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Abstract. Correct, timely and meaningful interpretation of
polarimetric weather radar observations requires an accu-
rate understanding of hydrometeors and their associated mi-
crophysical processes along with well-developed techniques
that automatize their recognition in both the spatial and tem-
poral dimensions of the data. This study presents a novel
technique for identifying different types of hydrometeors
from quasi-vertical profiles (QVPs). In this new technique,
the hydrometeor types are identified as clusters belonging
to a hierarchical structure. The number of different hydrom-
eteor types in the data is not predefined, and the method
obtains the optimal number of clusters through a recursive
process. The optimal clustering is then used to label the
original data. Initial results using observations from the Na-
tional Centre for Atmospheric Science (NCAS) X-band dual-
polarization Doppler weather radar (NXPol) show that the
technique provides stable and consistent results. Compari-
son with available airborne in situ measurements also indi-
cates the value of this novel method for providing a physical
delineation of radar observations. Although this demonstra-
tion uses NXPol data, the technique is generally applicable
to similar multivariate data from other radar observations.

1 Introduction

The task of radar-based hydrometeor classification (HC) can
be broadly defined as the recognition of different hydrome-
teor types in the atmosphere as represented by the various ob-
served moments collected by weather radar. In general, HC
is able to label radar signatures observed at any one time with
physical properties, and, over a period of time, the evolution
of these labels can provide insight into the underlying atmo-
spheric processes. As such HC has many impactful applica-
tions: HC simplifies the detection of the melting layer (Bal-
dini and Gorgucci, 2006), HC is necessary for obtaining ac-
curate estimates of precipitation quantities (Giangrande and
Ryzhkov, 2008) and HC provides critical information for im-
proving modelling of physical processes in the atmosphere
(Vivekanandan et al., 1999).

Radar-based HC requires an extensive and accurate (i.e.
expert) knowledge of the physical properties of both multi-
variate polarimetric observations and the hydrometeor par-
ticles themselves (Hall et al., 1984). Achieving an accurate
and precise radar-based HC is difficult due to the deficien-
cies (such as low spatial–temporal resolution) and inaccura-
cies (such as attenuation) that are inevitable in all radar mea-
surements. The process of HC is made even more difficult
when this analysis needs to be performed during the oper-
ational processing of the radar observations where there is a
lack of time for expert assessment. Therefore, automatization
of spatial and temporal analysis of multivariate polarimetric
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data is an important task for which an advanced and well-
tested technique should be developed and utilized.

The development of radar-based HC started in the 1980s
and 1990s with the works of Hall et al. (1984), Hendry
and Antar (1984), Aydin et al. (1986), Straka and Zrnić
(1993), and Straka (1996). Further refinement and develop-
ment of automatic HC algorithms included the application
of fuzzy logic (Straka et al., 2000; Liu and Chandrasekar,
2000), machine-learning techniques (such as the identifica-
tion of clusters representing data-wise similarities) (Wen et
al., 2015; Grazioli et al., 2015; Besic et al., 2016; Ribaud et
al., 2019) and neural networks (Wang et al., 2017).

Modern radar-based HC methods (Straka et al, 1996; Liu
and Chandrasekar, 2000; Al-Sakka et al., 2013; Grazioli et
al., 2015; Besic et al., 2016, 2018; Bechini and Chandrasekar,
2015; Wang et al., 2017) are based on the multivariate data of
polarimetric Doppler radar observations. This includes (but
is not limited to) the horizontal reflectivity factor ZH, dif-
ferential reflectivity ZDR, the co-polar correlation coefficient
ρHV, differential phase shift on propagation 8DP, and spe-
cific differential phase KDP (for definitions, see Bringi and
Chandrasekar, 2001) as well as associated derived variables
(e.g. standard deviation). Additionally, temperature and other
meteorological data, retrieved from radiosondes or numerical
weather prediction (NWP) models, are often utilized (Grazi-
oli et al., 2015; Wen et al., 2015).

In most existing radar-based HC methods, the multivariate
input data are analysed per measurement voxel, and deter-
mined classes are assigned to the hydrometeor types only ac-
cording to their characteristics. Such an approach neglects
intra-class relationships and the temporal evolution of the
identified classes. This valuable information can also be used
in the labelling of the hydrometeor types and the identifica-
tion of corresponding microphysical processes. Additionally,
almost all methods within the existing literature are based on
theoretical assumptions on the scattering properties of ob-
served particles and/or are only applicable for a defined (i.e.
previously recognized) number and type of classes. Both of
these aspects of existing HC methods are limitations. For ex-
ample, theoretical assumptions about the scattering proper-
ties of ice-phase hydrometeors are very uncertain due to un-
known size distributions, varying dielectric properties, fall
orientation, and their diverse and often complex geometry
(Johnson et al., 2012). A predefined number of classes or hy-
drometeor types is subjective and creates artificial boundaries
for algorithms; therefore, subtle differences in undefined sub-
classes are masked, which inhibits identification of the un-
derlying microphysical processes.

Thus, in this study we take a different approach and ask
the following question: can a data-driven HC approach pro-
vide an optimal number of classes from the observations? We
define the optimal number as the lowest number of classes
representing all pronounced dissimilarities in the input data.
Once the optimal set of classes is identified, the burden of
analysis in this approach is to relate the identified clusters of

radar signatures to possible physical properties of hydrome-
teors. Thus, this approach does not impose a predefined phys-
ical view on the observations but provides a framework for a
more efficient physical interpretation of the properties of the
resulting clusters of observed multivariate data in which sub-
tle differences and intra-cluster relations are easier to iden-
tify. In this sense, this approach inverts the procedure of ex-
isting methods. Additionally, we ask whether such an ap-
proach can be used to provide information on the temporal
evolution of the identified hydrometeors and reveal relation-
ships between the identified classes. Such information is key
for identifying the processes that lead to high-impact weather
(i.e. flooding) and improving the physical parameterizations
in NWP.

The point of this study is not to create a set of cluster
characteristics that could be applied to other datasets; rather,
the goal is to demonstrate the viability of this type of data-
driven methodology for creating a set of labelled clusters (i.e.
hydrometeor classes) based on quasi-vertical profile (QVP)
data. As such, the comparison to in situ data and labelling
done as part of this study is only shown as an example of
how this tool can be used.

The existing data-driven unsupervised (Grazioli et
al., 2015; Ribaud et al., 2019; Tiira and Moisseev, 2020)
and semi-supervised approaches (Bechini and Chandrasekar,
2015; Besic et al., 2016; Wang et al., 2017; Roberto et
al., 2017; Besic et al., 2018) only partially provide an an-
swer to the first question (Grazioli et al., 2015) and do not
consider the temporal evolution or dependencies between the
identified classes. The approach described here performs an
unsupervised clustering of QVPs. QVPs were first used in
Kumjian et al. (2013) and Ryzhkov et al. (2016) as a way
of constructing a substitute for a vertical profile from a scan
conducted at constant elevation, which is a typical mode of
scanning for radars used in operational networks. Calculation
of the QVPs requires horizontal homogeneity of the observed
atmospheric processes. The height vs. time format of QVPs
represents the general structure of the storm or its evolution.
Note that this is a novel application of the QVP data product
and the interpretation of QVP polarimetric variables differs
from that of plan position indicator (PPI) or range height in-
dicator (RHI) scans due to the averaging used to construct
them.

The QVP input is used in this work to build a hierarchical
structure based on the identified clusters and deliver an opti-
mal number of clusters based solely on internal properties of
the multivariate polarimetric data. The optimal clustering is
then used to label the hydrometeor classes and to analyse the
temporal evolution of the labelled microphysical processes.

The paper is organized as follows: in Sect. 2, we intro-
duce the clustering methods we employ, Sect. 3 contains a
description of the polarimetric radar data and their process-
ing, Sect. 4 describes the iterative clustering approach, lead-
ing to the development of the hierarchical structure, Sect. 5
is devoted to the characterization of the clusters and their la-
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belling, and Sect. 6 concludes with a summary, discussion,
and thoughts on further perspectives.

2 Background of employed methods

The proposed hierarchical clustering algorithm identifies the
optimal number of groups of data points (clusters) in a recur-
sive loop and organizes the clusters in a hierarchical structure
(undirected weighted graph). The two main steps of this ap-
proach are the cluster identification and the optimality check.
The cluster identification is achieved after performing dimen-
sionality reduction by principal component analysis followed
by spectral clustering. The optimality check uses validity in-
dexes to identify the final set of clusters, which best classifies
the provided set of data. The description of the dimensional-
ity reduction and clustering methods with background infor-
mation about the validity indexes employed can be found in
this section directly after a short introduction to the hierar-
chical clustering.

