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THE GEOMETRIC TODA EQUATIONS FOR NONCOMPACT

SYMMETRIC SPACES.

IAN MCINTOSH

Abstract. This paper has two purposes. The first is to classify all those
versions of the Toda equations which govern the existence of τ -primitive har-
monic maps from a surface into a homogeneous space G/T for which G is a
noncomplex noncompact simple real Lie group, τ is the Coxeter automorphism
which Drinfel’d & Sokolov assigned to each affine Dynkin diagram, and T is the
compact torus fixed pointwise by τ . Here τ may be either an inner or an outer
automorphism. We interpret the Toda equations over a compact Riemann sur-
face Σ as equations for a metric on a holomorphic principal TC-bundle QC over
Σ whose Chern connection, when combined with holomorphic field ϕ, produces
a G-connection which is flat precisely when the Toda equations hold. The sec-
ond purpose is to establish when stability criteria for the pair (QC, ϕ) can be
used to prove the existence of solutions. We classify those real forms of the
Toda equations for which this pair is a principal pair and we call these totally

noncompact Toda pairs: stability theory then gives algebraic conditions for the
existence of solutions. Every solution to the geometric Toda equations has a
corresponding G-Higgs bundle. We explain how to construct this G-Higgs bun-
dle directly from the Toda pair and show that Baraglia’s cyclic Higgs bundles
arise from a very special case of totally noncompact cyclic Toda pairs.

1. Introduction.

The version of the Toda equations we are concerned with here comes from
the study of a special class of harmonic maps from a Riemann surface Σ into a
Riemannian symmetric space N . In the case where surface is a torus and the
symmetric space is of compact type with simple compact isometry group G the
Toda equations have the form

∆Σwj =
r

∑

k=0

Ĉjke
wk , with

r
∑

j=0

mjwj = 0. (1.1)

Here wj : Σ → R are smooth functions, ∆Σ = d∗d is the (non-negative) Laplacian

on functions on Σ, the matrix Ĉ is an (r + 1) × (r + 1) affine Cartan matrix
associated to the complexification gC of the Lie algebra of G, and the positive
integers mj are the coefficients of linear dependence of the rows of Ĉ normalized
so that m0 = 1 (a summary of the relevant facts about affine Cartan matrices is
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2 IAN MCINTOSH

given in §3 below). Equations (1.1) are a real form of what is often called the

affine Toda (field) equations: there is also a version when Ĉ is replaced by the
standard Cartan matrix C for gC, which we will refer to as the non-affine Toda
equations.

Equations (1.1) govern the existence of a “τ -primitive” harmonic map into
a homogeneous space G/T which lies over the symmetric space N ≃ G/H by
homogeneous projection. Here T is a maximal torus in the isotropy subgroup
H < G and r = dim(T ). This τ -primitive map projects down to produce a
conformal harmonic, and hence minimal, surface in N . Here τ denotes a specific
finite order automorphism on G, called the Coxeter automorphism, whose fixed-
point subgroup is T . The harmonic map into G/T is often referred to as the τ -
primitive lift of the harmonic map to N and the idea has its origins in Riemannian
twistor theory (see especially [9, 29, 5]).

In the literature the affine Cartan matrix Ĉ is usually taken to correspond
to an extended Dynkin diagram, in which case τ is an inner automorphism,
T < G is a maximal torus and N is an inner symmetric space (one can also use
a symmetry trick to adapt these inner Coxeter Toda systems to get harmonic
maps into outer symmetric spaces: see e.g. [28, 6, 7, 3]). However, to treat inner

and outer symmetric spaces on equal footing we allow Ĉ to be the affine Cartan
matrix of any affine diagram, following Drinfel’d & Sokolov [12].
To adapt the Toda equations to a noncompact real groupG it must be preserved

by the Coxeter automorphism τ and the compact torus T < G fixed pointwise.
The effect on (1.1) is to produce a different distribution of plus and minus signs
on the coefficients. Classifying which of these are possible amounts to answering
the question: which real forms g of a complex simple Lie algebra gC are invariant
under a Coxeter automorphism τ which fixes a maximal compact toral subalgebra
t ⊂ g? We originally thought this question had been answered, at least for inner
Coxeter automorphisms, by Carberry & Turner in [10], but closer inspection
shows that they have overlooked many cases (essentially they overlook the fact
that a real involution can also change the sign as it swaps root vectors and is
therefore not determined by its action on roots alone).

Our classification goes as follows. Let gC have Dynkin diagram Γ. Recall
(from e.g. [17, Ch. X]) that for each symmetry ν of Γ there is a unique affine
diagram Γ(n) where n ∈ {1, 2, 3} is the order of ν (these can be found in Appendix
B). To each Γ(n) we assign a unique, up to conjugacy, Coxeter automorphism τ
which is an inner automorphism when n = 1 (the more usual case) and outer
otherwise. Every noncompact real form can be classified up to equivalence by its
Cartan involution σ, thought of as a complex involution. Since we are assuming
gC is simple the noncompact symmetric spaces we describe are those of Type
III in the standard classification (cf. [17]), i.e., the real form g is not itself a
complex Lie algebra. We say σ is compatible with τ when it commutes with τ
and fixes pointwise the fixed-point subalgebra of τ . We say two such involutions
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are τ -equivalent when they are conjugate in Aut(gC) by an automorphism which
commutes with τ . The following theorem combines Prop. 3.9 and Cor. 3.10 below.

Theorem 1.1. Let Γ(n), n ∈ {1, 2, 3}, be an affine Dynkin diagram with vertex
set indexed by I = {0, . . . , r} and Coxeter automorphism τ . Every involution σ
of gC which is compatible with τ is determined by a map ℓ : I → {−1, 1} for
which −1 ∈ ℓ(I) and satisfying

∏

j∈I ℓ(j)
nmj = 1. Two such involutions are τ -

equivalent if and only if they are related by a symmetry of Γ(n). Every noncompact
symmetric space of Type III has a least one compatible Coxeter automorphism.

The vertices of Γ(n) correspond to the simple affine roots, and the labels ℓ(j) are
the eigenvalues of σ on the corresponding root space. Since those root spaces gen-
erate gC under Lie bracket this determines σ completely, with the relation being
the sole condition required to ensure that σ is well-defined as an automorphism
of gC. The distribution of signs within the Toda equations follows easily. Each
labelling ℓ partitions I into I+ ∪ I− according to the sign, and the corresponding
affine Toda equations become

∆Σwj =
r

∑

k∈I+

Ĉjke
wk −

r
∑

k∈I−

Ĉjke
wk ,

r
∑

j=0

mjwj = 0. (1.2)

When Σ is a torus these equations are the zero curvature conditions for a
certain flat G-connection, where G is the real form determined by the choice of
signs, and their solution corresponds to a τ -primitive map ψ : Σ̃ → G/T which
is equivariant with respect to the holonomy representation π1Σ → G of that flat
connection.

When the compact Riemann surface Σ is not a torus these equations need to be
modified to fulfil the same purpose. In the second half of the paper we derive these
geometric Toda equations. Motivated by the relationship between Higgs bundles
and harmonic maps, we take the point of view that the Toda equations are really
the equations for a metric, or equivalently a reduction of structure group, from
a holomorphic principal TC-bundle QC over Σ to a T -bundle Q ⊂ QC. The
equations governing the metric require an initial choice of Hermitian metric on
Σ and the bundle QC, together with a holomorphic section φ of the associated
bundle QC(g1)⊗KΣ, where g1 ⊂ gC is the direct sum of root spaces for the simple
affine roots.

Since TC is abelian and its action on g1 is completely reducible we can equate
this pair (QC, φ) with a choice of line bundles and holomorphic sections. These
choices determine the precise form of our geometric Toda equations.

Definition 1.2. Fix a compact Riemann surface Σ of genus g, equipped with a
Kähler metric of constant curvature 2 − 2g and let ωΣ denote its Kähler form.
Fix an affine Dynkin diagram, with Cartan matrix Ĉ, vertex index set I =
{0, 1, . . . , r} and simple affine roots {ᾱk : k ∈ I}. Choose a vertex labelling
ℓ : I → {−1, 1} satisfying the conditions of Theorem 1.1 and let I = I+ ∪ I−
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be the partition it induces. Choose holomorphic line bundles Qk(C), k ∈ I, over
Σ such that ⊗k∈IQk(C)

mk ≃ C and set dk = deg(Qk). For each k ∈ I take the
unique, up to constant scaling, Hermitian metric on Qk(C) whose Chern connec-
tion has curvature −idkωΣ. Finally, for each k ∈ I choose a holomorphic section
φk ∈ H0(Qk(C)⊗KΣ). Then the geometric Toda equations for this data are the
system of elliptic p.d.e.

∆Σwj =
∑

k∈I+

∥φk∥2 |αk|
2

2
ewkĈjk −

∑

k∈I−

∥φk∥2 |αk|
2

2
ewkĈjk − dj, j ∈ I, (1.3)

for functions wj : Σ → R with
∑r

j=0mjwj = 0.

We call the pair (QC, φ) a Toda pair. We say it is cyclic when all φk are
non-trivial and non-cyclic otherwise. A particular case of the latter is the simple
non-affine case, for which φk = 0 only for k = 0, and we show that every non-
cyclic case is a union of simple non-affine cases. For the holomorphic section
φk to be non-trivial the degree dk must satisfy dk ≥ 2 − 2g. Hence a necessary
condition for the existence of cyclic pairs is that g ≥ 1 and the vector (d0, . . . , dr)
of degrees lies in a bounded polytope

2− 2g ≤ dj, j = 0, . . . , r,
r

∑

k=0

mkdk = 0. (1.4)

Note that for g = 1 this polytope is a single point (0, . . . , 0). Since KΣ ≃ C this
forces Qk(C) ≃ C to obtain non-trivial φk and leads to the more standard form
of the Toda equations where all coefficients are constants.

Regarding existence of solutions, when G is noncompact the only general
method we are aware of is when we can treat (QC, φ) as a principal pair in
the language of Bradlow et. al [4] (cf. Banfield [2]). We show that for cyclic Toda
pairs this only applies when ℓ(j) = −1 for j = 0, . . . , r. We call this case totally
noncompact since it is the case where every affine simple root is noncompact (its
root space lies in the complexification of the noncompact summand m in the Car-
tan decomposition g = h ⊕ m). There is precisely one such case for every affine

Dynkin diagram except a
(1)
2k , since this is the only case for which the relation

∏

j∈I ℓ(j)
nmj = 1 cannot hold. It is not immediately obvious which symmetric

spaces these are in the standard classification of, say, [17, Ch. X, Table V] so we
provide a list in Table 1.

The geometric Toda equations for this totally noncompact case are

∆Σwj +
∑

k∈I

∥φk∥2 |αk|
2

2
ewkĈjk + dj = 0, j ∈ I. (1.5)

In this case by checking the stability conditions for the Toda pair we prove the
following (Prop. 5.3 and 5.4).
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Theorem 1.3. Let (QC, φ) be a totally noncompact Toda pair. If it is cyclic then
(1.5) has a unique solution. If it is simple non-affine then a solution exists (and
it is unique) whenever the vector of degrees (d1, . . . , dr) lies in the convex polytope

2− 2g ≤ dj,

r
∑

k=1

Rjkdk < 0, (1.6)

where Rjk are the entries to the inverse of the matrix whose entries are ⟨αj, αk⟩.
In particular, this requires g ≥ 2.

