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Abstract

Slurry management is becoming increasingly important as countries work to

decarbonise towards Net Zero goals. After feed, slurry management and application is

one of the main contributors to the greenhouse gas emissions and environmental

pollution associated with pork production. Whilst traditionally considered a waste

product, slurry is rich in nutrients, and could be harnessed to reduce environmental

impacts and improve on-farm resilience. Along with reducing environmental impacts

of pork production, farmers are increasingly looking to diversify their income streams

and pig slurry offers tremendous potential to achieve this. This review identifies the

opportunities and challenges to the pork sector from circular, sustainable waste

management systems through insect bioconversion or on-farm biogas production, with

a focus on the United Kingdom. Insect bioconversion of pig slurry, through the use of

Black Soldier Fly larvae, presents opportunities not only to reduce the overall volume of

slurry on a farm, but also to reduce heavy metal contamination, alter the microbiome
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and provide a myriad of additional products. These products include fertiliser in the

form of insect frass, protein, oils, and chitin from the insect exoskeleton, which has

applications in industries such as wastewater treatment, pharmaceuticals and

healthcare. Through on-farm biogas generation, farmers, particularly those in rural

areas, could reduce their reliance upon volatile energy prices and generate electricity

and heat to power on-farm activities. With additional infrastructure, biogas could be

upgraded to produce biofuel and CO

2

could be recovered, recycled, and sold into a

variety of industries. Whilst there are still a number of outstanding questions that need

to be answered and challenges that need to be addressed before wide-scale rollout of

these technologies, there is huge potential to harness the power of pig slurry. When

designing the farm of the future, solutions will likely need to be tailored to an individual

farm due to a range of variables including the stage of production, the number of pigs,

the pig diet and the availability of co-products. However, despite these potential

challenges, there is still considerable opportunity for the pork sector to harness this

‘waste’ product to decarbonise pig production and improve farm resilience.

Key words: Insect Bioconversion, Biogas, Black Soldier Fly Larvae, Pig Slurry, Sustainable

Implications

There is growing pressure to decarbonise agriculture to meet Net Zero targets. After

feed, most greenhouse gas emissions from pig production are primarily associated

with slurry management and spreading. Bioconversion by insects or the generation of

biogas from pig slurry provide viable options to reduce emissions and eutrophication,
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improve crop growth and generate additional income within the farm-gate. Whilst

there are still unanswered questions around the safety of rearing Black Soldier Fly

larvae on pig slurry and the feasibility of wide-scale, on-farm energy generation, the

valorisation of waste holds tremendous potential to provide resilience and

diversification to the pork sector.

Introduction

Agriculture faces the challenge of producing enough nutritious, safe and affordable

food to feed the growing world population whilst at the same time reducing the

environmental impact and exploitation of natural resources associated with its

production. Global demand for pork has led to rapid growth in its production by

approximately 4.5 times between 1961 and 2021, from 24.8 to 109.2 million metric

tons, representing approximately 33% of global meat production (Ndue and Pál, 2022).

Estimates suggest that demand for meat will continue towards 2050 and beyond, but

this will vary by commodity and country (Henchion et al., 2021; Komarek et al., 2021).

Whilst meeting the global demand for food, it is essential that farming systems are

sustainable and reduce emissions as low as possible if countries are to meet the

legally binding targets set out in the 2015 Paris Agreement (UNFCCC, 2018).

There is global pressure to decarbonise agriculture with livestock production

estimated to be responsible for 8-14.5% of global greenhouse gas emissions (GHGs)

depending upon the method of calculation used (Caro et al., 2014; Gerber et al., 2013;

O’ Mara, 2011). Pig production contributes significantly less GHGs to the atmosphere
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than ruminant production (i.e. cattle, sheep, etc.) due to the inherent differences in the

physiology of the animals. Whilst the majority of GHGs associated with pig production

are attributable to feed at 31-76% (Andretta et al., 2021; Groen et al., 2016), this is

followed by manure management (Lesschen et al., 2011). There is also concern

around the impact of pig production on both water and air quality (Costantini et al.,

2020; Li, et al., 2022). Concerns around pig production include eutrophication of

nutrients into waterways, acidification of soils and reduced air quality due to NH

3

, as

well as emission of gasses such as CH

4

, CO

2

and N

2

O. These concerns are largely

associated with the storage, handling and spreading of slurry. There is considerable

opportunity to improve the utilisation of slurry on farm, to reduce environmental impact

and to generate alternative income streams for farmers.

Overview of waste production

For centuries, animal slurries and manures have been used as an amendment to soil in

place of, or alongside the use of inorganic fertiliser. The British Survey of Fertiliser

Practice 2022, (DEFRA, 2022), estimated that approximately 67% of farms applied

organic manures (e.g. manure, slurry or farmyard manure) to at least one field on their

farm and it has been estimated that in the United Kingdom (UK), approximately 83

million tonnes of livestock manure is produced each year (Smith and Williams, 2016).

The quality and quantity of animal waste produced will vary depending upon multiple

factors including the type, age, diet and breed of the animal reared (Antezana et al.,

2016; Van Horn, 1998).
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Waste from livestock, such as pig slurry, is rich in nitrogen and phosphorous as well as

other macro and micronutrients, which provide essential nutrients to soils and growing

crops. However, despite otherwise sound environmental practices, the concentration

of constituents such as N (in the form of nitrate, NO

3

-

) and P can be in excess of the

requirements for the soil and crops where slurry is spread, which may result in leeching

or run-off into waterways, causing eutrophication of water sources. For example, in the

UK, the failure of 31% of waters to achieve good water quality status has been

associated with poor management of agricultural and rural land (Environment Agency,

2018). Animal wastes may also cause soil contamination due to the presence of heavy

metals and pathogens, the concentration of which vary with animal species and

management practices. Pig slurry, for example, has been shown to contain a 2-fold

higher concentration of both zinc and copper when compared with cattle (Jakubus et

al., 2013), although these numbers are likely to have declined since the removal of zinc

oxide from nursery diets in the EU from 2022.

In intensive pig production with slatted floors, slurry is typically held in pits under the

animals and then pumped, or gravity fed into a storage tank where it is held until

required. During storage, microbes present in the slurry continue to ferment the organic

material present. This, alongside the mixing of urine and faeces, results in the

formation and release of CH

4

, CO

2,

N

2

O and NH

3

. The release of these gasses into the

atmosphere results in pollution and odour and a high concentration of NH

3

in pig

buildings, for example, could have negative health implications for both pigs (Witt et
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al., 2024; Zhang et al., 2021) and farm workers (discussed in Conti et al. (2021)).

Whilst farms manage in-room emissions through ventilation (either natural or

mechanical), this can be a challenge in colder months when also trying to maintain

room temperatures. Improving management of slurry is therefore essential for

reducing the environmental impact of pig production.

Along with reducing environmental impact of pig production to reach Net Zero goals,

diversification of income streams is becoming increasingly important for farms.

Changes to slurry management present an opportunity to reduce an individual farm’ s

environmental footprint, reduce emissions and improve profitability and resilience.

Whilst slurry is often considered a waste product from pig production, there is scope to

capture and valorise the nutrient content that remains. This review will consider the

opportunities and challenges for on-farm valorisation of slurry from pig production

within a sustainable, circular farming system. Here we will discuss the bioconversion

of slurry with insects as well as on-farm biogas production.

