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Abstract: Falls are a major health issue in societies globally and the second leading cause
of unintentional death worldwide. To address this issue, many studies aim to remotely
monitor gait to prevent falls. However, these activity data collected in studies must be
labelled with the appropriate environmental context through Human Activity Recognition
(HAR). Multimodal HAR datasets often achieve high accuracies at the cost of cumbersome
sensor systems, creating a need for these datasets to be analysed to identify the sensor types
and locations that enable high-accuracy HAR. This paper analyses four datasets, USC-HAD,
HuGaDB, Camargo et al.’s dataset, and CSL-SHARE, to find optimal models, methods, and
sensors across multiple datasets. Regarding window size, optimal windows are found to be
dependent on the sensor modality of a dataset but mostly occur in the 2-5 s range. Support
Vector Machines (SVMs) and Artificial Neural Networks (ANNs) are found to be the
highest-performing models overall. ANNs are further used to create models trained on the
features from individual sensors of each dataset. From this analysis, Inertial Measurement
Units (IMUs) and three-axis goniometers are shown to be individually capable of high
classification accuracy, with Electromyography (EMG) sensors exhibiting inconsistent and
reduced accuracies. Finally, it is shown that the thigh is the optimal location for IMU
sensors, with accuracy decreasing as IMUs are placed further down away from the thigh.

Keywords: artificial neural networks; classification algorithms; decision trees; human
activity recognition; K-nearest neighbors; machine learning; random forests; sensor systems;
support vector machines; wearable sensors

1. Introduction

Falling is a significant health issue in society. The World Health Organisation (WHO)
estimates that each year 37.3 million falls require medical attention, while 684,000 falls
are fatal [1], making falls the second leading cause of unintentional death worldwide.
Among people who fall, certain groups are at a higher risk due to cognitive or physical
impairments, which can be attributed to factors including age [1,2], recent surgery [3],
or conditions such as Parkinson’s disease [4], dementia [5], stroke [6], multiple sclerosis [7],
and amputation [8].

Many technological developments in recent years have led to an increased capability
for monitoring gait in people at a high risk of falling, such as the widespread adoption
of smartphones and smartwatches containing sensors, the Internet of Things (IoT) and
body sensor networks, and improvements in wearable sensors. With these advances,
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many studies aim to automate the process of gait analysis by collecting real-time data
from wearable sensors during tasks such as level-ground walking, navigating ramps,
or ascending and descending stairs [9]. The data from these sensors can be analysed to
aid healthcare professionals in diagnosing conditions affecting gait [10], performing gait
analysis [11], or for use in detecting fall events so that the severity of future falls can be
reduced [9,12,13].

However, to enable remote, real-time gait analysis, the context from which the data
are extracted must be provided to the specialist who is reviewing the data. Typically, this
context is obtained through the process of Human Activity Recognition (HAR), where
classification methods are used to determine walking activity in real time from the collected
data [9,14]. As many of these classification methods are supervised [9,14-17], a training
dataset is required to build models capable of identifying activities with high accuracy. Past
studies have created such datasets with a wide array of sensors, pre-processing techniques,
classification methods, and validation methods, resulting in difficulty determining the most
important factors that contribute towards obtaining high accuracy when designing novel
sensor systems [9,14,18].

In the literature, Human Activity Recognition (HAR) studies can be separated into
two categories that focus on convenience, typically making use of a smartphone or smart-
watch [9,19], or accuracy by implementing a multimodal sensor system which can be
cumbersome to wear [9,20,21]. In addition to the potential for accuracy, multimodal sys-
tems typically collect more appropriate quantities of data for remote gait analysis by
allowing the system to collect data from multiple areas of interest through a body sensor
network [22].

Existing studies on finding the optimal sliding window parameters for HAR have
demonstrated a range of results in different contexts. Banos et al. [23] studied the effect
of window size on classification performance for a single dataset featuring accelerometers
placed on each thigh, shank, upper arm, and forearm and the back [24]. This work high-
lights the need for a balance between high accuracy and rapid decision times and finds
that larger window sizes do not correlate to increased classification performance, with the
optimal window sizes occurring below 2 s using Decision Trees (DTs), K-Nearest Neighbors
(KNN), naive Bayes, and a nearest-centroid classifier. Similarly, Niazi et al. [25] analysed
the co-dependency of window size and sample rate to determine what parameters enable
the highest classification accuracy using Random Forests (RFs) and a single hip-worn
accelerometer. This study found that window sizes of 2-10 s were optimal, contrasting
the results of Banos et al. [23]. Both of these studies highlight that future work is needed
to consider additional technologies and sensor types. Li et al. [26] discuss the difficulty
of determining an optimal window size for a given application, instead choosing to use
different window sizes for each activity based on the temporal properties of that activity,
which increases classification performance. Finally, Dehghani et al. [27] considered the
effects of using overlapping sliding windows against non-overlapping sliding windows
with both subject-dependent and subject-independent cross-validation on HAR perfor-
mance using data collected using inertial sensors with DTs, KNN, naive Bayes, and a
nearest-centroid classifier. This study found that performance across all classifiers was
reduced when using subject-independent cross-validation and that, under this condition,
the use of overlapping sliding windows did not improve the performance of the models
when compared to non-overalpping windows [27].

Regarding sensor placement, Duan et al. [28] placed seven accelerometers on the
upper arm, wrists, thighs, and chest to determine how sensor location affected classification
accuracy. This study found that sensors placed on the subjects’ dominant side, the right side
in all cases for this study, exhibited increased performance, with the right wrist being the
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highest-performing sensor type when used alone. Furthermore, this study evaluated the use
of RF models along with deep learning techniques such as convolutional neural networks,
transformers, and long short-term memory models with the latter. Kulchyk et al. [29]
analysed the performance of sensors positioned on the sternum, left thigh, right ankle,
and right shoulder using a convolutional neural network for both subject-dependent and
subject-independent cross-validation. This study found the right ankle to be the optimal
sensor location, with multiple pairs of sensors including the ankle sensor resulting in 100%
classification accuracy [29]. Finally, Khan et al. [30] placed five sensor nodes consisting of
accelerometers and gyroscopes on each forearm, the waist, and each ankle and performed
HAR using simple logistic regression, naive Bayes, and sequential minimal optimisation
classifiers. The study found that individual sensor performance was dependent on activity
type, with sensors on the chest and thigh being optimal for stationary tasks, whilst sensors
on the thigh, lower back, and ankle performed better at movement tasks [30]. Many
studies that consider sensor placement for HAR consider only accelerometers or Inertial
Measurement Units (IMUs) [28-32], leaving much room for sensor position analysis using
additional technologies which can capture motion data.

Overall, these studies highlight a gap in the literature for multi-dataset studies which
aim to identify trends in both optimal window size and optimal sensor placement across
multiple datasets and with additional motion-related technologies and sensors. As stated
by Banos et al. [23], these types of studies form a guideline for future researchers faced with
determining sensor locations and sliding window parameters in the future and contribute
towards a knowledge database of the interactions between analytical parameters and
sensors in HAR using different classifiers so that researchers and system designers can
avoid performing lengthy brute-force searches across high-dimensional search spaces for
individual applications of HAR.

The contributions of this study, therefore, are to identify these optimal analytical
methods, sensor placements, and sensor types which will contribute towards existing
knowledge of HAR classification co-dependencies such as window size, sensor type,
and sensor location. This novel approach using a normalised cross-comparison of different
datasets by controlling variables such as the number of participants, activity types, the
sample rate, and window size for the sliding window technique creates a robust analysis
that can identify trends with increased generalisability when compared with the current
state-of-the-art. Therefore, the results of this study will offer reliable insights into the
performance capabilities of individual sensor types and how these differ based on their
locations on the body. The results of this analysis will help future researchers effectively
design more lightweight sensor systems which decrease the computational burden of HAR
while maintaining high levels of accuracy, comfort, and convenience.

2. Materials and Methods

Four datasets were selected for this study which feature a wide variety of sensor sys-
tems, an appropriate number of participants for sufficient model generalisation, and walk-
ing activities comparable between datasets. A description of each dataset along with the
reasons it was chosen for this analysis follows.