2.1 Hierarchical clustering

Hierarchical clustering is a type of clustering technique that
splits or combines the data through an iterative process. Un-
like “flat” clustering techniques, hierarchical clustering is not
performed in one stage; rather, it repeats the clustering pro-
cess iteratively and keeps the information about each itera-
tion of clustering in a hierarchical structure. In general, for a
given set of multivariate data points, a hierarchical clustering
algorithm, depending on top-down or bottom-up direction,
either partitions (divides) or merges (agglomerates) the data
into groups (a set of clusters) where data points assigned to
the same cluster show similarity in multivariate values (de-
pending on the context, it could be, for example, having a
small distance to each other if the points are in Euclidean
space). The direction of the process (top-down or bottom-
up) may be chosen and depends on the number of individual
points in the multivariate dataset and the requirements of the
underlying problem.

The top-down method begins with all available data points
organized in one cluster and splits this cluster into sub-
clusters until a certain criterion is reached or only solely
singleton clusters of individual points remain in the set. The
bottom-up method, on the other hand, begins with all points
assigned to individual clusters and, at each step, merges
the most similar pairs of clusters into one until all the sub-
clusters are agglomerated into a single cluster.

The optimal number of clusters in both approaches can
be identified using a termination criterion. The hierarchical
structure in the bottom-up approach needs to be completely
finished before the optimal number of clusters can be iden-
tified, otherwise the upper part of the tree will remain un-
known. The top-down approach allows for the iterative pro-
cess to be stopped at any point whilst preserving the upper

part of the hierarchical structure. Another advantage of the
top-down approach is the possibility to have more than two
sub-clusters belonging to one parent cluster. This allows an
optimal number of sub-clusters for each parent cluster, repre-
senting the data-driven inheritances in the resulting hierarchi-
cal structure. Although this advantage is often not used, and
the bottom-up methods are preferred (Grazioli et al., 2015;
Rimbaud et al., 2019), the method presented here fully ex-
ploits it for the identification of an optimal number of sub-
clusters in each iteration.

2.2 Eigenvectors and principal components

Principal component analysis (PCA) is a statistical technique
mostly utilized in exploratory analysis of multivariate data. It
extracts the most important information from the multivariate
dataset, generating a simplified view of the original data by
dimensionality reduction.

To reduce a dataset’s dimensionality, a set of new orthog-
onal, non-correlated variables called principal components is
calculated as linear combinations of the original variables.
The first component with the largest possible variance is se-
lected, so it best represents the diversity of the given data.
The second component is generated under the assumption
of orthogonality to the first component whilst also having
the largest possible variance. This process is continued un-
til the number of principal components is equal to the num-
ber of original variables (d). These components are exactly
the eigenvectors of the correlation matrix and are employed
as a basis for a new coordinate system (Wold, 1976; Abdi
and Williams, 2010). The first q calculated coordinates hav-
ing satisfactory representativeness (e.g. 85 %) can be used
to preserve the most important characteristics of the original
data. These q principal components can replace the initial d
variables (q < d), and the original dataset, consisting of N
measurements on d variables, is reduced to a dataset consist-
ing of N measurements on q principal components.

2.3 Clustering method

One of the most popular clustering methods is the k-
means algorithm (Steinhaus, 1956). Through its simple in-
terpretability, it is often used either as a single method or as a
part of more computationally expensive clustering methods
(e.g. Gaussian mixtures or spectral clustering). As a single
method, it has difficulties with non-convex clusters and is
known to perform poorly if the input variables are correlated
(von Luxburg, 2007). As the basis of a more complex method
(e.g. spectral clustering), it allows a solution of non-linear
cluster shapes to be found (any low-dimensional manifolds
of high-dimensional spaces).

The input data herein are multidimensional and were
found to have non-convex cluster shapes; therefore, the spec-
tral clustering method was applied (Shi and Malik, 2000; Ng
et al., 2002; von Luxburg, 2007). It works by approximating
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the problem of partitioning the nodes in a weighted graph as
an eigenvalue problem of eigenvectors described above and
by applying the k-means algorithm to this representation in
order to obtain the clusters. This work implements the Ng
et al. (2002) approach and analyses the eigenvectors of the
normalized graph Laplacian.

Spectral clustering has several appealing advantages. First,
embedding the data in the eigenvector space of a weighted
graph optimizes a natural cost function by minimizing the
pairwise distances between similar data points, and such
an optimal embedding is analytically deducible. Secondly,
as was shown in von Luxburg (2007), the spectral cluster-
ing variants arise as relaxations of graph balanced-cut prob-
lems. Finally, spectral clustering was shown to be more ac-
curate than other clustering algorithms such as k-means (von
Luxburg, 2007).

2.4 Determining optimal number of clusters

Clustering algorithms can be roughly divided into two groups
based on whether the number of clusters to be found is pre-
determined or undetermined. Spectral clustering is a rather
flexible technique in the sense that it can be used with a re-
laxation (i.e. when the number of clusters to be found is pro-
vided) or without it (when the number of clusters is deter-
mined by the multiplicity of the eigenvalue 0). As the ap-
proach chosen here is not interested in a flat partitioning of
the data (rather we want to determine hierarchical structures),
the determination of the optimal number of clusters is impor-
tant. To identify this optimal number of clusters, two evalua-
tion scores are used in our method: the Wemmert–Gançarski
(WG) index (Hämäläinen et al., 2017) and the Bayesian in-
formation criterion (BIC) index (Pelleg and Moore, 2000;
Hancock, 2012). The WG index was chosen as best perform-
ing according to comparison studies (Niemelä et al., 2018;
Hämäläinen et al., 2017). The BIC is best for the calculation
of the posterior probability of a clustering. While the exact
use of the indexes is described in Sect. 4, the WG and BIC
indexes can be defined as follows:

let the dataset X =
{
xi ∈ R

d
: i = 1, . . .,N

}
have cluster-

ing CK = {ck : k = 1, . . .,K}, (K < N), where nk denotes
the number of samples or points in the cluster ck , and Ick de-
notes the indexes of the points in X belonging to the cluster
ck .

1. For the WG index, let R(xi) represent the mean of rela-
tive distances between the points belonging to the clus-
ter ck and the centre of its barycentric weight gk . The
R(xi) value is calculated for each point xi

R(xi)=
‖xi − gk‖

mink 6=k′‖xi − gk′‖
,

after that the WG index,

WGX =
1
N

∑K

k=1
max

{
0,nk −

∑
i∈Ick

R(xi)

}
, (1)

is calculated, representing the WG index for the setX of
points partitioned into K clusters (Desgraupes, 2017).
The WG index is a measure of compactness based on
the distances between the points and the barycenters of
all clusters.

2. For the BIC index, let us model each cluster ck as a
multivariate Gaussian distribution N (µk,6k), where
µk can be estimated as the sample mean vector, and
6k =

1
d(N−K)

∑K
k=1

∑
i∈Ick
‖xi−gk‖ can be estimated as

the sample covariance matrix. Hancock (2012) showed
that the optimal clustering is presented by maximum

BIC(CK)=
∑K

k=1

(
nk log

nk

N
−
d nk

2
log2π6k

−
nk − 1

2
d
)
−

1
2
K(d + 1) logN. (2)

The BIC is an estimate of a function of the posterior
probability of a clustering being true, under a certain
Bayesian set-up, so that a higher BIC in (2) means that
a clustering is considered to be more likely to be the
optimal clustering.

3 Data and processing

This section presents a description of the polarimetric radar
data used by the hierarchical algorithm in this study as well
as some details of the data preprocessing that is applied be-
fore the QVP calculation processing. Note that the method
presented here is generally applicable with similar multivari-
ate data from other sources. In addition, in situ observations
from the FAAM Airborne Laboratory (FAAM BAe 146) are
presented in this section. These data will be used for assign-
ing the labels of the hydrometeor classes to the detected clus-
ters or cluster groups in the radar observations.