Pig slurry is rich in organic matter and contains macronutrients such as nitrogen (5.8%

of DM) and phosphorous (3.4% of DM) as well as micronutrients including iron (1871

mg/kg), copper (416 mg/kg) and zinc (1806 mg/kg), despite a relatively high water

content (DM content averaging 5.7%) (Fernández-Labrada et al., 2023), though this will
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vary between farms and pig type (Yagüe et al., 2012). Whilst application to land as a

fertiliser is well established, the nutritive value of pig slurry makes it a potential

feedstock for insect bioconversion. During the bioconversion process, insect larvae

consume the substrate to produce insect protein and oils, chitosan and frass (insect

excretions and moulted exoskeletons). Diverting slurry through a bioconversion

process prior to land application can generate additional high-value products on farm

(see Section: Bioconversion Diversification Streams) whilst still producing a viable

fertiliser albeit with a much lower water content (40-90% DM; Gärttling and Schulz

(2022)). Additionally, due to the relatively short rearing period of insect larvae on

animal wastes (approx. 20 days; (Rehman et al., 2019)), the rapid turnover of slurry

would reduce the harmful emissions associated with prolonged storage.

Whilst a number of insect species have been explored for their potential in insect

farming systems, this review will focus on the Black Soldier Fly ( ).

The Black Soldier Fly (BSF), , originates from the Americas (Sheppard,.

et al., 1994), and is a non-pest, generalist feeder (Rindhe et al., 2019; Taufek et al.,

2024). Females preferentially lay eggs in dry areas around decomposing organic

matter (Booth and Sheppard, 1984), and the larvae undergo six instar stages before

entering the prepupal stage (De Smet et al., 2018). Prepupae cease eating and migrate

from the substrate to pupate (Georgescu et al., 2020). Adults do not need to feed and

mate just once during their lifetime (Singh and Kumari, 2019). As such, the larval
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feeding stage (BSFL) is crucial for the insects’ growth and energy storage. Crucial to

larval growth is the main site of digestion, the midgut (Eke et al., 2023), which consists

of three main sections, namely the anterior, middle and posterior midgut, that differ in

morphology and pH (Bonelli et al., 2019). The midgut also displays morphological

changes related to the type of substrate the larvae is feeding on, including changes to

microvilli to aid absorption, as well as alterations in enzymatic activity (Bonelli et al.,

2020). This is particularly significant given the generalist feeding ability of these

larvae. Feeding efficiency of BSFL is dependent on a number of factors, including type

(Liu et al., 2018) and moisture content of substrate (Cheng et al., 2017), rearing

temperature (Sheppard et al., 2002) and fly strain (Zhou et al., 2013). The ability of

larvae to survive and feed on different substrates, some of which will have high

microbial loads, which could include pathogenic bacteria, is partially influenced by

their immune system, including the production of antimicrobial peptides (Moretta et

al., 2020) and through competition with their own microbiota (Shi et al., 2024).

Indeed, the microbiome of BSFL is critical to their successful bioconversion of

substrates. Black Soldier Fly show high enzymatic activity in the gut, including lipase

and proteases (Kim, W. et al., 2011), but are also able to digest tough fibres such as

lignocellulose (Kariuki et al., 2023) and cellulose (Zhang, Jia et al., 2023) via the action

of the microbiota; the composition of which is also largely affected by substrate type

(Auger et al., 2023). As a result of these combined factors, BSFL can be reared on a

large variety of substrates, including food waste (Cheng et al., 2017), livestock manure
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(Zhou et al., 2013) and wastewater (Grossule et al., 2023), and this has given them an

important status within the insect farming sector.

Black Soldier Fly larvae can be reared on a number of different livestock wastes

including pig slurry (Miranda et al., 2020). Studies generally report that larval

survivorship on pig slurry is high (for example, in the range of 70-97%) (Miranda et al.,

2019; Miranda et al., 2020; Oonincx et al., 2015), and developmental times are often

found to be shorter than those reared on dairy manure (Miranda et al., 2020; Oonincx et

al., 2015), though this is not always the case (Miranda et al., 2019). Newton et al.

(2005) found that mass of pig slurry can be reduced by BSFL by up to 56%, though in

another study, dry matter reduction was lower at 37% (Oonincx et al., 2015). Other

studies have also reported different waste reduction values (Miranda et al., 2019; Zhou

et al., 2013). Thus, there are differences in dry matter bioconversion efficiencies

between studies, for example an efficiency of 12.5% was found by Parodi et al. (2021),

whilst 4.5% was observed by Oonincx et al., (2015).

Many properties of the slurry, such as nitrogen levels (Oonincx et al., 2015), moisture

content (Cheng et al., 2017), and even the stage of production that the slurry was

collected from (Hao et al., 2023b), can affect the bioconversion efficiencies of the

larvae (Miranda et al., 2019; Oonincx et al., 2015). Fly strain has also been found to

have an effect (Zhou et al., 2013), and the microbiota is also critical (Zhang, Jia et al.,

2023). As a result, values reported in the literature can be variable. However, a
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number of studies have found bioconversion of pig slurry by BSFL can be successfully

attained, and this has resulted in an increasing interest in this area in recent years, with

a range of factors involved in this process, being investigated (Table 1).

The process of insect bioconversion of pig slurry results in a number of products,

which offer a variety of diversification streams on an individual farm (Figure 1). These

products include a low-moisture content fertiliser, high value proteins, oils, and other

insect products such as chitin, which has the potential for a myriad of downstream

applications across a variety of different industries.

Fertilisers are used to provide crops with essential nutrients such as nitrogen and

phosphorus, in order to stabilise and increase yields. The frass that is produced from

insect bioconversion of livestock waste has potential as a fertiliser (Lomonaco et al.,

2024). For example, bio-stimulating substances present in the frass, such as humic

acid, amino acids and chitin, could be beneficial for crop growth (Abd Manan et al.,

2024). Whilst, the availability of nitrogen and soluble phosphorus, combined with a

reduction in heavy metals, also increases its potential for fertiliser use (Amorim et al.,

2024). Ammonia content of BSF frass can be lower than other manures (Abd Manan

et al., 2024).
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In addition, aromatic structures that increase the stability of organic matter (He et al.,

2011), can be increased in animal manure by the addition of BSFL (Wang, et al., 2021).

In one study, the uptake of nitrogen was increased in plants treated with frass

compared to those treated with commercial fertiliser (Beesigamukama et al., 2020).

Frass could also provide beneficial microbes that could positively impact on plant

growth, for example, BSFL residues can shift soil microbial communities more so than

the addition of conventional composts, subsequently affecting plant yields (Fuhrmann

et al., 2022). In general, the high dry and organic matter content of frass, the alkaline

pH values and micronutrients are often within the range of commercial fertilisers

(Gärttling and Schulz, 2022). Therefore, the use of frass could reduce reliance on other

fertilisers as part of a circular agricultural system. As frass is usually a much drier

substance than pig slurry, there may be reduced emissions associated with transport

on farm due to the weight reduction in water content. The market size of frass has

been valued at $96.12 million in 2023, and is predicted to grow to 135.88 million by

2030, with North America and Europe holding the greatest shares (VMR, 2023).

Challenges include changing reliance on chemical fertilizers, scaling-up, and

differences in regulations between countries (VMR, 2023).

The frass produced by BSFL bioconversion of waste is rich in the biopolymer, chitin,

which is a significant component of insect exoskeletons and is shed during moulting

(Soetemans et al., 2020). Much of the current developments around chitin production
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centre around its collection from crustacean waste (Amiri et al., 2022). With the global

market of chitin and its derivatives valued at $5.01 billion, and projected to reach

$13.12 billion by 2031 (VMR, 2024), insect farming could be another option for its

production. Black Soldier Fly larvae contain around 8% chitin, with prepupae

containing 11%, and frass typically having higher quantities due to the presence of

shed exoskeletons (Soetemans et al., 2020). Chitin/chitosan extraction is established

for aquaculture and can be used to estimate projected costs for insect farming, for

example, production of 1kg of chitosan from shrimps, for a plant in Ecuador costs

$8.39 (Riofrio et al., 2021), £10.5-12 in Colombia (Gómez-Ríos et al., 2017) and $14 in

Spain (Moreno de la Cruz, 2019).