For any Toda pair the existence of a solution to 1.3 means there is an equi-
variant τ -primitive harmonic map ψ : Σ̃ → G/T on the universal cover of Σ (the
equivariance is with respect to the holonomy representation π1Σ → G of the flat
G-connection). It is a property of τ -primitive maps that after homogeneous pro-
jection G/T → G/H ≃ N we obtain an equivariant harmonic map f : Σ̃ → N
into the symmetric space. When G is noncompact this has a corresponding G-
Higgs bundle. In §6 we explain how the Toda pair (QC, φ) is related to this Higgs
bundle. We show that this Higgs bundle is a Hodge bundle (i.e., fixed by the
C

×-action on Higgs bundles) if and only if the Toda pair is non-cyclic.
Section 6 ends with an explanation of how Baraglia’s cyclic Higgs bundles1 are

the totally noncompact Toda pairs for an inner Coxeter automorphism obtained
by making the very special choice that Qj(C) ≃ K−1

Σ , and hence φj is a nonzero
constant for j = 1, . . . , r, to obtain the system

∆Σwj +
r

∑

k=1

Ĉjkcke
wk + Ĉj0

|α0|2

2
∥φ0∥2ew0 + dj = 0, j ∈ I, (1.7)

for φ0 ∈ H0(K
m/n
Σ ) and certain constants ck. These choices can be made even

when τ is an outer Coxeter automorphism, providing two distinct systems of
equations for the Lie algebras a2k−1, dr and e6 (and three distinct versions for
d4).

Existence of solutions to (1.7) has been a topic of significant recent interest. For
Bargalia’s cases existence when g ≥ 2 is guaranteed by nonabelian Hodge theory:
Hitchin’s Higgs bundles are all stable. Miyatake [26] provides an alternative
existence theorem via his study of generalized Kazdan-Warner equations. In fact
all totally noncompact systems (1.5) fit into his theory, providing an alternative
proof of Theorem 1.3. Solutions over noncompact domains, especially Σ ≃ C

×

and assuming rotational symmetry, have been treated in [15, 16, 27, 21, 22],
motivated by the relationship with the tt∗ equations and quantum cohomology
(see, for example, [14], for a discussion of the motivation). Most of the existence

1These were originally studied many years earlier by Aldrovandi & Falqui [1] although they
were not called “cyclic”. We call these “Baraglia’s” to distinguish them from Collier’s [11] use
of “cyclic Higgs bundle” which actually means cyclotomic in the sense of Simpson [31]. See
also Remark 6.5.
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results treat the a
(1)
r equations with an additional symmetry (which for r = 2k

gives the same system as for a
(2)
2k ), but we note that the method of sub/super-

solutions elucidated in [21, §5.1], derived from the method used in [15], can be
applied to any totally noncompact Toda system (1.5) since the affine Cartan

matrix has the property that Ĉjk < 0 whenever j ̸= k.
Beyond these results lies the question of the existence of solutions to the general

noncompact Toda system (1.2). To my knowledge this has not been studied

outside the a
(2)
2 case (see [24] for a survey) where the equation is effectively

scalar. A surprising feature of the totally noncompact Toda systems (1.5) over
a compact domain is that the norms ∥φj∥ play no role in the existence theory
(apart from whether or not they are identically zero). One does not expect this
to be the case more generally: one expects to need bounds on ∥φk∥ whenever
k ∈ I+, to control the terms with “bad” (i.e., positive) signs in (1.2).

Acknowledgments. This work arose out of discussions with Martin Guest on
the topic of real forms of the Toda equations while the author was visiting him at
Waseda University, Japan, during July 2022 as a Japan Society for the Promotion
of Science Short Term Fellow. Discussions of an early draft also took place during
a visit to Waseda University in April 2024. The author is grateful to JSPS for
their support and to Martin for the stimulating discussions and critical feedback.

2. Primitive harmonic maps.

2.1. Some reductive homogeneous geometry. For what follows we will need
the following facts about reductive homogeneous spaces of noncompact Lie groups
G. We will deal exclusively with real noncompact simple Lie groups G which are
not complex Lie groups. We will always choose G to have trivial centre (i.e., to be
the adjoint group). Given a maximal compact subgroup H < G the homogeneous
space G/H can be given the structure of a noncompact symmetric space (these
are the symmetric spaces of Type III in Cartan’s classification cf. [17, Ch 5,Thm
5.4]). Let h ⊂ g denote the Lie algebras of H < G. The real form g ⊂ gC is
determined by a real involution ρ on gC whose fixed point subalgebra is g. Write
the corresponding Cartan decomposition as g = h + m. Let u be a compatible
compact real form, i.e., whose real involution κ commutes with ρ. Then h = g∩u

and m = g ∩ (iu).
Let T < H be any closed subgroup. Then its Lie subalgebra t ⊂ g is part of a

reductive decomposition g = t+p: since h the Killing form ⟨ , ⟩ is non-degenerate
on g we can choose p = t⊥ to be the orthogonal complement with respect to the
Killing form. Then [t, p] ⊂ p and G/T is a reductive homogeneous space whose
tangent space at any point is modelled on p. We equip G/T with the G-invariant
Riemannian metric given by restricting the AdH-invariant Hermitian form

µ : gC × gC → C, µ(ξ, η) = −⟨ξ, κη⟩, (2.1)
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to p. When G/H is equipped with the symmetric space metric given by the re-
striction of µ to m the homogeneous projection π : G/T → G/H is a Riemannian
submersion.

Let ωG : TG → g be the left Maurer-Cartan form and use the reductive
decomposition of g to write this as ωt + ωp. The first factor, ωt, provides the
canonical connection for the right principal T -bundle G→ G/T , while the second
factor is tensorial and therefore descends to a 1-form β : T (G/T ) → [p], where
[p] = G ×T p is the associated bundle over G/T . In fact β is an isomorphism
known as the Maurer-Cartan form of G/T . Now consider [p] as a subbundle of
[g]. The latter has canonical trivialisation

G×T g ≃ G/T × g; (g, ξ)T 7→ (gT,Ad g · ξ).
This carries two connections: the flat one d from this trivialisation and the con-
nection D induced from ωt. It is shown in [9, Prop 1.1] that d = D + β and
therefore the curvatures satisfy

0 = F d = FD +Dβ + 1
2
[β ∧ β].

Now [g] = [t]+[p] and this splitting is D-parallel. Since [t, p] ⊂ p when we project
this equation onto the subbundles [t], [p] we obtain two equations

FD + 1
2
[β ∧ β]t = 0,

Dβ + 1
2
[β ∧ β]p = 0.

Now let M be any smooth manifold and ψ : M → G/T a smooth map. Let
Q = ψ−1G be the pull-back T -bundle over M and set θ = ψ∗β. For any AdT -
invariant subspace v ⊂ g define Q(v) = Q ×T v = ψ∗[v]. This inherits the
connection ∇ = ψ∗D. Then we obtain what can be considered the structure
equations for maps into G/T :

F∇ + 1
2
[θ ∧ θ]t = 0, (2.2)

∇θ + 1
2
[θ ∧ θ]p = 0. (2.3)

These are exactly the conditions for the connection ∇+ θ on Q(g) to be flat. By
considering the corresponding flat connection on the principal G-bundle Q×T G
one obtains the following well-known theorem.

Theorem 2.1. Let Q → M be a principal T -bundle with connection ∇ and
θ ∈ E1(Q(p)) be such that (2.2) and (2.3) both hold. Then there exists a smooth
map ψ : M̃ → G/T from the universal cover of M , unique up to isometries, for
which ψ∗β = θ and ψ is equivariant with respect to a representation χ : π1M → G.

The representation χ is the holonomy of the flat connection ∇+ θ.
The application which interests us most is when M is a Riemann surface Σ

and θ satisfies the conditions

[θ ∧ θ]p = 0 and ∇′′θ′ = 0, (2.4)



8 IAN MCINTOSH

where TCΣ = T ′Σ⊕ T ′′Σ is the type decomposition determined by the complex
structure on Σ. Both of these conditions hold when ψ is a τ -primitive harmonic
map, the definition of which we will now recall.

2.2. τ-primitive harmonic maps. Suppose we have an automorphism τ of gC

of finite order m ≥ 3 which commutes with ρ and whose fixed points all lie in hC.
It induces a Zm-grading on the complexified Lie algebra gC which we will write
as

gC =
⊕

k∈Zm

gτk, [gτj , g
τ
k] ⊂ gτj+k. (2.5)

Here gτk is the eigenspace of τ for eigenvalue e2πik/m. Clearly ρ maps gτk to gτ−k.
We define t = h∩ gτ0 to be the real Lie subalgebra t ⊂ g with tC = gτ0. Because τ
has finite order gτ0 is a reductive subalgebra with complement ⊕k ̸=0g

τ
k. Since the

latter is also τ -invariant it is the complexification of a complementary subspace
p ⊂ g, and g = t + p is a reductive decomposition. Moreover, ⟨gτj , gτk⟩ = 0 when

j + k ̸= 0 ∈ Zm [17, Ch. X, Lemma 5.1], so p = t⊥ with respect to the Killing
form. As above T < H denotes the Lie subgroup with Lie algebra t and G/T is
a reductive homogeneous space.

The adjoint action of T on each gτk provides a bundle decomposition

TC(G/T ) ≃ [pC] =
⊕

k ̸=0

[gτk],

and the subbundle [gτ1] is called the primitive distribution with respect to τ .

Definition 2.2. A smooth map ψ : Σ̃ → G/T of a Riemann surface Σ is τ -
primitive when ∂ψ : T ′Σ → TC(G/T ) has its image in [gτ1].

The crucial property here is that [gτ1, ρ(g
τ
1)] = [gτ1, g

τ
−1] ⊂ tC. This makes

τ -primitive maps F -holomorphic with respect to the G-invariant horizontal F -
structure on G/T characterised by the AdT -invariant F ∈ End(pC) defined by

F =











i on gτ1,

−i on gτm−1,

0 on gτk for k ̸= 1,m− 1.

(2.6)

F -structures of this type were studied by Black [5]. The following theorem is a
special case of his results.

Theorem 2.3 ([5]). A smooth map ψ : Σ̃ → G/T of a Riemann surface which
is τ -primitive is harmonic. Further, let π : G/T → G/H be the homogeneous
projection, then f = π ◦ ψ : Σ̃ → G/H is also harmonic.

Our notation anticipates our application, in which Σ̃ will be the universal cover
of a compact Riemann surface Σ.
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Remark 2.4. In [5, Lemma 5.4] a more general result is given, which asserts
that both maps are equi-harmonic (harmonic with respect to every G-invariant
metric). But this level of generality requires the assumption that the TC action
on pC decomposes it into distinct irreducible summands. This assumption will
not hold when we take τ to be an outer Coxeter automorphism, since then TC

is not maximal abelian in GC (see below). Nonetheless for our particular choice
of metric and F -structure Black’s arguments apply. An alternative proof which
applies to our situation, using local frames, can be found in [8, Thm 3.7].

In fact the map f is weakly conformal harmonic, i.e., a minimal surface.

Proposition 2.5. The map f = π ◦ ψ obtained from Theorem 2.3 is weakly
conformal, i.e., (f ∗µ)(2,0) = 0 where µ denotes the metric on G/H.

Proof. Since f ∗µ = ψ∗π∗µ we have

f ∗µ(2,0) = ⟨Pm∂ψ, Pm∂ψ⟩,
where Pm : [pC] → [mC] is the projection derived from the splitting pC = (hC ∩
pC)⊕mC. Since ψ is τ -primitive Pm∂ψ takes values in [gτ1] and now ⟨gτ1, gτ1⟩ = 0
implies (f ∗µ)(2,0) = 0. □

Now we can apply the theory of subsection 2.1 to observe that a τ -primitive
map satisfies the equations

F∇ + [φ ∧ ρφ] = 0, (2.7)

∇′′φ = 0, (2.8)

where φ = ∂ψ, using the fact that ρφ = ∂̄ψ. Here we are using ρ to also denote
the real involution on Q(pC) fixing Q(p). The second equation holds because
θ = φ+ ρφ decomposes θ into [gτ1] and [gτ−1] components, which are independent
and ∇-invariant. In particular, we have the following corollary of Theorem 2.1.

Corollary 2.6. Let Q → Σ be a principal T -bundle over a Riemann surface Σ,
with connection ∇. Let KΣ be the canonical bundle of Σ and let φ be a holo-
morphic section of Q(gτ1)⊗KΣ where the holomorphic structure is given by ∇′′.
If (∇, φ) satisfy (2.7) and (2.8) then there exists a π1Σ-equivariant τ -primitive
map ψ : Σ̃ → G/T for which ∂ψ = φ. It is unique up to isometries.