3.1 X-band radar observations

The polarimetric data employed to demonstrate the method
developed in this study were collected by the NXPol radar
whilst it was located at the Chilbolton Atmospheric Ob-
servatory (CAO), part of the UK’s National Centre for At-
mospheric Science’s Atmospheric Measurement and Obser-
vation Facility (AMOF), in southern England (51.145◦ N,
1.438◦W) from November 2016 to May 2018 (Fig. 1).
The NXPol is a mobile Meteor 50DX (Leonardo Germany
GmbH) X-band, dual-polarization, Doppler weather radar
with a 2.4 m diameter antenna. The radar is a magnetron-
based system and operates at a nominal frequency of
9.375 GHz (λ∼ 3.2 cm). The detailed characteristics of the
NXPol radar can be found in Neely et al. (2018). From the
observations made in 2017–2018 we selected eight dates
with the longest precipitation events occurring within a
30 km range of the radar presented on Fig. 1. The exact dates
and the total number of volume scans per date can be found
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in Table 1. Radar data selected for this study can be found
in the list of mobile X-band radar observations on the Centre
for Environmental Data Analysis (CEDA) archive (Bennett,
2020).

3.2 Polarimetric variables and temperature data

Here, we chose to use the polarimetric variables ZH [dBZ],
ZDR [dB], ρHV [–], and KDP [◦ km−1] as well as temper-
ature T [◦C] to demonstrate the described clustering tech-
nique. The four polarimetric variables were selected as a sub-
set of all the possible variables as they provide complemen-
tary information about the observed hydrometeor properties.
Here, KDP is calculated as the linear gradient of differential
phase shift, where the phase shift has been filtered to remove
non-meteorological targets (ρHV > 0.85) and progressively
smoothed using decreasing length averaging windows, and
ZH and ZDR are corrected for attenuation using the standard
ZPHI method (Testud et al., 2000), where α = 0.27, b = 0.78
and specific differential attenuation is 0.14 times the specific
horizontal attenuation. Temperature was added to the set of
input variables following the reasoning of similar studies in
which either the height relative to the 0 ◦C isotherm (Grazioli
et al., 2015) or the index representing the ice- or liquid-phase
of observed precipitation (Besic et al., 2016) was included.
The full input vector used in this study can be represented as
follows:

x = [ZH,ZDR,ρHV,KDP,T ] . (3)

Note that this does not preclude the use of differing sets of
variables in future studies. The input data used here were pre-
processed before being utilized in the clustering algorithm:
all range bins that were located at distances of less than
400 m from the radar were removed from all input variables’
data to reduce the influence of side lobe noise.

The temperature data were taken from the Met Office Uni-
fied Model (UM) and interpolated onto the polar grid of the
radar’s observations. The original data can be found on the
CEDA archive (Met Office, 2016). Past assessments of the
accuracy of these temperature values suggest that the grid-
ded temperatures are within 1 ◦C of coincident profiles mea-
sured by radiosondes except in the case of strong inversions
or frontal boundaries. An example of observations from 1 d
(17 May 2017) represented in the height vs. time format of
the QVPs of four polarimetric variables with the temperature
presented as isotherms is found in Fig. 2. Similarly, other
dates from our list of cases (Table 1) are in Fig. B1.

3.3 QVPs and thresholding

QVPs of the input variables are obtained as the azimuthal av-
erage of the data from a standard plan position indicator (PPI)
scan at a 20◦ antenna elevation angle (Ryzhkov et al., 2016).
The 20◦ PPI is the highest of 10 PPIs of the volume scan-
ning strategy used by NXPol which starts the scanning from

Table 1. In situ data collection campaigns.

Date FAAM Number of Number
flight volume of QVP

number scans voxels

1 February 2017 – 243 46 656
3 February 2017 – 213 40 896
3 March 2017 – 213 40 896
22 March 2017 – 213 40 896
17 May 2017 C013 100 19 226
24 January 2018 C076 196 37 632
13 February 2018 C081 189 36 288
14 February 2018 C082 189 36 288

a 0.5◦ elevation angle. The use of the 20◦ PPI minimizes
the effects of radar beam broadening and horizontal inho-
mogeneity. The beam-broadening effect becomes dominant
at higher altitudes when observed by a low-elevation scan
as was shown in Ryzhkov et al. (2016). The radar beam of
1◦ opening at 20◦ elevation is about 100 m at 2 km height,
240 m at 5 km height, and reaches almost 480 m at 10 km
height. The resulting profiles have 197 voxels in each QVP
at the altitudes between 0 and 10 km above mean sea level
(a.m.s.l.) and covering about a 30 km range from the radar. It
was also shown in Ryzhkov et al. (2016) that the decrease in
ZDR from the oblate spheroidal hydrometeors at a 20◦ eleva-
tion is within the common measurement error of ZDR (0.1–
0.2 dB).

An advantage of QVPs is that they reduce statistical errors
within the input dataset, while the height vs. time format of
QVPs naturally represents the temporal dynamics of micro-
physical processes observed in the radar data. To ensure the
observations are representative of large-scale meteorological
features that may be averaged together, the QVP voxels are
used in the analysis only if more than 270 of the 360 az-
imuthal bins at the range in the PPI scan contain valid data.

3.4 In situ observations

For the labelling of the clusters, in situ observations can be
used to assess any of the clusters within the hierarchical
structure produced by the clustering algorithm. This allows
for flexibility in the granularity used to examine the obser-
vations. In this study, the in situ FAAM BAe 146 observa-
tions are used to demonstrate the labelling and assessment of
the final set of clusters. The FAAM BAe 146 is a publicly
funded research facility that, as part of the National Cen-
tre for Atmospheric Science (NCAS), supports atmospheric
research in the UK by providing a large instrumented At-
mospheric Research Aircraft (ARA) and the associated ser-
vices. The ARA is a modified British Aerospace 146-301
aircraft. Further details of the FAAM BAe 146 aircraft in-
strument systems are available at https://www.faam.ac.uk/
the-aircraft/instrumentation/ (last access: 25 January 2021).
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Figure 1. NXPol radar location at the Chilbolton Atmospheric Observatory. Circles with their centre on the radar position represent a 30, 60,
90 and 120 km range. Credit: USGS (2006).

Figure 2. The height vs. time QVPs of ZH [dBZ], ZDR [dB], ρHV [–] and KDP [◦ km−1] retrieved from the NXPol radar observations at
Chilbolton on 17 May 2017. Overlaid by temperature isotherms T [◦C].

In situ data for this study come from FAAM BAe 146 flights
C013, C076, C081 and C082 (FAAM, 2017, 2018a, b, c),
and observational data are available on the CEDA archive.
The dates of the flights and their corresponding flight num-
bers can be found in Table 1.

For the cases examined, FAAM BAe 146 was equipped
with two cloud imaging probes (CIP), which are manufac-

tured by Droplet Measurement Technologies and described
in Baumgardner et al. (2001). The CIPs are mounted under-
neath the aircraft wings and provide 2-bit grayscale images
of cloud particles as they pass through the instrument sample
volumes. Each CIP houses a 64-element photodiode detector,
with one CIP having an effective pixel size of 15 µm (referred
to as CIP15) and the other having an effective pixel size of
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100 µm (referred to as CIP100). Therefore, the CIPs provide
images of particles in size ranges from 7.5 to 952.5 µm for
CIP15 and from 50 to 6350 µm for CIP100. All probes have
“Korolev” anti-shatter tips – the width of which is 70 mm for
the CIP100 and 40 mm for the CIP15.

Particle size distributions are calculated based on CIP data
where particle size is defined as being the maximum recorded
length in either the axis of the detector array (X) or along the
direction of motion (Y ). All particles with inter-arrival times
< 10−6 s are rejected as indicative of shattering, as in Field
et al. (2006). The centre-in approach (Heymsfield and Par-
rish, 1978) for the estimation of particle concentrations from
the sample volume is used to calculate the size of partially
imaged particles. It should be noted that despite using the
centre-in method with the CIP data, which increases the ef-
fective sample volume for larger particles at the expense of
uncertainty in particle size, the ability to measure particles
with a size > 6 mm is negligible with this configuration. An
indication of the potential presence of such large particles
can be obtained through a visual inspection of the particle
images, but no conclusions can be drawn. Also, there are sig-
nificant uncertainties associated with the derived properties
from the CIPs, which are of the order of 20 % for number-
based properties (Baumgardner et al., 2017). In our analysis,
we are not concerned with absolute concentrations from the
CIPs; instead, we are using the CIP data in a qualitative man-
ner to provide a general framework for comparison with the
HC results obtained from the radar observations.