There are multiple potential downstream uses for chitin, and its derivatives, that offer

diversification of income for the pig industry. Chitin can be integrated into

biodegradable packaging material (Le et al., 2023), but can also be deacetylated into

the copolymer chitosan. Chitosan has been shown to have antimicrobial properties

(Guarnieri et al., 2022), to bind contaminants such as mercury, making it a possibility

for wastewater purification (Bhatnagar and Sillanpää, 2009), and to be a target for

biomedical products, owing to its chemical properties (Triunfo et al., 2022). Indeed,

chitosan has applications in the pharmaceutical, cosmetics and textile industries

(Morin-Crini et al., 2019; Rehman et al., 2023). There are even potential benefits for

reducing crop pathogens and promoting plant growth (Morin-Crini et al., 2019; Sharp,

2013), with chitosan shown to influence defence gene expression, pathogen resistance
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enzymes and reactive oxygen species production in plants (Torres-Rodriguez et al.,

2021). The wealth of opportunities for chitin/chitosan usage suggests that it could be

a commercially viable by-product from agricultural systems using insects for waste

reduction.

Demand for animal feed is increasing with the global growing human population, and

there is a rising need to establish economically viable, sustainable systems to cope

with this demand (Barragan-Fonseca et al., 2017). Insect protein could reduce the

reliance on soya imports (Wilkinson and Young, 2020) which are often associated with

land use change and GHGs associated with their importation. Insect protein can be

used as an alternative in animal feed, and as of 2017, insects fed on plant-based

substrates have been permitted for use as feed for aquaculture, poultry and pig feed in

the European Union (EU; EU 2017/893 and EU 2021/1372) (EU, 2021). The UK,

however, retains greater restrictions on using insect protein in livestock feed of

animals reared for human consumption (Tiwasing and Pate, 2024).

Black Soldier Fly Larvae contain high amounts of amino acids (Crosbie et al., 2020)

and fatty acids, especially lauric acid (Danieli et al., 2019; Ewald et al., 2020), as well as

vitamins such as thiamin (B

1

) and vitamin C (Zulkifli et al., 2022), and minerals such as

phosphorus and calcium (Chia et al., 2020; Makkar et al., 2014), strengthening its

potential as an animal feed source. Replacement of fish meal in pig diets with BSFL

has been shown to increase body weight, with faster weight gain in finisher pigs (Chia
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et al., 2021), and addition of BSF oil to the diet can increase daily gain of nursery pigs

(van Heugten et al., 2022), and support growth without negative effects on gut

morphology (Crosbie et al., 2021).

However, the substrate that BSFL are reared on has a large effect on their nutritional

composition (Barragan-Fonseca et al., 2017; Ewald et al., 2020). As such, depending

on the consistency and availability of the substrate, larvae may vary in their specific

nutrient composition and digestibility, and studies suggest that it may be more useful

to add BSFL as partial replacement for other sources of protein in the pig diet (as

reviewed by Barragan-Fonseca et al. (2017) (see also Table 2 for examples of

nutritional content of larvae reared on pig slurry). It is important to note, that there is

additional work needed to determine whether larvae meet international standards

around the heavy metal, pathogen, parasite and antimicrobial resistance levels found

in BSFL reared on pig slurry. For example, the reported heavy metal content of larvae

reared on slurry varies between studies, and there is a lack of consistency in the

specific metals that are analysed (Table 3). Additionally, determination of the fate of

pharmaceutical and chemical residues that may be present in the pig slurry is required

before this protein stream can be unlocked.

Oils extracted from BSFL are high in fatty acids, such as lauric, oleic, linoleic and

palmitic acids, omega-3 and omega-6, and show high antioxidant activity (Muangrat

and Pannasai, 2024). Studies have shown that these oils can be used in aquaculture
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feeds (Li et al., 2016) and for poultry (Kim et al., 2020). For example, replacing

soybean oil with BSFL oil in turkey diets was found to increase amylase activity, and

reduce growth in the cecum (Kierończyk et al., 2022). BSFL oil

also has potential applications in human skincare where it has been shown to inhibit

growth in human keratinocyte cells, an important factor in psoriasis (Muangrat and

Pannasai, 2024). In mice, BSFL oil has been shown to produce an anti-inflammatory

response (Richter et al., 2023). There is an additional application for BSFL oil in the

health care sector, where it has been shown to accelerate wound healing (Rahayu et

al., 2024).

Furthermore, larvae oil can be used to produce biodiesel (Mohan et al., 2023). The

addition of BSFL oil to diesel has been shown to lower smoke emissions and fuel

consumption (Rehman et al., 2018). The generation of biodiesel from larvae can

produce fuel that meets the standards of a number of countries, and can use less

energy than other biodiesel-producing systems (as reviewed in Mohan et al. (2023)).

Biodiesel from BSFL fat has been shown to have similar properties to biodiesel from

rapeseed oil, as well as higher saturated fatty acid methyl esters which may confer

oxidative stability (Li et al., 2011), and has potentially reduced climate change effects

compared to rapeseed and soybean oil, however, pre-treatment steps and chemical

usage contribute to its overall impact (Liew et al., 2023).
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Whilst BSFL demonstrate huge potential as a method to valorise pig slurry, there are a

number of potential challenges and current unknowns that need to be resolved before

large-scale implementation can begin. A list of these potential challenges is shown in

Table 4 along with opportunities for future research. One of the main areas of concern

for rearing BSFL on pig slurry is on the safety of the products produced and this raises

questions about their downstream applications. For example, there is some evidence

to suggest that BSFL are able to bio-accumulate heavy metals present in pig slurry

(Diener et al. 2015). Heavy metals may be naturally occurring in livestock feed

ingredients or may be added as supplements to enhance the health and growth

performance of the animals (Nicholson et al., 2006). Pig slurry has been found to

contain high levels of zinc and copper (Provolo et al., 2018), and contributes to heavy

metal input to agricultural soils (Nicholson et al., 2006). Long-term use can result in

copper accumulation that could be toxic to crops (Drescher et al., 2022). Utilising BSFL

to valorise animal wastes could result in heavy metal bioaccumulation in the larvae or

they may excrete these metals into the substrate (Jiang et al., 2022). Studies have

found that the amount of bioaccumulation differs between metals, for example Diener

et al. (2015) found an accumulation of cadmium, but not zinc or lead, and larval

feeding substrate has also been shown to affect this (Biancarosa et al., 2018; Elechi et

al., 2021). Further, Jiang et al. (2022) showed that cadmium, copper, chromium and

zinc were removed from pig slurry that had been bio-converted by insects. Hoffmans et

al., (2024) detected heavy metals, such as manganese, arsenic and lead in the frass of
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larvae reared on pig waste, and noted although frass can be used in the EU as a

fertilizer if heated to 70° C for 1 hour (amendment Regulation (EU) 2021/1925) in

order to control pathogens, the regulation does not set limits for metal concentrations

in the frass.