Our particular application of Theorem 2.3 and Corollary 2.6 will be when τ
is the Coxeter automorphism and T its fixed-point subgroup. Then the Toda
equations are the conditions that (2.7) and (2.8) hold.

3. Coxeter automorphisms and noncompact Lie algebras.

We now want to apply the results above to the situation where τ is what we
will call the Coxeter automorphism for an affine Dynkin diagram. This requires
our noncompact real form be compatible τ . To enable the classification of these,
we fix first a compact real form u ⊂ gC, with real involution κ. All other real
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forms are identified, up to conjugacy, by their Cartan involution σ ∈ End(gC),
for which ρ = σκ = κσ. We will write hC = gσ0 , m

C = gσ1 when it becomes
necessary to compare Cartan involutions. Our strategy will be to describe the
Coxeter automorphism τ on gC first and then explain which complex involutions
σ are compatible with it to provide the τ -primitive distribution over G/T such
that T < H.

3.1. The Coxeter automorphism for an affine diagram. To describe the
Coxeter automorphism we need to summarise the relevant parts of the theory of
affine root systems from [17, Ch. X, §5]. Given gC as above let ν be an automor-
phism of the Dynkin diagram of gC. We include the identity automorphism, so
that ν has order n ∈ {1, 2, 3}. By fixing canonical generators we can construct
an automorphism of gC of order n, which we also call ν, which represents this
symmetry (see Appendix A). The eigenspaces of ν equip gC with a Zn-grading
which we will write as

gC =
⊕

j∈Zn

gνj , gνj = {ξ ∈ gC : ν(ξ) = e2πij/nξ}.

It can be shown that gν0 is a simple Lie subalgebra of gC. Let tC be a choice of
Cartan subalgebra for gν0. A root for gC relative to (ν, tC) is a pair ᾱ = (α, j) ∈
(tC)∗ × Zn for which

gᾱ = {ξ ∈ gνj : [h, ξ] = α(h)ξ ∀ h ∈ tC} ≠ {0}.

Let R̄ be the set of all these roots and R̄0 be the subset of those for which α = 0.
Then gᾱ is one-dimensional for ᾱ ∈ R̄−R̄0, whereas tC = g(0,0) and the centralizer
z(tC) of tC in gC is a Cartan subalgebra of gC with

z(tC) =
⊕

ᾱ∈R̄0

gᾱ.

Then

gC = z(tC)⊕





⊕

ᾱ∈R̄−R̄0

gᾱ



 .

The Killing form is non-degenerate on tC and hence for every ᾱ ∈ R̄− R̄0 there
is a unique hα ∈ tC for which α = ⟨hα, ⟩ and one defines

⟨α, β⟩ = ⟨hα, hβ⟩.

For such roots [gᾱ, g−ᾱ] = C.hα. The following theorem summarises the results
we need regarding these roots (see, e.g. Helgason [17, Ch. X,§5]).

Theorem 3.1. Let (gC, ν, tC) be as above.
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(1) If α1, . . . , αr ∈ (tC)∗ is a basis of simple roots for gν0 then R̄ is generated
by roots ᾱ0, ᾱ1, . . . , ᾱr. Here ᾱj = (αj, 0) for j ̸= 0 and

ᾱ0 =

{

(α0, 0) when n = 1,

(α0, 1) when n ̸= 1,

is characterised by the property that ᾱ0 − ᾱj ̸∈ R̄ for j ̸= 0. There are
positive integers m0 = 1,m1, . . . ,mr such that

∑r
j=0mjαj = 0, equally,

r
∑

j=0

nmjᾱj = (0, 0) ∈ (tC)∗ × Zn.

(2) The affine Cartan matrix for (gC, ν) is defined by

Ĉjk = 2
⟨αj, αk⟩
⟨αk, αk⟩

, 0 ≤ j, k ≤ r.

By the previous part it has corank 1.

We will call B̄ = {ᾱ0, . . . , ᾱr} a system of simple affine roots2 for R̄. The
corresponding affine diagram is said to be of type n. We will call the integers
m0, . . . ,mr the affine coefficients of the affine diagram corresponding to Ĉ. When
ν is the identity, and hence gC = gν0, α1, . . . , αr will be a basis of simple roots for
gC and α0 will be the lowest root with respect to these.

Set

hj =
2

⟨αj, αj⟩
hαj

, j = 0, 1, . . . , r, (3.1)

so that
αj(hk) = Ĉjk.

Then we can choose elements ej ∈ gᾱj , fj ∈ g−ᾱj such that we have the relations

[ej, fk] = −δjkhj, [hj, ek] = Ĉkjek, [hj, fk] = −Ĉkjfk. (3.2)

This collection {hj, ej, fj : j = 0, . . . , r} is a system of generators for gC. Define
m =

∑r
j=0 nmj and call this the Coxeter number for (gC, ν). By assigning each

generator ej the weight 1 ∈ Zm and each fj weight −1 ∈ Zm one obtains a
Zm-grading on gC. We will write this grading as

gC =
⊕

k∈Zm

gτk

and notice that

gτ0 = tC, gτ1 = SpanC{e0, . . . , er}, gτ−1 = SpanC{f0, . . . , fr}. (3.3)

Definition 3.2. The Coxeter automorphism for (gC, ν, tC, B̄) is the order m au-
tomorphism τ which has gτk as its eigenspace of eigenvalue e2πik/m.

2This is a slight abuse of usage, as the affine roots are usually the elements of (tC)∗×Z which
reduce to ours under Z 7→ Zn.
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In the language of Kac [19] (cf. [17, Ch. X]) our Coxeter automorphism is the
unique, up to conjugacy, automorphism of type (1, . . . , 1;n) on gC. In particular,
τ is an inner automorphism when n = 1 and an outer automorphism otherwise.
Clearly there is exactly one Coxeter automorphism up to conjugacy for every
affine Dynkin diagram (equally, for every affine Cartan matrix).

The next lemma gives an explicit expression for τ given (gC, ν, tC, B̄).

Lemma 3.3. Let x ∈ tC be the unique element for which αj(x) = 1 for j =
1, . . . , r. Then the Coxeter automorphism for (gC, ν, tC, B̄) is given by

τ = ν exp(2πi
m

ad x) = exp(2πi
m

ad x)ν. (3.4)

Proof. Clearly the right hand side of (3.4) fixes tC pointwise so it suffices to show
that gτ1 is an eigenspaces of the correct eigenvalue.

By definition of ej, ν(ej) = ej for j = 1, . . . , r and ν(e0) = exp2πi/n e0. So for
j = 1, . . . , r, since [x, ej] = αj(x)ej = ej

ν exp(2πi
m

ad x)(ej) = ν(e2πi/mej) = e2πi/mej.

For j = 0 we have α0 = −
∑r

j=1mjαj so

[x, e0] = −
r

∑

j=1

mje0 = (1− m
n
)e0.

Therefore

ν exp(2πi
m

ad x)(e0) = ν(e2πi(1−m/n)/m)e0) = e2πi/me−2πi/nν(e0) = e2πi/me0.

□

Remark 3.4. The only Lie algebras whose Dynkin diagrams admit a non-trivial
symmetry are ar (r ≥ 2), dr (r ≥ 3) and e6. These will have one inner Coxeter
automorphism, call it τinn , and at least one outer Coxeter automorphism (with d4
being the only case with two distinct outer Coxeter automorphisms). However,
it is only for a2k that the outer Coxeter automorphism equals ντinn . Indeed, this
is the only case where the eigenspace gτ1 for the outer Coxeter automorphism is
contained in that for τinn . This can be seen clearly in Appendix A where the root
space gᾱ0 is identified for each case.

Finally, we want to understand the properties of elements of gτ1. Consider the
adjoint action of TC on gτ1. Write ξ =

∑r
j=0 cjej for cj ∈ C. Then for every h ∈ tC

exp(adh) · ξ =
r

∑

j=0

cje
αj(h)ej.

It follows that when cj ̸= 0 for all j this orbit is the zero level set of the polynomial

P (X0, . . . , Xr) =
r
∏

j=0

X
mj

j −
r
∏

j=1

c
mj

j ,
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where Xj : g
τ
1 → C are the coordinates for which Xj(ξ) = cj. Thus the orbit is

Zariski closed when cj ̸= 0 for all j. If cj = 0 for any j then then the Zariski
closure of the orbit contains 0. By results from Vinberg [32], an element of gτ1 is
semisimple if and only if its TC-orbit is Zariski closed and nilpotent if and only
if the Zariski closure of its orbit contains 0. Thus we deduce the following.

Lemma 3.5. An element
∑r

j=0 cjej ∈ gτ1 is semisimple if and only if cj ̸= 0 for
all j and nilpotent otherwise.

We will call elements of gτ1 cyclic when they are semisimple. When ν is the
identity this agrees with Kostant’s definition [20] since in that case the root
system R̄ is just the standard root system for gC and α0 = −δ where where δ
is the highest positive root relative to the root basis {α1, . . . , αr}; this follows at
once from part (1) of Theorem 3.1. It is useful and interesting to understand how
the roots in R̄ are related to a standard root system for gC when ν ̸= 1. This
information can be found in Appendix A

Remark 3.6. It follows from the discussion above that the Coxeter automorphisms
are uniquely characterised amongst finite order automorphisms by the two prop-
erties:

(1) gτ0 is abelian, and
(2) gτ1 admits a non-trivial semisimple element.

3.2. Real forms compatible with the Coxeter automorphism. Fix the
data (gC, ν, tC, B̄) to obtain a Coxeter automorphism τ . By [17, Ch. X, Thm 5.2]
there is a τ -invariant compact real form u ⊂ gC. We define

t = tC ∩ u = SpanR{ih0, . . . , ihr}.
As before we denote by κ the real involution which fixes u pointwise and let µ
be the Hermitian inner product (2.1). Since α(hj) ∈ R for all roots ᾱ it follows
that κ : gᾱ → g−ᾱ Now using the same argument as [17, Ch. III, Thm 4.2] it can

be shown that gᾱ is orthogonal to gβ̄ with respect to the Killing form whenever
ᾱ + β̄ ̸= 0, and therefore distinct root spaces are orthogonal for µ. Hence the
generators ej, fj will be µ-orthogonal and we may choose them so that fj = κej.
Our aim is to classify all the noncompact real forms ρ (equally, all σ = ρκ) for

which τ preserves g and t = g ∩ tC is a maximal torus in the maximal compact
subspace h ⊂ g. Since κ preserves tC these properties hold precisely when τ
commutes with σ and σ fixes tC pointwise.

Definition 3.7. We will say a complex involution σ is compatible with the Cox-
eter automorphism τ for (gC, ν, tC, B̄) when σ commutes with τ and fixes tC point-
wise.

Lemma 3.8. A complex involution σ is compatible with the Coxeter automor-
phism τ for (gC, ν, tC, B̄) if and only if it acts by scaling on every root space gᾱ

and fixes tC pointwise.
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Proof. Suppose σ is compatible with τ . Let ξ ∈ gᾱ for ᾱ = (α, j) ∈ R̄. Since
σ(h) = h for all h ∈ tC it follows that [h, σ(ξ)] = α(h)σ(ξ) and therefore σ : gᾱ →
gβ̄ where β̄ = (α, j′). Since σ commutes with τ it preserves the eigenspace gτ1,
and since this is the sum of root spaces for the simple affine roots ᾱ0, . . . , ᾱr (for
which α0, . . . , αr are all distinct) it must preserve each gᾱj . Each of these is one
dimensional and hence σ acts by scaling (by ±1). Since every other root space is
generated by these roots spaces σ must act by scaling on every root space.