As we base our clustering on the QVPs of radar observa-
tions, which at each range from the radar are averaged over
all available azimuths, a direct comparison to aircraft obser-
vations taken at an exact position and time stamp would not
make a representative comparison. Thus, for the compari-
son, we have selected the 20 s intervals from the CIP15 and
CIP100 data that correspond to the spatial domain and times
of the individual 20◦ PPI scans that are used to create the
QVPs. Over these 20 s intervals, the mean number concen-
trations per particle size bin are calculated (Fig. 10). Figure 9
presents examples of particle imagery from the CIPs, which
typically represents less than 1 s of the total 20 s of data and
shows derived properties of the particles over the entire 20 s
sampling period when the airplane observed the atmosphere
over the QVP domain.

In order to provide insight into the nature of the parti-
cle imagery, we have separated the particle concentrations
in Fig. 10 into three categories, two of which are based on
an analysis of the particle shapes and another which is for
partially imaged particles. “Round” particles are those which
have a circularity between 0.9 and 1.2, and particles with
a larger circularity are labelled as “Irregular” – this gives a
rough separation into particles that are likely to be liquid wa-
ter vs. ice (Crosier et al., 2011). “Edge” particles are those
which are only partially imaged, as indicated by pixels at the
extreme edge of the array being triggered. For the particles
that are considered round, the particle size and subsequent

concentration is corrected for out-of-focus effects (Korolev,
2007). This out-of-focus correction is not applied to the “ir-
regular” or “edge” images, as there is no evidence to show
that this is an appropriate correction to make. For two key
reasons, no attempts have been made to classify particle im-
ages. (1) The larger particles, which have the greatest influ-
ence on the polarimetric properties, are poorly sampled by
the CIPs. (2) A recent study by O’Shea et al. (2020) suggests
that existing procedures to classify particle images using the
CIP can lead to inaccurate results due to the effects of diffrac-
tion when particles are imaged more than a few millimetres
off the focal plane, which is the most common scenario. A
thorough assessment of the accuracy of these image classi-
fication algorithms, with respect to particle size and probe
configuration, is much needed.

4 Clustering of QVPs

Here, the clustering steps are described in general. A cor-
responding overview of the approach is provided in Fig. 3.
The proposed approach uses QVP voxels and temperature
data that have been interpolated to the same volume. These
data form the points of a five-dimensional space (d = 5). The
PCA (Sect. 2.2) reduces the number of dimensions to q. The
q-dimensional data are partitioned into K clusters, where K
iteratively increases (K = 2,3, . . .) until the optimal number
of clusters is reached, according to the WG index Eq. (1)
in Sect. 2.4. With each of the clusters achieved in this level
(“outer loop” in Fig. 3), the process is recursively repeated
starting with the PCA calculation and continuing until the op-
timal partitioning of the sub-clusters is reached (“inner loop”
in Fig. 3). The total partitioning is confirmed with the BIC
index Eq. (2) in Sect. 2.4. When the BIC’s local maximum is
reached, the partitioning is considered to be optimal. A de-
tailed description of each of these steps can be found in the
following subsections, and the code can be made available
upon request.

4.1 Start of hierarchical clustering

The hierarchical clustering starts with data standardization
and dimensionality reduction of the original five-variable in-
put data X Eq. (3) into a q-dimensional dataset of principal
components (Sect. 2.2). The non-parametric transformation
based on the quantile function maps the data to a uniform
distribution. This standardization helps to deal with outliers
and satisfy PCA data assumptions.

To start the loop, all N pixels of the input data are used.
In later loops, only subsets of the original five-variable data
(Ick ) belonging to active cluster ck are processed in the in-
ner loop (Fig. 3). The first q principal components with the
largest variance, which have at least 85 % representativity of
the original dataset in total, are selected in this step.
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Figure 3. Flow chart of the implemented hierarchical top-down clustering algorithm.

The representativity threshold of 85 % was chosen arbi-
trarily as it reduces the initial five-variable input space up
to three-dimensions (q = 3) in most cases, which effectively
simplifies the clustering problem and does not influence the
overall outcome. The threshold can be reduced to further de-
crease the dimensionality, but it was found that this nega-
tively influences the clustering accuracy. A higher threshold
will retain the high dimensionality of the original dataset but
will slow down the clustering process without gaining further
information from the dataset.

4.2 Iterative process to find the optimal number of
clusters (inner loop)

At the start of the hierarchical clustering, we begin directly
with the first call of the inner loop (Fig. 3). The iterative pro-
cess in the inner loop commences with all N QVP pixels
represented by the first q principal components. The spec-
tral clustering processes these input data starting with the
number of clusters K = 2. The number of clusters increases
(K = 2,3, . . .) with each cycle of spectral clustering within
the inner loop, and the WG index Eq. (1) is calculated at the
end of each iteration for the achieved clustering CK . At the
moment the local maximum is achieved in the WG index val-
ues, the clustering in which it was reached (C′K ) is accepted
as the main cluster set of the current level of the hierarchical
tree, and these clusters become the set of active clusters (A).
Set A will be used in the outer loop of the implemented hi-
erarchical algorithm. The active clusters detected in the first
level of the hierarchical structure by spectral clustering for
the data on 17 May 2017 are shown in Fig. 4.

4.3 Optimal number of clusters for the total dataset
(outer loop)

In the outer loop of the hierarchical algorithm, the BIC index
Eq. (2) is calculated for the active clusters produced by the
inner loop (Fig. 3). If the BIC index is calculated for the first
time (i.e. the start of the algorithm run, j = 1) or the BIC
index values do not show any local maximum, the algorithm
continues by calling the inner loop for each individual cluster
from the set of active clusters (Aj ) formed by the calls of the
inner loop described above.

For the first level of hierarchical clustering, all C′K are im-
mediately accepted as active A1 = C

′

K . In the outer loop, af-
ter calculating the BIC, the original five-dimensional data be-
longing to each cluster c′k ∈ C

′

K are sent to the inner loop and
clustering (C′′K ) achieved by the inner loop is used to replace
the cluster c′k in the set of active clusters A1. If the BIC index
calculated on this “suggested set” shows that the clusters in-
troduced to the A1 increase the value of BIC, the suggested
replacement is accepted and the set of active clusters is up-
dated as A2 = C

′′

K ∩C
′

K/c
′

k . The outer loop then continues
with the next cluster from the original set A1. When the BIC
value does not increase with the “suggested set”, the set of
active clusters does not change, and the algorithm continues
with the next cluster from the set A1.

4.4 Next recursion or finalization of results

The final set of active clusters is reached when the value of
the BIC index does not increase with any further suggested
split in the current active set of clusters. At this level of “de-
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Figure 4. The active clusters at the end of the first (a, b) and second (c, d) cycle of the outer loop of the hierarchical clustering algorithm.
Panels (a) and (c) are plotted in the hierarchical (tree) structure, and panels (b) and (d) are plotted in height vs. time format of the observations
on 17 May 2017.

tailization”, the optimal clustering for the provided input data
has been reached. For the QVP dataset described in Sect. 3,
a final set of 13 active clusters is reached (see Figs. 5 and 6).
The relations between these final clusters (f_cl1,. . ., f_cl13)
and the three parent clusters from the first inner loop run
(Fig. 4a) are shown in Fig. 5.

5 Labelling

Once the optimal number of clusters is determined and the
hierarchical clustering structure is built, the clusters can be
characterized by their centroids and labelled with appropriate
hydrometeor classes using the available verification data. The
clusters for which direct verification data are not available
may still be labelled with an appropriate hydrometeor class
based on the scattering characteristics described by the orig-
inal polarimetric radar variables and considering their posi-
tion in the hierarchical tree and the height vs. time QVP rep-
resentation. As QVP polarimetric characteristics differ from
polarimetric characteristics of hydrometeors observed by PPI
and RHI scans, care must be taken when comparing these re-

sults to the literature. Labelling the obtained clusters can be
performed for the different levels of granularity depending
on the user’s needs and interests. Note the purpose of the
labelling shown here is to demonstrate the ability and valid-
ity of the technique rather than performing a rigorous study
of the underlying microphysics observed. The latter will be
reserved for follow-up studies utilizing this technique in a
focused manner.