2.1. Dataset 1: USC-HAD

The USC-HAD dataset [33] was published in 2012 and features 14 participants with
a mean (standard deviation; std) age, height, and weight of 30.1 (std: 7.2) years, 170
(std: 6.8) cm, and 64.6 (std: 12.1) kg, respectively. Each subject was equipped with a
single ‘MotionNode’ IMU containing a 3-axis accelerometer, gyroscope, and magnetometer,
totalling 9 data channels. The IMU was mounted to the participants” anterior right hip in
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a pouch designed for mobile phones. Data were recorded using a laptop which was held
under the arm, pressed to the waist by the subject and connected to the IMU via a cable.

The USC-HAD dataset features 12 activities which were performed at the participants’
own pace [33]. These activities were walking forwards, left, and right, walking upstairs
and downstairs, running, jumping, sitting, standing, sleeping, and going up and down in
a lift.

USC-HAD was chosen because this dataset has been widely explored in the literature
since its publication [15,16,34]. Therefore, this dataset acts as a control for the newer
datasets to validate the chosen methods and models.

2.2. Dataset 2: HuGaDB

The HuGaDB dataset [35] was published in 2017 and features 18 participants with a
mean age, height, and weight of 23.67 (std: 3.69) years, 179.06 (std: 9.85) cm, and 73.44
(std: 16.67) kg, respectively. The sensor system worn by each participant consisted of
IMU sensors placed at the thigh, shank, and foot and an Electromyography (EMG) sensor
placed on the vastus lateralis, each of which were sampled at around 60 Hz. This setup
was mirrored on each leg, for a total of six IMUs and two EMG sensors.

Participants were asked to perform the following 12 activities at a usual pace: walking,
running, navigating stairs, sitting (stationary), sitting down, and standing up, standing
(stationary), cycling, going up and down in a lift, and sitting in a car [35].

2.3. Dataset 3: Camargo et al.

Camargo et al. [36] created an open-source dataset for the study of lower-limb biome-
chanics in 2021, featuring 22 healthy participants with a mean age, height, and weight of
21 (std: 3.4) years, 170 (std: 7.0) cm, and 68.3 (std: 10.83) kg, respectively. Subjects were
equipped with 11 EMG sensors, 3 goniometers, and 4 six-axis IMUs on their right side only.
Sensor locations and sample rates can be found in Table 1.

Table 1. The sensor type, position, and sample rate of each sensor in the Camargo et al. dataset.

Sensor Position Sample Rate
Hip
Goniometer Knee 1000 Hz
Trunk

Trunk
Thigh
Shank
Foot

Inertial Measurement Unit 200 Hz

Gastrocnemius Medialis

Tibialis Anterior

Soleus

Vastus Medialis

Vastus Lateralis
Electromyography Sensor ~ Rectus Femoris 1000 Hz

Biceps femoris

Semitendinosus

Gracilis

Gluteus Medius

Right External Oblique

Whilst participants only performed six basic activities, the transition states were also
labelled, raising the activity count to 19 [36]. With the ‘idle’ class removed as no activities
were performed, 18 walking activities remained, consisting of six core activities and the
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transitions between them. These core activities were ramp ascent, ramp descent, stair
ascent, stair descent, stand, turning, and walking.

2.4. Dataset 4: CSL-SHARE

CSL-SHARE is a dataset published in 2021 for the purpose of exploring activity recog-
nition for common sport-related movements [37]. The sensor system is a multimodal,
knee-mounted system featuring 2 6-axis IMUs placed on the thigh and shank, 4 EMG
sensors placed on the vastus medialis, tibialis anterior, biceps femoris, and gastrocne-
mius, a goniometer placed on the lateral knee, and an airborne microphone. Like the
Camargo et al. dataset, these sensors were placed on the right leg only. The CSL-SHARE
dataset features 22 activities and was upscaled to 1000Hz due to differing sample rates for
the various sensors [37].

2.5. Summary of Datasets

The datasets chosen for this study cover a variety of environments, activities, and sen-
sor configurations. Analysis of the datasets with the same Machine Learning (ML) models
and pre-processing methods will provide insight into how sensor configuration and type
affect classification accuracy in HAR. A comparison of these datasets can be found in
Table 2.

Table 2. A summary of the properties of each dataset in this analysis.

Dataset Features USC-HAD Camargo et al. HuGaDB CSL-SHARE
Participants 14 22 18 20
Mean Age (Years) 30.1 21 23.67 30.5
Mean Height (cm) 170 170 179.06 N/A
Mean Weight (kg) 64.6 68.3 73.44 N/A
IMU Sensors 1 4 6 2
EMG Sensors 0 11 2 4
Goniometers 0 3 0 1
Acoustic Sensors 0 0 0 1
Activities 12 18 12 22
Sample Rate 100 Hz 200Hz/1000 Hz 60 Hz 100 Hz/1000 Hz

2.6. Dataset Preprocessing
2.6.1. Normalisation Between Datasets

As this study focuses on the sensor types in the HAR datasets, steps were taken to
remove the variations between datasets. Of the variables in Table 2, participant numbers,
activity types, and sample rates were normalised. To achieve this, the number of partic-
ipants in each dataset was limited to the minimum number available across all datasets,
which was 14, with additional participants being excluded from the datasets where appro-
priate to maintain a fair comparison between the datasets. For example, in CSL-SHARE,
participants 2, 11, and 16 contained different data due to varying protocol versions, de-
vice communication issues, and a participant stopping early due to knee pain. As such,
these participants were removed, before cropping the number of participants down to 14.
Of the activities included in the chosen datasets, only walking, standing, stair ascent,
and stair descent were common across all datasets and are activities of interest with respect
to fall-related research [38,39]. Therefore, the additional activities were removed from
each dataset. Finally, 100 Hz was chosen as the common sample rate, resulting in the
sample rate for the Camargo et al. and CSL-SHARE datasets being subsampled to 100 Hz,
whilst HuGaDB was interpolated up to 300 Hz with 5th-order polynomial interpolation,
before being subsampled to 100 Hz.
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2.6.2. Filtering

Before data could be presented to the Machine Learning models, a series of pre-
processing steps had to be performed to prepare the data for use by the Machine Learning
models. This process began with a 4th-order low-pass Butterworth filter with a cut-off
frequency of 7 Hz before windowing and feature extraction occurred. This cut-off frequency
was chosen through testing and laid around the 10 Hz mark, which is typical for analyses
using inertial sensors [19].

2.7. Feature Extraction

As is typical when performing classification with time-series data, semi-overlapping
sliding windows are used to extract statistical features such that a single sample repre-
sents a larger time window of raw data. The size of these windows and the amount of
overlap varies between studies, with lower window sizes being preferable for real-time
classification, whilst larger window sizes consider more of the gait cycle per sample which
may result in higher classification accuracies. For this study, a search was performed to
identify trends in accuracy from a 1 s to 10 s window size, with a 75% window overlap
for each window size. This overlap was chosen to combine co-dependent sliding window
parameters and reduce computation times.

For each window of the time-series data, a wide array of statistical features were
extracted to enable the ML models to make accurate predictions. There is little consensus
on which features are necessary for accurate HAR, with many studies considering a mean
of 15 features [15,40—46]. This analysis included 22 features from each sensor, including
commonly chosen features from existing research [15,42-45,47]. Most of these features were
extracted from the raw data in the time domain, with Fourier transforms being used to
obtain additional features from the frequency domain. Feature selection methods were then
used to eliminate noisy features before classification. This combination of increased feature
numbers with appropriate feature selection techniques to accommodate this ensured that
relevant data from each sensor were present to allow a sensor-focussed analysis. The list of
included features is as follows:

*  Maximum value.

*  Minimum value.

¢ Mean.

*  Median.

e  Standard deviation.

*  Mean absolute deviation.

*  Median absolute deviation.

¢ Number of zero crossings.

*  Root mean square.

¢  Maximum gradient.

e  Kurtosis.

e  Skewness.

e  Variance.

* Interquartile range.

¢  Entropy.

¢  Energy.

¢  Maximum frequency amplitude.
*  Mean frequency amplitude.

e  Maximum power spectral density.
*  Mean power spectral density.
¢ Frequency kurtosis.
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¢  Frequency skewness.

After feature extraction, the data were split into train and test data by leaving out
the data from a single subject. Scikit-Learn’s ‘MinMaxScaler” function was then fit to the
train set and applied separately to the train and test sets to scale each feature between
0 and 1. Principal Component Analysis (PCA) was performed to reduce the number of
features. As with the scaler, the PCA was fit to the train set and applied separately to the
train and test sets. The number of selected principal components varied for each dataset
due to the different features which were dependent on the sensors but was controlled by
choosing the minimum amount required to retain 95% of the variance of the full feature
set. Finally, another round of scaling was performed to prepare the data for the Machine
Learning algorithms.