An additional concern is around the presence of pathogens. Slurry contains a rich

microbiota excreted from the pig which may include pathogenic species, or species

which have the potential to be pathogenic, found as commensal members of the pig

microbiome. For example, genera such as

are all commonly observed in pig gut samples (Adekolurejo et al.,

2023; Sutton et al., 2021). Although there are limited studies to date, there is evidence

to show that pig slurry that has been bio-converted by insect larvae shows decreased

levels of bacteria such as and (Elhag et al., 2022;

Lalander et al., 2015; Zhang et al., 2022). It is currently unclear, however, what

microorganisms are present and viable in the larvae themselves as well as the frass

produced and what impact (if any) this may have on, for example, insect growth or soil

communities.

Finally, an important consideration are the costs involved in construction and running

of insect farms. A joint World Wildlife Fund and Tesco report estimated that for a

medium-sized insect farm, it would require about £10m in construction costs, with

approximate operational costs in the first year of £2.5 million, with the report also

suggesting the potential for 237,000 tonnes of insect protein to be produced by 2050
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in the UK (World Wildlife Fund and Tesco, 2021). The cost of production of larvae was

estimated at £540 per tonne by 2030, with insect oil sales valued at £586-655 per

tonne and frass at £5 per tonne (World Wildlife Fund and Tesco, 2021). In recent years,

there have been some insect farming businesses that have stopped production or are

struggling to be profitable (Shah, 2024), and more research on cost-effectiveness and

scaling is required (Madau et al., 2020). Sales of larvae may start from around $400

per tonne, but prices depend on location and market, which need to be balanced by

operational costs such as those for energy generation, water and feedstocks (for

non-circular systems) (Niyonsaba et al., 2021).

An alternative route to valorise pig slurry comes through the generation of energy on

farm, in the form of biogas. Biogas is a renewable energy resource that has an

important role to play in the green energy transition (Rafiee et al., 2021). Biogas is

generated from the breakdown of biological material, ( “feedstocks” ), such as

animal manures under anaerobic conditions to produce CH

4

, CO

2

and other trace

gasses. Biogas can be used to generate commodities such as electricity, heat and fuel.

By using waste from animal production as a feedstock for biogas production

alongside, or in place of crops, this can reduce competition for land through demand

for growth of cash crops (Gaworski et al., 2017) and allow crop residues to remain on,

or be ploughed into the soil.
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The generation of biogas from pig slurry can reduce the amount of methane that

enters the atmosphere and reduce a farm’ s reliance upon fossil fuels. Other benefits

include a reduction in odour, reduced contamination of groundwater through runoff,

improved air quality (Nagy et al., 2012) and the generation of digestate, which can be

harnessed as a bio-fertiliser (Monard et al., 2020).

The use of animal waste for the generation of biogas is a cost-effective method to

reduce GHGs and re-capture nutrients required for plant growth. Studies have shown

that biogas generation from pig slurry produced biogas ranging in methane content

from 32.4 to 68% (Luján-Facundo et al., 2019; Silva et al., 2018) although depending

upon the type of anaerobic digestion (AD) technology used, this can be improved

(Häner et al., 2022). A theoretical analysis of pig slurry determined a maximum

methane yield of approximately 83% (Santos et al., 2022). Pig slurry has been

identified as having a high buffering capacity, which may reduce the risk of failures of

anaerobic plants by preventing accumulation of volatile fatty acids and the associated

decline in pH (Cuetos et al., 2011). It is important to note that acidification of pig slurry,

to reduce NH

3

release, prior to use in anaerobic digestion has been shown in some

cases to lower biogas potential (Sommer et al., 2015).

Whilst conventional, large scale anaerobic digestion plants are both cost and resource

prohibitive for individual farmers (Wilkinson, 2011), small scale, modularised AD

technologies or wheel and spoke developments, may provide a range of benefits to

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394



20

individual farmers and the pork sector more broadly (Figure 2). There are a number of

potential diversification opportunities available to pig farmers through harnessing

waste as a source of energy and these include generating electricity, income, heat, fuel,

fertiliser, saleable CO

2

and reducing emissions associated with slurry storage.

By harnessing the fermentative digestion of nutrients present in pig slurry, the

generation of biogas can be used to power a combined heat and power (CHP) engine,

to generate both electricity and heat or alternatively, can be used to power a

combustion engine, fuel cell or gas turbine to produce electricity alone (Kang et al.,

2014; León and Martín, 2016; Patania et al., 2012; Wu et al., 2016). On-farm generation

can provide farmers with a more stable, reliable energy supply, which is of particular

interest to farmers in more rural areas, and those with limited access to the grid

(O'Connor et al., 2021). Through CHP, heat can also be generated and used to warm

water, for example, which could be used in farm buildings, or used to heat pig rooms,

reducing energy consumption from fossil fuels. However, differences in the potential

may occur between effluents from different life stages (Gopalan et al., 2013).

Alternatively, the biogas produced can be upgraded through pre-treatment and

separation steps (e.g. removal of water vapour and CO

2

) to produce biomethane

(renewable natural gas) which can be fed directly into the grid as a source of income

(Hengeveld et al., 2014; Rotunno et al., 2017). Biomethane can also be compressed to

generate fuel, which can be used to power on-farm vehicles. During the separation

process, CO

2

can be recovered and recycled and undergo additional purification steps.
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Ultimately, if the processing technology is available, CO

2

from biogas production can

be purified to a food-grade quality, producing additional revenue for farmers.

Additional uses for CO

2

include production of dry ice and stunning in abattoirs and CO

2

is required in multiple industries such as food and drink manufacturing, the

manufacturing of pharmaceuticals, chemical product synthesis, fire extinguishers and

enhanced oil recovery (Supekar and Skerlos, 2014; Valluri et al., 2022). Methods to

capture CO

2

from biogas have been discussed elsewhere (Kanso et al., 2024).

As mentioned previously, by diverting slurry directly into anaerobic digestion, GHGs

associated with slurry storage can be reduced. An Irish case study showed that

mono-digestion of pig slurry reduced GHGs by 48% (190 tonne CO

2

equivalent)

compared with spreading directly to land (Zhang, et al., 2021). Modelling of biogas

generation from available pig slurry in Cyrpus estimated that approximately 20% of the

country’ s energy requirements could be met through renewable biogas generation

from AD of pig slurry alone (Theofanous et al., 2014). This highlights the potential for

utilisation of pig waste.

At the end of the AD process, digestate remains, which similarly to frass, can be

applied to land as a biofertiliser due to its high nutrient concentrations (Czekała, 2022).

Digestate has been shown to have a lower pathogenic load than raw slurry (Pourcher

et al., 2023). However pathogens of concern to human health do still persist (Nag et

al., 2020), and digestate has been shown to have a more appealing nutrient profile,

with higher concentrations of molecules with higher biological stability such as lignin
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(Tambone et al., 2009). Digestate from pig slurry showed similar biomass yields in

wheat plants when compared with a mineral fertiliser, outperforming cattle manure

derived digestate when applied to sandy loam soils (Doyeni et al., 2021). Digestate

from pig slurry was also suggested to be a useful basal fertiliser in rice paddies when

used alongside urea and some additional top-dressed compound-fertilisers, with no

detrimental effects on plant growth as well as improved cooking and eating qualities

of the rice (Zhang et al., 2017). Digestate produced on farms could be sold providing

an additional income stream to farmers.

As with insect bioconversion, there are a number of challenges that may prohibit or

limit the uptake of biogas production on pig farms. Many of these focus around the

suitability of pig slurry as a feedstock. Firstly, animal slurries are highly variable from

farm to farm (Prado et al., 2022) and therefore variation in energy production is likely

to be observed. This may be due to the breed stocked, the diet fed to the animals or

the stage of production that a given farm rears. Slurry composition may also vary with

season (Kowalski et al., 2013) and it is important to consider when slurry is obtained

for biogas production. In order to generate the most biogas, slurry storage time should

be kept as short as possible to minimise the loss of gasses, or alternatively, slurry

should be treated in such a way to minimise fermentative digestion e.g. cooling

(Blázquez et al., 2021; Blázquez et al., 2022) which requires additional infrastructure.

