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Abstract: Falls are a major health issue in societies globally and the second leading cause

of unintentional death worldwide. To address this issue, many studies aim to remotely

monitor gait to prevent falls. However, these activity data collected in studies must be

labelled with the appropriate environmental context through Human Activity Recognition

(HAR). Multimodal HAR datasets often achieve high accuracies at the cost of cumbersome

sensor systems, creating a need for these datasets to be analysed to identify the sensor types

and locations that enable high-accuracy HAR. This paper analyses four datasets, USC-HAD,

HuGaDB, Camargo et al.’s dataset, and CSL-SHARE, to find optimal models, methods, and

sensors across multiple datasets. Regarding window size, optimal windows are found to be

dependent on the sensor modality of a dataset but mostly occur in the 2–5 s range. Support

Vector Machines (SVMs) and Artificial Neural Networks (ANNs) are found to be the

highest-performing models overall. ANNs are further used to create models trained on the

features from individual sensors of each dataset. From this analysis, Inertial Measurement

Units (IMUs) and three-axis goniometers are shown to be individually capable of high

classification accuracy, with Electromyography (EMG) sensors exhibiting inconsistent and

reduced accuracies. Finally, it is shown that the thigh is the optimal location for IMU

sensors, with accuracy decreasing as IMUs are placed further down away from the thigh.

Keywords: artificial neural networks; classification algorithms; decision trees; human

activity recognition; K-nearest neighbors; machine learning; random forests; sensor systems;

support vector machines; wearable sensors

1. Introduction

Falling is a significant health issue in society. The World Health Organisation (WHO)

estimates that each year 37.3 million falls require medical attention, while 684,000 falls

are fatal [1], making falls the second leading cause of unintentional death worldwide.

Among people who fall, certain groups are at a higher risk due to cognitive or physical

impairments, which can be attributed to factors including age [1,2], recent surgery [3],

or conditions such as Parkinson’s disease [4], dementia [5], stroke [6], multiple sclerosis [7],

and amputation [8].

Many technological developments in recent years have led to an increased capability

for monitoring gait in people at a high risk of falling, such as the widespread adoption

of smartphones and smartwatches containing sensors, the Internet of Things (IoT) and

body sensor networks, and improvements in wearable sensors. With these advances,
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many studies aim to automate the process of gait analysis by collecting real-time data

from wearable sensors during tasks such as level-ground walking, navigating ramps,

or ascending and descending stairs [9]. The data from these sensors can be analysed to

aid healthcare professionals in diagnosing conditions affecting gait [10], performing gait

analysis [11], or for use in detecting fall events so that the severity of future falls can be

reduced [9,12,13].

However, to enable remote, real-time gait analysis, the context from which the data

are extracted must be provided to the specialist who is reviewing the data. Typically, this

context is obtained through the process of Human Activity Recognition (HAR), where

classification methods are used to determine walking activity in real time from the collected

data [9,14]. As many of these classification methods are supervised [9,14–17], a training

dataset is required to build models capable of identifying activities with high accuracy. Past

studies have created such datasets with a wide array of sensors, pre-processing techniques,

classification methods, and validation methods, resulting in difficulty determining the most

important factors that contribute towards obtaining high accuracy when designing novel

sensor systems [9,14,18].

In the literature, Human Activity Recognition (HAR) studies can be separated into

two categories that focus on convenience, typically making use of a smartphone or smart-

watch [9,19], or accuracy by implementing a multimodal sensor system which can be

cumbersome to wear [9,20,21]. In addition to the potential for accuracy, multimodal sys-

tems typically collect more appropriate quantities of data for remote gait analysis by

allowing the system to collect data from multiple areas of interest through a body sensor

network [22].

Existing studies on finding the optimal sliding window parameters for HAR have

demonstrated a range of results in different contexts. Banos et al. [23] studied the effect

of window size on classification performance for a single dataset featuring accelerometers

placed on each thigh, shank, upper arm, and forearm and the back [24]. This work high-

lights the need for a balance between high accuracy and rapid decision times and finds

that larger window sizes do not correlate to increased classification performance, with the

optimal window sizes occurring below 2 s using Decision Trees (DTs), K-Nearest Neighbors

(KNN), naïve Bayes, and a nearest-centroid classifier. Similarly, Niazi et al. [25] analysed

the co-dependency of window size and sample rate to determine what parameters enable

the highest classification accuracy using Random Forests (RFs) and a single hip-worn

accelerometer. This study found that window sizes of 2–10 s were optimal, contrasting

the results of Banos et al. [23]. Both of these studies highlight that future work is needed

to consider additional technologies and sensor types. Li et al. [26] discuss the difficulty

of determining an optimal window size for a given application, instead choosing to use

different window sizes for each activity based on the temporal properties of that activity,

which increases classification performance. Finally, Dehghani et al. [27] considered the

effects of using overlapping sliding windows against non-overlapping sliding windows

with both subject-dependent and subject-independent cross-validation on HAR perfor-

mance using data collected using inertial sensors with DTs, KNN, naïve Bayes, and a

nearest-centroid classifier. This study found that performance across all classifiers was

reduced when using subject-independent cross-validation and that, under this condition,

the use of overlapping sliding windows did not improve the performance of the models

when compared to non-overalpping windows [27].

Regarding sensor placement, Duan et al. [28] placed seven accelerometers on the

upper arm, wrists, thighs, and chest to determine how sensor location affected classification

accuracy. This study found that sensors placed on the subjects’ dominant side, the right side

in all cases for this study, exhibited increased performance, with the right wrist being the
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highest-performing sensor type when used alone. Furthermore, this study evaluated the use

of RF models along with deep learning techniques such as convolutional neural networks,

transformers, and long short-term memory models with the latter. Kulchyk et al. [29]

analysed the performance of sensors positioned on the sternum, left thigh, right ankle,

and right shoulder using a convolutional neural network for both subject-dependent and

subject-independent cross-validation. This study found the right ankle to be the optimal

sensor location, with multiple pairs of sensors including the ankle sensor resulting in 100%

classification accuracy [29]. Finally, Khan et al. [30] placed five sensor nodes consisting of

accelerometers and gyroscopes on each forearm, the waist, and each ankle and performed

HAR using simple logistic regression, naïve Bayes, and sequential minimal optimisation

classifiers. The study found that individual sensor performance was dependent on activity

type, with sensors on the chest and thigh being optimal for stationary tasks, whilst sensors

on the thigh, lower back, and ankle performed better at movement tasks [30]. Many

studies that consider sensor placement for HAR consider only accelerometers or Inertial

Measurement Units (IMUs) [28–32], leaving much room for sensor position analysis using

additional technologies which can capture motion data.

Overall, these studies highlight a gap in the literature for multi-dataset studies which

aim to identify trends in both optimal window size and optimal sensor placement across

multiple datasets and with additional motion-related technologies and sensors. As stated

by Banos et al. [23], these types of studies form a guideline for future researchers faced with

determining sensor locations and sliding window parameters in the future and contribute

towards a knowledge database of the interactions between analytical parameters and

sensors in HAR using different classifiers so that researchers and system designers can

avoid performing lengthy brute-force searches across high-dimensional search spaces for

individual applications of HAR.

The contributions of this study, therefore, are to identify these optimal analytical

methods, sensor placements, and sensor types which will contribute towards existing

knowledge of HAR classification co-dependencies such as window size, sensor type,

and sensor location. This novel approach using a normalised cross-comparison of different

datasets by controlling variables such as the number of participants, activity types, the

sample rate, and window size for the sliding window technique creates a robust analysis

that can identify trends with increased generalisability when compared with the current

state-of-the-art. Therefore, the results of this study will offer reliable insights into the

performance capabilities of individual sensor types and how these differ based on their

locations on the body. The results of this analysis will help future researchers effectively

design more lightweight sensor systems which decrease the computational burden of HAR

while maintaining high levels of accuracy, comfort, and convenience.

2. Materials and Methods

Four datasets were selected for this study which feature a wide variety of sensor sys-

tems, an appropriate number of participants for sufficient model generalisation, and walk-

ing activities comparable between datasets. A description of each dataset along with the

reasons it was chosen for this analysis follows.