2.8. Cross-Validation and Test Data

Two methods of cross-validation and testing are prevalent in the literature for gait-
and fall-related studies: subject-dependent analysis using Train-Test Split (TTS) cross-
validation and subject-independent analysis using Leave-One-Subject-Out (LOSO) cross-
validation [27,48]. TTS cross-validation uses a set percentage of the total data from all
subjects as test and validation data, whilst LOSO leaves out the data from a specific subject.
Each of these methods of cross-validation offers differing advantages and disadvantages,
with TTS creating models with higher accuracies at the cost of poor generalisation, whilst
LOSO typically creates models with lower accuracies that perform better with data from
new subjects. For this study, both TTS and LOSO cross-validations are used to make the
results applicable to both types of devices and to be more comparable with existing and
future studies.

2.9. Models

For classification, the KNN, Support Vector Machine (SVM), DT, RF, and Artificial
Neural Network (ANN) models, an ensemble voting classifier, and an ensemble stacking
classifier were chosen due to their prevalence in the literature. Ensemble models were
constructed from each of the individual models (KNN, SVM, DT, RF, and ANN), with either
a voting or a logistic regression classifier fusing the decisions. This inclusion of a variety of
ML models reduced variations in classifier performance that could be introduced due to
the various properties of each model, such as how prone they are to overfitting and how
dataset size affects their classification performance.

Hyperparameter tuning was performed using 25 iterations of the Scikit-Optimize
Bayesian hyperparameter search. All models were trained on a computer with 32 GB of
RAM, a 12th Generation Intel i9-12900K processor, and a 12 GB Nvidia RTX 3060 GPU
using the Scikit-Learn library for Python version 3.9.18.

2.10. Performance Metrics and Evaluation

To assess the performance of each model, this study considered both macro-average
accuracy and the Fl-score. While macro-average accuracy provides a straightforward
overview of a model by reporting the mean classification accuracy across all classes, it
can be misleading in the presence of large class imbalances, as it does not account for
differences in class distribution. To address this, the macro-average Fl-score was also
reported, which provides a more balanced measure of performance across classes. For each
dataset, walking was the primary class, with around 10x more walking data than stair
ascent and stair descent data. Standing data varied between datasets but were typically
around 2-3x more numerous than data in the stair ascent and stair descent classes.
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3. Results

To determine the optimal window size for sliding window feature extraction, each
model was trained using the PCA-reduced feature set for each window size, ranging from
1 to 10 s. We selected 10 s as the maximum time due to issues with class distributions and
the number of samples in each class at larger window sizes. This process was repeated
three times for each model to reduce the impact of random initialisations, which can lead to
models becoming stuck in local minima during training. The results for subject-dependent
cross-validation can be seen in Figures 1-4, whilst the results for subject-independent
cross-validation can be found in Figures 5-8. A full list of performance metrics for each
dataset and window size can be found in Appendix A.

Macro-Average Accuracy vs. Window Size for Each Model Macro-Average Accuracy vs. Window Size for Each Model
in the USC-HAD Dataset Using TTS Cross-Validation in the Camargo et al. Dataset Using TTS Cross-Validation
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Figure 1. Trend graphs showing the mean accuracy across all models and window sizes for the
four datasets in this analysis when using TTS cross-validation. (a) USC-HAD. (b) Camargo et al.
(c¢) HuGaDB. (d) CSL-SHARE.

3.1. Subject-Dependent Cross-Validation
3.1.1. Determining Optimal Window Sizes

Figures 1 and 2 show the mean performance of each model over the three repeat trials
for each window size. The trend lines present in these figures demonstrate an increase in
both accuracy and the Fl-score with window size for subject-dependent cross-validation
using TTS across all models and all datasets. The exceptions to this trend suggest that
overfitting may have occurred as the number of samples decreased, with some models
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decreasing in performance with 9 and 10 s window sizes, where the number of data from
each class was at a minimum. This issue was most prevalent with the ANNs among the
smaller datasets, whilst the Camargo et al. dataset was the only one in which the ANN
performance metrics did not drop at higher window size values. Although performance
generally trended upwards with window size, all datasets except for CSL-SHARE, which ex-
hibited 100% accuracy and a 100% F1-score for most models at all window sizes, plateaued
at around 4-5 s. Furthermore, CSL-SHARE appeared to exhibit reduced performance at
higher window sizes for both the ANN and SVM, likely due to a lack of data.

Macro-Average F1-Score vs. Window Size for Each Model  Macro-Average F1-Score vs. Window Size for Each Model
in the USC-HAD Dataset Using TTS Cross-Validation in the Camargo et al. Dataset Using TTS Cross-Validation
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Figure 2. Trend graphs showing the mean Fl-score across all models and window sizes for the
four datasets in this analysis when using TTS cross-validation. (a) USC-HAD. (b) Camargo et al.
(c) HuGaDB. (d) CSL-SHARE.

Figures 3 and 4 show the average highest-performing model among all window sizes,
along with the average accuracy and Fl-score at each window size across all models. These
figures highlight the SVM and the stacking ensemble classifier as the most capable models
across all window sizes and that the best model performances occurred at window sizes
of 4-8s.

Regarding the individual (non-ensemble) highest-performing model, all models per-
formed fairly similarly between datasets, with the SVM being the only model that per-
formed significantly higher than others with average accuracies of 99.6%, 83.7%, 99.8%,
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and 100% and average F1-scores of 99.7%, 90.9%, 99.8%, and 100% on each of the USC-HAD,
Camargo et al.,, HuGaDB, and CSL-SHARE datasets, respectively. However, these results
also suggest there may be an issue with the Camargo et al. dataset, as the average accuracies
for all models and window sizes were far more reduced for this dataset when compared
with the others. An overview of the highest-performing individual models can be found in
Table 3.

Macro-Average Accuracy Across All Models For Each
Average Accuracy Across All Models For Each Windo%v Size Usin{; TTS Cross-Validation

Window Size Using TTS Cross-Validation
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Figure 3. Model and window size effect on classification accuracy across all four datasets using TTS
cross-validation. The highest-performing model for each dataset and window size is marked in bold.
(a) Average accuracy for each model across all window sizes for each dataset. (b) Average accuracy
across all models at each window size from 1 to 10 s for each dataset.
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Figure 4. Model and window size effect on F1-score across all four datasets using TTS cross-validation.
The highest-performing model for each dataset and window size is marked in bold. (a) Average
F1-score for each model across all window sizes for each dataset. (b) Average F1-score across all
models at each window size from 1 to 10 s for each dataset.
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Macro-Average Accuracy vs. Window Size for Each Model
in the CSL-SHARE Dataset Using LOSO Cross-Validation
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Figure 5. Trend graphs showing the mean accuracy across all models and window sizes for the
four datasets in this analysis when using LOSO cross-validation. (a) USC-HAD. (b) Camargo et al.

(c) HuGaDB. (d) CSL-SHARE.
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Figure 6. Trend graphs showing the mean F1-score across all models and window sizes for the
four datasets in this analysis when using LOSO cross-validation. (a) USC-HAD. (b) Camargo et al.
(c) HuGaDB. (d) CSL-SHARE.
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Figure 7. Model and window size effect on classification accuracy across all four datasets using LOSO
cross-validation. The highest-performing model for each dataset and window size is marked in bold.
(a) Average accuracy for each model across all window sizes for each dataset. (b) Average accuracy
across all models at each window size from 1 to 10 s for each dataset.

3.1.2. Individual Sensor Analysis

The optimal window sizes for each dataset were used to determine the sensor impor-
tance for achieving high accuracies among the four core activities. As USC-HAD contained
just a single sensor, it was excluded from this analysis. Due to its high performance across
all datasets, and due to the SVM failing to converge on these reduced datasets, an ANN
was trained to classify between the four activities using data from individual sensors.
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Figure 8. Model and window size effect on Fl-score across all four datasets using LOSO cross-
validation. The highest-performing model for each dataset and window size is marked in bold.
(a) Average F1-score for each model across all window sizes for each dataset. (b) Average Fl-score
across all models at each window size from 1 to 10 s for each dataset.