The converse is clear since τ also acts by scaling on the root spaces. □

It follows that σ is completely determined by its sign ±1 on the root spaces gᾱ

and hence σ is determined by a map

ℓ : R̄ → {−1, 1}, (3.5)

satisfying

ℓ(ᾱ + β̄) = ℓ(ᾱ)ℓ(β̄), ℓ(ᾱ)ℓ(−ᾱ) = 1,
r
∏

j=0

ℓ(ᾱj)
nmj = 1. (3.6)

The second condition on ℓ is equivalent to σκ = κσ. We could replace the last
two conditions by ℓ((0, 0)) = 1, but they are useful if we choose to describe ℓ by
its restriction to B̄. Clearly at least one sign must be negative on B̄ to give a
genuine involution. For example, when ν is itself an involution then taking σ = ν
corresponds to the map

ℓ(ᾱj) =

{

1, j = 1, . . . , r

−1, j = 0.

We will call a root ᾱ compact when ℓ(ᾱ) = 1, since this is equivalent to gᾱ lying
in the complexification hC of the compact summand in the Cartan decomposition
of g. When ℓ(ᾱ) = −1 we will say it is noncompact.

Given two such maps ℓ, ℓ′ we obtain real forms G,G′ of GC each containing T in
their maximal compact subgroup. τ -primitive maps into G/T can be identified
with those into G′/T when there is an isomorphism G/T → G′/T identifying
primitive distributions. The existence of a real group isomorphism ϕ : G → G′

is equivalent to the existence of a complex linear automorphism χ of gC which
maps g to g′: χ is just the complex linear extension of the tangent map to ϕ at
the identity. The additional conditions require that χ preserves both tC and g1,
and since g1 generates gC this is equivalent to saying χ commutes with τ . Now
since χ maps the Cartan decomposition g = h+m to a Cartan decomposition of
g′ we may, by altering χ by an inner automorphism if necessary, choose χ so that

χ(h) = h′ = g′ ∩ u, χ(m) = m′ = g′ ∩ u.

It follows that χ commutes with κ. Thus the natural equivalence for ρ, ρ′ for our
situation can be written in terms of σ, σ′, namely, that there exists χ ∈ Aut(gC)



THE GEOMETRIC TODA EQUATIONS. 15

such that σ′ = χσχ−1 and χ commutes with τ . When these conditions holds we
will say σ, σ′ are τ -equivalent. This leads us to the following characterisation.

Proposition 3.9. There is a one-to-one correspondence between complex involu-
tions σ which are compatible with the Coxeter automorphism τ for (gC, ν, tC, B̄)
and additive maps ℓ of the type (3.5). Two such involutions σ, σ′ are τ -equivalent
if and only if ℓ, ℓ′ satisfy ℓ = ℓ′ ◦w where w : R̄ → R̄ is a symmetry of the affine
root system which preserves B̄. All such symmetries come from symmetries of
the affine Dynkin diagram.

Proof. The first statement is clear from the discussion above. Now suppose σ′ =
χσχ−1 for some χ ∈ Aut(gC) which preserves tC and g1. Clearly χ : gσj → gσ

′

j

and therefore whenever h ∈ tC and ξ ∈ gᾱ we have

[h, ξ] = α(h)ξ ⇒ [χ(h), χ(ξ)] = (α ◦ χ−1)(χ(h))χ(ξ),

so that (α, j) ∈ R̄ implies (α ◦ χ−1, j) ∈ R̄. Since every automorphism of gC

leaves the Killing form invariant χ induces a symmetry of R̄:

w : R̄ → R̄; (α, j) 7→ (α ◦ χ−1, j),

for which

χ : gᾱ → gw(ᾱ). (3.7)

Now let ξ ∈ gᾱ be non-zero, then

ℓ(ᾱ)ξ = σ(ξ) = χ−1σ′(χξ) = ℓ′(w(ᾱ))ξ. (3.8)

Thus ℓ = ℓ′ ◦ w. Clearly w must preserve B̄ since χ preserves g1.
Conversely, suppose ℓ = ℓ′ ◦ w. A standard argument (cf. [17, Ch. IX, Thm

5.1]) shows that w extends to an automorphism χ of gC satisfying (3.7). Now
rearranging (3.8) shows that on every root space σ′ = χσχ−1. Since the root
spaces generate gC as a Lie algebra, this equation holds on all of gC. □

When we combine this construction of compatible involutions with the classifi-
cation of noncompact symmetric spaces in [17] we deduce that every noncompact
symmetric space has at least one compatible Coxeter automorphism.

Corollary 3.10. For every noncompact symmetric space G/H of Type III there
is at least one compatible Coxeter automorphism.

Proof. First we recall from [17, Ch. X, §5] that each symmetric space is deter-
mined by a involution of type (s0, s1, . . . , sr;n), obtained by labelling the j-th ver-
tex of the affine Dynkin diagram Γ(n) with sj ∈ {0, 1} such that

∑r
j=0 nmjsj = 2.

The involution fixes tC and acts by (−1)sj on gᾱj . Thus we choose ℓ to have
ℓ(ᾱj) = (−1)sj . □
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Finally, we can be quite explicit about what the involution is for a given map
ℓ. First, by (3.6)

r
∏

j=0

ℓ(ᾱj)
mj = ±1

and can only equal −1 when n = 2.

Lemma 3.11. Let ℓ : R̄ → {−1, 1} satisfy (3.6) and σ be the involution deter-
mined by it. Let h ∈ tC be the unique element which satisfies, for j = 1, . . . , r,

αj(h) =

{

0 when ℓ(ᾱj) = 1,

1 when ℓ(ᾱj) = −1.
.

If
∏r

j=0 ℓ(ᾱj)
mj = 1 then σ = exp(iπ adh) and is hence an inner automorphism.

If
∏r

j=0 ℓ(ᾱj)
mj = −1 then σ = ν exp(iπ adh) and is therefore an outer automor-

phism.

Proof. For simplicity set ℓj = ℓ(ᾱj). For j = 1, . . . , r

exp(iπ adh) · ej = eiπαj(h)ej = ℓjej.

Since α0 = −∑r
j=1mjαj, when

∏r
j=0 ℓ

mj

j = 1 we have

exp(iπ adh) · e0 = e−iπ
∑r

j=1
mjαj(h)ej =

r
∏

j=1

ℓ
−mj

j ej.

Hence when
∏r

j=0 ℓ
mj

j = 1 we have exp(iπ adh) · e0 = ℓ0e0 and therefore σ =

exp(iπ adh).
When

∏r
j=0 ℓ

mj

j = −1 then exp(iπ adh) · e0 = −ℓ0e0. But in this case ν

is an involution with ν(ej) = ej for j = 1, . . . , r and ν(e0) = −e0, therefore
σ = ν exp(iπ adh). □

An important consequence of this Lemma is that the symmetric space G/H
need not be an outer symmetric space when the Coxeter automorphism is outer.

Example 3.12. As an illustration, consider the diagram a
(2)
2 (see Appendix B).

The root system is

R̄ = {(0, 0), (0, 1),±ᾱ0,±ᾱ1,±(ᾱ0 + ᾱ1)},
where ᾱ1 = (α1, 1) and ᾱ0 = (−2α1, 1). This diagram has three distinct labellings:

(1) (ℓ0, ℓ1) = (−1, 1) with ℓ0ℓ
2
1 = −1. Hence σ is an outer automorphism with

fixed-point subalgebra

hC = g(0,0) ⊕ gᾱ1 ⊕ g−ᾱ1 ≃ a1.

(2) (ℓ0, ℓ1) = (1,−1) with ℓ0ℓ
2
1 = 1. Hence σ is an inner automorphism with

fixed-point subalgebra

hC = g(0,0) ⊕ g(0,1) ⊕ gᾱ0 ⊕ g−ᾱ0 ≃ a1 ⊕ C.
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(3) (ℓ0, ℓ1) = (−1,−1) with ℓ0ℓ
2
1 = −1. Hence σ is an outer automorphism

with fixed-point subalgebra

hC = g(0,0) ⊕ gᾱ0+ᾱ1 ⊕ g−ᾱ0−ᾱ1 ≃ a1.

In the second case the real form G is PU(2, 1) with inner symmetric space CH
2,

the complex hyperbolic plane. The first and third cases yield isomorphic real
forms G ≃ G′ ≃ PSL(3,R), but there is no isomorphism G/T → G′/T which
identifies the respective primitive distributions [g1]. These labellings give three
inequivalent versions of the Toda equations, sometimes referred to as equations
of Tzitzeica type, with very different geometries and solution existence proper-
ties. In the order given above the equations govern the existence of, respectively,
elliptic affine spheres in R

3, minimal Lagrangian surfaces in CH
2, and hyperbolic

affine spheres in R
3 (equally, convex RP

2 structures). These are discussed quite
extensively in the survey article [24].

3.3. Totally noncompact pairs. We will say that the pair (τ, σ) is totally
noncompact when gτ1 ⊂ m, which is equivalent to ℓ(ᾱj) = −1 for j = 0, . . . , r.
Clearly this determines ℓ completely and when n = 1, 3 (3.6) requires

∑r
j=0mj

to be even. Hence there exists precisely one totally noncompact pair for each

affine Dynkin diagram except for a
(1)
2k . The main reason for paying attention to

the totally noncompact case is that it is precisely the case for which the theory of
principal pairs can be applied to establish the existence of solutions to the Toda
equations: this is done in §5. Therefore it is worthwhile giving a classification
of the symmetric spaces corresponding to totally noncompact pairs here. We
represent the symmetric spaces by their symmetric pairs (g, h).

Theorem 3.13. The noncompact symmetric spaces corresponding to totally non-
compact pairs are those listed in Table 1.

The notation in Table 1 follows Helgason [17, Ch. X, Table V]. In particular,
gr(δ) is the noncompact real form of type g, rank r and character δ. This is a
split real form (called normal in [17]) precisely when r = δ.

Proof. Since the involution σ with ℓ(ᾱj) = −1 for all j = 0, . . . , r is unique, up to
equivalence, when it exists it is determined by its fixed point subalgebra hC. Let
x ∈ tC be the unique element for which αj(x) = 1 for j = 1, . . . , r. Then x is the
semisimple element in a principal three dimensional subalgebra. For diagrams of
type 1 this is immediate from [20, Lemma 5.2] and for the diagrams of type 2 or
3 it follows from the fact that, for j = 1, . . . , r, αj is the restriction of a simple
root to tC (see Appendix A). By Lemma 3.11 the totally noncompact cases have
involution σ = exp(iπ ad x) when σ is inner (i.e, for affine diagrams of type 1 or
3) and σ = ν exp(iπ ad x) when σ is outer. It is easy to check that exp(iπ ad x)
is rotation by π in the associated principal su(2) subalgebra, whose semisimple
element is ix. Hence these cases include all the involutions introduced by Hitchin
[18, Remarks 6.11]. Since the real form for Hitchin’s involution is split and there
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Diagram g h rank(G/H) g split?

a
(1)
2k−1 su(k, k) u(k)⊕ su(k) k No

b
(1)
r so(r + 1, r) so(r + 1)⊕ so(r) r Yes

c
(1)
r sp(r,R) u(r) r Yes

d
(1)
2k so(2k, 2k) so(2k)⊕ so(2k) 2k Yes

d
(1)
2k+1 so(2k + 2, 2k) so(2k + 2)⊕ so(2k) 2k No

e
(1)
6 e6(2) su(6)⊕ su(2) 4 No

e
(1)
7 e7(7) su(8) 7 Yes

e
(1)
8 e8(8) so(16) 8 Yes

f
(1)
4 f4(4) sp(3)⊕ su(2) 4 Yes

g
(1)
2 g2(2) su(2)⊕ su(2) 2 Yes

a
(2)
r sl(r + 1,R) so(r + 1) r Yes

d
(2)
r so(r, r) so(r)⊕ so(r) r Yes

e
(2)
6 e6(6) sp(4) 6 Yes

d
(3)
4 so(4, 4) so(4)⊕ so(4) 4 Yes

Table 1. Noncompact symmetric spaces for totally noncompact pairs.

is exactly one split real form for every simple Lie algebra, this provides all the

split real form cases in Table 1. In particular, since d
(3)
4 cannot produce an outer

involution, its involution must be the same as d
(1)
4 .