2.1. Dataset 1: USC-HAD

The USC-HAD dataset [33] was published in 2012 and features 14 participants with

a mean (standard deviation; std) age, height, and weight of 30.1 (std: 7.2) years, 170

(std: 6.8) cm, and 64.6 (std: 12.1) kg, respectively. Each subject was equipped with a

single ‘MotionNode’ IMU containing a 3-axis accelerometer, gyroscope, and magnetometer,

totalling 9 data channels. The IMU was mounted to the participants’ anterior right hip in
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a pouch designed for mobile phones. Data were recorded using a laptop which was held

under the arm, pressed to the waist by the subject and connected to the IMU via a cable.

The USC-HAD dataset features 12 activities which were performed at the participants’

own pace [33]. These activities were walking forwards, left, and right, walking upstairs

and downstairs, running, jumping, sitting, standing, sleeping, and going up and down in

a lift.

USC-HAD was chosen because this dataset has been widely explored in the literature

since its publication [15,16,34]. Therefore, this dataset acts as a control for the newer

datasets to validate the chosen methods and models.

2.2. Dataset 2: HuGaDB

The HuGaDB dataset [35] was published in 2017 and features 18 participants with a

mean age, height, and weight of 23.67 (std: 3.69) years, 179.06 (std: 9.85) cm, and 73.44

(std: 16.67) kg, respectively. The sensor system worn by each participant consisted of

IMU sensors placed at the thigh, shank, and foot and an Electromyography (EMG) sensor

placed on the vastus lateralis, each of which were sampled at around 60 Hz. This setup

was mirrored on each leg, for a total of six IMUs and two EMG sensors.

Participants were asked to perform the following 12 activities at a usual pace: walking,

running, navigating stairs, sitting (stationary), sitting down, and standing up, standing

(stationary), cycling, going up and down in a lift, and sitting in a car [35].

2.3. Dataset 3: Camargo et al.

Camargo et al. [36] created an open-source dataset for the study of lower-limb biome-

chanics in 2021, featuring 22 healthy participants with a mean age, height, and weight of

21 (std: 3.4) years, 170 (std: 7.0) cm, and 68.3 (std: 10.83) kg, respectively. Subjects were

equipped with 11 EMG sensors, 3 goniometers, and 4 six-axis IMUs on their right side only.

Sensor locations and sample rates can be found in Table 1.

Table 1. The sensor type, position, and sample rate of each sensor in the Camargo et al. dataset.

Sensor Position Sample Rate

Goniometer
Hip

1000 HzKnee
Trunk

Inertial Measurement Unit

Trunk

200 Hz
Thigh
Shank
Foot

Electromyography Sensor

Gastrocnemius Medialis

1000 Hz

Tibialis Anterior
Soleus
Vastus Medialis
Vastus Lateralis
Rectus Femoris
Biceps femoris
Semitendinosus
Gracilis
Gluteus Medius
Right External Oblique

Whilst participants only performed six basic activities, the transition states were also

labelled, raising the activity count to 19 [36]. With the ‘idle’ class removed as no activities

were performed, 18 walking activities remained, consisting of six core activities and the
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transitions between them. These core activities were ramp ascent, ramp descent, stair

ascent, stair descent, stand, turning, and walking.

2.4. Dataset 4: CSL-SHARE

CSL-SHARE is a dataset published in 2021 for the purpose of exploring activity recog-

nition for common sport-related movements [37]. The sensor system is a multimodal,

knee-mounted system featuring 2 6-axis IMUs placed on the thigh and shank, 4 EMG

sensors placed on the vastus medialis, tibialis anterior, biceps femoris, and gastrocne-

mius, a goniometer placed on the lateral knee, and an airborne microphone. Like the

Camargo et al. dataset, these sensors were placed on the right leg only. The CSL-SHARE

dataset features 22 activities and was upscaled to 1000Hz due to differing sample rates for

the various sensors [37].

2.5. Summary of Datasets

The datasets chosen for this study cover a variety of environments, activities, and sen-

sor configurations. Analysis of the datasets with the same Machine Learning (ML) models

and pre-processing methods will provide insight into how sensor configuration and type

affect classification accuracy in HAR. A comparison of these datasets can be found in

Table 2.

Table 2. A summary of the properties of each dataset in this analysis.

Dataset Features USC-HAD Camargo et al. HuGaDB CSL-SHARE

Participants 14 22 18 20
Mean Age (Years) 30.1 21 23.67 30.5
Mean Height (cm) 170 170 179.06 N/A
Mean Weight (kg) 64.6 68.3 73.44 N/A

IMU Sensors 1 4 6 2
EMG Sensors 0 11 2 4
Goniometers 0 3 0 1

Acoustic Sensors 0 0 0 1
Activities 12 18 12 22

Sample Rate 100 Hz 200 Hz/1000 Hz 60 Hz 100 Hz/1000 Hz

2.6. Dataset Preprocessing

2.6.1. Normalisation Between Datasets

As this study focuses on the sensor types in the HAR datasets, steps were taken to

remove the variations between datasets. Of the variables in Table 2, participant numbers,

activity types, and sample rates were normalised. To achieve this, the number of partic-

ipants in each dataset was limited to the minimum number available across all datasets,

which was 14, with additional participants being excluded from the datasets where appro-

priate to maintain a fair comparison between the datasets. For example, in CSL-SHARE,

participants 2, 11, and 16 contained different data due to varying protocol versions, de-

vice communication issues, and a participant stopping early due to knee pain. As such,

these participants were removed, before cropping the number of participants down to 14.

Of the activities included in the chosen datasets, only walking, standing, stair ascent,

and stair descent were common across all datasets and are activities of interest with respect

to fall-related research [38,39]. Therefore, the additional activities were removed from

each dataset. Finally, 100 Hz was chosen as the common sample rate, resulting in the

sample rate for the Camargo et al. and CSL-SHARE datasets being subsampled to 100 Hz,

whilst HuGaDB was interpolated up to 300 Hz with 5th-order polynomial interpolation,

before being subsampled to 100 Hz.
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2.6.2. Filtering

Before data could be presented to the Machine Learning models, a series of pre-

processing steps had to be performed to prepare the data for use by the Machine Learning

models. This process began with a 4th-order low-pass Butterworth filter with a cut-off

frequency of 7 Hz before windowing and feature extraction occurred. This cut-off frequency

was chosen through testing and laid around the 10 Hz mark, which is typical for analyses

using inertial sensors [19].

2.7. Feature Extraction

As is typical when performing classification with time-series data, semi-overlapping

sliding windows are used to extract statistical features such that a single sample repre-

sents a larger time window of raw data. The size of these windows and the amount of

overlap varies between studies, with lower window sizes being preferable for real-time

classification, whilst larger window sizes consider more of the gait cycle per sample which

may result in higher classification accuracies. For this study, a search was performed to

identify trends in accuracy from a 1 s to 10 s window size, with a 75% window overlap

for each window size. This overlap was chosen to combine co-dependent sliding window

parameters and reduce computation times.

For each window of the time-series data, a wide array of statistical features were

extracted to enable the ML models to make accurate predictions. There is little consensus

on which features are necessary for accurate HAR, with many studies considering a mean

of 15 features [15,40–46]. This analysis included 22 features from each sensor, including

commonly chosen features from existing research [15,42–45,47]. Most of these features were

extracted from the raw data in the time domain, with Fourier transforms being used to

obtain additional features from the frequency domain. Feature selection methods were then

used to eliminate noisy features before classification. This combination of increased feature

numbers with appropriate feature selection techniques to accommodate this ensured that

relevant data from each sensor were present to allow a sensor-focussed analysis. The list of

included features is as follows:

• Maximum value.

• Minimum value.

• Mean.

• Median.

• Standard deviation.

• Mean absolute deviation.

• Median absolute deviation.

• Number of zero crossings.

• Root mean square.

• Maximum gradient.

• Kurtosis.

• Skewness.

• Variance.

• Interquartile range.

• Entropy.

• Energy.

• Maximum frequency amplitude.

• Mean frequency amplitude.

• Maximum power spectral density.

• Mean power spectral density.

• Frequency kurtosis.
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• Frequency skewness.

After feature extraction, the data were split into train and test data by leaving out

the data from a single subject. Scikit-Learn’s ‘MinMaxScaler’ function was then fit to the

train set and applied separately to the train and test sets to scale each feature between

0 and 1. Principal Component Analysis (PCA) was performed to reduce the number of

features. As with the scaler, the PCA was fit to the train set and applied separately to the

train and test sets. The number of selected principal components varied for each dataset

due to the different features which were dependent on the sensors but was controlled by

choosing the minimum amount required to retain 95% of the variance of the full feature

set. Finally, another round of scaling was performed to prepare the data for the Machine

Learning algorithms.