Tables 4—6 show the precision, recall, F1-score, and accuracy of the ANN trained from
features extracted from each sensor in the Camargo et al., HuGaDB, and CSL-SHARE
datasets, respectively. These tables highlight IMUs as the most effective individual sensors,
exhibiting accuracies of 87.4-100% and F1-scores of 74.4-100% across all datasets. Goniome-
ters also appear as high-performing sensors, with the three-axis goniometers at the hip and
ankle in the Camargo et al. dataset exhibiting performance metrics marginally lower than
those of the IMUs, with accuracies of 86.8% and 87.4% and F1-scores of 74.2% and 70.8%, re-
spectively. Following the three-axis goniometers, both the Camargo et al. and CSL-SHARE
datasets feature two-axis goniometers at the knee, which enabled accuracies of 74.2% and
99.6%, respectively. However, with an Fl-score of just 44.5% for the Camargo et al. knee
goniometer, this may suggest that two-axis goniometers lacked the data dimensionality for
high-accuracy HAR. Finally, the EMG sensors exhibited the lowest performance metrics
across all datasets. Among the EMG sensors, placement heavily affected classification
accuracy, with the vastus lateralis and biceps femoris performing extremely poorly, whilst
the tibialis anterior, soleus, gastrocnemius, and vastus medialis generally outperformed
EMG sensors placed on other muscles. However, even the highest-performing EMG sensors
in each dataset exhibit F1-scores significantly lower than those of the IMUs.

3.2. Subject-Independent Cross-Validation
3.2.1. Determining Optimal Window Sizes

Figure 5 shows the performance trends of each model at each window size for the four
datasets in this study using LOSO cross-validation. The maximum accuracy for USC-HAD
occurred at a 10 s window size with the SVM exhibiting an accuracy of 91.9% and an F1-score
of 81.2%, whilst the Camargo et al. dataset achieved a maximum accuracy of 80.8% and
an Fl-score of 85.2% at 9 s using the ANN. Both the CSL-SHARE and HuGaDB datasets
achieved a 100% classification accuracy and an F1-score with multiple model types at 1 and
2 s, respectively, which was maintained up to a window size of 10 s. The DT, RF, and KNN
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models performed erratically across all datasets and window sizes, which caused the stacking
and voting ensemble methods to underperform when compared to the ANN and SVM.

Table 3. Maximum accuracy, precision, recall, and F1-Score for each dataset, non-ensemble model,
and method of cross-validation.

Dataset Model Window Size (s) Acc (%) Prec (%) Rec (%) F1-Score (%)
USC-HAD TTS SVM 5 99.90 99.73 99.90 99.81
USC-HAD LOSO SVM 10 91.89 79.29 91.89 81.17
Camargo et al. TTS SVM 4 86.15 92.56 92.52 92.51
Camargo et al. LOSO ANN 5 80.41 86.66 86.06 85.19
HuGaDB TTS SVM 4 99.97 99.82 99.97 99.90
HuGaDB LOSO ANN 2 100 100 100 100
CSL-SHARE TTS ALL 2 100 100 100 100
CSL-SHARE LOSO ALL 3 100 100 100 100

Table 4. Subject-dependent performance metrics of each individual sensor in the Camargo et al. dataset.

Sensor Precision Recall F1-Score Accuracy
Trunk IMU 0.801 0.798 0.799 0.897
Thigh IMU 0.753 0.751 0.744 0.874
Shank IMU 0.778 0.769 0.772 0.881
Foot IMU 0.814 0.787 0.774 0.894
Gastrocnemius Medialis EMG 0.716 0.630 0.621 0.758
Tibialis Anterior EMG 0.636 0.547 0.523 0.755
Soleus EMG 0.676 0.620 0.629 0.774
Vastus Medialis EMG 0.459 0.493 0.470 0.652
Vastus Lateralis EMG 0.158 0.256 0.169 0.458
Rectus Femoris EMG 0.185 0.252 0.212 0.374
Biceps Femoris EMG 0.296 0.348 0.302 0.561
Semitendinosus EMG 0.216 0.296 0.242 0.423
Gracilis EMG 0.763 0.460 0.456 0.652
Gluteus Medius EMG 0.348 0.357 0.316 0.577
Right External Oblique EMG 0.372 0.372 0.336 0.594
Ankle Goniometer 0.741 0.747 0.708 0.874
Knee Goniometer 0.410 0.500 0.445 0.742
Hip Goniometer 0.753 0.744 0.742 0.868

Table 5. Subject-dependent performance metrics of each individual sensor in the HuGaDB dataset.

Sensor Precision Recall F1-Score Accuracy
Right Thigh IMU 0.990 0.994 0.992 0.995
Left Thigh IMU 0.993 0.996 0.995 0.997
Right Shank IMU 0.995 0.997 0.996 0.998
Left Shank IMU 0.989 0.990 0.989 0.993
Right Foot IMU 0.973 0.979 0.976 0.987
Left Foot IMU 0.978 0.984 0.981 0.991
Right Vastus Lateralis EMG 0.669 0.509 0.506 0.775

Left Vastus Lateralis EMG 0.597 0.478 0.457 0.783
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Table 6. Subject-dependent performance metrics of each individual sensor in the CSL-SHARE dataset.

Sensor Precision Recall F1-Score Accuracy
Vastus Medialis EMG 0.691 0.699 0.695 0.661
Tibialis Anterior EMG 0.659 0.648 0.644 0.592
Biceps Femoris EMG 0.430 0.383 0.391 0.367
Gastrocnemius EMG 0.582 0.550 0.534 0.475
Airborne Microphone 0.550 0.536 0.534 0.454
Thigh IMU 1.000 1.000 1.000 1.000
Shank IMU 1.000 1.000 1.000 1.000
Knee Goniometer 0.997 0.996 0.997 0.996

Figure 7 shows the mean accuracies across all time windows and models. From
Figure 7a, the SVMs and ANNSs appear as the classifiers with the highest classification
accuracy where there is a statistically significant difference between classifier performances,
with the SVMs achieving 79.1%, 68.4%, 98.8%, and 99.9% accuracies and F1-scores of
66.9%, 66.1%, 99.2%, and 100%, whilst the ANNs achieved 75.4%, 73.6%, 99.9%, and 100%
accuracies and Fl-scores of 66.3%, 76.7%, 99.9% and 100% on each of the USC-HAD,
Camargo et al., HuGaDB, and CSL-SHARE datasets, respectively. As such, the ANN and
SVM can clearly be identified as the highest-performing model types across all datasets,
as seen in Table 3. Concerning window size, each dataset presented a different window
size at which the maximum mean accuracy occurred. For USC-HAD, the highest mean
accuracy and Fl-score across all models occurred at 2-3 s window sizes, whilst for the
Camargo et al. dataset, these occurred at 5 s, both of which were similar to the time at
which model accuracy plateaued using subject-dependent cross-validation. Both HuGaDB
and CSL-SHARE achieved accuracies of 100% with several models, but due to the lower
accuracies with other models, their highest mean performances occurred at 8 s for HuGaDB
and any value from 3 to 10 s for CSL-SHARE.

3.2.2. Individual Sensor Analysis

As with the subject-dependent individual sensor analysis, the ANN was trained on the
features extracted from each individual sensor. Tables 7-9 show the performance metrics
for each sensor used in the Camargo et al., HuGaDB, and CSL-SHARE datasets, respectively.
Like with the subject-dependent analysis, the IMUs achieved the highest accuracies across
two of the three datasets, whilst the EMG sensors exhibited consistently poor performances.
In this scenario, performance metrics were generally reduced, with only the EMG sensors
placed on the gastrocnemius medialis and gluteus medius for the Camargo et al. dataset
and the vastus medialis for the CSL-SHARE dataset achieving accuracies and F1-scores
above 50%. The three-axis goniometers on the hip from the Camargo et al. dataset exhib-
ited higher performance metrics than the IMUs in this case, with the ankle goniometer
outperforming all but the foot IMU, whilst the two-axis goniometers positioned on the knee
in the Camargo et al. and CSL-SHARE datasets exhibited much lower performance metrics.

Overall, the trends among these sensors were largely the same as with the subject-
dependent analysis, with the main difference being the high performance of the three-axis
goniometers, along with an overall reduction in accuracy for the two-axis goniometers and
EMG sensors, further highlighting the volatility of performance when using these sensors.
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Table 7. Subject-independent performance metrics of each individual sensor in the Camargo et al. dataset.