For those cases where σ is not Hitchin’s involution (i.e., a
(1)
2k−1, d

(1)
2k+1 and e

(1)
6 )

we check hC by hand by considering the root system generated by the roots with
ℓ(ᾱ) = 1.

For a
(1)
2k−1 it is easy to see that the roots with ℓ(ᾱ) = 1 provide two independent

simple root systems, each of type ak−1, generated by roots of the form αj +αj+1,
the distinct cases being where j is odd or j is even. Since tC has rank 2k − 1 we
have hC ≃ ak−1 ⊕ ak−1 ⊕ C.

To deal with d
(1)
2k+1 we note first that the roots αj, j ̸= 0, generate a d2k+1

system. The root system for dr can be explicitly represented by

R(dr) = {α ∈ Z
r : |α|2 = 2},

where the length is the standard Euclidean length in R
r (see, for example, [17,

Ch. X, §3]). Let ε1, . . . , εr be the standard basis for Rr, then the generators for
R(dr) are

αj = εj − εj+1 (j = 1, . . . , r − 1) , αr = εr−1 + εr,

It follows that for R(d2k+1) we get two independent subsystems generated by

{α2j−1 + α2j : j = 1, . . . , k} ∪ {α2k−1 + α2k+1}, {α2j + α2j+1 : j = 1, . . . , k− 1},
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which are therefore of type dk+1 and dk respectively. The affine roots with ℓ(ᾱ) =

1 are generated by sums of pairs of simple roots, and therefore for d
(1)
2k+1 we have

hC ≃ dk+1 ⊕ dk.

For e
(1)
6 one checks that there are 16 positive roots with ℓ(ᾱ) = 1 and these are

generated by

γ1 = α3 + α4, γ2 = α5 + α6, γ3 = α2 + α4, γ4 = α1 + α3, γ5 = α4 + α5,

γ6 = α2 + α3 + α4 + α5.

The first five roots generate a system of type a5 and γ6 is independent. Thus
hC ≃ a5 ⊕ a1. □

Remark 3.14. A real form g is quasisplit when the centralizer of a Cartan subspace
of mC is a Cartan subalgebra of gC. This happens if and only if mC contains a
regular semisimple element of gC. All the real forms in Table 1 are quasisplit
because

∑r
j=0 ej is regular semisimple. However, there are quasisplit real forms

which do not appear in this table, namely su(k + 1, k) and so(2k + 3, 2k + 1).

4. Geometric Toda equations.

In this section we will derive the geometric Toda equations as given in Definition
1.2. From now on we assume that Σ is a compact Riemann surface of genus g
and equip it with a metric of constant curvature 2− 2g, so that the Kähler form
satisfies

∫

Σ
ωΣ = 2π. Motivated by Higgs bundles and more generally principal

pairs [2, 4, 13], we want to view equations (2.7) and (2.8) as equations on the
gauge orbit of an T -connection ∇ in a holomorphic TC-bundle QC, given φ ∈
H0(QC(g1) ⊗ KΣ). The gauge group is G = C∞(Σ, TC) and these equations
will be our geometric Toda equations: they are the equations which ensure that
the reduction of structure group Q ⊂ QC corresponds to a τ -primitive harmonic
map using Corollary 2.6. Since T acts unitarily on gτ1 when it is equipped with
the metric µ from (2.1), a reduction of structure group Q ⊂ QC equips the
holomorphic bundle QC(gτ1) with a Chern connection.

Remark 4.1. Note that any complex automorphism of gC which fixes tC pointwise,
such as τ or σ, induces a holomorphic automorphism on QC(gC) which we will
denote by the same name. For every reduction of structure group Q ⊂ QC the
bundle Q(gC) also inherits the real involutions ρ, κ. What follows also applies
when QC is a holomorphic (T ′)C-bundle where T ′ < T . Such a reduction can
apply when considering Toda solutions with additional symmetry. Henceforth
we will assume that this is understood.

Given (QC, φ), choose an initial T -bundle Q0 ⊂ QC. Let ∥ · ∥ denote the norm
of this initial metric and ∇ denote the corresponding Chern connection. The
action of the gauge group G on connections is such that, for s ∈ G, s · ∇ is the
Chern connection compatible with s∇′′s−1. Specifically this means

s · ∇ = ∇− (s−1∂̄s+ ρ(s−1∂s)).
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Here d = ∂ + ∂̄ is the type decomposition of the exterior derivative on Σ. To
simplify notation define s̄ = ρ(s)−1 = κ(s)−1, and then we have

s · ∇ = ∇− (∂̄ log s− ∂ log s̄).

Note that Ad s · φ is holomorphic with respect to (s · ∇)′′. Hence

F s·∇ = F∇ − 2∂∂̄ log(ss̄),

and note that 2∂∂̄ = i ∗∆Σ. Now observe that

[Ad s · φ ∧ ρ(Ad s · φ)] = [Ad ss̄ · φ ∧ ρφ],
since TC is abelian. From now on set u = ss̄. Since ρ = κ on TC it follows that u :
Σ → exp(it) and log(u) is well-defined. Using the root spaces we may decompose
QC(gτ1) = ⊕r

j=0Q
C(gᾱj) and hence write φ =

∑r
j=0 φj for φj ∈ H0(QC(gᾱj)⊗KΣ).

Lemma 4.2. For 0 ≤ j ≤ r,

[Ad u · φj ∧ ρφj] = ieαj(log u)∥φj∥2ℓj
|αj|2
2

hjωΣ, (4.1)

where ℓj = ℓ(ᾱj) determine the real involution ρ.

Proof. First we note that

Ad u · φj = eαj(log u)φj.

It is also clear that [φj ∧ ρφk] = 0 for k ̸= j. Now let τj be a µ-unitary local
section of QC(gᾱj) and write φj = Ajτjdz locally, where Aj is a locally smooth
function. Then

[φj ∧ ρφj] = [τj, ρτj]|Aj|2dz ∧ dz̄.
Now ∥φj∥2 = |Aj|2∥dz∥2 and dz ∧ dz̄ = −i∥dz∥2ωΣ so that

|Aj|2dz ∧ dz̄ = −i∥φj∥2ωΣ.

Finally, [τj, ρτj] is a local section of the adjoint bundle QC(tC) which is trivial
since tC is abelian. To calculate this we need a unit length vector in each gᾱj .
We note that

µ(ej, ej) = −⟨ej, fj⟩ = −1
2
⟨[hj, ej], fj⟩ = 1

2
⟨hj, hj⟩ =

2

|αj|2
,

by (3.1). Therefore relative to the µ-induced metric on QC(gτ1) ≃ Q×T g
τ
1 we can

take τj to be the equivalence class of

(q,
|αj|√
2
ej) ∈ Qµ × gᾱj .

Hence

[τj, ρτj] =
|αj|2
2

[ej, ρej] = −ℓ(ᾱj)
|αj|2
2

hj.

□
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Hence (2.7) holds if and only if

∆Σ log(u)−
r

∑

j=0

ℓje
αj(log u)∥φj∥2

|αj|2
2

hj + i ∗ F∇ = 0. (4.2)

Since u : Σ → exp(it) it has a well-defined logarithm w = log(u). To make this
look a little more familiar we define functions

wj = αj(log(u)), (4.3)

and partition the index set I = {0, 1, . . . , r} into the union of

I+ = {j ∈ I : ℓj = 1}, I− = {j ∈ I : ℓj = −1}.
Then equation (4.2) is equivalent to the system of equations

∆Σwj =
∑

k∈I+

∥φk∥2 |αk|
2

2
ewkĈjk−

∑

k∈I−

∥φk∥2 |αk|
2

2
ewkĈjk−αj(i∗F∇), j = 0, . . . , r.

(4.4)
These variables satisfy the relation

∑r
j=0mjwj = 0.

Remark 4.3. Note that after the gauge transformation s the new metric ∥ · ∥2s on
QC(gᾱj) is given by ∥ · ∥2s = ewj∥ · ∥2.

We can simplify the term αj(∗F∇) by choosing the initial connection as follows.
First we observe that, since we have chosen G to have trivial centre, the basis
ϵ1, . . . , ϵr ∈ it dual to the root basis α1, . . . , αr for Hom(it,R) generates the kernel
Γ of the exponential map

e = exp(2πi·) : tC → TC,

(see, e.g., [30, Ch VIII]). Therefore the root basis freely generates the weight
lattice

Γ̂ = {λ ∈ (tC)∗ : λ(Γ) ⊂ Z},
and this is isomorphic to the character group of TC by

Γ̂ → Hom(TC,C×); λ 7→ λ̂ = e ◦ λ ◦ e−1.

Therefore we use the root basis to identify TC with (C×)r. Thus our holomorphic
TC-bundle QC can be canonically identified with a product of holomorphic C

×-
bundles

QC ≃ Q1 ×Σ . . .×Σ Qr; Qj = QC ×α̂j
C

×.

Now let Qj(C) denote the line bundle associated to the C
×-bundle Qj. Then

QC(g1) = ⊕r
j=0Qj(C).

It follows that

Q0(C) ≃
r

⊗

j=1

Qj(C)
−mj .
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Set dj = deg(Qj), so d0 = −
∑r

j=1 djmj. Then in H2(Σ,Z)

[
i

2π
αj(F

∇)] = [
dj
2π
ωΣ], j = 0, . . . , r.

Since we are working with line bundles we may choose the initial metric so that
iαj(F

∇) = djωΣ, and therefore

αj(i ∗ F∇) = dj, 0 ≤ j ≤ r.

With this choice of initial metric we finally arrive at the system of equations

∆Σwj =
∑

k∈I+

∥φk∥2 |αk|
2

2
ewkĈjk −

∑

k∈I−

∥φk∥2 |αk|
2

2
ewkĈjk − dj, j ∈ I, (4.5)

for functions wj : Σ → R with
∑r

j=0mjwj = 0. These are the geometric Toda
equations of Definition 1.2.

Remark 4.4. We choose not to absorb the multipliers |αk|2/2 into either ewk , by
a change of variable, or ∥φk∥2, so as to retain the clear link between the ini-
tial data and the equations. For simply-laced diagrams (those with no multiple
edges) |αk|2/2 = 1 for all k. Note also that the curvature only specifies the initial
metric Q ⊂ QC up to constant scaling on each Qj(C), j = 1, . . . , r, but any two
such metrics are equivalent under the action of the constant gauge transforma-
tions g ∈ TC, φ 7→ Ad g · φ. With the initial metric fixed, the constant gauge
transformations act on solutions by constant translation, w 7→ w+ log(gκ(g)−1).

As one knows from the earlier studies of Toda systems there is a significant
qualitative change in solutions when one or more φk is identically zero.

Definition 4.5. We will call the system (1.3) cyclic whenever φk is not identically
zero for all k = 0, . . . , r, and refer to (QC, φ) as a cyclic Toda pair. Otherwise
we will say it is non-cyclic. We will say it is simple non-affine when φk = 0 only
for k = 0.

An obvious necessary condition for the existence of a cyclic pair is that for
k = 0, . . . , r each line bundle Qk(C) ⊗ KΣ must admit a non-trivial globally
holomorphic section φk and must therefore have non-negative degree. This im-
mediately leads to restrictions on the degrees dk.

Lemma 4.6. A necessary condition for a TC-bundle QC to admit a cyclic Toda
pair is that the vector of degrees (d1, . . . , dr) ∈ Z

r lies in the closed convex polytope
given by

2− 2g ≤ dk,
r

∑

k=1

mkdk ≤ 2g − 2, k = 1, . . . , r. (4.6)

Corollary 4.7. For g = 0 there are no cyclic pairs. For g = 1 there is, up to
gauge equivalence, a real one-parameter family of cyclic pairs.
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Proof. The first statement is immediate from (4.6). For g = 1 we are forced to
have dk = 0 and Qk(C) ≃ C for all k, and thus each φk is constant, so that we may
consider φ ∈ gτ1. Now it is easy to see that each AdTC-orbit of a cyclic element of
gτ1 contains exactly one element of the form c

∑r
k=0 ek for some c ∈ R \ {0}. □

Now let us consider the non-cyclic cases.