2.8. Cross-Validation and Test Data

Two methods of cross-validation and testing are prevalent in the literature for gait-

and fall-related studies: subject-dependent analysis using Train-Test Split (TTS) cross-

validation and subject-independent analysis using Leave-One-Subject-Out (LOSO) cross-

validation [27,48]. TTS cross-validation uses a set percentage of the total data from all

subjects as test and validation data, whilst LOSO leaves out the data from a specific subject.

Each of these methods of cross-validation offers differing advantages and disadvantages,

with TTS creating models with higher accuracies at the cost of poor generalisation, whilst

LOSO typically creates models with lower accuracies that perform better with data from

new subjects. For this study, both TTS and LOSO cross-validations are used to make the

results applicable to both types of devices and to be more comparable with existing and

future studies.

2.9. Models

For classification, the KNN, Support Vector Machine (SVM), DT, RF, and Artificial

Neural Network (ANN) models, an ensemble voting classifier, and an ensemble stacking

classifier were chosen due to their prevalence in the literature. Ensemble models were

constructed from each of the individual models (KNN, SVM, DT, RF, and ANN), with either

a voting or a logistic regression classifier fusing the decisions. This inclusion of a variety of

ML models reduced variations in classifier performance that could be introduced due to

the various properties of each model, such as how prone they are to overfitting and how

dataset size affects their classification performance.

Hyperparameter tuning was performed using 25 iterations of the Scikit-Optimize

Bayesian hyperparameter search. All models were trained on a computer with 32 GB of

RAM, a 12th Generation Intel i9-12900K processor, and a 12 GB Nvidia RTX 3060 GPU

using the Scikit-Learn library for Python version 3.9.18.

2.10. Performance Metrics and Evaluation

To assess the performance of each model, this study considered both macro-average

accuracy and the F1-score. While macro-average accuracy provides a straightforward

overview of a model by reporting the mean classification accuracy across all classes, it

can be misleading in the presence of large class imbalances, as it does not account for

differences in class distribution. To address this, the macro-average F1-score was also

reported, which provides a more balanced measure of performance across classes. For each

dataset, walking was the primary class, with around 10× more walking data than stair

ascent and stair descent data. Standing data varied between datasets but were typically

around 2–3× more numerous than data in the stair ascent and stair descent classes.
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3. Results

To determine the optimal window size for sliding window feature extraction, each

model was trained using the PCA-reduced feature set for each window size, ranging from

1 to 10 s. We selected 10 s as the maximum time due to issues with class distributions and

the number of samples in each class at larger window sizes. This process was repeated

three times for each model to reduce the impact of random initialisations, which can lead to

models becoming stuck in local minima during training. The results for subject-dependent

cross-validation can be seen in Figures 1–4, whilst the results for subject-independent

cross-validation can be found in Figures 5–8. A full list of performance metrics for each

dataset and window size can be found in Appendix A.

(a) (b)

(c) (d)

Figure 1. Trend graphs showing the mean accuracy across all models and window sizes for the

four datasets in this analysis when using TTS cross-validation. (a) USC-HAD. (b) Camargo et al.

(c) HuGaDB. (d) CSL-SHARE.

3.1. Subject-Dependent Cross-Validation

3.1.1. Determining Optimal Window Sizes

Figures 1 and 2 show the mean performance of each model over the three repeat trials

for each window size. The trend lines present in these figures demonstrate an increase in

both accuracy and the F1-score with window size for subject-dependent cross-validation

using TTS across all models and all datasets. The exceptions to this trend suggest that

overfitting may have occurred as the number of samples decreased, with some models
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decreasing in performance with 9 and 10 s window sizes, where the number of data from

each class was at a minimum. This issue was most prevalent with the ANNs among the

smaller datasets, whilst the Camargo et al. dataset was the only one in which the ANN

performance metrics did not drop at higher window size values. Although performance

generally trended upwards with window size, all datasets except for CSL-SHARE, which ex-

hibited 100% accuracy and a 100% F1-score for most models at all window sizes, plateaued

at around 4–5 s. Furthermore, CSL-SHARE appeared to exhibit reduced performance at

higher window sizes for both the ANN and SVM, likely due to a lack of data.

(a) (b)

(c) (d)

Figure 2. Trend graphs showing the mean F1-score across all models and window sizes for the

four datasets in this analysis when using TTS cross-validation. (a) USC-HAD. (b) Camargo et al.

(c) HuGaDB. (d) CSL-SHARE.

Figures 3 and 4 show the average highest-performing model among all window sizes,

along with the average accuracy and F1-score at each window size across all models. These

figures highlight the SVM and the stacking ensemble classifier as the most capable models

across all window sizes and that the best model performances occurred at window sizes

of 4–8 s.

Regarding the individual (non-ensemble) highest-performing model, all models per-

formed fairly similarly between datasets, with the SVM being the only model that per-

formed significantly higher than others with average accuracies of 99.6%, 83.7%, 99.8%,
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and 100% and average F1-scores of 99.7%, 90.9%, 99.8%, and 100% on each of the USC-HAD,

Camargo et al., HuGaDB, and CSL-SHARE datasets, respectively. However, these results

also suggest there may be an issue with the Camargo et al. dataset, as the average accuracies

for all models and window sizes were far more reduced for this dataset when compared

with the others. An overview of the highest-performing individual models can be found in

Table 3.

(a) (b)

Figure 3. Model and window size effect on classification accuracy across all four datasets using TTS

cross-validation. The highest-performing model for each dataset and window size is marked in bold.

(a) Average accuracy for each model across all window sizes for each dataset. (b) Average accuracy

across all models at each window size from 1 to 10 s for each dataset.

(a) (b)

Figure 4. Model and window size effect on F1-score across all four datasets using TTS cross-validation.

The highest-performing model for each dataset and window size is marked in bold. (a) Average

F1-score for each model across all window sizes for each dataset. (b) Average F1-score across all

models at each window size from 1 to 10 s for each dataset.
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(a) (b)

(c) (d)

Figure 5. Trend graphs showing the mean accuracy across all models and window sizes for the

four datasets in this analysis when using LOSO cross-validation. (a) USC-HAD. (b) Camargo et al.

(c) HuGaDB. (d) CSL-SHARE.

(a) (b)

Figure 6. Cont.
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(c) (d)

Figure 6. Trend graphs showing the mean F1-score across all models and window sizes for the

four datasets in this analysis when using LOSO cross-validation. (a) USC-HAD. (b) Camargo et al.

(c) HuGaDB. (d) CSL-SHARE.

(a) (b)

Figure 7. Model and window size effect on classification accuracy across all four datasets using LOSO

cross-validation. The highest-performing model for each dataset and window size is marked in bold.

(a) Average accuracy for each model across all window sizes for each dataset. (b) Average accuracy

across all models at each window size from 1 to 10 s for each dataset.

3.1.2. Individual Sensor Analysis

The optimal window sizes for each dataset were used to determine the sensor impor-

tance for achieving high accuracies among the four core activities. As USC-HAD contained

just a single sensor, it was excluded from this analysis. Due to its high performance across

all datasets, and due to the SVM failing to converge on these reduced datasets, an ANN

was trained to classify between the four activities using data from individual sensors.
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(a) (b)

Figure 8. Model and window size effect on F1-score across all four datasets using LOSO cross-

validation. The highest-performing model for each dataset and window size is marked in bold.

(a) Average F1-score for each model across all window sizes for each dataset. (b) Average F1-score

across all models at each window size from 1 to 10 s for each dataset.

Tables 4–6 show the precision, recall, F1-score, and accuracy of the ANN trained from

features extracted from each sensor in the Camargo et al., HuGaDB, and CSL-SHARE

datasets, respectively. These tables highlight IMUs as the most effective individual sensors,

exhibiting accuracies of 87.4–100% and F1-scores of 74.4–100% across all datasets. Goniome-

ters also appear as high-performing sensors, with the three-axis goniometers at the hip and

ankle in the Camargo et al. dataset exhibiting performance metrics marginally lower than

those of the IMUs, with accuracies of 86.8% and 87.4% and F1-scores of 74.2% and 70.8%, re-

spectively. Following the three-axis goniometers, both the Camargo et al. and CSL-SHARE

datasets feature two-axis goniometers at the knee, which enabled accuracies of 74.2% and

99.6%, respectively. However, with an F1-score of just 44.5% for the Camargo et al. knee

goniometer, this may suggest that two-axis goniometers lacked the data dimensionality for

high-accuracy HAR. Finally, the EMG sensors exhibited the lowest performance metrics

across all datasets. Among the EMG sensors, placement heavily affected classification

accuracy, with the vastus lateralis and biceps femoris performing extremely poorly, whilst

the tibialis anterior, soleus, gastrocnemius, and vastus medialis generally outperformed

EMG sensors placed on other muscles. However, even the highest-performing EMG sensors

in each dataset exhibit F1-scores significantly lower than those of the IMUs.