Sensor Precision Recall F1-Score Accuracy
Trunk IMU 0.781 0.787 0.754 0.787
Thigh IMU 0.299 0.547 0.386 0.547
Shank IMU 0.680 0.720 0.679 0.720
Foot IMU 0.795 0.800 0.788 0.800
Gastrocnemius Medialis EMG 0.513 0.600 0.532 0.600
Tibialis Anterior EMG 0.272 0.227 0.226 0.227
Soleus EMG 0.599 0.347 0.381 0.347
Vastus Medialis EMG 0.110 0.173 0.120 0.173
Vastus Lateralis EMG 0.453 0.307 0.361 0.307
Rectus Femoris EMG 0.072 0.147 0.085 0.147
Biceps Femoris EMG 0.475 0.400 0.409 0.400
Semitendinosus EMG 0.404 0.307 0.307 0.307
Gracilis EMG 0.080 0.173 0.110 0.173
Gluteus Medius EMG 0.548 0.667 0.556 0.667
Right External Oblique EMG 0.419 0.187 0.157 0.187
Ankle Goniometer 0.738 0.800 0.759 0.800
Knee Goniometer 0.285 0.267 0.229 0.267
Hip Goniometer 0.927 0.880 0.859 0.880

Table 8. Subject-independent performance metrics of each individual sensor in the HuGaDB dataset.

Sensor Precision Recall F1-Score Accuracy
Right Thigh IMU 1.000 1.000 1.000 1.000
Left Thigh IMU 0.970 0.966 0.966 0.984
Right Shank IMU 1.000 1.000 1.000 1.000
Left Shank IMU 0.976 0.997 0.986 0.992
Right Foot IMU 0.953 0.960 0.952 0.982
Left Foot IMU 0.874 0.824 0.779 0.923
Right Vastus Lateralis EMG 0.211 0.290 0.229 0.478
Left Vastus Lateralis EMG 0.428 0.330 0.330 0.726

Table 9. Subject-independent performance metrics of each individual sensor in the CSL-SHARE

dataset.
Sensor Precision Recall F1-Score Accuracy
Vastus Medialis EMG 0.846 0.634 0.624 0.757
Tibialis Anterior EMG 0.475 0.375 0.332 0.456
Biceps Femoris EMG 0.366 0.361 0.270 0.417
Gastrocnemius EMG 0.300 0.458 0.354 0.573
Airborne Microphone 0.525 0.517 0.475 0.427
Thigh IMU 0.992 0.993 0.992 0.990
Shank IMU 0.935 0.931 0.924 0.903
Knee Goniometer 0.884 0.767 0.706 0.738

4. Discussions

The results of the window size analysis did not exhibit a consistent peak or plateau,
with accuracies appearing volatile across the four datasets for each window size and trend
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lines displaying misaligned peaks. Furthermore, the averaging of accuracies across all
models at each window size showed no clear single optimal window size across the four
datasets and methods of cross-validation.

It must be noted that the performance metrics of the Camargo et al. dataset did not
align with the other multimodal datasets in terms of overall classification accuracy. These
systems all made use of the same six-axis IMU positioned on the thigh, yet the Camargo et al.
dataset achieved significantly reduced accuracies when trained on only this sensor when
compared to HuGaDB and CSL-SHARE. Given the large number of controlled variables in
this study, this indicates a difference in experimental procedure or activity data distribution,
which negatively affects the results of the Camargo et al. dataset. Figure 9a shows the
confusion matrix for an SVM trained on the Camargo et al. dataset, which shows that the
misclassifications are between the stair ascend and stair descend classes. This is also shown
not to be caused by sample weighting, as Figure 9b,c show the confusion matrices for
the HuGaDB and CSL-SHARE datasets, respectively, which feature more extreme sample
weightings than the Camargo et al. dataset whilst achieving 100% accuracy.

Figure 9 highlights SVMs as the most effective individual models for HAR using
subject-dependent cross-validation, with ANNSs proving more effective when using subject-
independent cross-validation. This is likely due to the tendency for ANNs to overfit, which
was further pronounced by the use of a TTS in creating test data for subject-dependent cross-
validation, whereas SVMs typically perform well in these scenarios due to the maximisation
of the margin when creating a decision boundary.

For subject-dependent cross-validation, peak accuracies occurred at smaller window
sizes, ranging from 2-5 s. The trend lines in Figures 1 and 5 also exhibit rises in accuracy for
some models as they approach a 10-s window size, indicating that, if the dataset contains
enough samples in each class for this to be viable, larger window sizes offer richer features
which lead to higher classification accuracies. For subject-independent cross-validation,
the highest-performing model accuracies occurred at 2, 3, 5, and 10 s for the HuGaDB,
CSL-SHARE, Camargo et al., and USC-HAD datasets, respectively. Apart from USC-HAD,
this further highlights the range of 2-5 s as an effective range of window sizes in achieving
high classification accuracy for the core activities of HAR.

Aside from the Camargo et al. dataset, the multimodal datasets achieved much higher
classification accuracies when using the same models and window sizes, which allowed high
accuracies to be obtained with much smaller window sizes. This has significant implications
when considering the delay time, portability, and convenience of systems, as increasing the
number of sensors can enable high-accuracy HAR using very computationally inexpensive
methods such as DT. These computationally low-cost methods can also allow designers of
real-time HAR systems to incorporate low-power computational devices with reduced size
profiles and battery consumption, therefore increasing the comfort and convenience of the
devices. Additionally, the fact that high accuracies can be obtained in multimodal systems
with low window sizes means that much faster response times can be achieved for real-time
HAR systems, as some models trained on the CSL-SHARE dataset achieved 100% accuracy
using just 1 s windows with a 0.25 s fixed delay time caused by the step size. Whilst it was
shown that accuracy at each window size was dependent on the sensor types used in each
dataset, further work is needed to identify how model performance varies with window size
for each individual sensor type. This will enable the building of a knowledge database to help
future researchers choose a window size given a sensor system without the need for lengthy;,
brute-force approaches to finding the most appropriate window size, combination of sensors,
and choice of model for each novel dataset produced in this field.
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Figure 9. Confusion matrices of an SVM trained on data from a single EMG sensor using LOSO
cross-validation. (a) Camargo et al. Vastus Lateralis. (b) HuGaDB Vastus Lateralis. (¢) CSL-SHARE
Vastus Medialis EMG.

Regarding individual sensor types, the IMUs and three-axis goniometers generally
exhibited the highest accuracies, followed by the two-axis goniometers and finally the EMG
sensors. Among IMU locations, accuracy varied among the different locations, with no clear
ranking between all datasets. Only the Camargo et al. and CSL-SHARE datasets featured
goniometers, with the three-axis goniometers at the thigh and ankle in the Camargo et al.
dataset showing large performance improvements over the two-axis goniometers located
on the knee in both the Camargo et al. and CSL-SHARE datasets. Goniometers are low-
power devices with fewer data dimensions than IMUs which can be incorporated into smart
clothing devices to improve comfort and convenience. Given the competitive performance
of goniometers in this study, three-axis goniometers should be considered in future datasets
and HAR systems. On the other hand, EMG sensor performance was volatile between
locations and datasets, which may be due to differences in filtering methods, varying
placements on muscles, or changes in experimental procedures. As such, it is not currently
possible to compare the locations of these sensors, particularly with so few datasets for
reference. More datasets are required to accurately rank the locations of these sensors so
that the impact of differences in experimental setup can be minimised.
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Regarding the sample rates of each dataset, no correlation was present between the
native sample rates of each dataset and the final classification accuracy, with the HuGaDB
dataset exhibiting far higher accuracies than USC-HAD and the Camargo et al. dataset,
despite having the lowest native sample rate of 60 Hz. As such, whilst sample rate is
expected to have an effect at even lower values, 60 Hz can be considered a sufficient sample
rate for high-accuracy HAR.