Alternatively, slurry additives can be used which limit gas production during storage
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(Im et al., 2021; Thorn et al., 2022). Room management may also affect slurry

composition; chemicals and detergents used to wash rooms between batches of

animals may suppress the biogas potential of the slurry due to the presence of

compounds that inhibit microbial growth. Therefore, it is important to consider when

slurry is drawn out of pits for biogas generation relative to cleaning.

Slurry also has a low DM content of approximately 3-5% (KeChrist et al., 2017), and as

such, has a relatively low amount of volatile solids available for biogas generation

(Marchetti et al., 2022). Because of this, some authors suggest that biogas production

from pig slurry requires the addition of co-products to allow it to be viable (Guo et al.,

2020; Tian et al., 2023). Pig slurry also has high levels of nitrogen due to the amount of

crude protein fed to the animals to maximise growth performance and lean tissue

deposition. This leads to a higher amount of ammonia in the slurry relative to carbon,

leading to a suppression of methanogenesis and therefore lower biogas yields (Cuetos

et al., 2011; Gaworski et al., 2017).

There are also challenges around the cost of implementation – can a farm afford to

install this technology on their unit and what is the return on investment? The answer

to this will likely be dependent upon the size of the farm and the access to substrate

for AD. Smaller farms (<500 sows) may require additional inputs (e.g. farmyard

manure, agri-food waste, crop residues) to maximise generation of biogas, depending

upon energy generation required. Increasing the amount of biogas produced on farms

within a country, or a particular region, may also be limited by the current energy
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infrastructure and technologies available. For example, selling energy back to the grid

may not always be possible depending upon the capacity at any given time, therefore

limiting potential income streams if battery storage is not available. It has been

suggested that pig slurry should instead be used to generate an inoculum for

anaerobic digestion plants as opposed to acting as a substrate for digestion itself due

to the beneficial microbial community that pig slurry contains (Marchetti et al., 2022).

In this situation, it may be more economically viable for farmers to sell their slurry to a

business that specialises in generating the microbial inoculum. This may be an

opportunity for some farms, but it is unlikely to require the sheer volume of slurry being

produced within a country at any given time.

When designing future farms, it is evident that we must ensure that the farm sits within

a renewable, sustainable, potentially circular system. In order to do this, we must take

into account energy usage, generation and disposal of waste materials. The solutions

and opportunities for waste management on farms are likely to vary depending on a

number of factors. For example, the route taken may differ depending upon the stage

of production found on an individual farm. BSFL have been shown to grow quicker on

slurry derived from pigs of a younger age (Hao et al., 2023b; Shao et al., 2024),

coinciding with higher amounts of crude protein in the diets at this stage. Therefore,

breeding units or those with finishing pigs may be better suited to send slurry directly

to AD due to the higher fibre diets fed to these animals or additional proteinaceous
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co-products may be needed in addition to pig slurry to enhance insect bioconversion.

Units with younger, growing pigs however would benefit from capturing the excess

nitrogen that passes through the animal and converting this into insect biomass,

reducing their environmental impact through lowering N loading onto land. Whilst

units producing animals on a straw-based system may have different process flows to

those on slatted floors.

As technologies develop, it may be possible to link both insect bioconversion units and

AD plants within the farm-gate. Under these circumstances, the challenges around

energy generation for the insect bioreactor could be met by the AD process, for

example by providing the necessary heat to grow the insect larvae, whilst the digestate

from the AD plant may provide a substrate for insect bioconversion due to their

generalist feeding ability. More research is required to understand how these systems

may link.

There is also substantial opportunity to consider how we can feed the pig to

manipulate the waste produced. Is it possible to alter the properties of slurry, via the

diet, to enhance biogas potential or the growth of BSFL without compromising the

health, welfare or efficiency of the animal? If we could achieve this through the

incorporation of agri-food by-products such as those produced from the dairy industry

or food processing, we could further enhance the circularity of pork production whilst

adding further value to animal slurries. Through unlocking the potential of pig slurry,

farmers may be able to convert this ‘waste’ product into a viable end product, be
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that through insect bioconversion or as energy to support on-farm activities whilst

ensuring net zero targets can be achieved.

Conclusions

It is important to note that whilst bioconversion and biogas generation from pig slurry

offer potential opportunities for the pork sector, they are in varying degrees of market

readiness depending on individual countries legislations and current capabilities.

However, there is tremendous scope to capture the nutrients in slurry to produce a

range of diversification streams through insect bioconversion, or on-farm energy

generation. Whilst more research is needed to ensure that these circular waste

management streams are cost-effective, sustainable and safe (in the case of the

BSFL), the opportunity to the pork sector to harness this ‘waste’ product offers

huge potential as steps to decarbonise pig production and improve farm resilience.
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Tables:

Table 1: Main findings and primary parameters investigated of literature incorporating Black Soldier Fly Bioconversion of Pig Slurry as

part of the study

Reference Primary Parameters

Investigated

Main Findings

Ao et al. (2021) Microbiome  and dominant genera in the larval gut.

 Proteobacteria decreased inmanure-fed larvae.

Awasthi et al.

(2020)

Pathogen Load  Reduced abundance of pathogenic bacteria in larval-treated manure.

Beskin et al.

(2018)

Waste Typeon

Emissions

 Volatile organic compounds were reduced by larvae addition to manure.

 More volatile organic compounds emitted frompoultry manure than swine or dairy.

 Phenol, indole and 4-methylphenol were reduced to undetectable levels by larvae in swine manure.

Beyers et al.

(2023)

Waste Type and

Agro-waste disposal

 Effects on energy consumption and environment for insect production varies between food source and

type of energy used during production.

Boafo et al. (2023) Oviposition

Preference

 Heaviest pre-pupal weight for larvae fed on pig manure and lowest on chickenmanure.

 Preferred oviposition substrate wasmillet porridgemash, which had a lower pre-pupal weight than pig

manure.

Chen et al. (2019) Emissions  Total greenhouse gas emissions reduced compared to traditional composting at 75%moisture.

 Methane emissions increasedwithmoisture content of manure.

Choi (2024) Larval Stages on  Greater conversion ability of 2

nd

and 3

rd

instar larvae on pig manure.
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Bioconversion  3

rd

instar larvae also largely reduced NDF and ADF.

Deng et al. (2024) PlantationWaste

addition to Manure

 Type of planationwaste added to pigmanure affected accumulation of heavymetals by larvae.

 Bamboo chips addition had positive effect on heavy metal accumulation.

 Bacteria such as Proteobacteria are involved in the transformation of heavymetals in the residue.

El-Dakar et al.

(2021)

Waste Type  Growth increased in larvae reared on bird manure compared to goat and pig manure.

 Higher fatty acids in pre-pupae fed on bird manure.

 No significant difference in ratio of essential amino acids for pre-pupae fromdifferent substrates.

Elhag et al. (2022) Pathogens  and spp. significantly decreased in pig manure with larvae.

 Isolatedmicrobes from the larval gut shown to inhibit and .

Ewusie et al.

(2019)

Oviposition

Preference

 Oviposition preference for pig waste trap.

 Substrate of oviposition affected larval length growth in first 10 days.

Ganda et al.

(2019)

Waste Type  Greater larval yields fromcrop and agri-food substrates than frommanures.

Hao et al. (2023b) Type of Pig Manure  Lower larval weights for those reared on finishing pigmanure, compared to younger stages.

 Significant correlation between hemicellulose content and larval weight.