3.2. Subject-Independent Cross-Validation

3.2.1. Determining Optimal Window Sizes

Figure 5 shows the performance trends of each model at each window size for the four

datasets in this study using LOSO cross-validation. The maximum accuracy for USC-HAD

occurred at a 10 s window size with the SVM exhibiting an accuracy of 91.9% and an F1-score

of 81.2%, whilst the Camargo et al. dataset achieved a maximum accuracy of 80.8% and

an F1-score of 85.2% at 9 s using the ANN. Both the CSL-SHARE and HuGaDB datasets

achieved a 100% classification accuracy and an F1-score with multiple model types at 1 and

2 s, respectively, which was maintained up to a window size of 10 s. The DT, RF, and KNN
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models performed erratically across all datasets and window sizes, which caused the stacking

and voting ensemble methods to underperform when compared to the ANN and SVM.

Table 3. Maximum accuracy, precision, recall, and F1-Score for each dataset, non-ensemble model,

and method of cross-validation.

Dataset Model Window Size (s) Acc (%) Prec (%) Rec (%) F1-Score (%)

USC-HAD TTS SVM 5 99.90 99.73 99.90 99.81

USC-HAD LOSO SVM 10 91.89 79.29 91.89 81.17

Camargo et al. TTS SVM 4 86.15 92.56 92.52 92.51

Camargo et al. LOSO ANN 5 80.41 86.66 86.06 85.19

HuGaDB TTS SVM 4 99.97 99.82 99.97 99.90

HuGaDB LOSO ANN 2 100 100 100 100

CSL-SHARE TTS ALL 2 100 100 100 100

CSL-SHARE LOSO ALL 3 100 100 100 100

Table 4. Subject-dependent performance metrics of each individual sensor in the Camargo et al. dataset.

Sensor Precision Recall F1-Score Accuracy

Trunk IMU 0.801 0.798 0.799 0.897

Thigh IMU 0.753 0.751 0.744 0.874

Shank IMU 0.778 0.769 0.772 0.881

Foot IMU 0.814 0.787 0.774 0.894

Gastrocnemius Medialis EMG 0.716 0.630 0.621 0.758

Tibialis Anterior EMG 0.636 0.547 0.523 0.755

Soleus EMG 0.676 0.620 0.629 0.774

Vastus Medialis EMG 0.459 0.493 0.470 0.652

Vastus Lateralis EMG 0.158 0.256 0.169 0.458

Rectus Femoris EMG 0.185 0.252 0.212 0.374

Biceps Femoris EMG 0.296 0.348 0.302 0.561

Semitendinosus EMG 0.216 0.296 0.242 0.423

Gracilis EMG 0.763 0.460 0.456 0.652

Gluteus Medius EMG 0.348 0.357 0.316 0.577

Right External Oblique EMG 0.372 0.372 0.336 0.594

Ankle Goniometer 0.741 0.747 0.708 0.874

Knee Goniometer 0.410 0.500 0.445 0.742

Hip Goniometer 0.753 0.744 0.742 0.868

Table 5. Subject-dependent performance metrics of each individual sensor in the HuGaDB dataset.

Sensor Precision Recall F1-Score Accuracy

Right Thigh IMU 0.990 0.994 0.992 0.995

Left Thigh IMU 0.993 0.996 0.995 0.997

Right Shank IMU 0.995 0.997 0.996 0.998

Left Shank IMU 0.989 0.990 0.989 0.993

Right Foot IMU 0.973 0.979 0.976 0.987

Left Foot IMU 0.978 0.984 0.981 0.991

Right Vastus Lateralis EMG 0.669 0.509 0.506 0.775

Left Vastus Lateralis EMG 0.597 0.478 0.457 0.783
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Table 6. Subject-dependent performance metrics of each individual sensor in the CSL-SHARE dataset.

Sensor Precision Recall F1-Score Accuracy

Vastus Medialis EMG 0.691 0.699 0.695 0.661

Tibialis Anterior EMG 0.659 0.648 0.644 0.592

Biceps Femoris EMG 0.430 0.383 0.391 0.367

Gastrocnemius EMG 0.582 0.550 0.534 0.475

Airborne Microphone 0.550 0.536 0.534 0.454

Thigh IMU 1.000 1.000 1.000 1.000

Shank IMU 1.000 1.000 1.000 1.000

Knee Goniometer 0.997 0.996 0.997 0.996

Figure 7 shows the mean accuracies across all time windows and models. From

Figure 7a, the SVMs and ANNs appear as the classifiers with the highest classification

accuracy where there is a statistically significant difference between classifier performances,

with the SVMs achieving 79.1%, 68.4%, 98.8%, and 99.9% accuracies and F1-scores of

66.9%, 66.1%, 99.2%, and 100%, whilst the ANNs achieved 75.4%, 73.6%, 99.9%, and 100%

accuracies and F1-scores of 66.3%, 76.7%, 99.9% and 100% on each of the USC-HAD,

Camargo et al., HuGaDB, and CSL-SHARE datasets, respectively. As such, the ANN and

SVM can clearly be identified as the highest-performing model types across all datasets,

as seen in Table 3. Concerning window size, each dataset presented a different window

size at which the maximum mean accuracy occurred. For USC-HAD, the highest mean

accuracy and F1-score across all models occurred at 2–3 s window sizes, whilst for the

Camargo et al. dataset, these occurred at 5 s, both of which were similar to the time at

which model accuracy plateaued using subject-dependent cross-validation. Both HuGaDB

and CSL-SHARE achieved accuracies of 100% with several models, but due to the lower

accuracies with other models, their highest mean performances occurred at 8 s for HuGaDB

and any value from 3 to 10 s for CSL-SHARE.

3.2.2. Individual Sensor Analysis

As with the subject-dependent individual sensor analysis, the ANN was trained on the

features extracted from each individual sensor. Tables 7–9 show the performance metrics

for each sensor used in the Camargo et al., HuGaDB, and CSL-SHARE datasets, respectively.

Like with the subject-dependent analysis, the IMUs achieved the highest accuracies across

two of the three datasets, whilst the EMG sensors exhibited consistently poor performances.

In this scenario, performance metrics were generally reduced, with only the EMG sensors

placed on the gastrocnemius medialis and gluteus medius for the Camargo et al. dataset

and the vastus medialis for the CSL-SHARE dataset achieving accuracies and F1-scores

above 50%. The three-axis goniometers on the hip from the Camargo et al. dataset exhib-

ited higher performance metrics than the IMUs in this case, with the ankle goniometer

outperforming all but the foot IMU, whilst the two-axis goniometers positioned on the knee

in the Camargo et al. and CSL-SHARE datasets exhibited much lower performance metrics.

Overall, the trends among these sensors were largely the same as with the subject-

dependent analysis, with the main difference being the high performance of the three-axis

goniometers, along with an overall reduction in accuracy for the two-axis goniometers and

EMG sensors, further highlighting the volatility of performance when using these sensors.



Technologies 2025, 13, 152 16 of 31

Table 7. Subject-independent performance metrics of each individual sensor in the Camargo et al. dataset.

Sensor Precision Recall F1-Score Accuracy

Trunk IMU 0.781 0.787 0.754 0.787

Thigh IMU 0.299 0.547 0.386 0.547

Shank IMU 0.680 0.720 0.679 0.720

Foot IMU 0.795 0.800 0.788 0.800

Gastrocnemius Medialis EMG 0.513 0.600 0.532 0.600

Tibialis Anterior EMG 0.272 0.227 0.226 0.227

Soleus EMG 0.599 0.347 0.381 0.347

Vastus Medialis EMG 0.110 0.173 0.120 0.173

Vastus Lateralis EMG 0.453 0.307 0.361 0.307

Rectus Femoris EMG 0.072 0.147 0.085 0.147

Biceps Femoris EMG 0.475 0.400 0.409 0.400

Semitendinosus EMG 0.404 0.307 0.307 0.307

Gracilis EMG 0.080 0.173 0.110 0.173

Gluteus Medius EMG 0.548 0.667 0.556 0.667

Right External Oblique EMG 0.419 0.187 0.157 0.187

Ankle Goniometer 0.738 0.800 0.759 0.800

Knee Goniometer 0.285 0.267 0.229 0.267

Hip Goniometer 0.927 0.880 0.859 0.880

Table 8. Subject-independent performance metrics of each individual sensor in the HuGaDB dataset.