These results align with the findings of Banos et al. [23], who found that increased
window size does not necessarily increase activity classification performance across many
datasets. However, our study also offers insight into the reason for this assumption,
with subject-dependent cross-validation demonstrating this pattern until accuracy and
F1-score began to reduce at larger window size values due to insufficient sample sizes.
Crucially, this work considers both subject-dependent and subject-independent methods
of cross-validation, which highlights how the choice of cross-validation method impacts
the selection of an optimal window size, which was not considered in the study [23].
Niazi et al. [25] considered the effect of window size and sample rate on classification
accuracy using an RF classifier, where it was reported that window sizes could appear
optimal between 2-10 s using subject-dependent cross-validation. Our results support these
findings and demonstrate that this also applies to additional classical Machine Learning
models such as the ANN, SVM, KNN, and DT. Duan et al. [28] considered the optimal
placement of sensors using deep learning techniques for a single dataset, finding that
sensors placed on the right leg exhibited increased performance. Our results align with
the findings of this study, with the HuGaDB dataset demonstrating that, when subject-
independent cross-validation was used, the performance metrics of the right leg were
higher than those of the left. Finally, Khan et al. [30] report that sensor performance is
dependent on the activities being performed in the dataset. By removing the variation
between datasets, our study controlled for this factor, resulting in a reliable ranking of sensor
locations that achieved high performances and offer future researchers the information
necessary to build effective HAR systems.

Finally, this study featured several limitations due to the computational cost of perform-
ing this analysis. The first of these limitations was the lack of investigation into the effects of
window step size, which was set to 25% of the total window size. This could have been set
to a fixed time value for all window sizes or have been individually analysed to explore the
co-dependent effects of step size and window size. Furthermore, the availability of datasets
which feature a sufficiently large number of participants and sensors, along with the core
activities included in this study, was limited, resulting in the inclusion of just four datasets.

5. Conclusions and Future Work

This study is the first of its kind in providing a bias-reduced, normalised, cross-dataset
analysis to determine and rank the highest-performing sensor types for Human Activity
Recognition. First, ANNs were found to be the highest-performing models across multiple
multimodal HAR datasets, closely followed by SVMs, with the optimal window size being
in the range of 2-5 s when using the semi-non-overlapping sliding window approach to
feature engineering with a 75% overlap. Where datasets were large enough to reduce the
impact of class imbalance, or models were sufficiently powerful to generalise with smaller
sample numbers, accuracies were also shown to trend upwards with larger window sizes
of 9-10 s. Regarding the contributions of individual sensor types to classification accuracy,
IMUs placed on the thigh and three-axis goniometers on the thigh and ankle were the
overall largest contributors to high-accuracy HAR, whilst EMG sensors were found to
exhibit volatile accuracies which was likely due to the difficulty in ensuring that the sensors
were in the same place and calibrated equally for different subjects. It remains appropriate
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for researchers to collect large HAR datasets and to investigate alternative methods of
HAR using multimodal sensor systems and smart clothing to investigate how the size and
inconvenience of these systems can be minimised whilst maintaining high accuracy using
low-computational-complexity classification methods.

This study was limited by the scarcity of open multimodal gait datasets with large
numbers of sensors and common activities. As a result, future work in this area should
consider more datasets, activities (including fall-related activities), and sensor types to
investigate how classifier performance in HAR is affected by these properties. Additionally,
elements such as step size, the proportion of data for each activity, and time-series features
should be investigated for their contribution towards achieving efficient and convenient
high-accuracy HAR. Finally, the time and space complexity of these algorithms should be
considered under the various window sizes to evaluate the feasibility of deploying these
optimised models in real-world HAR applications.
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ANN  Artificial Neural Network
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KNN  K-Nearest Neighbors

LOSO Leave-One-Subject-Out

ML Machine Learning

PCA Principal Component Analysis
RF Random Forest

SVM  Support Vector Machine
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Appendix A

Figures Al and A2 along with Tables A1-A8 show the performance metrics of each
dataset and method of cross-validation, including the mean, standard deviation, and 95%
confidence intervals.
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Figure Al. Trend graphs showing the macro-averaged performance metrics across all models and
window sizes for the four datasets in this analysis when using TTS cross-validation. (a) USC-HAD.
(b) Camargo et al. (c) HuGaDB. (d) CSL-SHARE.
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Figure A2. Trend graphs showing the macro-averaged performance metrics across all models and
window sizes for the four datasets in this analysis when using TTS cross-validation. (a) USC-HAD.
(b) Camargo et al. (c) HuGaDB. (d) CSL-SHARE.
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Table Al. Performance metrics for the USC HAD dataset using TTS cross-validation with 95%
confidence intervals.

Window (s) Metric Mean Std CI Low CI High

Accuracy 0.9577 0.0328 0.9273 0.9881

1 Precision 0.9654 0.0341 0.9339 0.9970
Recall 0.9577 0.0328 0.9273 0.9881

Fl-score 0.9613 0.0332 0.9306 0.9920

Accuracy 0.9749 0.0240 0.9527 0.9971

’ Precision 0.9791 0.0262 0.9549 1.0034
Recall 0.9749 0.0240 0.9527 0.9971

Fl-score 0.9769 0.0248 0.9540 0.9999

Accuracy 0.9820 0.0224 0.9613 1.0027

3 Precision 0.9838 0.0221 0.9633 1.0043
Recall 0.9820 0.0224 0.9613 1.0027

F1-score 0.9829 0.0222 0.9624 1.0034

Accuracy 0.9885 0.0185 0.9714 1.0057

4 Precision 0.9886 0.0197 0.9704 1.0068
Recall 0.9885 0.0185 0.9714 1.0057

Fl-score 0.9886 0.0191 0.9709 1.0062

Accuracy 0.9910 0.0172 0.9750 1.0069

5 Precision 0.9908 0.0186 0.9736 1.0080
Recall 0.9910 0.0172 0.9750 1.0069

Fl-score 0.9909 0.0179 0.9743 1.0074

Accuracy 0.9889 0.0126 0.9773 1.0005

6 Precision 0.9895 0.0158 0.9750 1.0041
Recall 0.9889 0.0126 0.9773 1.0005

Fl-score 0.9892 0.0140 0.9762 1.0022

Accuracy 0.9907 0.0146 0.9772 1.0042

7 Precision 0.9886 0.0191 0.9710 1.0063
Recall 0.9907 0.0146 0.9772 1.0042

Fl-score 0.9896 0.0168 0.9740 1.0051

Accuracy 0.9893 0.0155 0.9749 1.0036

3 Precision 0.9906 0.0147 0.9771 1.0042
Recall 0.9893 0.0155 0.9749 1.0036

Fl-score 0.9899 0.0152 0.9758 1.0040

Accuracy 0.9894 0.0152 0.9754 1.0035

9 Precision 0.9895 0.0166 0.9741 1.0049
Recall 0.9894 0.0152 0.9754 1.0035

F1-score 0.9894 0.0159 0.9747 1.0041

Accuracy 0.9898 0.0170 0.9741 1.0055

10 Precision 0.9909 0.0174 0.9749 1.0070
Recall 0.9898 0.0170 0.9741 1.0055

Fl-score 0.9903 0.0172 0.9744 1.0062
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Table A2. Performance metrics for the USC HAD dataset using LOSO cross-validation with 95%
confidence intervals.

Window (s) Metric Mean Std CI Low CI High

Accuracy 0.6083 0.1353 0.4831 0.7334

1 Precision 0.5992 0.1117 0.4959 0.7025
Recall 0.6083 0.1353 0.4831 0.7334

F1-score 0.5589 0.1424 0.4272 0.6907

Accuracy 0.6521 0.1317 0.5303 0.7739

’ Precision 0.6319 0.1831 0.4626 0.8012
Recall 0.6521 0.1317 0.5303 0.7739

F1-score 0.5817 0.1563 0.4372 0.7262

Accuracy 0.6579 0.1900 0.4821 0.8336

3 Precision 0.6092 0.1416 0.4783 0.7402
Recall 0.6579 0.1900 0.4821 0.8336

F1-score 0.5705 0.1804 0.4036 0.7373

Accuracy 0.6004 0.1481 0.4635 0.7374

4 Precision 0.6065 0.1163 0.4990 0.7141
Recall 0.6004 0.1481 0.4635 0.7374

F1-score 0.5561 0.1524 0.4152 0.6970

Accuracy 0.5795 0.1451 0.4453 0.7137

5 Precision 0.6181 0.1726 0.4584 0.7777
Recall 0.5795 0.1451 0.4453 0.7137

F1-score 0.5079 0.1443 0.3745 0.6414

Accuracy 0.5372 0.1601 0.3891 0.6852

6 Precision 0.5928 0.1511 0.4530 0.7326
Recall 0.5372 0.1601 0.3891 0.6852

F1-score 0.4586 0.1453 0.3241 0.5930

Accuracy 0.5799 0.1415 0.4490 0.7108

- Precision 0.5434 0.1746 0.3819 0.7049
Recall 0.5799 0.1415 0.4490 0.7108

Fl-score 0.4982 0.1205 0.3868 0.6096

Accuracy 0.5279 0.1938 0.3486 0.7071

3 Precision 0.5455 0.1416 0.4145 0.6764
Recall 0.5279 0.1938 0.3486 0.7071

Fl-score 0.4304 0.1727 0.2706 0.5901

Accuracy 0.6061 0.1817 0.4380 0.7741

9 Precision 0.5663 0.1864 0.3939 0.7387
Recall 0.6061 0.1817 0.4380 0.7741

Fl-score 0.5227 0.1661 0.3691 0.6764

Accuracy 0.6150 0.2031 0.4271 0.8028

10 Precision 0.5895 0.2052 0.3997 0.7793
Recall 0.6150 0.2031 0.4271 0.8028

F1-score 0.5448 0.1925 0.3668 0.7228
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Table A3. Performance metrics for the CSL-SHARE dataset using TTS cross-validation with 95%
confidence intervals.