5.1 Level-by-level cluster check

From the visual verification of the first-level parent clusters
in Fig. 4a and b, we can deduce that there are two child
clusters representing the upper or elevated (ice-dominated
root.cl2) and the lower (water-dominated root.cl1) parts.
The second-level clusters from the second loop (Fig. 4c
and d) show a well-identified “bright band” (root.cl2.cl2),
belonging to the melting layer (ML), and a main solid-
phase cluster (root.cl2.cl1), both belonging to the cluster
representing the ice-phase-dominated part (root.cl2) of the
QVPs (Fig. 4b). The three child clusters of the parent
root.cl1 cluster (Fig. 4c and d) are the two rain-type clus-
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Figure 5. Final hierarchical structure of the optimal clustering found for the QVP input data described in Table 1. The final set of optimal
clusters consists of coloured clusters f_cl1, f_cl2,. . ., f_cl13.

Figure 6. The height vs. time format of the final optimal set of active clusters found by the top-down hierarchical clustering for the QVP
input data described in Table 1. (The hierarchical structure behind the optimal clustering is found in Fig. 4.) Example of clusters in the height
vs. time format of the 17 May 2017 QVPs presented in Fig. 2.

ters (root.cl1.cl2 and root.cl1.cl3) below the “bright band”
and cluster root.cl1.cl1 with most points located above the
“bright band”. In further loops, the main ice-phase cluster
(root.cl2.cl1) is split into nine child clusters (Fig. 5), and ex-
amples of their positioning in the height vs. time format of
QVPs can be observed in Fig. 6 or Fig. B1.

5.2 Characteristics of the clusters

The 13 final clusters can be characterized by their centroids
(Fig. 7) or their relevant statistics (Fig. 8, Table A1). The cen-
troid characteristics in Fig. 7 are plotted as spider plots where
each of the five variables is represented by an azimuthal axis.
The filled pentagons in each sub-plot represent the cluster’s
centroid in the five-variable space based on all the data avail-
able in this study. Each vertex of the pentagon shows the cen-
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troid’s value in one of the five variables. The non-solid lines
in the sub-plots of Fig. 7 represent the centroids of the same
cluster but based solely on the data from one of the eight
cases (Table 1).

Figure 7 confirms a distinction made at the first and the
second cycles of the outer loop (Fig. 4) between three types
of clusters: liquid-phase clusters (f_cl1, f_cl2 and f_cl3),
with lower KDP and warmer T values; ice-phase clusters
(f_cl4, f_cl5, f_cl6, f_cl7, f_cl8, f_cl9, f_cl10, f_cl11, and
f_cl12), all with more pronounced ρHV values; and a very
different looking f_cl13, with warmer T and rather low ρHV
values.

The largest differences between the centroids selected
from the total dataset and the centroids corresponding to the
eight considered cases occur in the temperature (T ) values,
especially for the clusters f_cl2, f_cl3, f_cl7, f_8, f_cl10 and
f_cl12. These variations can be explained by the origin of the
temperature data, which are estimates from the NWP model
and do not always correctly represent the real situation.

The next variable with a rather large variation in several
clusters is KDP. In part, this variation may be due to the fact
that this variable has an extremely skewed distribution. Clus-
ters f_cl1, f_cl7, f_cl11, f_cl12 and f_cl13 have the high-
est variation in KDP values between the centroids calculated
for different cases (Fig. 7). As KDP can be influenced by the
amount of ice or water particles in the atmosphere, it might
be that the clusters have variations in the number of particles.
This hypothesis can only be verified with FAAM BAe 146
observations of the same cluster on different dates. Unfortu-
nately, such verification is not possible for all clusters, and
more in situ observations are required.

From the variations of centroid values in the five input
variables in Fig. 7, we can also see that the main liquid-phase
cluster (f_cl2) has rather different characteristics in different
cases. Case to case it shows large variations inZH,KDP, ρHV,
T and the highest mean temperature value (6.8 ◦C) among all
other clusters. As observed in the histogram of percentages
of the cluster points in Fig. 8f, f_cl2 is rather big (13.7 %
of the total number of points) but does not have the highest
percentages of points in all eight analysed cases, only in the
17 May 2017 case (9.3 % compared with ≤ 1.5 % in other
cases) (Fig. 7, histogram in the lower right corner.). Combin-
ing all of these aspects, we deduce that f_cl2 includes rain of
varying intensities and different drop sizes.

The other rain cluster f_cl3 has less variability in cen-
troid values and has ∼ 20 dBZ smaller ZH values than f_cl2,
which is probably due to the smaller drop sizes in this cluster.
f_cl3 has the smallest mean ZH (7.18 dBZ) and mean KDP
values (−0.097◦ km−1) of all “water” clusters (f_cl1, f_cl2
and f_cl3). This cluster is often observed at the beginning
and at the end of the storm in the height vs. time format rep-
resentation of the optimal clusters (Fig. B1) and is labelled
as “light rain”.

Almost all centroids in Fig. 7 have no or very limited vari-
ation in the ρHV or ZDR values except for f_cl13. This clus-

ter has no variation in temperature (T ), with all centroids at
0 ◦C. As such, f_cl13 corresponds to the area in the data
referred to as a “bright band”. According to the box and
whiskers plots in Fig. 8, cluster f_cl13 has the highest mean
ZH (24 dBZ) and mean ZDR (0.99 dB) as well as the lowest
mean ρHV (0.93) compared with the other optimal clusters,
and it is mostly located near 0 ◦C. These characteristics im-
mediately indicate that f_cl13 can be labelled as belonging to
the “bright band” cluster with mixed-phase (MP) particles.

The MP cluster (f_cl13 in Fig. 6) is observed to have some
sagging areas: between 10:00 UTC and 12:20 UTC, around
16:00 UTC and near 18:00 UTC. Note that f_cl1 is observed
above the MP cluster f_cl13 exactly at these time intervals
(Fig. 6). This sagging “bright band” signature is often ob-
served where aggregation and riming processes are occur-
ring directly above the melting layer (Kumjian et al., 2016;
Ryzhkov and Zrnic, 2019). This suggests that f_cl1 can be
associated with the processes of aggregation or riming and
labelled accordingly.

Looking at the percentage of points belonging to each
cluster in the optimal clustering set (Fig. 8f), we see that
clusters f_cl7 and f_cl12 have less than 2 % of points and
most probably represent some sporadic and/or special con-
ditions. These clusters have also been separated early from
the other “low ice” (f_cl4, f_cl5, f_cl6) and “elevated ice”
(f_cl8, f_cl9, f_cl10, f_cl11) clusters and are located near the
top of the hierarchical tree (Fig. 5). Both clusters f_cl7 and
f_cl12 have smaller absolute mean ZDR values (−0.062 and
0.097 dB respectively) than the other “ice” clusters (Fig. 8b).
f_cl7 is also characterized by the highest mean KDP value
(0.44◦ km−1) among all of the clusters (Fig. 8d). The com-
bination of rather high ZH (17 dBZ) and high KDP at tem-
peratures around −15 ◦C indicates a cluster with high parti-
cle number concentration of small ice crystals mixed with a
small amount of bigger aggregates. This cluster is potentially
a manifestation of the rapid growth of ice via vapour deposi-
tion and the onset of aggregation in the dendritic growth layer
(DGL) discussed in detail in Griffin et al. (2018). These char-
acteristics were also recognized as a signature of dendritic
crystals in Bechini et al. (2013). f_cl12 has the lowest mean
ZH value (−3 dBZ) of all optimal clusters. Combining the
low mean ZH with low mean ZDR (0.097 dB) and a tempera-
ture of about 3 ◦C, we can assume that f_cl12 can be labelled
as small droplets (i.e. drizzle).

f_cl11 belongs to the “elevated ice” clusters and in most
cases (see Appendix B, Fig. B1) appears as a column in the
height vs. time representation (around 07:00 UTC in Fig. 6
or in panels (a) 07:00–08:00 UTC, (c) 05:00 and 07:30 UTC,
(g) 12:00 UTC and (h) 12:00–12:30 UTC in Fig. B1) filling
all of the altitudes from the top of the cloud to the ML. This
cluster has a low mean ZH value (3 dBZ), one of the highest
mean ZDR values (0.92 dB) and a close to zero mean KDP
value (−0.009◦ km−1). f_cl11 can be labelled as the pristine
ice crystals class, as they typically have high aspect ratios
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Figure 7. Characteristics of the optimal clustering centroids in four polarimetric variables and temperature. The scales of the variables are
as follows: from −20 to 40 dBZ for ZH, from −1.5 to 2.0 dB for ZDR, from 0.9 to 1.0 for ρHV, from −0.3 to 0.6◦ km−1 for KDP and from
−20 to 10 ◦C for temperature (T ).
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Figure 8. Characteristics of the optimal clustering centroids in four polarimetric variables (a – ZH, b – ZDR, c – ρHV and d – KDP) and
temperature (e). The percentage of points in each cluster is shown in panel (f).