Hao et al. (2023a) Disinfectants  Effects of disinfectants onmicrobiome composition.

 Larval growth was increased by potassium peroxymonosulfate.

 Waste reduction ratio decreased by glutaraldehyde.
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Hoek-van denHil

et al. (2023)

Waste Type and

Pathogens

 Cadmium bioaccumulated in larvae.

 Oxytetracycline detected in frass samples frompigmanure treatments.

 spp. detected in pig manure and one larval sample.

Hoffmans et al.

(2024)

Heavymetals and

Veterinary Drugs

 Cadmium bioaccumulated in larvae.

 Low levels of veterinary drug detection in substrates and larvae.

Huang et al.

(2020)

Pathogens  Reduced and spp. in pig manurewith larvae.

 Toll pathway genes involved in regulating of gut microbiome.

Jiang et al., (2022) HeavyMetals  Bioaccumulation of heavy metals depended on larval inoculation density.

 Inoculation density of 0.40% had greatest absorption effect of heavy metals for pupal yields.

Naser El Deen et

al., (2023)

Waste Type  Lowgrowth rate of larvae reared on pig slurrymixedwith silage grass.

 Larvae also had undetectable fatty acidswhen reared on this mix.

 Waste reduction index low for larvae reared on the mix and for pig slurry alone compared to other

substrates such as chicken feed.

Lalander et al.,

(2015)

reduction  Larvae reduced spp. concentrations.

 Viable virus concentrations decreased in substrate.

Li, Q. et al., (2011) Biodiesel  Highest yield of crude fats extracted from larvae fed on chickenmanure, followed by pig then cattle

manure.

Li, T. et al., (2023) MixedWastes  Addingwet distiller grains increased bioconversion rate of pig and cowmanure.

 Waste reduction rate was increased by 67% in pigmanurewhen grainswere added.
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Li, T. et al., (2024) HeavyMetals  Little accumulation of heavymetals in larvae.

 Predicted gut enzymeswith ability to transport heavymetals such as Zn could reduce bioaccumulation

in larvae.

Lin et al., (2023) HeavyMetals  Cadmium content of larvae high on pig manure.

 High protein content in larvae fed pig manure.

Liu, Z. et al., (2018) Waste Typeon

Reduction and

Larval Development

 Longer developmental time and lower weight gain on pig manure than onwheatmiddling.

 Survival similar onwheat middlings and pigmanure, but lower on semi-digested grass.

 Larvae reduced pig manure DMby 13.81%.

Liu, Tao et al.,

(2019)

WasteReduction

and Nutrients

 Larvae decreased nitrogen by 13.18% on pigmanure.

 Volatile fatty acidswere reduced in manure.

Liu, T. et al., (2020) Humification and

Trace Elements

 Larvae enhance humification of manure.

 Larvae increased the quantity of bioavailable trace elements in the residue.

Liu, Tao et al.,

(2021)

Cornstalk Addition  Adding cornstalk tomanures reduced methane and ammonia emissions, but increasedCO

2

.

 Adding cornstalk influencedmicrobial communities in substrates.

Liu, Tao et al.,

(2022)

Metals and Bacteria  Addition of cornstalk to manure substrates increased toxic metal immobilization rate.

 Adding cornstalk affected bacterial diversity.

Matos et al.,

(2021)

Methane Emissions  Larva reduced 32%of pigmanure drymatter.

 Methane was reduced by up to 86% in animal manure with larvae compared to traditional manure

storage.
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Mei et al., (2022) Antibiotic

Degradation

 Temperature significantly affected degradation of tylosin and enrofloxacin antibiotics by larvae fed on

swine manure.

 Antibiotic resistance genes increased in expression in the gut of manure-fed larvae.

Miranda et al.,

(2020)

Waste Typeon

Larval Development

 Longer developmental time and lower survivorship on dairymanure compared to poultry and swine

manure.

 No significant difference in weight of prepupae on different manures.

Miranda et al.,

(2021)

WasteReduction

and Type for

Different Study Sizes

 Higher reduction in N found in dairymanure than in poultry and swine manure.

 Scale of study affected P and K reductions.

Newton et al.,

(2005)

WasteReduction  Manure reduced by 56%.

 N and P reduced in substrate by 55 and 44% respectively.

Nguyen et al.,

(2013)

Waste type on Larval

Development

 Larvae reared on pig manure took longer to develop than those on other substrates such as kitchen

waste.

 Larvae reared onmanure had lower final weights.

Nguyen et al.,

(2015)

Waste Typeon

Larval Development

 44%greater waste reduction formanure compared to poultry feed.

 Slower reduction ofwaste for larvae on pigmanure compared to poultry feed.

 No difference in larval weight.

Oonincx et al.,

(2015)

Waste Type and

nutrients

 Higher survival on pig manure than chickenmanure.

 Longer development time on dairymanure.

 DM reduced~37% and N:P ratio reduced in all manure types tested.
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Pang et al., (2020) Carbon and Nitrogen

and Gas Emissions

 C:N ratios in pig manure/corncobsmix affect greenhouse gas emissions from larval bioconversion.

 Greenhouse gas emissions reduced compared to traditional composting.

Parodi et al.,

(2020)

Larval Substrate

Preference

 Larvae showed preference to pigmanure over plant by-product diet.

 Preference for manure increased with age.

Parodi et al.,

(2021)

Waste reduction,

nutrients and

emissions

 Larvae reduced pig manure DMby 12%.

 Larvae reduced Nand P in substrate.

 CO

2

emissions increased frommanure with larvae compared to manure without larvae.

 No difference in CH

4

emissions.

Parodi et al.,

(2022)

Ammonia-Nitrogen

Uptake

 13%of NH

3

-N in pigmanure assimilated into larvae.

Peng et al., (2022) Frass Properties  Effects of pig manure thickness on bioconversion efficiency.

Ramírez-Méndez

et al., (2022)

Waste Type  Greatest weight gain in larvae fed on restaurant waste.

 Lowest on dairymanure.

 Bioconversion efficiency faster on pig manure than on dairy manure.

Shao et al., (2024) Stage of Pig and

Bacteria

 Manure fromdifferent stages of pig affected larval conversion, with that of growing pigs showing

highest overall values.

 Stage also affected larval gut microbiome composition.

 Cellulose-degrading bacteria isolated from larval guts.

Shen et al., (2024) Fatty Acids  Larval density did not affect fatty acid composition.
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 Scaling the system up decreased larval survival and reduced fatty acids.

Veldkamp et al.,

(2021)

Waste Type  Lower larval growth rate on pig manure than chicken feed.

 Larvae growth ratewas not different fromchicken feed if pig manure was mixedwith chicken feed.

 Mixed manure and chicken feed also had increased bioconversion efficiency compared to separate

chicken feed and pigmanure.

Wang, S. et al.,

(2019)

Waste Type  Shorter development time on foodwaste and pig manure than on cowmanure.

 Reproductive rate also higher for food waste and pigmanure- reared flies than for cowmanure.

 Fatty acid and amino acid content altered between pre-pupae reared on different feedstuffs.

Wang, Q. et al.,

(2021)

Properties of

Residue

 Increased aromatic components ofmanure after larval bioconversion.

 Decrease in proteinaceous components.

Wang, X. et al.,

(2021)

HeavyMetals  High bioaccumulation of Cd in larvae.

 Heavy metals also transferred to faeces.

Wang, X. et al.,

(2022)

Cadmium

Accumulation

 Addition of Cd to pigmanure did not influence larval growth.

 Larvae fed on pig manure bioaccumulated Cd.

 Only small amounts of Cd frommanure-fed larval frass enteredmaize plantswhen treated with it as a

fertilizer.