Window (s) Metric Mean Std CI Low CI High

Accuracy 0.9984 0.0015 0.9970 0.9998

1 Precision 0.9988 0.0012 0.9977 0.9999
Recall 0.9988 0.0012 0.9977 0.9999

Fl-score 0.9988 0.0012 0.9977 0.9999

Accuracy 1.0000 0.0000 N/A N/A

2 Precision 1.0000 0.0000 N/A N/A
Recall 1.0000 0.0000 N/A N/A

Fl-score 1.0000 0.0000 N/A N/A

Accuracy 1.0000 0.0000 N/A N/A

3 Precision 1.0000 0.0000 N/A N/A
Recall 1.0000 0.0000 N/A N/A

F1-score 1.0000 0.0000 N/A N/A

Accuracy 1.0000 0.0000 N/A N/A

4 Precision 1.0000 0.0000 N/A N/A
Recall 1.0000 0.0000 N/A N/A

F1-score 1.0000 0.0000 N/A N/A

Accuracy 1.0000 0.0000 N/A N/A

5 Precision 1.0000 0.0000 N/A N/A
Recall 1.0000 0.0000 N/A N/A

Fl-score 1.0000 0.0000 N/A N/A

Accuracy 1.0000 0.0000 N/A N/A

6 Precision 1.0000 0.0000 N/A N/A
Recall 1.0000 0.0000 N/A N/A

Fl-score 1.0000 0.0000 N/A N/A

Accuracy 1.0000 0.0000 N/A N/A

7 Precision 1.0000 0.0000 N/A N/A
Recall 1.0000 0.0000 N/A N/A

Fl-score 1.0000 0.0000 N/A N/A

Accuracy 1.0000 0.0000 N/A N/A

3 Precision 1.0000 0.0000 N/A N/A
Recall 1.0000 0.0000 N/A N/A

Fl-score 1.0000 0.0000 N/A N/A

Accuracy 0.9778 0.0514 0.9302 1.0254

9 Precision 0.9904 0.0222 0.9698 1.0109
Recall 0.9896 0.0241 0.9674 1.0119

Fl-score 0.9891 0.0255 0.9655 1.0127

Accuracy 0.9277 0.1839 0.7576 1.0977

10 Precision 0.9523 0.1223 0.8391 1.0654
Recall 0.9607 0.1000 0.8682 1.0532

F1-score 0.9469 0.1366 0.8206 1.0732
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Table A4. Performance metrics for the CSL-SHARE dataset using LOSO cross-validation with 95%
confidence intervals.

Window (s) Metric Mean Std CI Low CI High

Accuracy 0.9762 0.0609 0.9199 1.0325

1 Precision 0.9837 0.0421 0.9448 1.0227
Recall 0.9841 0.0412 0.9460 1.0222

Fl-score 0.9838 0.0419 0.9451 1.0225

Accuracy 0.9708 0.0773 0.8993 1.0423

2 Precision 0.9762 0.0629 0.9181 1.0344
Recall 0.9683 0.0840 0.8906 1.0459

Fl-score 0.9701 0.0790 0.8971 1.0432

Accuracy 1.0000 0.0000 N/A N/A

3 Precision 1.0000 0.0000 N/A N/A
Recall 1.0000 0.0000 N/A N/A

F1-score 1.0000 0.0000 N/A N/A

Accuracy 1.0000 0.0000 N/A N/A

4 Precision 1.0000 0.0000 N/A N/A
Recall 1.0000 0.0000 N/A N/A

Fl-score 1.0000 0.0000 N/A N/A

Accuracy 1.0000 0.0000 N/A N/A

5 Precision 1.0000 0.0000 N/A N/A
Recall 1.0000 0.0000 N/A N/A

Fl-score 1.0000 0.0000 N/A N/A

Accuracy 1.0000 0.0000 N/A N/A

6 Precision 1.0000 0.0000 N/A N/A
Recall 1.0000 0.0000 N/A N/A

F1-score 1.0000 0.0000 N/A N/A

Accuracy 1.0000 0.0000 N/A N/A

7 Precision 1.0000 0.0000 N/A N/A
Recall 1.0000 0.0000 N/A N/A

F1-score 1.0000 0.0000 N/A N/A

Accuracy 1.0000 0.0000 N/A N/A

3 Precision 1.0000 0.0000 N/A N/A
Recall 1.0000 0.0000 N/A N/A

Fl-score 1.0000 0.0000 N/A N/A

Accuracy 1.0000 0.0000 N/A N/A

9 Precision 1.0000 0.0000 N/A N/A
Recall 1.0000 0.0000 N/A N/A

Fl-score 1.0000 0.0000 N/A N/A

Accuracy 1.0000 0.0000 N/A N/A

10 Precision 1.0000 0.0000 N/A N/A
Recall 1.0000 0.0000 N/A N/A

Fl-score 1.0000 0.0000 N/A N/A
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Table A5. Performance metrics for the Camargo et al. dataset using TTS cross-validation with 95%

confidence intervals.

Window (s) Metric Mean Std CI Low CI High

Accuracy 0.7379 0.0347 0.7058 0.7701

1 Precision 0.8294 0.0274 0.8041 0.8547
Recall 0.8394 0.0250 0.8163 0.8625

Fl-score 0.8336 0.0262 0.8093 0.8579

Accuracy 0.7939 0.0311 0.7651 0.8227

2 Precision 0.8764 0.0212 0.8568 0.8960
Recall 0.8796 0.0190 0.8621 0.8972

Fl-score 0.8776 0.0203 0.8589 0.8964

Accuracy 0.7916 0.0331 0.7610 0.8223

3 Precision 0.8819 0.0199 0.8634 0.9003
Recall 0.8830 0.0186 0.8658 0.9003

Fl-score 0.8784 0.0249 0.8554 0.9013

Accuracy 0.8158 0.0329 0.7854 0.8462

4 Precision 0.9012 0.0185 0.8840 0.9183
Recall 0.9002 0.0179 0.8837 0.9168

Fl-score 0.8985 0.0194 0.8805 0.9164

Accuracy 0.7994 0.0303 0.7714 0.8274

5 Precision 0.8827 0.0188 0.8653 0.9001
Recall 0.8836 0.0169 0.8679 0.8992

Fl-score 0.8813 0.0205 0.8623 0.9002

Accuracy 0.8140 0.0343 0.7823 0.8458

6 Precision 0.8981 0.0180 0.8815 0.9148
Recall 0.8959 0.0205 0.8769 0.9149

Fl-score 0.8908 0.0317 0.8615 0.9201

Accuracy 0.8159 0.0424 0.7767 0.8552

7 Precision 0.8952 0.0238 0.8732 0.9172
Recall 0.8958 0.0236 0.8740 0.9176

Fl-score 0.8932 0.0265 0.8687 0.9177

Accuracy 0.8151 0.0359 0.7819 0.8484

3 Precision 0.9066 0.0200 0.8881 0.9251
Recall 0.9057 0.0194 0.8877 0.9237

Fl-score 0.9042 0.0191 0.8866 0.9219

Accuracy 0.8058 0.0266 0.7811 0.8304

9 Precision 0.9125 0.0159 0.8978 0.9272
Recall 0.9046 0.0137 0.8919 0.9173

Fl-score 0.9001 0.0228 0.8790 0.9211

Accuracy 0.8093 0.0223 0.7887 0.8300

10 Precision 0.9018 0.0113 0.8913 0.9123
Recall 0.9014 0.0116 0.8906 0.9121

F1-score 0.9010 0.0118 0.8901 0.9120
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Table A6. Performance metrics for the Camargo et al. dataset using LOSO cross-validation with 95%
confidence intervals.