Sensor Precision Recall F1-Score Accuracy

Right Thigh IMU 1.000 1.000 1.000 1.000

Left Thigh IMU 0.970 0.966 0.966 0.984

Right Shank IMU 1.000 1.000 1.000 1.000

Left Shank IMU 0.976 0.997 0.986 0.992

Right Foot IMU 0.953 0.960 0.952 0.982

Left Foot IMU 0.874 0.824 0.779 0.923

Right Vastus Lateralis EMG 0.211 0.290 0.229 0.478

Left Vastus Lateralis EMG 0.428 0.330 0.330 0.726

Table 9. Subject-independent performance metrics of each individual sensor in the CSL-SHARE

dataset.

Sensor Precision Recall F1-Score Accuracy

Vastus Medialis EMG 0.846 0.634 0.624 0.757

Tibialis Anterior EMG 0.475 0.375 0.332 0.456

Biceps Femoris EMG 0.366 0.361 0.270 0.417

Gastrocnemius EMG 0.300 0.458 0.354 0.573

Airborne Microphone 0.525 0.517 0.475 0.427

Thigh IMU 0.992 0.993 0.992 0.990

Shank IMU 0.935 0.931 0.924 0.903

Knee Goniometer 0.884 0.767 0.706 0.738

4. Discussions

The results of the window size analysis did not exhibit a consistent peak or plateau,

with accuracies appearing volatile across the four datasets for each window size and trend
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lines displaying misaligned peaks. Furthermore, the averaging of accuracies across all

models at each window size showed no clear single optimal window size across the four

datasets and methods of cross-validation.

It must be noted that the performance metrics of the Camargo et al. dataset did not

align with the other multimodal datasets in terms of overall classification accuracy. These

systems all made use of the same six-axis IMU positioned on the thigh, yet the Camargo et al.

dataset achieved significantly reduced accuracies when trained on only this sensor when

compared to HuGaDB and CSL-SHARE. Given the large number of controlled variables in

this study, this indicates a difference in experimental procedure or activity data distribution,

which negatively affects the results of the Camargo et al. dataset. Figure 9a shows the

confusion matrix for an SVM trained on the Camargo et al. dataset, which shows that the

misclassifications are between the stair ascend and stair descend classes. This is also shown

not to be caused by sample weighting, as Figure 9b,c show the confusion matrices for

the HuGaDB and CSL-SHARE datasets, respectively, which feature more extreme sample

weightings than the Camargo et al. dataset whilst achieving 100% accuracy.

Figure 9 highlights SVMs as the most effective individual models for HAR using

subject-dependent cross-validation, with ANNs proving more effective when using subject-

independent cross-validation. This is likely due to the tendency for ANNs to overfit, which

was further pronounced by the use of a TTS in creating test data for subject-dependent cross-

validation, whereas SVMs typically perform well in these scenarios due to the maximisation

of the margin when creating a decision boundary.

For subject-dependent cross-validation, peak accuracies occurred at smaller window

sizes, ranging from 2–5 s. The trend lines in Figures 1 and 5 also exhibit rises in accuracy for

some models as they approach a 10-s window size, indicating that, if the dataset contains

enough samples in each class for this to be viable, larger window sizes offer richer features

which lead to higher classification accuracies. For subject-independent cross-validation,

the highest-performing model accuracies occurred at 2, 3, 5, and 10 s for the HuGaDB,

CSL-SHARE, Camargo et al., and USC-HAD datasets, respectively. Apart from USC-HAD,

this further highlights the range of 2–5 s as an effective range of window sizes in achieving

high classification accuracy for the core activities of HAR.

Aside from the Camargo et al. dataset, the multimodal datasets achieved much higher

classification accuracies when using the same models and window sizes, which allowed high

accuracies to be obtained with much smaller window sizes. This has significant implications

when considering the delay time, portability, and convenience of systems, as increasing the

number of sensors can enable high-accuracy HAR using very computationally inexpensive

methods such as DT. These computationally low-cost methods can also allow designers of

real-time HAR systems to incorporate low-power computational devices with reduced size

profiles and battery consumption, therefore increasing the comfort and convenience of the

devices. Additionally, the fact that high accuracies can be obtained in multimodal systems

with low window sizes means that much faster response times can be achieved for real-time

HAR systems, as some models trained on the CSL-SHARE dataset achieved 100% accuracy

using just 1 s windows with a 0.25 s fixed delay time caused by the step size. Whilst it was

shown that accuracy at each window size was dependent on the sensor types used in each

dataset, further work is needed to identify how model performance varies with window size

for each individual sensor type. This will enable the building of a knowledge database to help

future researchers choose a window size given a sensor system without the need for lengthy,

brute-force approaches to finding the most appropriate window size, combination of sensors,

and choice of model for each novel dataset produced in this field.
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(a)

(b) (c)

Figure 9. Confusion matrices of an SVM trained on data from a single EMG sensor using LOSO

cross-validation. (a) Camargo et al. Vastus Lateralis. (b) HuGaDB Vastus Lateralis. (c) CSL-SHARE

Vastus Medialis EMG.

Regarding individual sensor types, the IMUs and three-axis goniometers generally

exhibited the highest accuracies, followed by the two-axis goniometers and finally the EMG

sensors. Among IMU locations, accuracy varied among the different locations, with no clear

ranking between all datasets. Only the Camargo et al. and CSL-SHARE datasets featured

goniometers, with the three-axis goniometers at the thigh and ankle in the Camargo et al.

dataset showing large performance improvements over the two-axis goniometers located

on the knee in both the Camargo et al. and CSL-SHARE datasets. Goniometers are low-

power devices with fewer data dimensions than IMUs which can be incorporated into smart

clothing devices to improve comfort and convenience. Given the competitive performance

of goniometers in this study, three-axis goniometers should be considered in future datasets

and HAR systems. On the other hand, EMG sensor performance was volatile between

locations and datasets, which may be due to differences in filtering methods, varying

placements on muscles, or changes in experimental procedures. As such, it is not currently

possible to compare the locations of these sensors, particularly with so few datasets for

reference. More datasets are required to accurately rank the locations of these sensors so

that the impact of differences in experimental setup can be minimised.
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Regarding the sample rates of each dataset, no correlation was present between the

native sample rates of each dataset and the final classification accuracy, with the HuGaDB

dataset exhibiting far higher accuracies than USC-HAD and the Camargo et al. dataset,

despite having the lowest native sample rate of 60 Hz. As such, whilst sample rate is

expected to have an effect at even lower values, 60 Hz can be considered a sufficient sample

rate for high-accuracy HAR.

These results align with the findings of Banos et al. [23], who found that increased

window size does not necessarily increase activity classification performance across many

datasets. However, our study also offers insight into the reason for this assumption,

with subject-dependent cross-validation demonstrating this pattern until accuracy and

F1-score began to reduce at larger window size values due to insufficient sample sizes.

Crucially, this work considers both subject-dependent and subject-independent methods

of cross-validation, which highlights how the choice of cross-validation method impacts

the selection of an optimal window size, which was not considered in the study [23].

Niazi et al. [25] considered the effect of window size and sample rate on classification

accuracy using an RF classifier, where it was reported that window sizes could appear

optimal between 2–10 s using subject-dependent cross-validation. Our results support these

findings and demonstrate that this also applies to additional classical Machine Learning

models such as the ANN, SVM, KNN, and DT. Duan et al. [28] considered the optimal

placement of sensors using deep learning techniques for a single dataset, finding that

sensors placed on the right leg exhibited increased performance. Our results align with

the findings of this study, with the HuGaDB dataset demonstrating that, when subject-

independent cross-validation was used, the performance metrics of the right leg were

higher than those of the left. Finally, Khan et al. [30] report that sensor performance is

dependent on the activities being performed in the dataset. By removing the variation

between datasets, our study controlled for this factor, resulting in a reliable ranking of sensor

locations that achieved high performances and offer future researchers the information

necessary to build effective HAR systems.