Wang, L. et al.,

(2024)

Microbiome  Moisture content affected conversion efficiency of pig manure.

 Microbiome composition altered on different moisture levels of pig manure.

Wu, N. et al., Microbiome and  Larvae reared on pig manure accumulated Cu and Zn.
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(2021) metals.  Larval faeces contained lower abundances of potential pathogens than the pig manure.

Wu, N. et al.,

(2024)

Frass Quality  Pig manure lost more Nduring bioconversion than chickenmanure.

 Higher humification in frass compared to compost.

Xiao et al., (2020) Waste Type  Adding rice bran improved conversion efficiency of pig and chickenmanure.

 Adding cowmanure reduced conversion efficiency.

Zhan et al., (2020) Microbiome  Greater complexity of the microbiome for dairy and swine manure-fed larvae compared to those fed on

poultrymanure.

 Larvae fed dairymanure show differences in gene expression profiles compared to larvae fed on other

manures.

Zhang, Y. et al.,

(2022)

Pathogens  Larvae reduced and spp. in pigmanure.

 Gutmicrobes required for inhibition of and spp.

Zhang, B. et al.,

(2024)

Transcriptome and

Metabolome

 More downregulated differentially expressed genes in larvae reared on pigmanure compared to swill.

 Upregulation of genes associatedwith stress response and antioxidants in pigmanure-fed larvae.

Zhao et al., (2023) Antibiotic

Resistance

 Larvae reduced abundance of antimicrobial resistance genes by 93.2%.

 Larval conversion also reduced the number of main antibiotic-resistant bacteria.

Zhou et al., (2013) Fly strain  Fly strain affected development time andweight of larvae.

 Reduction of DM fromswinemanure ranged from28.8 to 53.4% depending on strain.

 DM reduction also differed withmanure type.
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Table 2: Nutritional composition of Black Soldier Fly Larvae reared on pig slurry (all nutrient values are expressed on a DM basis,

except for DM or where otherwise stated)

DM Reference

27.6 (SD ±0.4) (%) Parodi et al. (2021)

20.2 (SD: ±0.46) (%) Oonincx et al. (2015)

20.3 ± 0.8 (%) Hoek-van den Hil et al. (2023)

~22 (%) Naser El Deen et al. (2023)

21 (%) Veldkamp et al. (2021)

Energy

2042 ±33 kJ/100g Parodi et al. (2021)

Protein

34.7% (se: ± 0.5) Boafo et al. (2023)

43.2% Newton et al. (2005)

42.59% (se: ± 0.71) to 46.60 (se: ± 0.54) Wang et al. (2024)

32.27% ± 0.23 to 33.16 ±0.29 Zhou et al. (2013)

Fats

31.8% (se: ±0.8) Boafo et al. (2023)

6.05% (SD: ± 0.46) to 8.92% (SD: ± 0.56) Wang et al. (2024)
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Omega Fatty Acids

Omega 3: Linoleic acid=1.96% (SD: ± 0.23) El-Dakar et al., 2021

Omega3: Linolenic acid=0.04% (SD: ± 0.06) El-Dakar et al., 2021

Omega3=0.15(%DM) Naser El Deen et al., 2023

Omega6=1.77 (%DM) Naser El Deen et al., 2023

Phosphorus

1.2% (SD: ± 0.1) (per 100g of DM) Parodi et al., 2021

1.99% (SD: ±0.190) Oonincx et al., 2015

0.88 (%DM) Newton et al., 2005

1.37% (SD: ± 0.08) to 2.08 (SD: ± 0.10) Wang et al., 2024

Nitrogen

6.90 (%DM) (SD: ±0.215) Oonincx et al., 2015

6.9% (SD: ± 0.2) Parodi et al., 2021

Potassium

1.6% (SD: ± 0.1) Parodi et al., 2021

1.16 (%DM) Newton et al., 2005

Amino Acids

Alanine
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6.87 ± 0.15 (Mean (g/100g) ± SD)

a

El-Dakar et al., 2021

2.82±0.07 to 2.93±0.12 (Mean% amino acids ±

SD)

Jiang et al., 2022

Arginine

5.14 ± 0.03

a

El-Dakar et al., 2021

1.63±0.05 to 1.75±0.16 Jiang et al., 2022

1.77 (% amino acids) Newton et al., 2005

Aspartic acid

9.41 ± 0.13

a

El-Dakar et al., 2021

3.28±0.08 to 3.48±0.16 Jiang et al., 2022

Cystine

0.21±0.03 to 0.22±0.02 Jiang et al., 2022

Glutamic acid

10.57 ± 0.08

a

El-Dakar et al., 2021

4.12±0.09 to 4.60±0.20 Jiang et al., 2022

Glycine

5.41 ± 0.02

a

El-Dakar et al., 2021

2.27±0.06 to 2.42±0.06 Jiang et al., 2022
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Histidine

3.22 ± 0.08

a

El-Dakar et al., 2021

0.78±0.04 to 0.90±0.07 Jiang et al., 2022

0.96 Newton et al., 2005

Isoleucine

4.13 ± 0.03

a

El-Dakar et al., 2021

1.05±0.06 to 1.11±0.12 Jiang et al., 2022

1.51 Newton et al., 2005

Leucine

7.08 ± 0.04

a

El-Dakar et al., 2021

2.47±0.06 to 2.48±0.11 Jiang et al., 2022

2.61 Newton et al., 2005

Lysine

6.17 ± 0.08

a

El-Dakar et al., 2021

1.86±0.11 to 1.94±0.07 Jiang et al., 2022

2.21 Newton et al., 2005

Methionine

4.46 ± 0.04

a

El-Dakar et al., 2021
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4.01±0.21 to 4.10±0.27 Jiang et al., 2022

0.83 Newton et al., 2005

Phenylalanine

4.90 ± 0.10

a

El-Dakar et al., 2021

1.48±0.03 to 1.58±0.08 Jiang et al., 2022

1.49 Newton et al., 2005

Proline

11.15 ± 0.12

a

El-Dakar et al., 2021

2.01±0.03 to 2.07±0.08 Jiang et al., 2022

Serine

4.19 ± 0.02

a

El-Dakar et al., 2021

1.80±0.04 to 1.89±0.05 Jiang et al., 2022

Threonine

4.12 ± 0.02a El-Dakar et al., 2021

1.47±0.04 to 1.52±0.05 Jiang et al., 2022

1.41 Newton et al., 2005

Tryptophan

0.59 Newton et al., 2005
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Tyrosine

7.55 ± 0.03

a

El-Dakar et al., 2021

2.19±0.06 to 2.46±0.17 Jiang et al., 2022

Valine

5.61 ± 0.03

a

El-Dakar et al., 2021

1.50±0.07 to 1.56±0.13 Jiang et al., 2022

2.23 Newton et al., 2005

a Amino acid contents from El-Dakar et al., 2021 were determined by standard method GB 5009.124-2016 and is expressed per

protein content.
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Table 3: Heavy metal content of Black Soldier Fly larvae reared on pig slurry

Arsenic Cadmium Lead Manganese Zinc Selenium Mercury Chromium Copper Iron Nickel Reference

Mean ± SD

(mg/kg;

substrate

dependent)

0.31 ± 0.04 0.61 ±

0.02

to 0.85 ±

0.11

1.06 ± 0.18 640.8 ± 22.4

to 974.5 ±

160.9

510.4 ± 56.5 0.33 ± 0.06

to 0.80 ±

0.09

Hoffmans et al.,

2024

Mean ± SD

(mg/kg)

