAM, 3287ś3310.

[30] Euiwoong Lee. 2017. Partitioning a graph into small pieces with applications to
path transversal. In Proceedings of the Twenty-Eighth Annual ACM-SIAM Sympo-
sium on Discrete Algorithms. SIAM, 1546ś1558.

[31] John M Lewis and Mihalis Yannakakis. 1980. The node-deletion problem for
hereditary properties is NP-complete. J. Comput. System Sci. 20, 2 (1980), 219ś230.

[32] Daniel Lokshtanov, Fahad Panolan, Saket Saurabh, Jie Xue, and Meirav Zehavi.
2022. Subexponential Parameterized Algorithms on Disk Graphs (Extended
Abstract). In Proceedings of the 2022 Annual ACM-SIAM Symposium on Discrete
Algorithms (SODA). SIAM, 2005ś2031.

[33] Daniel Lokshtanov, Fahad Panolan, Saket Saurabh, Jie Xue, and Meirav Zehavi.
2023. A framework for approximation schemes on disk graphs. In 34rd Annual
ACM-SIAM Symposium on Discrete Algorithms. SIAM.

[34] Daniel Lokshtanov, Fahad Panolan, Saket Saurabh, Jie Xue, and Meirav Zehavi.
2024. Subexponential Parameterized Algorithms for Hitting Subgraphs. arXiv

preprint arXiv:2409.04786 (2024).
[35] Gary L Miller, Shang-Hua Teng, William Thurston, and Stephen A Vavasis. 1997.

Separators for sphere-packings and nearest neighbor graphs. Journal of the ACM
(JACM) 44, 1 (1997), 1ś29.

[36] Jaroslav Nešetřil and Patrice Ossona De Mendez. 2008. Grad and classes with
bounded expansion I. Decompositions. European Journal of Combinatorics 29, 3
(2008), 760ś776.

[37] Jaroslav Nešetřil and Patrice Ossona De Mendez. 2008. Grad and classes with
bounded expansion II. Algorithmic aspects. European Journal of Combinatorics
29, 3 (2008), 777ś791.

[38] Michał Pilipczuk. 2011. Problems parameterized by treewidth tractable in single
exponential time: A logical approach. In International Symposium onMathematical
Foundations of Computer Science. Springer, 520ś531.

[39] Rahul Santhanam and Srikanth Srinivasan. 2012. On the limits of sparsification.
In Automata, Languages, and Programming: 39th International Colloquium, ICALP
2012, Warwick, UK, July 9-13, 2012, Proceedings, Part I 39. Springer, 774ś785.

[40] David P Williamson and David B Shmoys. 2011. The design of approximation
algorithms. Cambridge university press.

[41] Xuding Zhu. 2009. Colouring graphs with bounded generalized colouring number.
Discrete Mathematics 309, 18 (2009), 5562ś5568.

Received 2024-11-04; accepted 2025-02-01

	Abstract
	1 Introduction
	1.1 Our result
	1.2 Our framework and building blocks

	2 Overview
	2.1 How to achieve sublinear treewidth
	2.2 How to do subexponential branching

	3 Conclusion
	Acknowledgments
	References