Finally, this study featured several limitations due to the computational cost of perform-

ing this analysis. The first of these limitations was the lack of investigation into the effects of

window step size, which was set to 25% of the total window size. This could have been set

to a fixed time value for all window sizes or have been individually analysed to explore the

co-dependent effects of step size and window size. Furthermore, the availability of datasets

which feature a sufficiently large number of participants and sensors, along with the core

activities included in this study, was limited, resulting in the inclusion of just four datasets.

5. Conclusions and Future Work

This study is the first of its kind in providing a bias-reduced, normalised, cross-dataset

analysis to determine and rank the highest-performing sensor types for Human Activity

Recognition. First, ANNs were found to be the highest-performing models across multiple

multimodal HAR datasets, closely followed by SVMs, with the optimal window size being

in the range of 2–5 s when using the semi-non-overlapping sliding window approach to

feature engineering with a 75% overlap. Where datasets were large enough to reduce the

impact of class imbalance, or models were sufficiently powerful to generalise with smaller

sample numbers, accuracies were also shown to trend upwards with larger window sizes

of 9–10 s. Regarding the contributions of individual sensor types to classification accuracy,

IMUs placed on the thigh and three-axis goniometers on the thigh and ankle were the

overall largest contributors to high-accuracy HAR, whilst EMG sensors were found to

exhibit volatile accuracies which was likely due to the difficulty in ensuring that the sensors

were in the same place and calibrated equally for different subjects. It remains appropriate
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for researchers to collect large HAR datasets and to investigate alternative methods of

HAR using multimodal sensor systems and smart clothing to investigate how the size and

inconvenience of these systems can be minimised whilst maintaining high accuracy using

low-computational-complexity classification methods.

This study was limited by the scarcity of open multimodal gait datasets with large

numbers of sensors and common activities. As a result, future work in this area should

consider more datasets, activities (including fall-related activities), and sensor types to

investigate how classifier performance in HAR is affected by these properties. Additionally,

elements such as step size, the proportion of data for each activity, and time-series features

should be investigated for their contribution towards achieving efficient and convenient

high-accuracy HAR. Finally, the time and space complexity of these algorithms should be

considered under the various window sizes to evaluate the feasibility of deploying these

optimised models in real-world HAR applications.

Author Contributions: Conceptualisation, J.C.M., A.A.D.-S., S.Q.X., R.J.O.; methodology, J.C.M.; soft-

ware, J.C.M.; validation, J.C.M.; formal analysis, J.C.M.; investigation, J.C.M.; resources, J.C.M.; data

curation, J.C.M.; writing—original draft preparation, J.C.M.; writing—review and editing, A.A.D.-S.,

S.Q.X., R.J.O.; visualisation, J.C.M.; supervision, A.A.D.-S., S.Q.X., R.J.O.; project administration,

A.A.D.-S., S.Q.X., R.J.O.; funding acquisition, A.A.D.-S. All authors have read and agreed to the

published version of the manuscript.

Funding: This research was funded by the United Kingdom Research and Innovation (UKRI)—

Engineering and Physical Sciences Research Council (EPSRC) (grant number EP/T517860/1).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Data are contained within the article and available upon request by

contacting the authors.

Conflicts of Interest: The authors declare no conflicts of interest.

Abbreviations

The following abbreviations are used in this manuscript:
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Appendix A

Figures A1 and A2 along with Tables A1–A8 show the performance metrics of each

dataset and method of cross-validation, including the mean, standard deviation, and 95%

confidence intervals.
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(a) (b)

(c) (d)

Figure A1. Trend graphs showing the macro-averaged performance metrics across all models and

window sizes for the four datasets in this analysis when using TTS cross-validation. (a) USC-HAD.

(b) Camargo et al. (c) HuGaDB. (d) CSL-SHARE.

(a) (b)

(c) (d)

Figure A2. Trend graphs showing the macro-averaged performance metrics across all models and

window sizes for the four datasets in this analysis when using TTS cross-validation. (a) USC-HAD.

(b) Camargo et al. (c) HuGaDB. (d) CSL-SHARE.
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Table A1. Performance metrics for the USC HAD dataset using TTS cross-validation with 95%

confidence intervals.

Window (s) Metric Mean Std CI Low CI High

1

Accuracy 0.9577 0.0328 0.9273 0.9881
Precision 0.9654 0.0341 0.9339 0.9970

Recall 0.9577 0.0328 0.9273 0.9881
F1-score 0.9613 0.0332 0.9306 0.9920

2

Accuracy 0.9749 0.0240 0.9527 0.9971
Precision 0.9791 0.0262 0.9549 1.0034

Recall 0.9749 0.0240 0.9527 0.9971
F1-score 0.9769 0.0248 0.9540 0.9999

3

Accuracy 0.9820 0.0224 0.9613 1.0027
Precision 0.9838 0.0221 0.9633 1.0043

Recall 0.9820 0.0224 0.9613 1.0027
F1-score 0.9829 0.0222 0.9624 1.0034

4

Accuracy 0.9885 0.0185 0.9714 1.0057
Precision 0.9886 0.0197 0.9704 1.0068

Recall 0.9885 0.0185 0.9714 1.0057
F1-score 0.9886 0.0191 0.9709 1.0062

5

Accuracy 0.9910 0.0172 0.9750 1.0069
Precision 0.9908 0.0186 0.9736 1.0080

Recall 0.9910 0.0172 0.9750 1.0069
F1-score 0.9909 0.0179 0.9743 1.0074

6

Accuracy 0.9889 0.0126 0.9773 1.0005
Precision 0.9895 0.0158 0.9750 1.0041

Recall 0.9889 0.0126 0.9773 1.0005
F1-score 0.9892 0.0140 0.9762 1.0022

7

Accuracy 0.9907 0.0146 0.9772 1.0042
Precision 0.9886 0.0191 0.9710 1.0063

Recall 0.9907 0.0146 0.9772 1.0042
F1-score 0.9896 0.0168 0.9740 1.0051

8

Accuracy 0.9893 0.0155 0.9749 1.0036
Precision 0.9906 0.0147 0.9771 1.0042

Recall 0.9893 0.0155 0.9749 1.0036
F1-score 0.9899 0.0152 0.9758 1.0040

9

Accuracy 0.9894 0.0152 0.9754 1.0035
Precision 0.9895 0.0166 0.9741 1.0049

Recall 0.9894 0.0152 0.9754 1.0035
F1-score 0.9894 0.0159 0.9747 1.0041

10

Accuracy 0.9898 0.0170 0.9741 1.0055
Precision 0.9909 0.0174 0.9749 1.0070

Recall 0.9898 0.0170 0.9741 1.0055
F1-score 0.9903 0.0172 0.9744 1.0062
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Table A2. Performance metrics for the USC HAD dataset using LOSO cross-validation with 95%

confidence intervals.