<0.10 0.22±0.06 0.27±0.06 <0.004 Hoek-van den Hil

et al., 2023

Mean ± SD

(mg/kg;

density

dependent)

none 3.56±1.18 to

23.46±3.62

0.44±0.06 to

0.55±0.1

0.46±0.05 to

0.74±0.02

0.35±0.03 to

0.57±0.05

0.44±0.03 to

0.66±0.04

Jiang et al., 2022

mg/kg 0.30 0.24 0 538.34 0.001 25.99 521.16 1452.2 6.28 Lin et al., 2023

mg/kg

(read from

graph)

27-30 2.4-3.2 3.0-3.6 700-900 380-460 2-6 100-120 800-12

00

1-3 Li et al., 2024

ppm 348 271 776 Newton et al.,

2005

mg/kg 1.01 0.29 11.56 Wang et al., 2021
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%

accumulatio

n

38.8% Wang et al., 2022

mg/kg 356.2 475.9 Wu et al., 2021
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Table 4: Potential challenges that may or currently curtail the growth of the Black

Soldier fly bioconversion of pig slurry including potential avenues for future research

and current unknown and under-researched areas of knowledge

Potential challenge What don’ t we know and opportunities for future research

Presence of heavy

metals in insects

and/or frass

 What is the heavy metal content of different insect frasses?

 How does heavy metal accumulation vary across slurry sourced

from different farms, animal breeds, diet types etc.?

 What factors affect bioaccumulation of heavymetals into larval

tissue e.g. density?

 How does heavy metal accumulation affect down-stream

processing opportunities?

 How can wemitigate against larval uptake of heavy metals (where

appropriate)?

 How can we appropriately utilise insect bioaccumulation of heavy

metals to ‘clean-up’ animal wastes?

 Can heavy metals be extracted and utilised from insects

post-harvesting? Is there amarket for this?

 What is the welfare impact on the larvae?

 What are the risks to downstream users or consumers of insect

products?

Presence of

pathogenic bacteria or

those of concern to

the food industry

 What factors affect the pathogenic load of insect larvae after

consuming pig slurry?

 How does this vary with different slurry types?

 What affect does the presence of pathogenic bacteria have on the

immune system of the larvae – what are the repercussions of this

on insect growth?

 Do insects harbour more pathogenic bacteria when reared on

animal wastes?

 What does the presence of potentially pathogenic or undesirable

microbes look like before and after insect bioconversion?
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 Are the pathogenic/undesirable microbes viable after processing

of insect frass?

 If necessary, what processing steps would be required to sterilise

the insects and/or frass before downstream applications?

Viral, fungal, parasite

and prion

contamination

 Majority of the work looking at the microbiome in insect larvae

reared on pig slurry has concentrated on the bacterial populations

but what happens to fungal and viral communities?

 What is the biological relevance of the fungal/viral load?

 Whilst there are no known naturally occurring prion diseases in

pigs, and pigs show high resilience to infection with prions

(Espinosa et al., 2020), is there risk of prion transmission or

proliferation within an insect bioconversion cycle?

 What effect does insect bioconversion have on the proliferation of

parasites such as ?

 What additional processing would be needed to prevent land

contamination with parasites? How does this compare to

application of raw pig slurry?

Antimicrobial

resistance risks and

proliferation

 What effect do veterinary medicines used on farms that are

biologically active in slurry have on antimicrobial resistance genes

in insects and their frass?

 What effect does the presence of detergents from roomwashing

have on insect growth, microbial populations and antimicrobial

resistance?

 How does the level of mobile genetic elements vary across a

bioconversion cycle?

 Do Black Soldier Fly larvae act as a reservoir for antimicrobial

resistance genes?

 What is the risk of co-selection for antimicrobial resistance genes

in the presence of heavy metals found in the slurry?

 How do antimicrobial resistance genessmove from slurry to

insect to frass to soil to plant?

 How can wemitigate against these risks?

 How does the production system, farm, pig diet and stage of
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production affect these risks?

Accumulation of

polychlorinates

biphenyls (PCBs),

dioxins and

pharmaceuticals

 How do pharmaceuticals used on farm affect larval growth and

development?

 Does insect bioconversion of pig slurry result in a higher

concentration of pharmaceuticals in the larvae or insect frass?

 Larvae can show bioaccumulation of PCBs on food waste (Van

der Fels-Klerx et al., 2020) but is there an accumulation of PCBs

from pig slurry and what other factors affects this?

Suitability of frass as a

fertiliser

 How variable is the NPK ratio of frass when insects are provided

with pig slurry as a substrate?

 How does the diet of the pig influence this?

 What effect does frass application as a fertiliser have on different

soil microbial communities?

 How does presence of phytotoxins influence plant growth?

 How can further processing e.g. composting or heat treatment

affect their concentration?

 How does addition of frass as a fertiliser affect crop

development?

 Chitosan can affect defence plant gene expression of plants

(Torres-Rodriguez et al., 2021), but what other effects does the

application of frass to crops have on plant gene expression?

 What is the eutrophication potential of frass compared to pig

slurry?

 What is the cost benefit of frass vs pig manure when taking into

account additional steps e.g. heat treatments?

 What are the greenhouse gasemissions associated with frass

compared to pig slurry and inorganic fertiliser?

 How does using a mixture of traditional fertilisers and frass

impact these factors?

Protein production  Will protein from insects reared on currently non-permissible

feedstocks such as pig slurry be allowed to enter the food and
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feed chain?

 What safety measures need to be documented to allow this

protein to be utilised?

 How can insect protein be utilised outside of consumption?

 Howmuch insect protein could feasibly be produced from pig

slurry?

 Howmuch demand would there be for this from farmers and the

public in general?

Rearing Black Soldier

Fly larvae

 Black Soldier Fly larvae are a tropical species, requiring a high

temperature and humidity in order for them to survive – how

much energy does this require?

 How does the energy requirement change throughout the year?

 Is this sustainable through the colder months?

 How can renewable energy be used to power an insect

bioconversion unit?

 What is the impact of the gasses produced from insect rearing

compared to storage and spreading of raw pig slurry?

 What personal protective equipment and health and safety

requirements would a farmer need in place in order to rear insects

on farm?

 How should waste water generated e.g. from cleaning between

batches be disposed of? Can it be safely used for irrigation?

Lack of infrastructure

and knowledge

 Whilst there is research looking at rearing Black Soldier Fly larvae

on pig slurry, more work is needed to standardise protocols and

answer the current unknowns.

 How can we support farmers to invest in insect bioconversion

facilities? Does it require incentivisation?

 What infrastructure is needed to process insect larvae and/or

insect frass for downstream applications?

 How do we support the development of the insect market?
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Unknown legislation,

welfare of insects as a

mini-livestock species

 UK legislation tightly regulates insect production and curtails use

of insects reared on pig slurry

 What legislation is there to protect insect as mini-livestock?

 Howmight legislation change in the future?

 If insects are determined to feel pain, howwill insects be

harvested humanely on a large scale?

 Howwill differences in legislation in different countries affect

trade in the industry?

Suitability of the

feedstock for insect

rearing

 Is pig slurry a viable option for large scale insect production?

 How can we handle the moisture content of slurry?

 How can we reduce the variability in the slurry produced to ensure

consistent growth and development of the larvae?

 Does pig slurry require a co-product added to maximise economic

return on insect production?



82

Figure Legends:

Figure 1: A schematic of the different opportunities available to the pork industry

through on-farm Black Soldier Fly bioconversion of pig slurry. Examples of subsequent

downstream markets for products are provided.

Figure 2: A schematic of the different opportunities available to the pork industry

through the use of pig slurry to generate biogas and the subsequent downstream

uses.