Proposition 4.8. Suppose (QC, φ) is a non-cyclic Toda pair with φk = 0 for
k ̸∈ J where J ⊂ I is proper and non-empty. Then (1.3) reduces to a union of
simple non-affine Toda systems for {wj : j ∈ J} while for l ̸∈ J , wl and dl are
determined by a linear combination of {wj : j ∈ J} and {dj : j ∈ J} respectively.

Proof. Set fk = ℓ(ᾱk)∥φk∥2 |αk|
2

2
ewk . Since fk = 0 for k ̸∈ J we can write (1.3)

simply as

∆Σwl + dl =
∑

k∈J

Ĉlkfk, l ∈ I. (4.7)

Let B be the submatrix of Ĉ obtained by removing the rows and columns not
indexed by J . This is the (possibly decomposable) Cartan matrix for the sub-

diagram of the affine Dynkin diagram for Ĉ obtained by removing the vertices
labelled by I \ J . Therefore

∆Σwj + dj =
∑

k∈J

Bjkfk, j ∈ J.

This is a union of simple non-affine Toda systems. Since every Cartan matrix is
invertible, the matrix B has inverse A so that

∑

j∈J

Akj(∆Σwj + dj) = fk, k ∈ J.

Substituting this into (4.7) for l ̸∈ J leads to

∆Σ(wl −
∑

j,k∈J

ĈlkAkjwj) =
∑

j,k∈J

ĈlkAkjdj − dl.

Since Σ is compact the integral of the left hand side is zero and therefore the
right hand side is zero, which determines each dl. Then, after possibly a constant
gauge transformation which leaves φ invariant,

wl =
∑

j,k∈J

ĈlkAkjwj.

□
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4.1. Non-cyclic Toda pairs which are not simple non-affine. Here is the
geometric interpretation of non-cyclic Toda pairs which are not simple non-affine.
On the Dynkin diagram Γ(n) label the vertices by sj = 1 if j ∈ I \ J (i.e.,
φj = 0) and sj = 0 otherwise. Using the method of Kac [19] this provides an
automorphism γ ∈ Aut(gC) of type (s0, . . . , sr;n) which commutes with σ, κ (and
hence ρ) and τ . It has order o(γ) =

∑r
j=0 nmjsj. Inspection shows that o(γ) = 1

if and only if n = 1 and the Toda pair is equivalent to a simple non-affine Toda
pair by a symmetry of the extended Dynkin diagram Γ(1). Otherwise the fixed
point subalgebra a = g

γ
0 is a reductive proper subalgebra of gC which we can

write as a Lie algebra direct sum

a = a1 ⊕ . . .⊕ ak ⊕ z.

Here each aj is simple and is determined by a connected subdiagram of the nodes
labelled by J . The ideal z is the centre and it is contained in tC. Let A = Gγ < G
have Lie algebra a∩ g, and similarly Al, Z < G have Lie algebras al ∩ g and z∩ g

respectively. Then

A ≃ A1 × . . .× Ak × Z.

Moreover, T < A and we can write T ≃ T1 × . . . × Tk × Z where Tl < Al is the
τ -fixed torus in Al. The factor Al will be noncompact provided ℓ(ᾱj) = −1 for
some node on the connected subdiagram corresponding to al. Clearly, for each
Al we have a simple non-affine Toda system and each determines a primitive
harmonic map into Aj/Tj (using the primitive distribution for non-affine roots).
Now

A/T ≃ (A1/T1)× . . .× (Ak/Tk),

since T/Z ≃ T1× . . .×Tk. Therefore the product of maps into Al/Tl corresponds
to the map obtained from the original non-cyclic Toda pair and factors through
the (totally geodesic) embedding A/T ⊂ G/T .

4.2. Inner versus outer Coxeter automorphisms. Most of the literature
considers only the Toda equations for an extended Dynkin diagram (i.e., the
inner Coxeter automorphism). It was observed by Olive & Turok [28] that when
the Dynkin diagram admits a non-trivial symmetry this can be imposed upon
those Toda equations to obtain a reduced system. The aim here is to explain
how to interpret the geometry of this when ν is an involution, which is the only
case relevant to a discussion of real forms.

Suppose the Dynkin diagram of gC admits a non-trivial involution. As before
let ν denote both the symmetry on the nodes of the diagram and the correspond-
ing outer automorphism of gC. Let τ ′ = ντinn and recall from Remark 3.4 that
this is not a Coxeter automorphism unless gC ≃ a2k. When τinn has order m the
order of τ ′ is m if m is even and 2m otherwise. If τinn(ξ) = λξ and ν(ξ) = ξ then
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τ ′(ξ) = λξ and therefore

gτinn1 ∩ gν0 ⊃ gτ
′

j , j =

{

1, o(τ ′) = m,

2, o(τ ′) = 2m.

For the Toda equations (1.3) to admit the symmetry of ν we require ℓ(αj) =
ℓ(αν(j)) and the Toda pair (QC, φ) to admit this symmetry, i.e., there is an iso-
morphism from Qj(C) to Qν(j) which identifies φj with φν(j). In particular the
involution σ corresponding to ℓ commutes with ν and σ′ = νσ is an outer invo-
lution. Let G < GC be the real form determined by ρ = σκ and G′ the real form
determined by ρ′ = σ′κ, with maximal compact subgroups H,H ′ and in each
of these maximal toral subgroups T, T ′, where T ′ < T is the ν-fixed subgroup.
Using gτ

′

j above we can equip G′/T ′ with a horizontal F -structure.
Now set A = G ∩ G′ with Lie algebra a = g ∩ g′ ⊂ gν0 and notice T ′ < A.

Choose a (T ′)C-bundle QC and φ ∈ H0(QC(gτ
′

j ) ⊗K), then νφ = φ. The Toda

equations for this Toda pair (QC, φ) are the equations which govern the existence
of a T ′-subbundle Q ⊂ QC so that the connection

∇+ φ+ ρφ = ∇+ φ+ ρ′φ,

is flat. Because of the symmetry this is an A-connection and provides an equi-
variant map into A/T ′ with holonomy representation χ : π1Σ → A. When we
post-compose with A/T ′ → G/T we obtain a primitive harmonic map which
projects onto a harmonic map f1 : Σ̃ → G/H into the inner symmetric space.
On the other hand, post-composition with A/T ′ → G′/T ′ gives an F -holomorphic
map which projects down to a harmonic map f2 : Σ̃ → G′/H ′ into the outer sym-
metric space. Note that these maps f1, f2 are equivariant with respect to the same
holonomy representation χ. When φ is cyclic the map f2 does not agree with
any map obtained using a cyclic Toda pair for an outer Coxeter automorphism
except when gC ≃ a2k since the two primitive distributions are inequivalent.

5. Existence of solutions via principal pairs.

To apply the theory of principal pairs [4, 13] (cf. [2]) it is necessary to have
gτ1 ⊂ mC. This is because the principal pair equations for this situation are

F∇ − [φ ∧ κφ] = 0,

∇′′φ = 0,

and therefore we require ρφ = −κφ for the first equation to agree with (2.7). Thus
we need σ = −1 on gτ1 and therefore the pair (τ, σ) is totally noncompact. Given
this, a pair (QC, φ) consisting of a holomorphic TC-bundle QC and a holomorphic
section φ of QC(gτ1)⊗KΣ, is an example of a KΣ-twisted principal pair [13]. We
will refer to (QC, φ) as a totally noncompact Toda pair.

Because the Toda equations (1.3) are equivalent to the system (2.7) and (2.8)
they possess a solution when (QC, φ) is a 0-polystable principal pair. Since TC
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is abelian the conditions for 0-stability are relatively easy to formulate, following
[13]. For each χ ∈ Hom(it,R) let hχ ∈ it be given by χ = ⟨hχ, ·⟩. Define

B−
χ = {ξ ∈ gτ1 : Ad exp(thχ) · ξ is bounded as t→ ∞, t ∈ R

+}
and its subset

B0
χ = {ξ ∈ gτ1 : Ad exp(thχ) · ξ = ξ for all t ∈ R}.

Note that these are both TC-invariant and therefore the associated bundles

QC(B0
χ) ⊂ QC(B−

χ ) ⊂ QC(gτ1)

are well-defined. We also write χ =
∑r

j=1 xjαj, where xj ∈ R, and define

deg(QC)χ =
r

∑

j=1

xjdj.

Definition 5.1 (cf. [13]). The pair (QC, φ) is 0-polystable if for every non-zero
χ ∈ Hom(it,R) for which φ ∈ H0(QC(B−

χ ) ⊗ KΣ) we have deg(QC)χ ≥ 0, with

equality only if φ ∈ H0(QC(B0
χ) ⊗KΣ). When deg(QC)χ > 0 we say the pair is

0-stable.

Note that in the language of [13] χ is an antidominant character. The main
theorem we wish to apply can be stated as follows, based on the exposition in
[13].

Theorem 5.2. Let (QC, φ) be a totally noncompact Toda pair which is 0-polystable.
Then the Toda equations (1.3) possess a solution, and there is a corresponding
equivariant harmonic map f : D → G/T . This solution is uniquely determined
when (QC, φ) is 0-stable.

It is easy to check that cyclic Toda pairs are always 0-stable.

Proposition 5.3. Every totally noncompact cyclic Toda pair (QC, φ) is 0-stable.

Proof. We will show that 0-stability is vacuously satisfied by a cyclic pair. Sup-
pose χ ∈ Hom(it,R), then

Ad exp(thχ) · φ =
r

∑

k=0

Ad exp(thχ) · φk =
r

∑

k=0

exp(t⟨αk, χ⟩)φk. (5.1)

This is bounded as t→ ∞ if and only if

⟨αk, χ⟩ ≤ 0 for all k = 0, . . . , r.

Since α0 = −
∑r

j=1mjαj and mj > 0 this cannot hold when χ ̸= 0. □

By Prop. 4.8 the non-cyclic case is entirely determined by simple non-affine
cases. To understand the stability conditions for the non-affine case we need the
following ideas. Recall that ϵ1, . . . , ϵr ∈ it is the dual basis, αj(ϵk) = δjk. The
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roots determine the closure W of the positive Weyl chamber and the interior
int(W o) of its polar cone:

W = {h ∈ it : αj(h) ≥ 0}, int(W o) = {t ∈ it : ⟨t, h⟩ < 0 ∀ h ∈ W}.
Proposition 5.4. A totally noncompact simple non-affine Toda pair (QC, φ) is
0-polystable if and only if it is 0-stable, which occurs if and only if the degrees
d1, . . . , dr are such that 2− 2g ≤ dj and

∑r
j=1 djϵj lies in int(W o). Equally,

2− 2g ≤ dj,

r
∑

k=1

Rjkdk < 0, (5.2)

where Rjk are the entries to the inverse of the matrix whose entries are ⟨αj, αk⟩.
In particular, this requires g ≥ 2.

Proof. From (5.1) we see that φ ∈ H0(QC(B−
χ )⊗KΣ) precisely when

⟨αk, χ⟩ ≤ 0 for all k = 1, . . . , r. (5.3)

In particular Ad exphχ ·φ = φ implies χ = 0, hence 0-polystable implies 0-stable.
Now (5.3) is equivalent to −hχ ∈ W . If we set χ = xjαj and d =

∑r
j=1 djϵj then

we require

0 > −
r

∑

j=1

xjdj = −χ(d) = ⟨−hχ, d⟩, ∀ − hχ ∈ W,

and therefore d ∈ int(W o). Clearly h ∈ W if and only if h =
∑r

k=1 akϵk with
ak ≥ 0. Hence the condition above is equivalent to

r
∑

j=1

dj⟨ϵj, ϵk⟩ < 0, ∀ k = 1, . . . , r.