Window (s) Metric Mean Std CI Low CI High

Accuracy 0.5844 0.0941 0.4973 0.6714

1 Precision 0.5760 0.1825 0.4072 0.7448
Recall 0.6194 0.1948 0.4392 0.7996

F1-score 0.5517 0.1966 0.3699 0.7336

Accuracy 0.6351 0.0917 0.5503 0.7199

’ Precision 0.6892 0.0738 0.6210 0.7575
Recall 0.6983 0.0883 0.6167 0.7800

Fl-score 0.6495 0.0901 0.5662 0.7328

Accuracy 0.6623 0.0382 0.6270 0.6976

3 Precision 0.6961 0.0564 0.6440 0.7482
Recall 0.7183 0.0935 0.6318 0.8047

Fl-score 0.6613 0.0882 0.5798 0.7429

Accuracy 0.6531 0.0817 0.5775 0.7287

4 Precision 0.7135 0.0765 0.6428 0.7842
Recall 0.7507 0.0598 0.6954 0.8059

Fl-score 0.6896 0.0900 0.6063 0.7728

Accuracy 0.6970 0.0703 0.6320 0.7620

5 Precision 0.7428 0.0871 0.6623 0.8234
Recall 0.7879 0.0502 0.7414 0.8343

Fl-score 0.7339 0.0735 0.6660 0.8019

Accuracy 0.6865 0.0630 0.6282 0.7448

6 Precision 0.7385 0.1009 0.6452 0.8318
Recall 0.7794 0.0447 0.7380 0.8208

F1-score 0.7249 0.0657 0.6641 0.7857

Accuracy 0.6463 0.0531 0.5971 0.6954

7 Precision 0.6538 0.0197 0.6356 0.6720
Recall 0.7547 0.0395 0.7182 0.7913

Fl-score 0.6793 0.0430 0.6396 0.7191

Accuracy 0.6622 0.0513 0.6148 0.7096

8 Precision 0.6638 0.0183 0.6469 0.6808
Recall 0.7717 0.0334 0.7409 0.8026

Fl-score 0.7010 0.0360 0.6678 0.7343

Accuracy 0.6735 0.1338 0.5497 0.7972

9 Precision 0.6843 0.1205 0.5729 0.7958
Recall 0.7890 0.0740 0.7206 0.8575

Fl-score 0.7225 0.0965 0.6332 0.8117

Accuracy 0.6429 0.1241 0.5280 0.7577

10 Precision 0.6465 0.0943 0.5593 0.7337
Recall 0.7657 0.0818 0.6901 0.8413

F1-score 0.6843 0.1025 0.5895 0.7791
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Table A7. Performance metrics for the HuGaDB dataset using TTS cross-validation with 95% confi-
dence intervals.

Window (s) Metric Mean Std CI Low CI High

Accuracy 0.9826 0.0123 0.9712 0.9940

1 Precision 0.9846 0.0126 0.9729 0.9963
Recall 0.9826 0.0123 0.9712 0.9940

F1-score 0.9836 0.0124 0.9721 0.9951

Accuracy 0.9899 0.0089 0.9817 0.9982

’ Precision 0.9904 0.0086 0.9825 0.9984
Recall 0.9899 0.0089 0.9817 0.9982

F1-score 0.9902 0.0087 0.9822 0.9982

Accuracy 0.9924 0.0058 0.9870 0.9978

3 Precision 0.9931 0.0067 0.9869 0.9993
Recall 0.9924 0.0058 0.9870 0.9978

F1-score 0.9927 0.0062 0.9870 0.9984

Accuracy 0.9966 0.0035 0.9934 0.9999

4 Precision 0.9948 0.0052 0.9900 0.9996
Recall 0.9966 0.0035 0.9934 0.9999

F1-score 0.9957 0.0043 0.9917 0.9997

Accuracy 0.9956 0.0032 0.9927 0.9985

5 Precision 0.9958 0.0038 0.9922 0.9993
Recall 0.9956 0.0032 0.9927 0.9985

F1-score 0.9957 0.0035 0.9924 0.9989

Accuracy 0.9952 0.0056 0.9900 1.0004

6 Precision 0.9978 0.0034 0.9947 1.0010
Recall 0.9952 0.0056 0.9900 1.0004

F1-score 0.9965 0.0045 0.9924 1.0007

Accuracy 0.9943 0.0043 0.9903 0.9983

7 Precision 0.9927 0.0104 0.9831 1.0023
Recall 0.9943 0.0043 0.9903 0.9983

F1-score 0.9935 0.0074 0.9866 1.0003

Accuracy 0.9953 0.0049 0.9908 0.9998

g Precision 0.9955 0.0043 0.9915 0.9995
Recall 0.9953 0.0049 0.9908 0.9998

F1-score 0.9954 0.0045 0.9912 0.9995

Accuracy 0.9956 0.0057 0.9903 1.0009

9 Precision 0.9959 0.0080 0.9886 1.0033
Recall 0.9956 0.0057 0.9903 1.0009

F1-score 0.9958 0.0068 0.9895 1.0020

Accuracy 0.9954 0.0071 0.9889 1.0020

10 Precision 0.9954 0.0075 0.9884 1.0023
Recall 0.9954 0.0071 0.9889 1.0020

F1-score 0.9953 0.0073 0.9885 1.0021
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Table A8. Performance metrics for the HuGaDB dataset using LOSO cross-validation with 95%
confidence intervals.

Window (s) Metric Mean Std CI Low CI High

Accuracy 0.9789 0.0244 0.9564 1.0015

1 Precision 0.9777 0.0279 0.9519 1.0035
Recall 0.9789 0.0244 0.9564 1.0015

Fl-score 0.9781 0.0251 0.9549 1.0013

Accuracy 0.9852 0.0244 0.9627 1.0077

’ Precision 0.9827 0.0284 0.9564 1.0090
Recall 0.9852 0.0244 0.9627 1.0077

Fl-score 0.9828 0.0267 0.9581 1.0075

Accuracy 0.9917 0.0115 0.9811 1.0024

3 Precision 0.9846 0.0322 0.9548 1.0144
Recall 0.9917 0.0115 0.9811 1.0024

Fl-score 0.9874 0.0204 0.9685 1.0063

Accuracy 0.9884 0.0188 0.9711 1.0058

4 Precision 0.9714 0.0674 0.9090 1.0337
Recall 0.9884 0.0188 0.9711 1.0058

Fl-score 0.9758 0.0529 0.9269 1.0247

Accuracy 0.9967 0.0047 0.9924 1.0011

5 Precision 0.9886 0.0217 0.9685 1.0087
Recall 0.9967 0.0047 0.9924 1.0011

Fl-score 0.9921 0.0135 0.9796 1.0046

Accuracy 0.9981 0.0026 0.9956 1.0005

6 Precision 0.9889 0.0189 0.9715 1.0064
Recall 0.9981 0.0026 0.9956 1.0005

Fl-score 0.9932 0.0112 0.9829 1.0035

Accuracy 0.9975 0.0050 0.9929 1.0021

7 Precision 0.9845 0.0313 0.9556 1.0135
Recall 0.9975 0.0050 0.9929 1.0021

F1-score 0.9899 0.0208 0.9707 1.0091

Accuracy 0.9992 0.0020 0.9974 1.0010

3 Precision 0.9942 0.0137 0.9815 1.0069
Recall 0.9992 0.0020 0.9974 1.0010

Fl-score 0.9966 0.0081 0.9891 1.0041

Accuracy 0.9981 0.0039 0.9945 1.0018

9 Precision 0.9878 0.0248 0.9649 1.0107
Recall 0.9981 0.0039 0.9945 1.0018

Fl-score 0.9926 0.0153 0.9784 1.0067

Accuracy 0.9875 0.0327 0.9573 1.0177

10 Precision 0.9951 0.0104 0.9855 1.0047
Recall 0.9875 0.0327 0.9573 1.0177

Fl-score 0.9905 0.0235 0.9687 1.0123
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