(� 1) and tend to fall preferentially with their major axis
aligned horizontally (Keat and Westbrook, 2017).

Clusters f_cl8, f_cl9 and f_cl10 belong to the “elevated
ice” branch of the hierarchical tree (Fig. 5). Among these
clusters, f_cl9 has the most different characteristics com-
pared to the f_cl8 and f_cl10 clusters. f_cl9 has higher mean
ZH (11 dBZ) and ZDR (0.59 dB) in combination with a lower
ρHV (0.97).

f_cl8 and f_cl10 have rather similar characteristics to
each other (Fig. 7, Table A1). The small difference between
these two clusters is in a higher mean ZH (8.6 dBZ) and
KDP (0.14◦ km−1) for f_cl8 compared with 5.8 dBZ and
0.028◦ km−1 for f_cl10. Both clusters are the main “ele-
vated ice” clusters. f_cl10 has a warmer mean temperature
(−8.2 ◦C compared with −16.7 ◦C for f_cl8), and most of

the time it is located near f_cl8 at the beginning or at the end
of the observed event (Fig. B1).

The main “low ice” clusters are f_cl4, f_cl5 and f_cl6.
Clusters f_cl5 and f_cl6 are often observed together with
f_cl6 located above f_cl5. f_cl4 has several appearances
in the height vs. time formats of events (see Appendix B,
Fig. B1, e.g. 09:00 UTC in panel a, 11:00 UTC in panel b,
09:00 and 17:00-18:00 UTC in panel e), mostly above f_cl1,
reaching higher altitudes in the data.

Measurement errors may influence the clustering results.
As was shown by Bringi et al. (1990), noise in the obser-
vations has a strong impact on k-mean HCA (hierarchical
clustering algorithm) results. Unfortunately, it is impossi-
ble to run the same type of analysis conducted by Bringi
et al. (1990) for an unsupervised hierarchical clustering al-
gorithm, as the added noise might deliver a modified hier-
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archical structure with another optimal number of clusters,
and direct comparison to the original set of final clusters
would be impossible. Here, this issue of noise is partially
addressed through our use of QVPs. In particular, azimuthal
averaging of a QVP reduces the noisiness of the differential
phase within the melting layer (Trömel et al., 2013, 2014)
and was recommended in Kumjian et al. (2013) to quantify
rather small enhancements of ZDR and KDP.

The mean negative values of ZDR and KDP in some clus-
ters (f_cl1, f_cl3 and f_cl7) might point at potential biases
due to the miscalibration of ZDR, differential attenuation or
backscatter differential phase in the melting layer. Biases in
the data such as miscalibration will not impact the cluster-
ing process but will impact the labelling, as it is based on
cluster characteristics. A miscalibration of ZDR can also be
excluded, as we routinely perform calibration of this vari-
able. ZH and ZDR are corrected for the attenuation in the
data preprocessing. Biases caused by backscatter differential
phase in the melting layer (Trömel et al., 2014) have not been
removed and are evident in the cluster characteristics. The
influence of the backscatter differential phase needs further
investigation. As discussed, not all clusters can be labelled
with absolute confidence solely based on the cluster’s char-
acteristics, and in situ observations can help to verify these
initial suppositions.

5.3 Clusters vs. in situ observations

5.3.1 In situ data

For the verification of the preliminary labelling made in
Sect. 5.2, data from the CIP15 and CIP100 on board the
FAAM BAe 146 are utilized. FAAM BAe 146 aircraft flights
were performed on 4 out of 8 d (Table 1) of radar observa-
tions: 17 May 2017, 24 January 2018, 13 February 2018 and
14 February 2018. The flight altitudes and the time stamps
when the aircraft was inside the QVP domain can be ob-
served in the height vs. time representations of the optimal
clusters in Fig. B1.

Out of the four available flights, there are 23 periods of 20 s
intervals which result in a total of 460 s of flight time when
the aircraft was inside the QVP domain and a cluster can
be assigned to the corresponding height. Of these 23 periods
there are observations corresponding to nine unique clusters
(f_cl1, f_cl2, f_cl3, f_cl4, f_cl5, f_cl6, f_cl8, f_cl10, f_cl12).
This samples 70 % of the final clusters. From these time se-
ries, we present examples of CIP15 and CIP100 images for
each cluster (Fig. 9) and mean particle size distributions of
the data observed during the 20 s interval (Fig. 10).

5.3.2 Liquid-phase clusters

The liquid-phase clusters f_cl1, f_cl2 and f_cl3 correspond
to in situ data that contain relatively high concentrations
(> 1000 m−3) of small particles (mostly < 200 µm in size)

which appear round (Figs. 9a–c, 10a–c). This strongly rein-
forces the idea of large amounts of liquid water being present
in the cloud, which supports the labelling of f_cl1–f_cl3 as
being influenced by liquid water hydrometeors. When look-
ing at CIP100 in situ observations in detail, and to some ex-
tent CIP15 observations at sizes > 200 µm, we can see some
significant difference between clusters f_cl1–f_cl3, which
we will now discuss.

f_cl1, observed above the “bright band”, was previously
assigned to be the result of aggregation and riming. In this re-
gion, the CIP100 (Fig. 9, lower part of panel a) shows particle
imagery and particle size distributions segregated by shape
that show the presence of large ice particles (Fig. 10a), again
confirming the previous cluster labelling. The CIP100 data
show the presence of irregularly shaped particles, ranging in
size from∼ 1 to 4 mm, with concentrations in each bin of the
order of 1 m−3. This suggests that a mode of snow particles
is present at the same time as the previously mentioned liq-
uid droplet mode. Many small water droplets in the CIP15
observations (Figs. 9a and 10a, CIP15) could indicate either
the presence of warm cloud processes or small ice crystals
melting first around the ML. The second interpretation is sup-
ported by the imagery from the CIP100 which suggests melt-
ing has not started to occur on the larger particles. In this
case, the larger aggregate snowflakes fall to lower altitudes
before they start to melt and form the clear “bright band” in
the QVPs.

f_cl2 was characterized by the strong variation in ZH,
KDP, ρHV and T of the cluster’s centroids in different cases.
Both CIP15 and CIP100 have small round-shaped particles
in the corresponding images (Fig. 9b). The mean concentra-
tions per particle size distributions (Fig. 10b) show the preva-
lence of particles recognized by shape as water droplets. The
droplets of < 2 mm size have the occurrences of the order of
10 to 90 000 m−3, with higher orders corresponding to par-
ticle sizes < 200 µm. Summing up previous analysis and in
situ observations, we can assign f_cl2 to a “liquid” cluster,
which includes rain of varying intensities and different drop
sizes.