Now hαk
=

∑r
k=1⟨αl, αk⟩ϵl and therefore

δkj = ⟨hαk
, ϵj⟩ =

r
∑

l=1

⟨αl, αk⟩⟨ϵl, ϵj⟩.

Thus we obtain (5.2). □

Remark 5.5. It is not necessary for (τ, σ) to be totally noncompact for Prop. 5.4
to hold. Clearly all that is required is that the roots ᾱ1, . . . , ᾱr are noncompact
(ℓ(ᾱ0) can have either sign).

6. Toda pairs and Higgs bundles.

Whenever the geometric Toda equations (1.3) admit solutions there is a cor-
responding primitive harmonic map ψ : Σ̃ → G/T from the universal cover Σ̃
of Σ by Theorem 2.1. This is equivariant with respect to some representation
χ : π1Σ → G. By Theorem 2.3 and Proposition 2.5 after homogeneous projection
π : G/T → G/H we obtain an equivariant harmonic map f : Σ̃ → G/H. This
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has a corresponding G-Higgs bundle, i.e., a holomorphic principal HC bundle PC

over Σ equipped with a holomorphic section Φ ∈ H0(PC(mC)⊗KΣ). For practical
purposes we can take the Higgs bundle to be the pair (E,Φ) where E = PC(mC).
We can describe fairly easily the relationship between the Toda pair (QC, φ)

for ψ and the Higgs bundle (E,Φ) of f = π ◦ ψ. To achieve this we need to
compare the reductive decompositions of gC provided by τ and by σ. Write

gC = tC ⊕ pC = hC ⊕mC,

for these. Then pC = kC ⊕mC where kC = pC ∩ hC. In particular, AdTC preserves
both kC and mC so we have a bundle decomposition QC(pC) = QC(kC)⊕QC(mC)
and the corresponding decomposition on smooth sections

Γ(QC(pC)⊗KΣ) = Γ(QC(kC)⊗KΣ)⊕ Γ(QC(mC)⊗KΣ)

φ = φk + φm.

Note that since AdTC preserves root spaces, for a section φ of QC(g1)⊗KΣ written
as

∑

j∈I φj we have

φk =
∑

j∈I+

φj, φm =
∑

j∈I−

φj,

when σ corresponds to the partition I = I+ ∪ I−.

Proposition 6.1. Let (QC, φ) be a Toda pair which provides a primitive harmonic
map ψ : Σ̃ → G/T . Let ∇ be the connection and ρ the real involution this induces
on QC(mC) by the reduction of structure group Q ⊂ QC. Then the Higgs bundle
(E,Φ) for its projection f = π ◦ ψ : Σ̃ → G/H is such that E ≃ QC(mC) as a
smooth bundle but equipped with the holomorphic structure ∇′′+ρφk, and Φ = φm.

Note that the assumption that (QC, φ) corresponds to a primitive harmonic
map implies that (E,Φ) is a polystable G-Higgs bundle since it corresponds to
the harmonic map f .

Proof. Recalling §2.1, the connections and Maurer-Cartan 1-forms of respectively
G/T and G/H come from the two ways of splitting the left Maurer-Cartan form
of G:

ωG = ωt + ωp = ωh + ωm.

Let us write β1 : T (G/T ) → G ×t p and β2 : T (G/H) → G ×h m for the
respective Maurer-Cartan 1-forms of these spaces. By definition Q = ψ−1G/π1Σ
and φ + ρφ = ψ∗β1. Define P = f−1G/π1Σ, then P ≃ Q ×T H and hence E ≃
QC(mC) as a smooth bundle. This bundle carries two connections: a connection
D from ωh and, since AdT preserves the splitting p = k+m, the connection ∇ on
QC(pC) coming from ωt restricted to E. It follows that

D −∇ = (ψ∗β1)k = (φ+ ρφ)k.
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Therefore the holomorphic structure of E is D′′ = ∇′′ + ρφk. Using a local lift
F : U → G of ψ, and hence of f , it is easy to see that f ∗β2 = (ψ∗β1)m and
therefore

Φ = (f ∗β2)
′ = (φ+ ρφ)′m = φm.

□

Remark 6.2. In general we need to know Q ⊂ QC, i.e. have solved the geometric
Toda equations, to find ρφk to obtain the holomorphic structure of E. However,
when φk = 0 (equally φ = φm), which includes the totally noncompact case, the
holomorphic structure of E comes directly from QC without solving the Toda
equations, and Φ = φ.

An important class of G-Higgs bundles are those which are invariant under the
C

× action et · (E,Φ) = (E, etΦ). These are usually referred to as variations of
Hodge structure (or simply Hodge bundles).

Proposition 6.3. Suppose (E,Φ) is a G-Higgs bundle obtained from a Toda
pair (QC, φ) in the manner above. Then (E,Φ) is a Hodge bundle if and only if
(QC, φ) is non-cyclic.

Proof. (E,Φ) is a Hodge bundle when there is a one-parameter family of gauge
transformations gt : Σ → HC for which

Ad gt ·D′′ = D′′, Ad gt · Φ = etΦ.

Hence Ad gt must restrict to a holomorphic section on each End(Qj(C)) ≃ C for
which φj ̸= 0. Therefore without loss of generality we may assume gt is constant
over Σ and gt = exp(γt) for γt ∈ tC. This must satisfy

Ad exp(γt) · φm = etφm.

Let J = {j ∈ I : φj ̸= 0} and write its partition as J = J+ ∪ J−. Then for the
equations above to hold we require integers kj ∈ Z, j ∈ J , such that

αj(γt) = t+ 2πikj, j ∈ J−. (6.1)

If J = I (the cyclic case) then these must satisfy the single equation

0 =
r

∑

j=0

mjαj(γt) = 2πi
r

∑

j=0

mjkj + t
∑

j∈I−

mj.

This cannot hold for all t since
∑

j∈I−
mj ̸= 0. However, if J ̸= I then there is

no relation between the αj for j ∈ J and therefore (6.1) can be solved for any t
(e.g., for all j ∈ J take kj = 0 and choose γt = tξ where αj(ξ) = 1 for j ∈ J). □

Example 6.4. We can illustrate Propositions 6.1, 6.3 and Remark 5.5 using the

example of a
(1)
2 . Let Ejk ∈ gl(3,C) be the matrix whose only non-zero entry is a
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1 in the j-th row and k-column. Define

h1 = E22 − E11, h2 = E33 − E22, h0 = E11 − E33,

e1 = E21, e2 = E32, e0 = E13, f1 = E12, f2 = E23, f0 = E31.

Then {hj, ej, fj : j = 0, 1, 2} are the generators satisfying the relations (3.2) for
the extended Cartan matrix

Ĉ =





2 −1 −1
−1 2 −1
−1 −1 2



 .

There is only one admissible labelling ℓ : {0, 1, 2} → {±1}, up to the Z3 symmetry
of the affine diagram (see Table B), and we choose this so that ℓ0 = −1, ℓ1 = 1,
ℓ2 = −1. The corresponding Cartan decomposition is schematically

hC =











∗ ∗ 0
∗ ∗ 0
0 0 ∗











, mC =











0 0 ∗
0 0 ∗
∗ ∗ 0











.

The noncompact real form is su(2, 1) and therefore the noncompact symmetric
space is PU(2, 1)/U(2). The corresponding geometric Toda equations are

∆Σw0 = −∥φ1∥2e−w0−w2 − 2∥φ0∥2ew0 + ∥φ2∥2ew2 − d0, (6.2)

∆Σw2 = −∥φ1∥2e−w0−w2 + ∥φ0∥2ew0 − 2∥φ2∥2ew2 − d2,

suppressing the redundant equation for w1 = −w0 − w2.
It will be convenient to think of each PU(2, 1)-Higgs bundle as a projective

equivalence class of rank 3 Higgs vector bundles, of the form (V ⊕C,Φ) where V
is a holomorphic rank 2 bundle, and the Higgs field Φ is a holomorphic section of

(Hom(C, V )⊕ Hom(V,C))⊗K ≃ QC(mC)⊗K.

Using the representation of a2 above and Prop. 6.1 V is isomorphic to Q0(C) ⊕
Q2(C)

−1 equipped with the holomorphic structure
(

∂̄0 ρφ1

0 ∂̄∗2

)

, (6.3)

where ∂̄j are ∂̄-operators for the holomorphic structures on Qj(C) (with ∂̄∗j for
the dual line bundle). The Higgs field is

Φ =





0 0 φ0

0 0 0
0 φ2 0



 .

All such Higgs fields have Tr(Φ2) = 0 and therefore lie in the nilpotent cone of
the PU(2, 1)-Higgs bundle moduli space.

The labelling means the pair (τ, σ) is not totally noncompact, so unless φ1 = 0
we cannot apply the existence results of §5. In fact we know from [23, Prop.
5.8] that with the restrictions w0 = w2, Qj(C) ⊗ KΣ ≃ C for j = 0, 2, and
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∥φ0∥ = ∥φ2∥ = 1 (which produces a version of the a
(2)
2 equations for labelling

(ℓ0, ℓ1) = (1,−1)) there is no Toda solution if ∥φ1∥2 is too large. But when φ1 = 0
we can apply Remark 5.5 to Prop. 5.4. The relevant matrix R = (Rjk) in the
inequalities (5.2) is easily computed to be

R = 2
3

(

2 1
1 2

)

.

With this matrix the inequalities (5.2) are

−2(g − 1) ≤ d0, −2(g − 1) ≤ d2, 2d0 + d2 < 0, d0 + 2d2 < 0. (6.4)

which are equivalent to the conditions given in [25] for the Hodge bundle with
φ1 = 0 (and φj ̸= 0, j = 0, 2) to be a stable Higgs bundle. The corresponding

maps f : Σ̃ → CH
2 ≃ PU(2, 1)/U(2) are exactly the superminimal maps which

are not ±-holomorphic [25, §5.2].

Remark 6.5. In [31] Simpson introduced the notion of a k-cyclotomic Higgs bun-
dle. This is a GC-Higgs bundle (E,Φ), with Φ ∈ H0(gC ⊗KΣ), which is a fixed
point of the action of Zk as a subgroup of C×. It is not hard to see that the Higgs
bundles in Prop. 6.1 are only m-cyclotomic when φk = 0.

6.1. Baraglia’s cyclic Higgs bundles. In [3] Baraglia pointed out that certain
real forms of the Toda equations arise from special cases within the family of Higgs
bundles constructed by Hitchin in [18]. In our language Baraglia’s examples
correspond to totally noncompact Toda pairs for an inner Coxeter automorphism
when Qj(C) ≃ K−1

Σ for j = 1, . . . , r. In that case φj is constant for j ̸= 0 and φ0

is a holomorphic differential, a section of

Q0(C)⊗KΣ ≃ ⊗n
j=0K

mj

Σ = K
m/n
Σ .

However, the real form in Hitchin’s construction is always the split real form and
for Lie algebras of type ar, dr and e6 this is the real form for an outer Cartan
involution. But Hitchin’s construction also implicitly applies ν-symmetry upon
the Higgs field, and therefore even though Baraglia’s examples satisfy the inner
version of the Toda equations they also provide harmonic maps into the outer
symmetric space of the split real form: Baraglia’s explanation of this is essentially
the same as the mechanism described in §4.2 above. The purpose of this section
is to show what happens if we drop the insistence that the Coxeter automorphism
be inner. By Table 2 (or Remark 3.4) the outer Coxeter automorphisms provide
different Toda pairs from Baraglia’s except when gC ≃ a2r.