Window (s) Metric Mean Std CI Low CI High

1

Accuracy 0.6083 0.1353 0.4831 0.7334
Precision 0.5992 0.1117 0.4959 0.7025

Recall 0.6083 0.1353 0.4831 0.7334
F1-score 0.5589 0.1424 0.4272 0.6907

2

Accuracy 0.6521 0.1317 0.5303 0.7739
Precision 0.6319 0.1831 0.4626 0.8012

Recall 0.6521 0.1317 0.5303 0.7739
F1-score 0.5817 0.1563 0.4372 0.7262

3

Accuracy 0.6579 0.1900 0.4821 0.8336
Precision 0.6092 0.1416 0.4783 0.7402

Recall 0.6579 0.1900 0.4821 0.8336
F1-score 0.5705 0.1804 0.4036 0.7373

4

Accuracy 0.6004 0.1481 0.4635 0.7374
Precision 0.6065 0.1163 0.4990 0.7141

Recall 0.6004 0.1481 0.4635 0.7374
F1-score 0.5561 0.1524 0.4152 0.6970

5

Accuracy 0.5795 0.1451 0.4453 0.7137
Precision 0.6181 0.1726 0.4584 0.7777

Recall 0.5795 0.1451 0.4453 0.7137
F1-score 0.5079 0.1443 0.3745 0.6414

6

Accuracy 0.5372 0.1601 0.3891 0.6852
Precision 0.5928 0.1511 0.4530 0.7326

Recall 0.5372 0.1601 0.3891 0.6852
F1-score 0.4586 0.1453 0.3241 0.5930

7

Accuracy 0.5799 0.1415 0.4490 0.7108
Precision 0.5434 0.1746 0.3819 0.7049

Recall 0.5799 0.1415 0.4490 0.7108
F1-score 0.4982 0.1205 0.3868 0.6096

8

Accuracy 0.5279 0.1938 0.3486 0.7071
Precision 0.5455 0.1416 0.4145 0.6764

Recall 0.5279 0.1938 0.3486 0.7071
F1-score 0.4304 0.1727 0.2706 0.5901

9

Accuracy 0.6061 0.1817 0.4380 0.7741
Precision 0.5663 0.1864 0.3939 0.7387

Recall 0.6061 0.1817 0.4380 0.7741
F1-score 0.5227 0.1661 0.3691 0.6764

10

Accuracy 0.6150 0.2031 0.4271 0.8028
Precision 0.5895 0.2052 0.3997 0.7793

Recall 0.6150 0.2031 0.4271 0.8028
F1-score 0.5448 0.1925 0.3668 0.7228
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Table A3. Performance metrics for the CSL-SHARE dataset using TTS cross-validation with 95%

confidence intervals.

Window (s) Metric Mean Std CI Low CI High

1

Accuracy 0.9984 0.0015 0.9970 0.9998
Precision 0.9988 0.0012 0.9977 0.9999

Recall 0.9988 0.0012 0.9977 0.9999
F1-score 0.9988 0.0012 0.9977 0.9999

2

Accuracy 1.0000 0.0000 N/A N/A
Precision 1.0000 0.0000 N/A N/A

Recall 1.0000 0.0000 N/A N/A
F1-score 1.0000 0.0000 N/A N/A

3

Accuracy 1.0000 0.0000 N/A N/A
Precision 1.0000 0.0000 N/A N/A

Recall 1.0000 0.0000 N/A N/A
F1-score 1.0000 0.0000 N/A N/A

4

Accuracy 1.0000 0.0000 N/A N/A
Precision 1.0000 0.0000 N/A N/A

Recall 1.0000 0.0000 N/A N/A
F1-score 1.0000 0.0000 N/A N/A

5

Accuracy 1.0000 0.0000 N/A N/A
Precision 1.0000 0.0000 N/A N/A

Recall 1.0000 0.0000 N/A N/A
F1-score 1.0000 0.0000 N/A N/A

6

Accuracy 1.0000 0.0000 N/A N/A
Precision 1.0000 0.0000 N/A N/A

Recall 1.0000 0.0000 N/A N/A
F1-score 1.0000 0.0000 N/A N/A

7

Accuracy 1.0000 0.0000 N/A N/A
Precision 1.0000 0.0000 N/A N/A

Recall 1.0000 0.0000 N/A N/A
F1-score 1.0000 0.0000 N/A N/A

8

Accuracy 1.0000 0.0000 N/A N/A
Precision 1.0000 0.0000 N/A N/A

Recall 1.0000 0.0000 N/A N/A
F1-score 1.0000 0.0000 N/A N/A

9

Accuracy 0.9778 0.0514 0.9302 1.0254
Precision 0.9904 0.0222 0.9698 1.0109

Recall 0.9896 0.0241 0.9674 1.0119
F1-score 0.9891 0.0255 0.9655 1.0127

10

Accuracy 0.9277 0.1839 0.7576 1.0977
Precision 0.9523 0.1223 0.8391 1.0654

Recall 0.9607 0.1000 0.8682 1.0532
F1-score 0.9469 0.1366 0.8206 1.0732
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Table A4. Performance metrics for the CSL-SHARE dataset using LOSO cross-validation with 95%

confidence intervals.

Window (s) Metric Mean Std CI Low CI High

1

Accuracy 0.9762 0.0609 0.9199 1.0325
Precision 0.9837 0.0421 0.9448 1.0227

Recall 0.9841 0.0412 0.9460 1.0222
F1-score 0.9838 0.0419 0.9451 1.0225

2

Accuracy 0.9708 0.0773 0.8993 1.0423
Precision 0.9762 0.0629 0.9181 1.0344

Recall 0.9683 0.0840 0.8906 1.0459
F1-score 0.9701 0.0790 0.8971 1.0432

3

Accuracy 1.0000 0.0000 N/A N/A
Precision 1.0000 0.0000 N/A N/A

Recall 1.0000 0.0000 N/A N/A
F1-score 1.0000 0.0000 N/A N/A

4

Accuracy 1.0000 0.0000 N/A N/A
Precision 1.0000 0.0000 N/A N/A

Recall 1.0000 0.0000 N/A N/A
F1-score 1.0000 0.0000 N/A N/A

5

Accuracy 1.0000 0.0000 N/A N/A
Precision 1.0000 0.0000 N/A N/A

Recall 1.0000 0.0000 N/A N/A
F1-score 1.0000 0.0000 N/A N/A

6

Accuracy 1.0000 0.0000 N/A N/A
Precision 1.0000 0.0000 N/A N/A

Recall 1.0000 0.0000 N/A N/A
F1-score 1.0000 0.0000 N/A N/A

7

Accuracy 1.0000 0.0000 N/A N/A
Precision 1.0000 0.0000 N/A N/A

Recall 1.0000 0.0000 N/A N/A
F1-score 1.0000 0.0000 N/A N/A

8

Accuracy 1.0000 0.0000 N/A N/A
Precision 1.0000 0.0000 N/A N/A

Recall 1.0000 0.0000 N/A N/A
F1-score 1.0000 0.0000 N/A N/A

9

Accuracy 1.0000 0.0000 N/A N/A
Precision 1.0000 0.0000 N/A N/A

Recall 1.0000 0.0000 N/A N/A
F1-score 1.0000 0.0000 N/A N/A

10

Accuracy 1.0000 0.0000 N/A N/A
Precision 1.0000 0.0000 N/A N/A

Recall 1.0000 0.0000 N/A N/A
F1-score 1.0000 0.0000 N/A N/A
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Table A5. Performance metrics for the Camargo et al. dataset using TTS cross-validation with 95%

confidence intervals.

Window (s) Metric Mean Std CI Low CI High

1

Accuracy 0.7379 0.0347 0.7058 0.7701
Precision 0.8294 0.0274 0.8041 0.8547

Recall 0.8394 0.0250 0.8163 0.8625
F1-score 0.8336 0.0262 0.8093 0.8579

2

Accuracy 0.7939 0.0311 0.7651 0.8227
Precision 0.8764 0.0212 0.8568 0.8960

Recall 0.8796 0.0190 0.8621 0.8972
F1-score 0.8776 0.0203 0.8589 0.8964

3

Accuracy 0.7916 0.0331 0.7610 0.8223
Precision 0.8819 0.0199 0.8634 0.9003

Recall 0.8830 0.0186 0.8658 0.9003
F1-score 0.8784 0.0249 0.8554 0.9013

4

Accuracy 0.8158 0.0329 0.7854 0.8462
Precision 0.9012 0.0185 0.8840 0.9183

Recall 0.9002 0.0179 0.8837 0.9168
F1-score 0.8985 0.0194 0.8805 0.9164

5

Accuracy 0.7994 0.0303 0.7714 0.8274
Precision 0.8827 0.0188 0.8653 0.9001

Recall 0.8836 0.0169 0.8679 0.8992
F1-score 0.8813 0.0205 0.8623 0.9002

6

Accuracy 0.8140 0.0343 0.7823 0.8458
Precision 0.8981 0.0180 0.8815 0.9148

Recall 0.8959 0.0205 0.8769 0.9149
F1-score 0.8908 0.0317 0.8615 0.9201

7

Accuracy 0.8159 0.0424 0.7767 0.8552
Precision 0.8952 0.0238 0.8732 0.9172

Recall 0.8958 0.0236 0.8740 0.9176
F1-score 0.8932 0.0265 0.8687 0.9177

8

Accuracy 0.8151 0.0359 0.7819 0.8484
Precision 0.9066 0.0200 0.8881 0.9251

Recall 0.9057 0.0194 0.8877 0.9237
F1-score 0.9042 0.0191 0.8866 0.9219

9

Accuracy 0.8058 0.0266 0.7811 0.8304
Precision 0.9125 0.0159 0.8978 0.9272

Recall 0.9046 0.0137 0.8919 0.9173
F1-score 0.9001 0.0228 0.8790 0.9211

10

Accuracy 0.8093 0.0223 0.7887 0.8300
Precision 0.9018 0.0113 0.8913 0.9123

Recall 0.9014 0.0116 0.8906 0.9121
F1-score 0.9010 0.0118 0.8901 0.9120
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Table A6. Performance metrics for the Camargo et al. dataset using LOSO cross-validation with 95%

confidence intervals.