f_cl3 also has predominantly small round-shaped particles
(mean size µ= 128 µm) in the CIP15 panels (Figs. 9 and 10,
upper part of panel c). The CIP100 data (Fig. 9, lower part of
panel c) were not processed due to technical issues with the
probe, so water or ice concentrations based on this data are
unfortunately not available. The high concentrations (1000–
5000 m−3) of small size (< 200 µm) particles are assigned
to water (Fig. 10c). Concentrations of the larger particles (>
200 and < 800 µm) are very low (< 100 m−3). Considering
these observations, the cluster’s characteristics, and the fact
that the cluster appears mostly at the beginning or at the end
of the events (Fig. B1), we can assume that the cluster either
represents very light rain or drizzle or indicates a partially
filled QVP domain in the original data.
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Figure 9. Examples of the images taken from the cloud image probe CIP-15 (15 µm, upper) and CIP-100 (100 µm, lower) within a 30 km
range of the radar position: (a) for f_cl1 – at 18:25:31 UTC on 14 February 2018; (b) for f_cl2 – at 18:56:13 UTC on 14 February 2018;
(c) f_cl3 – at 11:36:44 UTC on 24 January 2018; (d) f_cl4 – at 18:17:53 UTC on 14 February 2018; (e) f_cl5 – at 16:53:50 UTC on 14 Febru-
ary 2018; (f) f_cl6 – at 08:52:13 UTC on 13 February 2018; (g) f_cl8 – at 07:43:16 UTC on 13 February 2018; (h) f_cl10 – at 17:55:01 UTC
on 14 February 2018; (i) f_cl12 – at 12:07:24 UTC on 24 January 2018. The image widths are 960 and 6400 µm respectively. The temperature
values are derived from the model data, and the heights are derived from the location of the clusters in the QVPs.
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Figure 10. Corresponding to Fig. 9, particle size distributions from the cloud image probe CIP-15 (15 µm, upper) and CIP-100 (100 µm,
lower) within a 30 km range of the radar position: (a) for f_cl1 – at 18:25:31 UTC on 14 February 2018; (b) for f_cl2 – at 18:56:13 UTC on
14 February 2018; (c) for f_cl3 – at 11:36:44 UTC on 24 January 2018; (d) for f_cl4 – at 18:17:53 UTC on 14 February 2018; (e) for f_cl5 –
at 16:53:50 UTC on 14 February 2018; (f) for f_cl6 – at 08:52:13 UTC on 13 February 2018; (g) for f_cl8 – at 07:43:16 UTC on 13 February
2018; (h) for f_cl10 – at 17:55:01 UTC on 14 February 2018; (i) for f_cl12 – at 12:07:24 UTC on 24 January 2018. The image widths are
960 and 6400 µm respectively. The temperature values are derived from the model data, and the heights are derived from the location of the
clusters in the QVPs.
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5.3.3 Solid-phase clusters

The CIP15 images for f_cl4 show a mix of larger irregu-
larly shaped particles (aggregates of snowflakes) and rela-
tively few tiny ice crystals (Fig. 9d) with very small irregu-
lar shapes. The mix of small (< 1 mm) particles recognized
as water and ice has low total concentrations (500–800 m−3;
Fig. 10d). Particles of larger sizes (> 1 and < 3.0 mm) have
concentrations from 100 to 800 m−3 (Fig. 10, lower part of
panel d) and were recognized as ice due to their irregular
shapes. The small number of “round” particles recognized
as liquid are likely an artefact of the data processing due to
out-of-focus imaging of the numerous ice particles which are
present – such artefacts appear when particles are observed
at the edges of the depth of field (O’Shea et al., 2019). Ac-
cordingly, this cluster can be assigned to the mix of pristine
ice and some formed aggregates, all with low concentrations.

f_cl5 and f_cl6 show very similar images in CIP15, but the
CIP100 images illustrate the difference between these two
clusters (Fig. 9e, f). The shape analysis of CIP100 suggests
that both clusters include a low concentration (40–50 m−3)
of small round-shaped particles (< 1 mm size; the lower part
of panels e and f, Fig. 10). Similar to f_cl4, the number of
liquid particles are likely an artefact of the data processing
(O’Shea et al., 2019). The main difference between these
clusters is shown in the part of the data recognized as ice.
The mean size of the particles of f_cl5 is about 1.7 mm and
has occurrences of the order of 100 m−3 (Fig. 10e). The mean
size of particles in f_cl6 is a bit smaller (1.4 mm), and parti-
cles around that size have a higher occurrence of the order of
400 m−3 (Fig. 10f). This difference between f_cl5 and f_cl6
resembles the aggregation processes when dendritic crystals
of higher concentrations formed at higher altitudes (f_cl6)
start to clump together during their fall and form aggregates
(f_cl5) with a lower concentration of particles.

Clusters f_cl8 and f_cl10, which belong to the “elevated
ice” branch of the hierarchical tree (Fig. 5), are also repre-
sented by the very similar images of CIP15 and CIP100 ob-
servations (Fig. 9g, h) with the difference in the particles’
concentration (Fig. 10g, h). f_cl8 has a higher concentration
of small size (< 1 mm) particles (up to 1000 m−3) recognized
as spherical than f_cl10 (up to 300 m−3). The bigger par-
ticles captured in CIP100 corresponding to f_cl8 are larger
(from 1 mm up to 3 mm) and also have a higher concen-
tration (< 500 m−3) compared with particles of f_cl10 that
have a maximum size of about 2 mm with concentrations
< 200 m−3. The example of CIP100 images suggests that
these particles are dendritic in nature (Fig. 9h). Again, similar
to the artefacts discussed when looking at the CIP observa-
tions for f_cl4, f_cl5 and f_cl6, there is likely an erroneous
classification of small size particles (O’Shea et al., 2019).
Thus, according to in situ data, f_cl8 can be assigned to a mix
of pristine ice and bigger aggregates, and f_cl10 can be as-
signed to a low concentration mix of pristine ice and smaller
aggregates.

The last in the list of clusters verifiable with the FAAM
BAe 146 data is f_cl12 (Fig. 9i). Figure. 10i shows occur-
rences of the order of 10 000 m−3 for very small particles
up to 150 µm and occurrences of the order of 1000 m−3 for
droplet sizes between 150 and 250 µm with almost no occur-
rence of bigger particles. Unfortunately, concentrations from
CIP100 data are not available for this cluster due to techni-
cal issues with the CIP100 probe. f_cl12 contains the lowest
number of data points in QVP analysis (Fig. 8f), and there
are no other in situ observations related to this cluster. Based
on available data, we could assume that the cluster has a high
concentration of tiny water droplets (potentially drizzle). On
the other hand, similar to the data for other classes, the CIP
analysis may have misclassified these as liquid due to their
small round appearance in the observations when in reality
the observations could represent high concentrations of small
ice particles. Likewise, the mean temperature of this cluster
is close to 0 ◦C, so no definitive label may be given based
on the observations. Thus, the physical interpretation of this
cluster is ambiguous, although the cluster is separate within
the multivariate space.

5.3.4 Assignment conclusions

The rest of the clusters need to be assigned by means of hu-
man interpretation according to the cluster characteristics or
deduction from the interactions and temporal evolution of al-
ready assigned clusters. The summary of the assigned clus-
ters can be found in Table A1 of the Appendix A. Application
of in situ observations for the assessment of QVP-based clus-
ters has its limits, as not all optimal clusters were captured by
the FAAM BAe 146 flights, and this process requires a com-
parison of data from essentially one-point measurement to
the cluster based on the mean QVP domain values. An ap-
propriate validation process would utilize columnar vertical
profiles (CVPs) as described in Murphy et al. (2020) with the
thorough co-location of the aircraft observations. Utilizing
CVPs within the presented technique is a part of the planned
work for the future.

6 Summary and conclusions

This paper presents a new hydrometeor classification tech-
nique from QVPs. Note that both the data-driven approach
and the use of QVPs is novel. In this technique, the hydrom-
eteor types are identified from an optimal number of hier-
archical clusters, obtained through a recursive process. This
recursive process includes an initial dimensionality reduction
by principal component analysis followed by spectral cluster-
ing. Spectral clustering performed in the PCA space allows
us to identify clusters that would have a non-convex form in
the original multivariate input space. This property of the al-
gorithm makes it unique and advantageous in comparison to
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other classification methods, which separate classes by hy-
perplanes.

The final set of clusters is identified with an optimality
check using validity indexes. This represents the first attempt,
in top-down hierarchical clustering of weather radar data, to
identify the number of clusters based solely on the embedded
data characteristics. This data-driven technique produces an
optimal number of clusters and keeps the hierarchical struc-
ture built in the clustering process. The final set of clusters
may be labelled based on their positioning in the hierarchical
structure, the characteristics of their centroids and coincident
in situ observations. Depending on the user’s needs and inter-
ests, the labelling can also be performed for different levels
of granularity. In the example shown in this study, we uti-
lize observations collected during several FAAM BAe 146
flights to demonstrate the advantages this technique has in
the labelling process. In this case, based on the data avail-
able, 70 % of the clusters were labelled using the coincident
CIP observations. The other 30 % of the clusters, which were
not sampled during the FAAM BAe 146 flights of this study,
were labelled based on the cluster characteristics, their po-
sitioning in the hierarchical structure and considering inter-
actions with clusters in a height vs. time format of original
QVP data.

Thus, in this study, we find that a data-driven HC approach
is capable of providing an optimal number of classes from
the observations. Moreover, the embedded flexibility in the
extent of granularity is the main advantage of the technique.
Each branch of the hierarchical structure can be cut out at
any level, and the parent cluster characteristics can be used
for labelling and identifying more general processes in the
atmosphere, while the lower level clusters can provide in-
formation about more specific properties and features of the
observations.