Suppose (τ, σ) is a totally noncompact pair. We begin by adapting Kostant’s
construction of the principal three dimensional subgroup [20] to make it com-
patible with the Zm grading for either inner or outer Coxeter automorphisms.
For any quadruple (gC, ν, tC, B̄) let x ∈ it ⊂ gτ0 be the unique element for which
αj(x) = 1 for j = 1, . . . , r. Then there are positive constants cj ∈ R for which
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x =
∑r

j=1 cjhj. Define e ∈ gτ1 by

e =
r

∑

j=1

√
cjej,

and set f = ρe. Then the triple {x, e, f} satisfies

[x, e] = e, [x, f ] = −f, [e, f ] = x,

and generates a principal three dimensional subalgebra sC ⊂ gν0. In fact from

Appendix A we see that e =
∑l

j=1 ajEj, aj ̸= 0, with respect to canonical

generators for gC and therefore e is also principal nilpotent for gC. Hence sC is
also a principal three dimensional subalgebra for gC.

Now take Qj(C) = K−1
Σ for j = 1, . . . , r and φ = e. Note that because we

normalised the Kähler metric on Σ to have constant curvature 2− 2g the initial
metric for this choice of Qj(C) is just this Kähler metric. This simple non-affine
Toda pair (QC, φ) is 0-stable by Prop. 5.4.

Lemma 6.6. For g ≥ 2 the solution to (1.3) corresponding to this Toda pair is
given by wj = log(2g − 2) for all j = 1, . . . , r. The metric on each Qj(C) ≃ K−1

Σ

is just the metric on Σ of constant curvature −1. The corresponding harmonic
map into the symmetric space is a totally geodesic embedding of the Poincaré disc
into G/H.

Proof. Since φk =
√
ckek and ∥ek∥2 = 2/|αk|2 the equations (1.3) are

∆Σwj +
r

∑

k=1

Ĉjkcke
wk = 2g − 2, j = 1, . . . , r.

Now
r

∑

k=1

Ĉjkck =
r

∑

k=1

2
⟨αj, αk⟩
|αk|2

ck = αj(x) = 1.

Therefore taking wj = log(2g − 2) for all j is a solution. Therefore the solution
metric on each Qj(C) is the Kähler metric of (2g − 2)ωΣ, which has constant
curvature −1.

Now ix, e + f and i(e − f) are ρ-fixed and generate a Lie subalgebra s ⊂ g

isomorphic to su(1, 1). Let S < G be the corresponding subgroup, with T1 < T
the U(1) subgroup tangent to ix. Then S/T1 ≃ SU(1, 1)/U(1) is isometric to
the Poincaré disc and the map ψ : S/T1 → G/T is the primitive harmonic map
determined by the Toda pair above. Its projection f : S/T1 → G/H is a totally
geodesic embedding. □

To obtain the cyclic version assume g ≥ 1 and take φ = e + φ0e0 where

φ0 ∈ H0(K
m/n
Σ ) is non-trivial. The equations then take the form (1.7). The

Higgs bundle (E,Φ) obtained from this Toda pair has Φ = φ by Prop. 6.1.
When τ is inner these are Baraglia’s cyclic Higgs bundles [3]. When τ is outer
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the real form is split (see Table 1) and the Higgs bundle still fits into Hitchin’s
construction [18], because [e0, f ] = 0 means e0 is a lowest weight vector for the
representation of of sC, but by Table 2 it is only the root vector for a lowest root
of gC when gC ≃ a2r.

For the a
(1)
2k−1, d

(1)
r and e

(1)
6 cases the real form is not split but (Q,φ) is ν-

invariant and the construction of §4.2 applies. This means that (QC, φ) produces
two different types of harmonic map: one into an inner symmetric space G/H
and one into an outer symmetric space G′/H ′. As explained in §4.2 these two
maps have the same holonomy representation, taking values in G∩G′. The maps
into G′/H ′ come from Hitchin’s construction and their holonomy representations
are known as Hitchin representations.

Example 6.7. To illustrate the differences between inner and outer Toda equations
for the totally noncompact Toda pairs above, let us compare the equations for the

diagrams a
(1)
3 and a

(2)
3 in the case where the former has the ν-symmetry imposed.

For a
(1)
3 with the ν-symmetry implies w3 = w1 and w0 = −w2 − 2w1. A

computation gives c1 = 3/2 and c2 = 2. Choosing an arbitrary φ0 ∈ H0(K4
Σ)

gives the Toda equations

∆Σw1 + 3ew1 − 2ew2 − ∥φ0∥2e−2w1−w2 = 2g − 2,

∆Σw2 − 3ew1 + 4ew2 = 2g − 2. (6.5)

In the standard representation of sl(4,C) we can write the Higgs field as








0
√
c1 0 0

0 0
√
c2 0

0 0 0
√
c1

φ0 0 0 0









.

These equations correspond to primitive harmonic maps into PU(2, 2)/U(1)3

which project down onto the inner symmetric space PU(2, 2)/P (U(2) × U(2)).
But the additional ν-symmetry means this also produce a map, as in Baraglia’s
construction [3], into an outer symmetric space isomorphic to PSL(4,R)/H where
H ≃ SO(4)/{±I4}.

For a
(2)
3 ≃ d

(2)
3 we have w0 = −w1 − w2 and c1 = 2, c2 = 3/2. Choosing an

arbitrary φ0 ∈ H0(K3
Σ) gives the Toda equations

∆Σw1 + 3ew1 − 2ew2 − ∥φ0∥2e−2w1−w2 = 2g − 2,

∆Σw2 − 2ew1 + 3ew2 = 2g − 2. (6.6)

In the standard representation the Higgs field for this case is








0
√
c1 0 0

0 0
√
c2 0

φ0 0 0
√
c1

0 φ0 0 0









.
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The Toda pair gives a primitive harmonic map into PSL(4,R)/T where T < H
is a maximal torus, and this projects to the harmonic map into PSL(4,R)/H
given by Hitchin’s construction using the Higgs field above.

Appendix A. Simple affine roots when ν is not the identity.

Given gC fix a Cartan subalgebra c ⊂ gC with root system R ⊂ c∗. Choose
simple roots β1, . . . , βl ∈ R and canonical generators {Hj, Ej, Fj : 1, . . . , l} which
satisfy

[Ej, Fk] = −δjkHj, [Hj, Ek] = CkjEk, [Hj, Fk] = −CjkFk,

where Cjk are the entries of the Cartan matrix for gC. Let ν ∈ Aut(gC) be non-
trivial and coming from a symmetry of the Dynkin diagram of gC. Specifically

βν(j) = ν∗βj, ν(Hj) = Hν(j), ν(Ej) = Eν(j), ν(Fj) = Fν(j),

where we are also using ν to denote the symmetry of the labelled vertices on the
Dynkin diagram. Let δ ∈ R denote the highest root.
Our aim is to describe for each such ν the affine roots ᾱj, j = 0, . . . , r, and

their root spaces gᾱj . Most of this information comes directly from Helgason [17,
Ch. X,§5] and the rest follows by fairly straightforward calculation from the same

source. Let tC denote the ν-fixed subspace of c and β̂ denote the restriction of
any root β to tC.

First we describe the affine roots for j ≥ 1, which have the form (αj, 0). For

the a-type and d-type cases where ν is an involution, if ν(j) = j then ᾱj = β̂j is

a simple affine root, with root space gᾱj = gβj . If j < ν(j) then αj = β̂j but the
root space is

gᾱj = SpanC{Ej + ν(Ej)}.
For e

(2)
6 the involution is ν(1) = 6, ν(3) = 5, ν(2) = 2, ν(4) = 4. We set

α1 = β1, α2 = β3, α3 = β4, α4 = β2.

The root spaces are

gᾱ1 = SpanC{E1 + ν(E1)}, gᾱ2 = SpanC{E3 + ν(E3)}, gᾱ3 = gβ4 , gᾱ4 = gβ2 .

For d
(3)
4 the 3-fold symmetry is ν(1) = 3, ν(2) = 2, ν(3) = 4, ν(4) = 1. We can

take
α1 = β1, α2 = β2,

with corresponding roots spaces

gᾱ1 = C.{E1 + ν(E1) + ν2(E1)}, gᾱ2 = gβ2 .

The highest root of d4 is δ = β1 + 2β2 + β3 + β4.
It remains to describe ᾱ0 for each case.

Proposition A.1. For an affine diagram of type 2 or 3, write ᾱ0 = (β̂0, 1). Then
β0 is given by the Table 2.
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Affine diagram β0
a
(2)
2r −δ

a
(2)
2r−1 β2r−1 − δ

d
(2)
r+1 −∑r

j=1 βj

e
(2)
6 β2 + β3 + β4 − δ

d
(3)
4 β2 + β4 − δ

Table 2. The roots β0 for which α0 is the restriction of β0 to tC.

Proof. Since α0 = −
∑r

j=1mjαj and αj = β̂j = β̂ν(j) for j ≤ ν(j), it suffices to
check that Table 2 satisfies

β̂0 = −
r

∑

j=1

mjβ̂j.

In each case this can be read off the labelled affine diagrams below. □

We finish by describing the corresponding root spaces gᾱ0 ⊂ gν1. For a
(2)
2r clearly

ν(β0) = β0 so gᾱ0 = gβ0 = g−δ. For all the other cases ν(β0) ̸= β0 so that

gᾱ0 = SpanC{Eβ0
− ν(Eβ0

)}
for n = 2 and

gᾱ0 = SpanC{Eβ0
+ ω2ν(Eβ0

) + ων2(Eβ0
)}

for n = 3 with ω = e2πi/3.
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Appendix B. Table of affine diagrams.

e
(1)
8 α0 α8 α7 α6 α5 α4 α3 α1

α2

1 2 3 4 5 6 4 2

3

e
(1)
7 α7 α6 α5 α4 α3 α1 α0

α2

1 2 3 4 3 2 1

2

e
(1)
6 α6 α5 α4 α3 α1

α2

α0

1 2 3 2 1

2

1

d
(1)
r

r > 3

. . .2

1

1

2 2 2

1

1

α2

α1

α0

αr−2

αr−1

αr

c
(1)
r

r > 1

. . .
α0 α1 αr−1 αr

1 2 2 1

b
(1)
r

r > 2

. . .2

1

1

2 2 2α2

α1

α0

αr−1 αr

a
(1)
r

r > 1

. . .1

1

1 1 1
α1 α2

α0

αr−1 αr

a
(1)
1

1 1
α0 α1

f
(1)
4

1 2 3 4 2
α0 α1 α2 α3 α4

g
(1)
2

1 2 3
α0 α2 α1

a
(2)
2

1 2
α0 α1

a
(2)
2r

r > 1

. . .
α0 α1 αr−1 αr

1 2 2 2

a
(2)
2r−1
r > 2

. . .2

1

1

2 2 1α2

α1

α0

αr−1 αr

d
(2)
r+1

r > 1

. . .
α0 α1 αr−1 αr

1 1 1 1

e
(2)
6 α4 α3 α2 α1 α0

1 2 3 2 1

d
(3)
4

1 2 1
α0 α1 α2

Figure 1. Affine Dynkin diagrams. There are r + 1 vertices for
all diagrams for which r is a parameter. The numbers in the circles
are the coefficients mj for which

∑r
j=0mjαj = 0, m0 = 1.
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[19] V Kač, Automorphisms of finite order of semisimple Lie algebras, Funk. Anal. i Prilozen.

3 (1969), 94–96.
[20] B Kostant, The principal three dimensional subgroup and the Betti numbers of a complex

simple Lie group, Amer. J. Math. 81 (1959), 973–1032.
[21] Q Li & T Mochizuki Complete solutions of Toda equations and cyclic Higgs bundles over

non-compact surfaces, arXiv 2010.05401v2 (2020).
[22] Q Li & T Mochizuki Isolated singularities of Toda equations and cyclic Higgs bundles,

arXiv 2010.06129v2 (2020).
[23] J Loftin & I McIntosh, Minimal Lagrangian surfaces in CH

2 and representations of surface

groups into SU(2, 1), Geom. Dedicata 162 (2013), 67–93.
[24] J Loftin & I McIntosh, Cubic differentials in the differential geometry of surfaces, in Hand-

book of Teichmüller Theory Vol. V, p231–274. IRMA Lect. Math. Theor. Phys., 27 (EMS),
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