Window (s) Metric Mean Std CI Low CI High

1

Accuracy 0.5844 0.0941 0.4973 0.6714

Precision 0.5760 0.1825 0.4072 0.7448

Recall 0.6194 0.1948 0.4392 0.7996

F1-score 0.5517 0.1966 0.3699 0.7336

2

Accuracy 0.6351 0.0917 0.5503 0.7199

Precision 0.6892 0.0738 0.6210 0.7575

Recall 0.6983 0.0883 0.6167 0.7800

F1-score 0.6495 0.0901 0.5662 0.7328

3

Accuracy 0.6623 0.0382 0.6270 0.6976

Precision 0.6961 0.0564 0.6440 0.7482

Recall 0.7183 0.0935 0.6318 0.8047

F1-score 0.6613 0.0882 0.5798 0.7429

4

Accuracy 0.6531 0.0817 0.5775 0.7287

Precision 0.7135 0.0765 0.6428 0.7842

Recall 0.7507 0.0598 0.6954 0.8059

F1-score 0.6896 0.0900 0.6063 0.7728

5

Accuracy 0.6970 0.0703 0.6320 0.7620

Precision 0.7428 0.0871 0.6623 0.8234

Recall 0.7879 0.0502 0.7414 0.8343

F1-score 0.7339 0.0735 0.6660 0.8019

6

Accuracy 0.6865 0.0630 0.6282 0.7448

Precision 0.7385 0.1009 0.6452 0.8318

Recall 0.7794 0.0447 0.7380 0.8208

F1-score 0.7249 0.0657 0.6641 0.7857

7

Accuracy 0.6463 0.0531 0.5971 0.6954

Precision 0.6538 0.0197 0.6356 0.6720

Recall 0.7547 0.0395 0.7182 0.7913

F1-score 0.6793 0.0430 0.6396 0.7191

8

Accuracy 0.6622 0.0513 0.6148 0.7096

Precision 0.6638 0.0183 0.6469 0.6808

Recall 0.7717 0.0334 0.7409 0.8026

F1-score 0.7010 0.0360 0.6678 0.7343

9

Accuracy 0.6735 0.1338 0.5497 0.7972

Precision 0.6843 0.1205 0.5729 0.7958

Recall 0.7890 0.0740 0.7206 0.8575

F1-score 0.7225 0.0965 0.6332 0.8117

10

Accuracy 0.6429 0.1241 0.5280 0.7577

Precision 0.6465 0.0943 0.5593 0.7337

Recall 0.7657 0.0818 0.6901 0.8413

F1-score 0.6843 0.1025 0.5895 0.7791
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Table A7. Performance metrics for the HuGaDB dataset using TTS cross-validation with 95% confi-

dence intervals.

Window (s) Metric Mean Std CI Low CI High

1

Accuracy 0.9826 0.0123 0.9712 0.9940

Precision 0.9846 0.0126 0.9729 0.9963

Recall 0.9826 0.0123 0.9712 0.9940

F1-score 0.9836 0.0124 0.9721 0.9951

2

Accuracy 0.9899 0.0089 0.9817 0.9982

Precision 0.9904 0.0086 0.9825 0.9984

Recall 0.9899 0.0089 0.9817 0.9982

F1-score 0.9902 0.0087 0.9822 0.9982

3

Accuracy 0.9924 0.0058 0.9870 0.9978

Precision 0.9931 0.0067 0.9869 0.9993

Recall 0.9924 0.0058 0.9870 0.9978

F1-score 0.9927 0.0062 0.9870 0.9984

4

Accuracy 0.9966 0.0035 0.9934 0.9999

Precision 0.9948 0.0052 0.9900 0.9996

Recall 0.9966 0.0035 0.9934 0.9999

F1-score 0.9957 0.0043 0.9917 0.9997

5

Accuracy 0.9956 0.0032 0.9927 0.9985

Precision 0.9958 0.0038 0.9922 0.9993

Recall 0.9956 0.0032 0.9927 0.9985

F1-score 0.9957 0.0035 0.9924 0.9989

6

Accuracy 0.9952 0.0056 0.9900 1.0004

Precision 0.9978 0.0034 0.9947 1.0010

Recall 0.9952 0.0056 0.9900 1.0004

F1-score 0.9965 0.0045 0.9924 1.0007

7

Accuracy 0.9943 0.0043 0.9903 0.9983

Precision 0.9927 0.0104 0.9831 1.0023

Recall 0.9943 0.0043 0.9903 0.9983

F1-score 0.9935 0.0074 0.9866 1.0003

8

Accuracy 0.9953 0.0049 0.9908 0.9998

Precision 0.9955 0.0043 0.9915 0.9995

Recall 0.9953 0.0049 0.9908 0.9998

F1-score 0.9954 0.0045 0.9912 0.9995

9

Accuracy 0.9956 0.0057 0.9903 1.0009

Precision 0.9959 0.0080 0.9886 1.0033

Recall 0.9956 0.0057 0.9903 1.0009

F1-score 0.9958 0.0068 0.9895 1.0020

10

Accuracy 0.9954 0.0071 0.9889 1.0020

Precision 0.9954 0.0075 0.9884 1.0023

Recall 0.9954 0.0071 0.9889 1.0020

F1-score 0.9953 0.0073 0.9885 1.0021
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Table A8. Performance metrics for the HuGaDB dataset using LOSO cross-validation with 95%

confidence intervals.

Window (s) Metric Mean Std CI Low CI High

1

Accuracy 0.9789 0.0244 0.9564 1.0015
Precision 0.9777 0.0279 0.9519 1.0035

Recall 0.9789 0.0244 0.9564 1.0015
F1-score 0.9781 0.0251 0.9549 1.0013

2

Accuracy 0.9852 0.0244 0.9627 1.0077
Precision 0.9827 0.0284 0.9564 1.0090

Recall 0.9852 0.0244 0.9627 1.0077
F1-score 0.9828 0.0267 0.9581 1.0075

3

Accuracy 0.9917 0.0115 0.9811 1.0024
Precision 0.9846 0.0322 0.9548 1.0144

Recall 0.9917 0.0115 0.9811 1.0024
F1-score 0.9874 0.0204 0.9685 1.0063

4

Accuracy 0.9884 0.0188 0.9711 1.0058
Precision 0.9714 0.0674 0.9090 1.0337

Recall 0.9884 0.0188 0.9711 1.0058
F1-score 0.9758 0.0529 0.9269 1.0247

5

Accuracy 0.9967 0.0047 0.9924 1.0011
Precision 0.9886 0.0217 0.9685 1.0087

Recall 0.9967 0.0047 0.9924 1.0011
F1-score 0.9921 0.0135 0.9796 1.0046

6

Accuracy 0.9981 0.0026 0.9956 1.0005
Precision 0.9889 0.0189 0.9715 1.0064

Recall 0.9981 0.0026 0.9956 1.0005
F1-score 0.9932 0.0112 0.9829 1.0035

7

Accuracy 0.9975 0.0050 0.9929 1.0021
Precision 0.9845 0.0313 0.9556 1.0135

Recall 0.9975 0.0050 0.9929 1.0021
F1-score 0.9899 0.0208 0.9707 1.0091

8

Accuracy 0.9992 0.0020 0.9974 1.0010
Precision 0.9942 0.0137 0.9815 1.0069

Recall 0.9992 0.0020 0.9974 1.0010
F1-score 0.9966 0.0081 0.9891 1.0041

9

Accuracy 0.9981 0.0039 0.9945 1.0018
Precision 0.9878 0.0248 0.9649 1.0107

Recall 0.9981 0.0039 0.9945 1.0018
F1-score 0.9926 0.0153 0.9784 1.0067

10

Accuracy 0.9875 0.0327 0.9573 1.0177
Precision 0.9951 0.0104 0.9855 1.0047

Recall 0.9875 0.0327 0.9573 1.0177
F1-score 0.9905 0.0235 0.9687 1.0123
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