The centroids of the clusters represent characteristics of
the points belonging to a cluster in the multivariate input
space (in this case, the polarimetric radar variables and tem-
perature). The identification of these centroids allows the
clusters to be tracked in time and altitude as the centroids
are calculated based on QVPs from single scans. An analy-
sis of the time series of the radar volume scans is possible
and would allow the clusters to be tracked in time and three-
dimensional space. Although unexplored in this study, the
application of the presented approach in this way could be
used to provide information on the temporal evolution of the
identified hydrometeors and reveal relationships between the
identified classes.

Note that the final set of clusters is optimal only for the
provided input dataset (Table 1), which gives the user an
opportunity to select the input dataset depending on their
needs. Thus, for the clustering to reflect ice properties and
processes, the appropriate input data climatology should be
used. For identification of specific features in the data (e.g.
birds or insects) a subset of cases potentially including these
features should be selected for the analysis. Further analysis
of a long-term dataset could be used to create a set of clima-
tologically representative clusters that could be used to study
general processes and inform the development of an opera-
tional HC scheme.

In this paper, the technique was used for the classification
of QVPs of long-lasting precipitation events, but the same
algorithm can be applied to various needs (e.g. the identifi-
cation of birds and insects or the clustering of volume scans
of radar data). In parallel with the application of hierarchical
clustering technique to other radar observations, a thorough
validation of the clusters using CVPs following the FAAM
BAe 146 is planned.
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Appendix A: Polarimetric characteristics of the optimal
clusters

Table A1 provides the relevant statistics of each of the 13
optimal clusters identified in this work from a database of
X-band radar data.

Table A1. Statistics describing the content of the 13 optimal clusters identified in Sect. 4. For each polarimetric variable and for each cluster,
we provide the mean value, the standard deviation σ and [minimum, maximum] values.

Variable Cluster Unit Mean σ Min 25 % 50 % 75 % Max Label
value value value

ZH f_cl1 dBZ 20 5 3 17 20 23 38 Aggregation or riming of
ZDR dB −0.04 0.11 −0.46 −0.12 −0.05 0.03 0.25 ice crystals
ρHV – 0.989 0.002 0.974 0.987 0.989 0.990 0.994
KDP

◦ km−1 0.1 0.1 −0.2 0.0 0.1 0.2 0.6
T ◦ C −2 3 −14 −4 −2 −1 5

ZH f_cl2 dBZ 22 6 2 18 23 25 42 Rain
ZDR dB 0.13 0.17 −0.21 0.02 0.08 0.20 1.29
ρHV – 0.991 0.002 0.961 0.990 0.991 0.992 0.995
KDP

◦ km−1 0.0 0.2 −0.9 0.0 0.0 0.0 0.5
T ◦ C 7 3 −5 4 6 10 14

ZH f_cl3 dBZ 7 8 −21 2 8 13 29 Light rain or drizzle
ZDR dB −0.04 0.09 −0.43 −0.10 −0.04 0.02 0.43
ρHV – 0.984 0.008 0.875 0.982 0.987 0.989 0.993
KDP

◦ km−1
−0.1 0.2 −1.0 −0.1 0.0 0.0 0.1

T ◦ C 4 4 −10 1 4 6 13

ZH f_cl4 dBZ 12 3 1 10 12 14 24 Low concentration pristine
ZDR dB 0.15 0.11 −0.22 0.07 0.16 0.23 0.57 ice and aggregates
ρHV – 0.984 0.002 0.969 0.983 0.985 0.986 0.993
KDP

◦ km−1 0.1 0.1 −0.15 0.04 0.07 0.11 0.25
T ◦ C −6 4 −20 −8 −6 −3 3

ZH f_cl5 dBZ 20 3 11 17 19 22 37 Low concentration larger
ZDR dB 0.15 0.11 −0.22 0.07 0.15 0.22 0.57 aggregates
ρHV – 0.986 0.003 0.954 0.985 0.986 0.988 0.992
KDP

◦ km−1 0.2 0.1 0.0 0.1 0.2 0.3 0.8
T ◦ C −4 3 −13 −6 −4 −2 3

ZH f_cl6 dBZ 15 3 7 13 15 17 27 Higher concentration dendritic
ZDR dB 0.33 0.11 0.01 0.26 0.33 0.40 0.84 crystals low concentration
ρHV – 0.982 0.003 0.965 0.980 0.983 0.984 0.989 aggregates
KDP

◦ km−1 0.3 0.2 0.0 0.2 0.2 0.3 1.2
T ◦ C −9 4 −21 −12 −9 −7 0

ZH f_cl7 dBZ 17 4 7 13 18 21 28 High concentration pristine
ZDR dB −0.06 0.08 −0.03 −0.12 −0.06 −0.01 0.18 ice and low concentration
ρHV – 0.985 0.004 0.970 0.984 0.987 0.988 0.992 larger aggregates
KDP

◦ km−1 0.4 0.1 0.1 0.3 0.5 0.5 0.8
T ◦ C −15 6 −30 −20 −15 −10 −4
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Table A1. Continued.

Variable Cluster Unit Mean σ Min 25 % 50 % 75 % Max Label
value value value

ZH f_cl8 dBZ 9 2 2 7 9 10 15 High concentration pristine ice
ZDR dB 0.35 0.13 −0.08 0.28 0.34 0.44 0.75 and low concentration
ρHV – 0.981 0.003 0.960 0.979 0.982 0.984 0.989 of dendrites
KDP

◦ km−1 0.1 0.1 0.0 0.1 0.1 0.2 0.6
T ◦ C −17 4 −33 −20 −17 −14 −2

ZH f_cl9 dBZ 11 33 2 8 11 13 29 Dry aggregates of pristine ice
ZDR dB 0.59 0.18 0.10 0.46 0.56 0.68 1.61
ρHV – 0.975 0.004 0.944 0.972 0.975 0.977 0.985
KDP

◦ km−1 0.1 0.1 −0.7 0.1 0.1 0.2 0.7
T ◦ C −8 5 −19 −12 −8 −4 4

ZH f_cl10 dBZ 6 3 −6 4 5 8 17 Low concentration of pristine
ZDR dB 0.32 0.16 −0.21 0.22 0.32 0.42 0.87 ice and dendrites
ρHV – 0.978 0.004 0.956 0.976 0.9979 0.981 0.989
KDP

◦ km−1 0.0 0.0 −0.8 0.0 0.0 0.1 0.3
T ◦ C −8 5 −26 −12 −7 −4 9

ZH f_cl11 dBZ 3 4 −17 1 3 5 16 Pristine ice crystals
ZDR dB 0.92 0.43 0.23 0.63 0.83 1.11 3.23
ρHV – 0.961 0.017 0.810 0.959 0.966 0.970 0.982
KDP

◦ km−1 0.0 0.2 −1.3 0.0 0.0 0.1 0.3
T ◦ C −5 4 −18 −8 −5 −1 6

ZH f_cl12 dBZ −3 5 −19 −6 −2 1 8 Drizzle
ZDR dB 0.10 0.13 −0.23 0.01 0.07 0.17 0.93
ρHV – 0.097 0.012 0.88 0.960 0.968 0.973 0.980
KDP

◦ km−1 0.0 0.1 −0.8 −0.1 0.0 0.0 0.6
T ◦ C 3 4 −8 0 3 6 11

ZH f_cl13 dBZ 24 8 −7 19 25 30 42 MP
ZDR dB 0.99 0.49 0.04 0.63 0.92 0.96 0.99
ρHV – 0.931 0.032 0.768 0.910 0.934 0.956 0.989
KDP

◦ km−1 0.2 0.2 −1.3 0.0 0.2 0.3 1.3
T ◦ C 1 2 −3 0 1 2 11
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Appendix B: The optimal clusters in eight events

Figure B1. The height vs. time format of the final optimal set of active clusters found by the top-down hierarchical clustering for the QVP
input data described in Table 1. The observations were made on (a) 1 February 2017, (b) 3 February 2017, (c) 3 March 2017, (d) 22 March
2017, (e) 17 May 2017, (f) 24 January 2018, (g) 13 February 2018 and (h) 14 February 2018. (The hierarchical structure behind the optimal
clustering is found in Fig. 4.)
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